51
|
Wei X, Liu L, Li X, Wang Y, Guo X, Zhao J, Zhou S. Selectively targeting tumor-associated macrophages and tumor cells with polymeric micelles for enhanced cancer chemo-immunotherapy. J Control Release 2019; 313:42-53. [DOI: 10.1016/j.jconrel.2019.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/12/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023]
|
52
|
Masiero M, Li D, Whiteman P, Bentley C, Greig J, Hassanali T, Watts S, Stribbling S, Yates J, Bealing E, Li JL, Chillakuri C, Sheppard D, Serres S, Sarmiento-Soto M, Larkin J, Sibson NR, Handford PA, Harris AL, Banham AH. Development of Therapeutic Anti-JAGGED1 Antibodies for Cancer Therapy. Mol Cancer Ther 2019; 18:2030-2042. [PMID: 31395687 PMCID: PMC7611158 DOI: 10.1158/1535-7163.mct-18-1176] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/19/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
The role of Notch signaling and its ligand JAGGED1 (JAG1) in tumor biology has been firmly established, making them appealing therapeutic targets for cancer treatment. Here, we report the development and characterization of human/rat-specific JAG1-neutralizing mAbs. Epitope mapping identified their binding to the Notch receptor interaction site within the JAG1 Delta/Serrate/Lag2 domain, where E228D substitution prevented effective binding to the murine Jag1 ortholog. These antibodies were able to specifically inhibit JAG1-Notch binding in vitro, downregulate Notch signaling in cancer cells, and block the heterotypic JAG1-mediated Notch signaling between endothelial and vascular smooth muscle cells. Functionally, in vitro treatment impaired three-dimensional growth of breast cancer cell spheroids, in association with a reduction in cancer stem cell number. In vivo testing showed variable effects on human xenograft growth when only tumor-expressed JAG1 was targeted (mouse models) but a more robust effect when stromal-expressed Jag1 was also targeted (rat MDA-MB-231 xenograft model). Importantly, treatment of established triple receptor-negative breast cancer brain metastasis in rats showed a significant reduction in neoplastic growth. MRI imaging demonstrated that this was associated with a substantial improvement in blood-brain barrier function and tumor perfusion. Lastly, JAG1-targeting antibody treatment did not cause any detectable toxicity, further supporting its clinical potential for cancer therapy.
Collapse
Affiliation(s)
- Massimo Masiero
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Demin Li
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pat Whiteman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol Bentley
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jenny Greig
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tasneem Hassanali
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Watts
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Stribbling
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jenna Yates
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ellen Bealing
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ji-Liang Li
- CRUK Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Manuel Sarmiento-Soto
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- CRUK Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alison H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
53
|
Specific NOTCH1 antibody targets DLL4-induced proliferation, migration, and angiogenesis in NOTCH1-mutated CLL cells. Oncogene 2019; 39:1185-1197. [PMID: 31616059 PMCID: PMC7002297 DOI: 10.1038/s41388-019-1053-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 09/10/2019] [Accepted: 10/01/2019] [Indexed: 11/30/2022]
Abstract
Targeting Notch signaling has emerged as a promising therapeutic strategy for chronic lymphocytic leukemia (CLL), particularly in NOTCH1-mutated patients. We provide first evidence that the Notch ligand DLL4 is a potent stimulator of Notch signaling in NOTCH1-mutated CLL cells while increases cell proliferation. Importantly, DLL4 is expressed in histiocytes from the lymph node, both in NOTCH1-mutated and -unmutated cases. We also show that the DLL4-induced activation of the Notch signaling pathway can be efficiently blocked with the specific anti-Notch1 antibody OMP-52M51. Accordingly, OMP-52M51 also reverses Notch-induced MYC, CCND1, and NPM1 gene expression as well as cell proliferation in NOTCH1-mutated CLL cells. In addition, DLL4 stimulation triggers the expression of protumor target genes, such as CXCR4, NRARP, and VEGFA, together with an increase in cell migration and angiogenesis. All these events can be antagonized by OMP-52M51. Collectively, our results emphasize the role of DLL4 stimulation in NOTCH1-mutated CLL and confirm the specific therapeutic targeting of Notch1 as a promising approach for this group of poor prognosis CLL patients.
Collapse
|
54
|
Kofler N, Naiche LA, Zimmerman LD, Kitajewski JK. Inhibition of Jagged-Specific Notch Activation Reduces Luteal Angiogenesis and Causes Luteal Hemorrhaging of Hormonally Stimulated Ovaries. ACS Pharmacol Transl Sci 2019; 2:325-332. [PMID: 32259066 DOI: 10.1021/acsptsci.9b00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/28/2022]
Abstract
Robust angiogenesis in the corpus luteum is critical for maintenance of pregnancy and thus mammalian female fertility. During angiogenesis, blood vessels sprout from pre-existing vasculature and recruit pericytes to induce maturation and vessel quiescence. Pericytes are associated with capillaries and regulate endothelial cell proliferation, vessel diameter, and vascular permeability. Endothelial induction of Notch signaling in adjacent pericytes helps recruit and maintain pericyte coverage in some but not all tissue types. We have employed a Notch decoy, N110-24, which blocks Notch signaling in a ligand-specific manner, and determined that pharmacological inhibition of Notch ligand Jagged blocks luteal angiogenesis after normal ovulation, resulting in reduced luteal vasculature. Conversely, after ovarian hyperstimulation, a condition which occurs during fertility treatments, Jagged inhibition causes vascular dilation and hemorrhage. These results indicate that Jagged inhibition has effects in different ovarian angiogenic conditions, promoting vascular growth in the corpus luteum and vascular stability in hyperstimulated ovaries.
Collapse
Affiliation(s)
- Natalie Kofler
- Institute for Sustainability, Energy, and the Environment, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.,Integrated Program Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, United States
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois, 835 South Wolcott Avenue, Room 204L, Chicago, Illinois 60612, United States
| | - Lilli D Zimmerman
- Weill Cornell Medical College, New York, New York 10065, United States.,Department of Obstetrics and Gynecology, Columbia University, New York, New York 10032, United States
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois, 835 South Wolcott Avenue, Room 204L, Chicago, Illinois 60612, United States.,Department of Obstetrics and Gynecology, Columbia University, New York, New York 10032, United States
| |
Collapse
|
55
|
Qin J, Wang R, Zhao C, Wen J, Dong H, Wang S, Li Y, Zhao Y, Li J, Yang Y, He X, Wang D. Notch signaling regulates osteosarcoma proliferation and migration through Erk phosphorylation. Tissue Cell 2019; 59:51-61. [PMID: 31383289 DOI: 10.1016/j.tice.2019.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
We used a murine spontaneous osteosarcoma cell line with high metastatic potential, the K7M2 cell line to study the role of Notch signaling in the biological manifestations of osteosarcoma, to understand its underlying mechanism in the regulation of cell proliferation and migration, and to improve patient prognosis in cases of osteosarcoma through the discovery of novel therapeutic targets, First, Notch expression in K7M2 was determined by immunostaining, and the γ-secretase inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was used to inhibit proteolytic cleavage of the Notch intracellular domain (NICD), resulting in the inhibition of Notch activation. By using the Sulforhodamine B assay, colony-forming units assay, Brdu and Ki67 staining, and flow cytometry assays of apoptosis and cell cycle stage, DAPT was found to inhibit K7M2 proliferation in a dose-dependent manner. By using wound healing and transwell migration assays, DAPT was found to inhibit K7M2 migration in a dose-dependent manner as well. By using a combination of micro-Raman spectroscopy and K-means clustering analysis, we found that DAPT inhibit a variety of important cell metabolism-related components in most K7M2 cell structures. Then, DAPT was found to inhibit Notch1ICD expression in a concentration-dependent manner, and this expression was directly correlated with Phospho-Erk1/2 (p-Erk) by using Western blotting. To confirm this finding, we used the Notch signaling ligand Jagged1 to activate the Notch signaling pathway, which in turn up-regulated p-Erk, resulting in increased proliferation and migration of K7M2. Using the Erk pathway inhibitor U0126, we showed that p-Erk was downregulated and the proliferation and migration of K7M2 decreased along with it. Finally, we constructed a K7M2 mouse para-tibial tumor model and lung metastatic model. We found DAPT inhibits p-Erk in vivo, effectively controls tumor growth, reduces angiogenesis, reduces metastasis to the lungs, and improves overall survival. In summary, Notch signaling plays an oncogene role and promotes metastasis in osteosarcoma through p-Erk. DAPT effectively inhibits osteosarcoma proliferation and metastasis in vivo and in vitro by inhibiting Erk phosphorylation. Therefore, the inhibition of Notch activation resulted the down-regulation of phosphorylation of Erk pathway can be used as potential therapeutic targets in clinical treatment to improve osteosarcoma prognosis.
Collapse
Affiliation(s)
- Jie Qin
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Rui Wang
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Chenguang Zhao
- The Department of Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, PR China
| | - Junxiang Wen
- The Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Hui Dong
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Shuang Wang
- Institute of Photonics and Photon-Technology, Northwest University, Xi'an, Shaanxi Province, PR China
| | - Yuhuan Li
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Yonglin Zhao
- The Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Jianjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Yiting Yang
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China
| | - Xijing He
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China.
| | - Dong Wang
- The Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, PR China.
| |
Collapse
|
56
|
Bowler E, Oltean S. Alternative Splicing in Angiogenesis. Int J Mol Sci 2019; 20:E2067. [PMID: 31027366 PMCID: PMC6540211 DOI: 10.3390/ijms20092067] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing of pre-mRNA allows the generation of multiple splice isoforms from a given gene, which can have distinct functions. In fact, splice isoforms can have opposing functions and there are many instances whereby a splice isoform acts as an inhibitor of canonical isoform function, thereby adding an additional layer of regulation to important processes. Angiogenesis is an important process that is governed by alternative splicing mechanisms. This review focuses on the alternative spliced isoforms of key genes that are involved in the angiogenesis process; VEGF-A, VEGFR1, VEGFR2, NRP-1, FGFRs, Vasohibin-1, Vasohibin-2, HIF-1α, Angiopoietin-1 and Angiopoietin-2.
Collapse
Affiliation(s)
- Elizabeth Bowler
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter EX4 4PY, UK.
| |
Collapse
|
57
|
Yang MH, Chang KJ, Li B, Chen WS. Arsenic Trioxide Suppresses Tumor Growth through Antiangiogenesis via Notch Signaling Blockade in Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4647252. [PMID: 31093499 PMCID: PMC6481139 DOI: 10.1155/2019/4647252] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/01/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Small-cell lung cancer (SCLC) is a highly malignant type of lung cancer with no effective second-line chemotherapy drugs. Arsenic trioxide (As2O3) was reported to exert antiangiogenesis activities against lung cancer and induce poor development of vessel structures, similar to the effect observed following the blockade of Notch signaling. However, there are no direct evidences on the inhibitory effects of As2O3 on tumor growth and angiogenesis via blockade of Notch signaling in SCLC. Here, we found that As2O3 significantly inhibited the tumor growth and angiogenesis in SCLC and reduced the microvessel density. As2O3 disturbed the morphological development of tumor vessels and downregulated the protein levels of delta-like canonical Notch ligand 4 (Dll4), Notch1, and Hes1 in vivo. DAPT, a Notch signaling inhibitor, exerted similar effects in SCLC. We found that both As2O3 treatment and Notch1 expression knockdown resulted in the interruption of tube formation by human umbilical vein endothelial cells (HUVECs) on Matrigel. As2O3 had no effects on Dll4 level in HUVECs but significantly inhibited the expression of Notch1 and its downstream gene Hes1 regardless of Dll4 overexpression or Notch1 knockdown. These findings suggest that the antitumor activity of As2O3 in SCLC was mediated via its antiangiogenic effect through the blockade of Notch signaling, probably owing to Notch1 targeting.
Collapse
Affiliation(s)
- Meng-Hang Yang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ke-Jie Chang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Bing Li
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wan-Sheng Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
58
|
Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X, Li L. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal 2019; 13:291-301. [PMID: 30903604 DOI: 10.1007/s12079-019-00511-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis is a critical, fine-tuned, multi-staged biological process. Tip-stalk cell selection and shuffling are the building blocks of sprouting angiogenesis. Accumulated evidences show that tip-stalk cell selection and shuffling are regulated by a variety of physical, chemical and biological factors, especially the interaction among multiple genes, their products and environments. The classic Notch-VEGFR, Slit-Robo, ECM-binding integrin, semaphorin and CCN family play important roles in tip-stalk cell selection and shuffling. In this review, we outline the progress and prospect in the mechanism and the roles of the various molecules and related signaling pathways in endothelial tip-stalk cell selection and shuffling. In the future, the regulators of tip-stalk cell selection and shuffling would be the potential markers and targets for angiogenesis.
Collapse
Affiliation(s)
- Wenqi Chen
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Xia
- Department of Anesthesia, Jilin Provincial People's Hospital, Changchun, China
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, China
| | - Jihao Tu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xinyue Liang
- The First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- The First Hospital of Jilin University, Changchun, China. .,Institute of Immunology, Jilin University, Changchun, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
59
|
Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, Besse B, Yanagitani N, Friboulet L, Nishio M, Takeuchi K, Kawamoto H, Fujita N, Katayama R. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med 2019; 216:982-1000. [PMID: 30872362 PMCID: PMC6446862 DOI: 10.1084/jem.20180870] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 01/05/2023] Open
Abstract
Therapeutic resistance to PD-L1 blockade therapy following an initial positive response is increasingly observed. Gong et al. show that secreted PD-L1 splicing variants act as “decoys,” mediating resistance to the PD-L1 blockade therapy. Immune checkpoint blockade against programmed cell death 1 (PD-1) and its ligand PD-L1 often induces durable tumor responses in various cancers, including non–small cell lung cancer (NSCLC). However, therapeutic resistance is increasingly observed, and the mechanisms underlying anti–PD-L1 (aPD-L1) antibody treatment have not been clarified yet. Here, we identified two unique secreted PD-L1 splicing variants, which lacked the transmembrane domain, from aPD-L1–resistant NSCLC patients. These secreted PD-L1 variants worked as “decoys” of aPD-L1 antibody in the HLA-matched coculture system of iPSC-derived CD8 T cells and cancer cells. Importantly, mixing only 1% MC38 cells with secreted PD-L1 variants and 99% of cells that expressed wild-type PD-L1 induced resistance to PD-L1 blockade in the MC38 syngeneic xenograft model. Moreover, anti–PD-1 (aPD-1) antibody treatment overcame the resistance mediated by the secreted PD-L1 variants. Collectively, our results elucidated a novel resistant mechanism of PD-L1 blockade antibody mediated by secreted PD-L1 variants.
Collapse
Affiliation(s)
- Bo Gong
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kazuma Kiyotani
- Immunopharmacogenomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiji Sakata
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Seiji Nagano
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shun Kumehara
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoko Baba
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Benjamin Besse
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.,Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Noriko Yanagitani
- The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Luc Friboulet
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Makoto Nishio
- The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kengo Takeuchi
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Kawamoto
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
60
|
Li Q, He X, Yu Q, Wu Y, Du M, Chen J, Peng F, Zhang W, Chen J, Wang Y, Chen H, Wang H, He D, Wang Q. RETRACTED ARTICLE: The Notch signal mediates macrophage polarization by regulating miR-125a/miR-99b expression. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:833-843. [PMID: 30862190 DOI: 10.1080/21691401.2019.1576711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yuan Wu
- Department of Internal Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Mingyu Du
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jing Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Fanyu Peng
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Zhang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hanbo Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hairong Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Dan He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, PR China
| |
Collapse
|
61
|
Abou Faycal C, Gazzeri S, Eymin B. A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells. Sci Rep 2019; 9:336. [PMID: 30674935 PMCID: PMC6344584 DOI: 10.1038/s41598-018-36728-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/19/2022] Open
Abstract
The splice variant sVEGFR1-i13 is a truncated version of the cell membrane-spanning VEGFR1 receptor that is devoid of its transmembrane and tyrosine kinase domains. We recently showed the contribution of sVEGFR1-i13 to the progression and the response of squamous lung carcinoma to anti-angiogenic therapies. In this study, we identify VEGF165, a splice variant of VEGF-A, as a regulator of sVEGFR1-i13 expression in these tumors, and further show that VEGF165 cooperates with the transcription factor SOX2 and the splicing factor SRSF2 to control sVEGFR1-i13 expression. We also demonstrate that anti-angiogenic therapies up-regulate sVEGFR1-i13 protein level in squamous lung carcinoma cells by a mechanism involving the VEGF165/SOX2/SRSF2 network. Collectively, our results identify for the first time a signaling network that controls VEGFR1 pre-mRNA alternative splicing in cancer cells.
Collapse
Affiliation(s)
- Cherine Abou Faycal
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France
| | - Sylvie Gazzeri
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France.,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France
| | - Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute For Advanced Biosciences, Grenoble, 38042, France. .,Université Grenoble Alpes, Institut Albert Bonniot, Grenoble, 38041, France.
| |
Collapse
|
62
|
Abstract
Purpose of review The formation of a hierarchical vascular network is a complex process that requires precise temporal and spatial integration of several signaling pathways. Amongst those, Notch has emerged as a key regulator of multiple steps that expand from endothelial sprouting to arterial specification and remains relevant in the adult. This review aims to summarize major concepts and rising hypotheses on the role of Notch signaling in the endothelium. Recent findings A wealth of new information has helped to clarify how Notch signaling cooperates with other pathways to orchestrate vascular morphogenesis, branching, and function. Endothelial vascular endothelial growth factor, C-X-C chemokine receptor type 4, and nicotinamide adenine dinucleotide phosphate oxidase 2 have been highlighted as key regulators of the pathway. Furthermore, blood flow forces during vascular development induce Notch1 signaling to suppress endothelial cell proliferation, enhance barrier function, and promote arterial specification. Importantly, Notch1 has been recently recognized as an endothelial mechanosensor that is highly responsive to the level of shear stress to enable differential Notch activation in distinct regions of the vessel wall and suppress inflammation. Summary Although it is well accepted that the Notch signaling pathway is essential for vascular morphogenesis, its contributions to the homeostasis of adult endothelium were uncovered only recently. Furthermore, its exquisite regulation by flow and impressive interface with multiple signaling pathways indicates that Notch is at the center of a highly interactive web that integrates both physical and chemical signals to ensure vascular stability.
Collapse
|
63
|
Alabi RO, Farber G, Blobel CP. Intriguing Roles for Endothelial ADAM10/Notch Signaling in the Development of Organ-Specific Vascular Beds. Physiol Rev 2019; 98:2025-2061. [PMID: 30067156 DOI: 10.1152/physrev.00029.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vasculature is a remarkably interesting, complex, and interconnected organ. It provides a conduit for oxygen and nutrients, filtration of waste products, and rapid communication between organs. Much remains to be learned about the specialized vascular beds that fulfill these diverse, yet vital functions. This review was prompted by the discovery that Notch signaling in mouse endothelial cells is crucial for the development of specialized vascular beds found in the heart, kidneys, liver, intestines, and bone. We will address the intriguing questions raised by the role of Notch signaling and that of its regulator, the metalloprotease ADAM10, in the development of specialized vascular beds. We will cover fundamentals of ADAM10/Notch signaling, the concept of Notch-dependent cell fate decisions, and how these might govern the development of organ-specific vascular beds through angiogenesis or vasculogenesis. We will also consider common features of the affected vessels, including the presence of fenestra or sinusoids and their occurrence in portal systems with two consecutive capillary beds. We hope to stimulate further discussion and study of the role of ADAM10/Notch signaling in the development of specialized vascular structures, which might help uncover new targets for the repair of vascular beds damaged in conditions like coronary artery disease and glomerulonephritis.
Collapse
Affiliation(s)
- Rolake O Alabi
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Gregory Farber
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| | - Carl P Blobel
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, New York ; Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York ; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York ; Department of Medicine, Weill Cornell Medicine, New York, New York ; and Institute for Advanced Study, Technical University Munich , Munich , Germany
| |
Collapse
|
64
|
Zhang Y, Coarfa C, Dong X, Jiang W, Hayward-Piatkovskyi B, Gleghorn JP, Lingappan K. MicroRNA-30a as a candidate underlying sex-specific differences in neonatal hyperoxic lung injury: implications for BPD. Am J Physiol Lung Cell Mol Physiol 2019; 316:L144-L156. [PMID: 30382766 PMCID: PMC6383497 DOI: 10.1152/ajplung.00372.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
Premature male neonates are at a greater risk of developing bronchopulmonary dysplasia (BPD). The reasons underlying sexually dimorphic outcomes in premature neonates are not known. The role of miRNAs in mediating sex biases in BPD is understudied. Analysis of the pulmonary transcriptome revealed that a large percentage of angiogenesis-related differentially expressed genes are miR-30a targets. We tested the hypothesis that there is differential expression of miR-30a in vivo and in vitro in neonatal human pulmonary microvascular endothelial cells (HPMECs) upon exposure to hyperoxia. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% fraction of inspired oxygen (FiO2), postnatal day ( PND) 1-5] and euthanized on PND 7 and 21. HPMECs (18-24-wk gestation donors) were subjected to hyperoxia (95% O2 and 5% CO2) or normoxia (air and 5% CO2) up to 72 h. miR-30a expression was increased in both males and females in the acute phase ( PND 7) after hyperoxia exposure. However, at PND 21 (recovery phase), female mice showed significantly higher miR-30a expression in the lungs compared with male mice. Female HPMECs showed greater expression of miR-30a in vitro upon exposure to hyperoxia. Delta-like ligand 4 (Dll4) was an miR-30a target in HPMECs and showed sex-specific differential expression. miR-30a increased angiogenic sprouting in vitro in female HPMECs. Lastly, we show decreased expression of miR-30a and increased expression of DLL4 in human BPD lung samples compared with controls. These results support the hypothesis that miR-30a could, in part, contribute to the sex-specific molecular mechanisms in play that lead to the sexual dimorphism in BPD.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Cristian Coarfa
- Advanced Technology Cores, Baylor College of Medicine , Houston, Texas
| | - Xiaoyu Dong
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| | | | - Jason P Gleghorn
- Department of Biological Sciences, University of Delaware , Newark, Delaware
- Department of Biomedical Engineering, University of Delaware , Newark, Delaware
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
65
|
Wang N, Wang S, Li MY, Hu BG, Liu LP, Yang SL, Yang S, Gong Z, Lai PBS, Chen GG. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918816287. [PMID: 30622654 PMCID: PMC6304707 DOI: 10.1177/1758835918816287] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
The poor clinical outcome of hepatocellular carcinoma (HCC) patients is ascribed to the resistance of HCC cells to traditional treatments and tumor recurrence after curative therapies. Cancer stem cells (CSCs) have been identified as a small subset of cancer cells which have high capacity for self-renewal, differentiation and tumorigenesis. Recent advances in the field of liver CSCs (LCSCs) have enabled the identification of CSC surface markers and the isolation of CSC subpopulations from HCC cells. Given their central role in cancer initiation, metastasis, recurrence and therapeutic resistance, LCSCs constitute a therapeutic opportunity to achieve cure and prevent relapse of HCC. Thus, it is necessary to develop therapeutic strategies to selectively and efficiently target LCSCs. Small molecular inhibitors targeting the core stemness signaling pathways have been actively pursued and evaluated in preclinical and clinical studies. Other alternative therapeutic strategies include targeting LCSC surface markers, interrupting the CSC microenvironment, and altering the epigenetic state. In this review, we summarize the properties of CSCs in HCC and discuss novel therapeutic strategies that can be used to target LCSCs.
Collapse
Affiliation(s)
- Nuozhou Wang
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Shanshan Wang
- Department of Otorhinolaryngology, Head and Neck
Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of
Wales Hospital, Hong Kong, China
| | - Ming-Yue Li
- Department of Surgery, Faculty of Medicine, The
Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong,
China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| | - Bao-guang Hu
- Department of Gastrointestinal Surgery, The
Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong,
China
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas
Surgery, The Second Clinical Medical College of Jinan University (Shenzhen
People’s Hospital), Shenzhen, Guangdong Province, China
| | - Sheng-li Yang
- Cancer Center, Union Hospital, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan, China
| | - Shucai Yang
- Department of Clinical Laboratory, Pingshan
District People’s Hospital of Shenzhen, Shenzhen, Guangdong Province,
China
| | - Zhongqin Gong
- Department of Surgery, The Chinese University of
Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR,
China
| | - Paul B. S. Lai
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
| | - George G. Chen
- Department of Surgery, The Chinese University
of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
SAR, China
- Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
66
|
Sadremomtaz A, Mansouri K, Alemzadeh G, Safa M, Rastaghi AE, Asghari SM. Dual blockade of VEGFR1 and VEGFR2 by a novel peptide abrogates VEGF-driven angiogenesis, tumor growth, and metastasis through PI3K/AKT and MAPK/ERK1/2 pathway. Biochim Biophys Acta Gen Subj 2018; 1862:2688-2700. [DOI: 10.1016/j.bbagen.2018.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
|
67
|
Vaniotis G, Moffett S, Sulea T, Wang N, Elahi SM, Lessard E, Baardsnes J, Perrino S, Durocher Y, Frystyk J, Massie B, Brodt P. Enhanced anti-metastatic bioactivity of an IGF-TRAP re-engineered to improve physicochemical properties. Sci Rep 2018; 8:17361. [PMID: 30478273 PMCID: PMC6255772 DOI: 10.1038/s41598-018-35407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/07/2018] [Indexed: 01/22/2023] Open
Abstract
The insulin-like growth factor (IGF) axis has been implicated in the progression of malignant disease and identified as a clinically important therapeutic target. Several IGF-1 receptor (IGF-1R) targeting drugs including humanized monoclonal antibodies have advanced to phase II/III clinical trials, but to date, have not progressed to clinical use, due, at least in part, to interference with insulin receptor signalling. We previously reported on the production of a soluble fusion protein consisting of the extracellular domain of human IGF-1R fused to the Fc portion of human IgG1 (first generation IGF-TRAP) that bound human IGF-1 and IGF-2 with a 3 log higher affinity than insulin. We showed that the IGF-TRAP had potent anti-cancer activity in several pre-clinical models of aggressive carcinomas. Here we report on the re-engineering of the IGF-TRAP with the aim of improving physicochemical properties and suitability for clinical applications. We show that cysteine-serine substitutions in the Fc hinge region of IGF-TRAP eliminated high-molecular-weight oligomerized species, while a further addition of a flexible linker, not only improved the pharmacokinetic profile, but also enhanced the therapeutic profile of the IGF-TRAP, as evaluated in an experimental colon carcinoma metastasis model. Dose-response profiles of the modified IGF-TRAPs correlated with their bio-availability profiles, as measured by the IGF kinase-receptor-activation (KIRA) assay, providing a novel, surrogate biomarker for drug efficacy. This study provides a compelling example of structure-based re-engineering of Fc-fusion-based biologics for better manufacturability that also significantly improved pharmacological parameters. It identifies the re-engineered IGF-TRAP as a potent anti-cancer therapeutic.
Collapse
Affiliation(s)
- George Vaniotis
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Serge Moffett
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - Traian Sulea
- Institute of Parasitology, McGill University, Montreal Quebec, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Ni Wang
- Department of Surgery, McGill University, Montreal Quebec, Canada
| | - S Mehdy Elahi
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Etienne Lessard
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | | | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Jan Frystyk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bernard Massie
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal Quebec, Canada
| | - Pnina Brodt
- Department of Surgery, McGill University, Montreal Quebec, Canada.
- Department of Medicine, McGill University, Montreal Quebec, Canada.
- Department of Oncology, McGill University, Montreal Quebec, Canada.
- Cancer Research Program, Research Institute of the McGill University Health Center, Montreal Quebec, Canada.
| |
Collapse
|
68
|
Tetramethylpyrazine and Paeoniflorin Inhibit Oxidized LDL-Induced Angiogenesis in Human Umbilical Vein Endothelial Cells via VEGF and Notch Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3082507. [PMID: 30584451 PMCID: PMC6280302 DOI: 10.1155/2018/3082507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 02/01/2023]
Abstract
Atherosclerotic plaque angiogenesis is key factor in plaque instability and vulnerability, and low concentrations of oxidized low density lipoprotein (ox-LDL) promote the in vitro angiogenesis of endothelial cells and play an important role in plaque angiogenesis. Ligusticum chuanxiong Hort. and Radix Paeoniae Rubra herb pair in Chinese medicine obtains the optimum therapeutic efficacy in atherosclerosis, and their major active ingredients tetramethylpyrazine (TMP) and paeoniflorin (PF) are reported to alleviate atherosclerosis. The aim of this study was to investigate the effects of TMP and PF on ox-LDL-induced angiogenesis and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were incubated with ox-LDL and were then treated with TMP, PF, or a combination of TMP and PF. Cell proliferation, migration, tube formation, and the expression of angiogenesis-related proteins were measured. Synergism was evaluated using the combination index in cell proliferation. We found that TMP and PF attenuated the in vitro angiogenesis in ox-LDL-induced HUVECs. In addition, the combination of TMP and PF not only inhibited the ox-LDL-induced expression of CD31, vascular endothelial growth factor (VEGF), and VEGF receptor 2 (VEGFR2) but also decreased the ox-LDL-induced expression of Notch1, Jagged1, and Hes1. In summary, the combination of TMP and PF suppresses ox-LDL-induced angiogenesis in HUVECs by inhibiting both the VEGF/VEGFR2 and the Jagged1/Notch1 signaling pathways, which might contribute to the stability of plaques in atherosclerosis.
Collapse
|
69
|
Co-Expression Analysis Reveals Mechanisms Underlying the Varied Roles of NOTCH1 in NSCLC. J Thorac Oncol 2018; 14:223-236. [PMID: 30408569 DOI: 10.1016/j.jtho.2018.10.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/23/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Notch receptor family dysregulation can be tumor promoting or suppressing depending on cellular context. Our studies shed light on the mechanistic differences that are responsible for NOTCH1's opposing roles in lung adenocarcinoma and lung squamous cell carcinoma. METHODS We integrated transcriptional patient-derived datasets with gene co-expression analyses to elucidate mechanisms behind NOTCH1 function in subsets of NSCLC. Differential co-expression was examined using hierarchical clustering and principal component analysis. Enrichment analysis was used to examine pathways associated with the underlying transcriptional networks. These pathways were validated in vitro and in vivo. Endogenously epitope-tagged NOTCH1 was used to identify novel interacting proteins. RESULTS NOTCH1 co-expressed genes in lung adenocarcinoma and squamous carcinoma were distinct and associated with either angiogenesis and immune system pathways or cell cycle control and mitosis pathways, respectively. Tissue culture and xenograft studies of lung adenocarcinoma and lung squamous models with NOTCH1 knockdown showed growth differences and opposing effects on these pathways. Differential NOTCH1 interacting proteins were identified as potential mediators of these differences. CONCLUSIONS Recognition of the opposing role of NOTCH1 in lung cancer, downstream pathways, and interacting proteins in each context may help direct the development of rational NOTCH1 pathway-dependent targeted therapies for specific tumor subsets of NSCLC.
Collapse
|
70
|
Microvascular Mural Cells in Cancer. Trends Cancer 2018; 4:838-848. [PMID: 30470305 DOI: 10.1016/j.trecan.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
Microvascular mural cells (MMCs) are important regulators of tumor vessel properties, such as endothelial cell differentiation and vessel permeability, and are recognized as modulators of tumor angiogenesis and growth. Emerging experimental studies suggest impact of MMCs on additional aspects of tumor biology, exerted by functionally distinct subsets. These have been shown to control metastasis both in primary tumors and in the premetastatic niche. Other studies link marker-defined MMCs to tumor immune surveillance and drug sensitivity. In parallel, recent efforts to profile MMCs in clinical samples are confirming the existence of clinically relevant marker-defined MMC subsets which show marker- and tumor-type- specific associations with prognosis and response to treatment. Collectively, findings encourage to continued analyses of MMC subsets as candidate biomarkers and drug targets.
Collapse
|
71
|
Staphylococcus aureus alpha toxin activates Notch in vascular cells. Angiogenesis 2018; 22:197-209. [PMID: 30324336 DOI: 10.1007/s10456-018-9650-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
Staphylococcus aureus infection is one of the leading causes of morbidity in hospitalized patients in the United States, an effect compounded by increasing antibiotic resistance. The secreted agent hemolysin alpha toxin (Hla) requires the receptor A Disintegrin And Metalloproteinase domain-containing protein 10 (ADAM10) to mediate its toxic effects. We hypothesized that these effects are in part regulated by Notch signaling, for which ADAM10 activation is essential. Notch proteins function in developmental and pathological angiogenesis via the modulation of key pathways in endothelial and perivascular cells. Thus, we hypothesized that Hla would activate Notch in vascular cells. Human umbilical vein endothelial cells were treated with recombinant Hla (rHla), Hla-H35L (genetically inactivated Hla), or Hank's solution (HBSS), and probed by different methods. Luciferase assays showed that Hla (0.01 µg/mL) increased Notch activation by 1.75 ± 0.5-fold as compared to HBSS controls (p < 0.05), whereas Hla-H35L had no effect. Immunocytochemistry and Western blotting confirmed these findings and revealed that ADAM10 and γ-secretase are required for Notch activation after inhibitor and siRNA assays. Retinal EC in mice engineered to express yellow fluorescent protein (YFP) upon Notch activation demonstrated significantly greater YFP intensity after Hla injection than controls. Aortic rings from Notch reporter mice embedded in matrix and incubated with rHla or Hla-H35L demonstrate increased Notch activation occurs at tip cells during sprouting. These mice also had higher skin YFP intensity and area of expression after subcutaneous inoculation of S. aureus expressing Hla than a strain lacking Hla in both EC and pericytes assessed by microscopy. Human liver displayed strikingly higher Notch expression in EC and pericytes during S. aureus infection by immunohistochemistry than tissues from uninfected patients. In sum, our results demonstrate that the S. aureus toxin Hla can potently activate Notch in vascular cells, an effect which may contribute to the pathobiology of infection with this microorganism.
Collapse
|
72
|
Meurette O, Mehlen P. Notch Signaling in the Tumor Microenvironment. Cancer Cell 2018; 34:536-548. [PMID: 30146333 DOI: 10.1016/j.ccell.2018.07.009] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/30/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway regulates many aspects of cancer biology. Most attention has been given to its role in the transformed cell. However, it is now clear that cancer progression and metastasis depend on the bidirectional interactions between cancer cells and their environment, forming the tumor microenvironment (TME). These interactions are mediated and constantly evolve through paracrine and juxtacrine signaling. In this review, we discuss how Notch signaling takes an important part in regulating the crosstalk between the different compartments of the TME. We also address the consequences of the Notch-TME involvement from a therapeutic perspective.
Collapse
Affiliation(s)
- Olivier Meurette
- Apoptosis, Cancer and Development Laboratory- Equipe Labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe Labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
73
|
Colombo M, Mirandola L, Chiriva-Internati M, Basile A, Locati M, Lesma E, Chiaramonte R, Platonova N. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Front Immunol 2018; 9:1823. [PMID: 30154786 PMCID: PMC6102368 DOI: 10.3389/fimmu.2018.01823] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Notch signaling is a well-known key player in the communication between adjacent cells during organ development, when it controls several processes involved in cell differentiation. Notch-mediated communication may occur through the interaction of Notch receptors with ligands on adjacent cells or by a paracrine/endocrine fashion, through soluble molecules that can mediate the communication between cells at distant sites. Dysregulation of Notch pathway causes a number of disorders, including cancer. Notch hyperactivation may be caused by mutations of Notch-related genes, dysregulated upstream pathways, or microenvironment signals. Cancer cells may exploit this aberrant signaling to "educate" the surrounding microenvironment cells toward a pro-tumoral behavior. This may occur because of key cytokines secreted by tumor cells or it may involve the microenvironment through the activation of Notch signaling in stromal cells, an event mediated by a direct cell-to-cell contact and resulting in the increased secretion of several pro-tumorigenic cytokines. Up to now, review articles were mainly focused on Notch contribution in a specific tumor context or immune cell populations. Here, we provide a comprehensive overview on the outcomes of Notch-mediated pathological interactions in different tumor settings and on the molecular and cellular mediators involved in this process. We describe how Notch dysregulation in cancer may alter the cytokine network and its outcomes on tumor progression and antitumor immune response.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Maurizio Chiriva-Internati
- Kiromic Biopharma Inc., Houston, TX, United States.,Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | | | - Natalia Platonova
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
74
|
Cárdenas A, Villalba A, de Juan Romero C, Picó E, Kyrousi C, Tzika AC, Tessier-Lavigne M, Ma L, Drukker M, Cappello S, Borrell V. Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels. Cell 2018; 174:590-606.e21. [PMID: 29961574 PMCID: PMC6063992 DOI: 10.1016/j.cell.2018.06.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/24/2018] [Accepted: 06/01/2018] [Indexed: 11/29/2022]
Abstract
Cerebral cortex size differs dramatically between reptiles, birds, and mammals, owing to developmental differences in neuron production. In mammals, signaling pathways regulating neurogenesis have been identified, but genetic differences behind their evolution across amniotes remain unknown. We show that direct neurogenesis from radial glia cells, with limited neuron production, dominates the avian, reptilian, and mammalian paleocortex, whereas in the evolutionarily recent mammalian neocortex, most neurogenesis is indirect via basal progenitors. Gain- and loss-of-function experiments in mouse, chick, and snake embryos and in human cerebral organoids demonstrate that high Slit/Robo and low Dll1 signaling, via Jag1 and Jag2, are necessary and sufficient to drive direct neurogenesis. Attenuating Robo signaling and enhancing Dll1 in snakes and birds recapitulates the formation of basal progenitors and promotes indirect neurogenesis. Our study identifies modulation in activity levels of conserved signaling pathways as a primary mechanism driving the expansion and increased complexity of the mammalian neocortex during amniote evolution.
Collapse
Affiliation(s)
- Adrián Cárdenas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Ana Villalba
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Camino de Juan Romero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Esther Picó
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Christina Kyrousi
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Athanasia C Tzika
- Department Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland; SIB Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | | | - Le Ma
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Micha Drukker
- Institute of Stem Cell Research and the Induced Pluripotent Stem Cell Core Facility, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Silvia Cappello
- Developmental Neurobiology, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain.
| |
Collapse
|
75
|
Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 19:ijms19072011. [PMID: 29996493 PMCID: PMC6073901 DOI: 10.3390/ijms19072011] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility. As it concerns cancer epithelial cells, EMT may be consequent to the evolution of genetic/epigenetic instability, or triggered by factors that can act within the tumor microenvironment. Following a description of the Notch signaling pathway and its major regulatory nodes, we focus on studies that have given insights into the functional interaction between Notch signaling and either hypoxia or estrogen in breast cancer cells, with a particular focus on EMT. Furthermore, we describe the role of hypoxia signaling in breast cancer cells and discuss recent evidence regarding a functional interaction between HIF-1α and GPER in both breast cancer cells and cancer-associated fibroblasts (CAFs). On the basis of these studies, we propose that a functional network between HIF-1α, GPER and Notch may integrate tumor microenvironmental cues to induce robust EMT in cancer cells. Further investigations are required in order to better understand how hypoxia and estrogen signaling may converge on Notch-mediated EMT within the context of the stroma and tumor cells interaction. However, the data discussed here may anticipate the potential benefits of further pharmacological strategies targeting breast cancer progression.
Collapse
|
76
|
Spatial patterning of the Notch ligand Dll4 controls endothelial sprouting in vitro. Sci Rep 2018; 8:6392. [PMID: 29686270 PMCID: PMC5913301 DOI: 10.1038/s41598-018-24646-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/05/2018] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is a vital process for tissue growth and development. The Notch cell-cell signalling pathway plays an important role in endothelial cell specification during angiogenesis. Dll4 - Notch1 signalling directs endothelial cells into migrating tip or proliferating stalk cells. We used the directing properties of Dll4 to spatially control endothelial cell fate and the direction of endothelial sprouts. We created linear arrays of immobilized Dll4 using micro contact printing. HUVECs were seeded perpendicular to these Dll4 patterns using removable microfluidic channels. The Notch activating properties of surface immobilized Dll4 were confirmed by qPCR. After induction of sprouting, microscopic images of fluorescently labelled endothelial sprouts were analysed to determine the direction and the efficiency of controlled sprouting (Ecs). Directionality analysis of the sprouts showed the Dll4 pattern changes sprout direction from random to unidirectional. This was confirmed by the increase of Ecs from 54.5 ± 3.1% for the control, to an average of 84.7 ± 1.86% on the Dll4 patterned surfaces. Our data demonstrates a surface-based method to spatially pattern Dll4 to gain control over endothelial sprout location and direction. This suggests that spatial ligand patterning can be used to provide control over (neo) vascularization.
Collapse
|
77
|
Majidinia M, Darband SG, Kaviani M, Nabavi SM, Jahanban-Esfahlan R, Yousefi B. Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 2018; 66-67:30-41. [PMID: 29723707 DOI: 10.1016/j.dnarep.2018.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
Despite their simple structure, the Notch family of receptors regulates a wide-spectrum of key cellular processes including development, tissue patterning, cell-fate determination, proliferation, differentiation and, cell death. On the other hand, accumulating date pinpointed the role of non-coding microRNAs, namely miRNAs in cancer initiation/progression via regulating the expression of multiple oncogenes and tumor suppressor genes, as such the Notch signaling. It is now documented that these two partners are in one or in the opposite directions and rule together the cancer fate. Here, we review the current knowledge relevant to this tricky interplay between different miRNAs and components of Notch signaling pathway. Further, we discuss the implication of this crosstalk in cancer progression/regression in the context of cancer stem cells, tumor angiogenesis, metastasis and emergence of multi-drug resistance. Understanding the molecular cues and mechanisms that occur at the interface of miRNA and Notch signaling would open new avenues for development of novel and effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Saber Ghazizadeh Darband
- Danesh Pey Hadi Co., Health Technology Development Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rana Jahanban-Esfahlan
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran; Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
78
|
Goriki A, Seiler R, Wyatt AW, Contreras-Sanz A, Bhat A, Matsubara A, Hayashi T, Black PC. Unravelling disparate roles of NOTCH in bladder cancer. Nat Rev Urol 2018; 15:345-357. [DOI: 10.1038/s41585-018-0005-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
79
|
Tetzlaff F, Adam MG, Feldner A, Moll I, Menuchin A, Rodriguez-Vita J, Sprinzak D, Fischer A. MPDZ promotes DLL4-induced Notch signaling during angiogenesis. eLife 2018; 7:e32860. [PMID: 29620522 PMCID: PMC5933922 DOI: 10.7554/elife.32860] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is coordinated by VEGF and Notch signaling. DLL4-induced Notch signaling inhibits tip cell formation and vessel branching. To ensure proper Notch signaling, receptors and ligands are clustered at adherens junctions. However, little is known about factors that control Notch activity by influencing the cellular localization of Notch ligands. Here, we show that the multiple PDZ domain protein (MPDZ) enhances Notch signaling activity. MPDZ physically interacts with the intracellular carboxyterminus of DLL1 and DLL4 and enables their interaction with the adherens junction protein Nectin-2. Inactivation of the MPDZ gene leads to impaired Notch signaling activity and increased blood vessel sprouting in cellular models and the embryonic mouse hindbrain. Tumor angiogenesis was enhanced upon endothelial-specific inactivation of MPDZ leading to an excessively branched and poorly functional vessel network resulting in tumor hypoxia. As such, we identified MPDZ as a novel modulator of Notch signaling by controlling ligand recruitment to adherens junctions.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Calcium-Binding Proteins
- Carcinoma, Lewis Lung/blood supply
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carrier Proteins/physiology
- Cells, Cultured
- Human Umbilical Vein Endothelial Cells
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Fabian Tetzlaff
- Division of Vascular Signaling and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Center for Angioscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - M Gordian Adam
- Division of Vascular Signaling and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Anja Feldner
- Division of Vascular Signaling and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Iris Moll
- Division of Vascular Signaling and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Amitai Menuchin
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Juan Rodriguez-Vita
- Division of Vascular Signaling and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - David Sprinzak
- Department of Biochemistry and Molecular Biology, Wise Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| | - Andreas Fischer
- Division of Vascular Signaling and CancerGerman Cancer Research Center (DKFZ)HeidelbergGermany
- European Center for Angioscience, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- Medical Clinic I, Endocrinology and Clinical ChemistryHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
80
|
Ran Y, Hossain F, Pannuti A, Lessard CB, Ladd GZ, Jung JI, Minter LM, Osborne BA, Miele L, Golde TE. γ-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol Med 2018; 9:950-966. [PMID: 28539479 PMCID: PMC5494507 DOI: 10.15252/emmm.201607265] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
γ-Secretase inhibitors (GSIs) are being actively repurposed as cancer therapeutics based on the premise that inhibition of NOTCH1 signaling in select cancers is therapeutic. Using novel assays to probe effects of GSIs against a broader panel of substrates, we demonstrate that clinical GSIs are pharmacologically distinct. GSIs show differential profiles of inhibition of the various NOTCH substrates, with some enhancing cleavage of other NOTCH substrates at concentrations where NOTCH1 cleavage is inhibited. Several GSIs are also potent inhibitors of select signal peptide peptidase (SPP/SPPL) family members. Extending these findings to mammosphere inhibition assays in triple-negative breast cancer lines, we establish that these GSIs have different functional effects. We also demonstrate that the processive γ-secretase cleavage pattern established for amyloid precursor protein (APP) occurs in multiple substrates and that potentiation of γ-secretase cleavage is attributable to a direct action of low concentrations of GSIs on γ-secretase. Such data definitively demonstrate that the clinical GSIs are not biological equivalents, and provide an important framework to evaluate results from ongoing and completed human trials with these compounds.
Collapse
Affiliation(s)
- Yong Ran
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fokhrul Hossain
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Antonio Pannuti
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christian B Lessard
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gabriela Z Ladd
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Joo In Jung
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, USA
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
81
|
Taming the Notch Transcriptional Regulator for Cancer Therapy. Molecules 2018; 23:molecules23020431. [PMID: 29462871 PMCID: PMC6017063 DOI: 10.3390/molecules23020431] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
Abstract Notch signaling is a highly conserved pathway in all metazoans, which is deeply involved in the regulation of cell fate and differentiation, proliferation and migration during development. Research in the last decades has shown that the various components of the Notch signaling cascade are either upregulated or activated in human cancers. Therefore, its downregulation stands as a promising and powerful strategy for cancer therapy. Here, we discuss the recent advances in the development of small molecule inhibitors, blocking antibodies and oligonucleotides that hinder Notch activity, and their outcome in clinical trials. Although Notch was initially identified as an oncogene, later studies showed that it can also act as a tumor suppressor in certain contexts. Further complexity is added by the existence of numerous Notch family members, which exert different activities and can be differentially targeted by inhibitors, potentially accounting for contradictory data on their therapeutic efficacy. Notably, recent evidence supports the rationale for combinatorial treatments including Notch inhibitors, which appear to be more effective than single agents in fighting cancer.
Collapse
|
82
|
Control of Blood Vessel Formation by Notch Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:319-338. [PMID: 30030834 DOI: 10.1007/978-3-319-89512-3_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Blood vessels span throughout the body to nourish tissue cells and to provide gateways for immune surveillance. Endothelial cells that line capillaries have the remarkable capacity to be quiescent for years but to switch rapidly into the activated state once new blood vessels need to be formed. In addition, endothelial cells generate niches for progenitor and tumor cells and provide organ-specific paracrine (angiocrine) factors that control organ development and regeneration, maintenance of homeostasis and tumor progression. Recent data indicate a pivotal role for blood vessels in responding to metabolic changes and that endothelial cell metabolism is a novel regulator of angiogenesis. The Notch pathway is the central signaling mode that cooperates with VEGF, WNT, BMP, TGF-β, angiopoietin signaling and cell metabolism to orchestrate angiogenesis, tip/stalk cell selection and arteriovenous specification. Here, we summarize the current knowledge and implications regarding the complex roles of Notch signaling during physiological and tumor angiogenesis, the dynamic nature of tip/stalk cell selection in the nascent vessel sprout and arteriovenous differentiation. Furthermore, we shed light on recent work on endothelial cell metabolism, perfusion-independent angiocrine functions of endothelial cells in organ-specific vascular beds and how manipulation of Notch signaling may be used to target the tumor vasculature.
Collapse
|
83
|
Li Y, He ZC, Zhang XN, Liu Q, Chen C, Zhu Z, Chen Q, Shi Y, Yao XH, Cui YH, Zhang X, Wang Y, Kung HF, Ping YF, Bian XW. Stanniocalcin-1 augments stem-like traits of glioblastoma cells through binding and activating NOTCH1. Cancer Lett 2017; 416:66-74. [PMID: 29196129 DOI: 10.1016/j.canlet.2017.11.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/20/2017] [Accepted: 11/25/2017] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is a fatal tumor and comprises heterogeneous cells in which a subpopulation with stem cell-like properties is included. Cancer cells with stem cell-like properties account for tumor initiation, drug resistance and recurrence. To identify and characterize specific factors in regulating stem-like traits is critical for GBM therapeutic. Here, we showed that Stanniocalcin-1 (STC1), a secretory glycoprotein, functions as a novel stimulator for stem-like traits of GBM cells. We found STC1 was prominently expressed in glioma spheres which are mainly comprised of glioma stem-like cells. The stem-like traits of GBM cells, as determined by the expression of stem cell markers, tumor-sphere formation efficiency and colony-forming ability, were enhanced by STC1 overexpression and inhibited by STC1 knockdown. Furthermore, introduction of STC1 enhanced tumorigenesis in vivo while knockdown of STC1 showed reverse effect. Finally, we demonstrated that STC1 interacted with the extracellular domain of NOTCH1 to activate NOTCH1-SOX2 signaling pathway, by which STC1 augmented the stem-like traits of GBM cells. Taken together, our data herein indicate that STC1 is a novel non-canonical NOTCH ligand and acts as a crucial regulator of stemness in GBM.
Collapse
Affiliation(s)
- Yong Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Zheng Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Qian Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - You-Hong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Hsiang-Fu Kung
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China.
| |
Collapse
|
84
|
Dobranowski P, Ban F, Contreras-Sanz A, Cherkasov A, Black PC. Perspectives on the discovery of NOTCH2-specific inhibitors. Chem Biol Drug Des 2017; 91:691-706. [PMID: 29078041 DOI: 10.1111/cbdd.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
The Notch pathway is a cell-cell communication system where membrane-bound ligands interact with the extracellular region of Notch receptors to induce intracellular, downstream effects on gene expression. Aberrant Notch signaling promotes tumorigenesis, and the Notch pathway has tremendous potential for novel targeting strategies in cancer treatment. While γ-secretase inhibitors as Notch-inhibiting agents are already promising in clinical trials, they are highly non-specific with adverse side-effects. One of the underlying challenges is that two of the four known human Notch paralogs, NOTCH1 and 2, share very high structural similarity but play opposing roles in some tumorigenesis pathways. This perspective explores the feasibility of developing Notch-specific small molecule inhibitors targeting the anti-NOTCH2 antibody-binding epitopes or the "S2-Leu-plug-binding site" using a computer-aided drug discovery approach.
Collapse
Affiliation(s)
- Peter Dobranowski
- Department of Pediatrics, British Columbia Children's Hospital Research, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Fuqiang Ban
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Alberto Contreras-Sanz
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Peter C Black
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
85
|
Identification of small molecules uncoupling the Notch::Jagged interaction through an integrated high-throughput screening. PLoS One 2017; 12:e0182640. [PMID: 29099834 PMCID: PMC5669421 DOI: 10.1371/journal.pone.0182640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/22/2017] [Indexed: 01/01/2023] Open
Abstract
Notch signaling plays an important role in several cellular functions including growth, differentiation, cell fate determination and stemness. Increased Notch activity has been linked to several types of cancers. Activation of Notch signaling is triggered by the interaction of Notch receptors (Notch1-4) with 5 different ligands (Jagged1-2 and Dll1-3-4) expressed on the neighbouring cells. Currently, indirect approaches to inhibit Notch signalling are based on the inhibition of the key step of Notch activation catalyzed by the γ-Secretase and thereby affect several different γ-Secretase substrates; conversely direct strategies get advantage of antibody-based drugs. The evidence that Jagged-mediated Notch activation plays a key role in cancer cell biology and the interplay with the surrounding microenvironment prompted us to develop a strategy to directly inhibit Notch activation by uncoupling its interaction with the Jagged, using an unprecedented approach based on small molecules. We set-up a screening strategy based on: protein::protein docking of crystallographic structures of Notch1 with Jagged1; comparative modelling of the Notch2:Jagged2 complex, based on the Notch1::Jagged1 complex; in silico high-throughput screening directed to Notch2 interaction surface of a virtual chemical library containing a large variety of molecules commercially available. The predicted pharmacological activity of the selected compounds was validated in vitro by a gene reporter and a viability assay. This approach led to the successful identification of two candidates with different anti-proliferative potency and efficacy. This represents the first step towards the rational identification of candidate molecules for the development of entirely novel drugs directed to inhibit Notch signaling in cancer.
Collapse
|
86
|
Boareto M, Jolly MK, Goldman A, Pietilä M, Mani SA, Sengupta S, Ben-Jacob E, Levine H, Onuchic JN. Notch-Jagged signalling can give rise to clusters of cells exhibiting a hybrid epithelial/mesenchymal phenotype. J R Soc Interface 2017; 13:rsif.2015.1106. [PMID: 27170649 PMCID: PMC4892257 DOI: 10.1098/rsif.2015.1106] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/15/2016] [Indexed: 01/14/2023] Open
Abstract
Metastasis can involve repeated cycles of epithelial-to-mesenchymal transition (EMT) and its reverse mesenchymal-to-epithelial transition. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that allows the migration of adhering cells to form a cluster of circulating tumour cells. These clusters can be apoptosis-resistant and possess an increased metastatic propensity as compared to the cells that undergo a complete EMT (mesenchymal cells). Hence, identifying the key players that can regulate the formation and maintenance of such clusters may inform anti-metastasis strategies. Here, we devise a mechanism-based theoretical model that links cell–cell communication via Notch-Delta-Jagged signalling with the regulation of EMT. We demonstrate that while both Notch-Delta and Notch-Jagged signalling can induce EMT in a population of cells, only Jagged-dominated Notch signalling, but not Delta-dominated signalling, can lead to the formation of clusters containing hybrid E/M cells. Our results offer possible mechanistic insights into the role of Jagged in tumour progression, and offer a framework to investigate the effects of other microenvironmental signals during metastasis.
Collapse
Affiliation(s)
- Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Institute of Physics, University of Sao Paulo, Sao Paulo 05508, Brazil
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA
| | - Aaron Goldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mika Pietilä
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX 77030, USA Metastasis Research Center, MD Anderson Cancer Center, Houston, TX 77025, USA
| | - Shiladitya Sengupta
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA Dana Farber Cancer Institute, Boston, MA 02115, USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| | - Jose' N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA Department of Chemistry, Rice University, Houston, TX 77005-1827, USA Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| |
Collapse
|
87
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 674] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
88
|
Clinical pharmacology of anti-angiogenic drugs in oncology. Crit Rev Oncol Hematol 2017; 119:75-93. [PMID: 28916378 DOI: 10.1016/j.critrevonc.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 12/14/2022] Open
Abstract
Abnormal vasculature proliferation is one of the so-called hallmarks of cancer. Angiogenesis inhibitor therapies are one of the major breakthroughs in cancer treatment in the last two decades. Two types of anti-angiogenics have been approved: monoclonal antibodies and derivatives, which are injected and target the extracellular part of a receptor, and protein kinase inhibitors, which are orally taken small molecules targeting the intra-cellular Adenosine Triphosphate -pocket of different kinases. They have become an important part of some tumors' treatment, both in monotherapy or in combination. In this review, we discuss the key pharmacological concepts and the major pitfalls of anti-angiogenic prescriptions. We also review the pharmacokinetic and pharmacodynamics profile of all approved anti-angiogenic protein kinase inhibitors and the potential role of surrogate markers and of therapeutic drug monitoring.
Collapse
|
89
|
Stassen OMJA, Muylaert DEP, Bouten CVC, Hjortnaes J. Current Challenges in Translating Tissue-Engineered Heart Valves. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:71. [PMID: 28782083 PMCID: PMC5545463 DOI: 10.1007/s11936-017-0566-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart valve disease is a major health burden, treated by either valve repair or valve replacement, depending on the affected valve. Nearly 300,000 valve replacements are performed worldwide per year. Valve replacement is lifesaving, but not without complications. The in situ tissue-engineered heart valve is a promising alternative to current treatments, but the translation of this novel technology to the clinic still faces several challenges. These challenges originate from the variety encountered in the patient population, the conversion of an implant into a living tissue, the highly mechanical nature of the heart valve, the complex homeostatic tissue that has to be reached at the end stage of the regenerating heart valve, and all the biomaterial properties that can be controlled to obtain this tissue. Many of these challenges are multidimensional and multiscalar, and both the macroscopic properties of the complete heart valve and the microscopic properties of the patient’s cells interacting with the materials have to be optimal. Using newly developed in vitro models, or bioreactors, where variables of interest can be controlled tightly and complex mixtures of cell populations similar to those encountered in the regenerating valve can be cultured, it is likely that the challenges can be overcome.
Collapse
Affiliation(s)
- O M J A Stassen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - D E P Muylaert
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - J Hjortnaes
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
90
|
Caporarello N, Lupo G, Olivieri M, Cristaldi M, Cambria MT, Salmeri M, Anfuso CD. Classical VEGF, Notch and Ang signalling in cancer angiogenesis, alternative approaches and future directions (Review). Mol Med Rep 2017; 16:4393-4402. [PMID: 28791360 PMCID: PMC5646999 DOI: 10.3892/mmr.2017.7179] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/16/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is the formation of new vessels starting from pre-existing vasculature. Tumour environment is characterized by 'aberrant angiogenesis', whose main features are tortuous and permeable blood vessels, heterogeneous both in their structure and in efficiency of perfusion and very different from normal vessels. Therapeutic strategies targeting the three pathways chiefly involved in tumour angiogenesis, VEGF, Notch and Ang signalling, have been identified to block the vascular supply to the tumour. However, phenomena of toxicity, development of primary and secondary resistance and hypoxia significantly blunted the effects of anti-angiogenic drugs in several tumour types. Thus, different strategies aimed to overcome these problems are imperative. The focus of the present review was some principal 'alternative' approaches to classic antiangiogenic therapies, including the cyclooxygenase-2 (COX-2) blockade, the use of oligonucleotide complementary to the miRNA to compete with the mRNA target (antimiRs) and the inhibition of matrix metalloproteinases (MMPs). The role of blood soluble VEGFA as a predictive biomarker during antiangiogenic therapy in gastric, ovarian and colorectal cancer was also examined.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Maria Teresa Cambria
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| |
Collapse
|
91
|
Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 2017; 19:915-927. [DOI: 10.1038/ncb3555] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
92
|
Oon CE, Bridges E, Sheldon H, Sainson RC, Jubb A, Turley H, Leek R, Buffa F, Harris AL, Li JL. Role of Delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth. Oncotarget 2017; 8:40115-40131. [PMID: 28445154 PMCID: PMC5522274 DOI: 10.18632/oncotarget.16969] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/11/2017] [Indexed: 12/20/2022] Open
Abstract
Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics.
Collapse
Affiliation(s)
- Chern Ein Oon
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Helen Sheldon
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Richard C.A. Sainson
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Adrian Jubb
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Helen Turley
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Russell Leek
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Francesca Buffa
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ji-Liang Li
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| |
Collapse
|
93
|
Lawal RA, Zhu X, Batey K, Hoffman CM, Georger MA, Radtke F, Hilton MJ, Xing L, Frisch BJ, Calvi LM. The Notch Ligand Jagged1 Regulates the Osteoblastic Lineage by Maintaining the Osteoprogenitor Pool. J Bone Miner Res 2017; 32:1320-1331. [PMID: 28277610 PMCID: PMC5466455 DOI: 10.1002/jbmr.3106] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 12/16/2022]
Abstract
Notch signaling is critical for osteoblastic differentiation; however, the specific contribution of individual Notch ligands is unknown. Parathyroid hormone (PTH) regulates the Notch ligand Jagged1 in osteoblastic cells. To determine if osteolineage Jagged1 contributes to bone homeostasis, selective deletion of Jagged1 in osteolineage cells was achieved through the presence of Prx1 promoter-driven Cre recombinase expression, targeting mesenchymal stem cells (MSCs) and their progeny (PJag1 mice). PJag1 mice were viable and fertile and did not exhibit any skeletal abnormalities at 2 weeks of age. At 2 months of age, however, PJag1 mice had increased trabecular bone mass compared to wild-type (WT) littermates. Dynamic histomorphometric analysis showed increased osteoblastic activity and increased mineral apposition rate. Immunohistochemical analysis showed increased numbers of osteocalcin-positive mature osteoblasts in PJag1 mice. Also increased phenotypically defined Lin- /CD45- /CD31- /Sca1- /CD51+ osteoblastic cells were measured by flow cytometric analysis. Surprisingly, phenotypically defined Lin- /CD45- /CD31- /Sca1+ /CD51+ MSCs were unchanged in PJag1 mice as measured by flow cytometric analysis. However, functional osteoprogenitor (OP) cell frequency, measured by Von Kossa+ colony formation, was decreased, suggesting that osteolineage Jagged1 contributes to maintenance of the OP pool. The trabecular bone increases were not due to osteoclastic defects, because PJag1 mice had increased bone resorption. Because PTH increases osteoblastic Jagged1, we sought to understand if osteolineage Jagged1 modulates PTH-mediated bone anabolism. Intermittent PTH treatment resulted in a significantly greater increase in BV/TV in PJag1 hind limbs compared to WT. These findings demonstrate a critical role of osteolineage Jagged1 in bone homeostasis, where Jagged1 maintains the transition of OP to maturing osteoblasts. This novel role of Jagged1 not only identifies a regulatory loop maintaining appropriate populations of osteolineage cells, but also provides a novel approach to increase trabecular bone mass, particularly in combination with PTH, through modulation of Jagged1. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rialnat A Lawal
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xichao Zhu
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kaylind Batey
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Corey M Hoffman
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mary A Georger
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Lausanne, Vaud, Switzerland
| | - Matthew J Hilton
- Duke Orthopedic, Cellular, and Developmental and Genome Laboratories, Duke University School of Medicine, Durham, NC, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Benjamin J Frisch
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Laura M Calvi
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
94
|
Selective regulation of Notch ligands during angiogenesis is mediated by vimentin. Proc Natl Acad Sci U S A 2017; 114:E4574-E4581. [PMID: 28533359 PMCID: PMC5468602 DOI: 10.1073/pnas.1703057114] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Notch signaling is a key regulator of angiogenesis, in which sprouting is regulated by an equilibrium between inhibitory Dll4-Notch signaling and promoting Jagged-Notch signaling. Whereas Fringe proteins modify Notch receptors and strengthen their activation by Dll4 ligands, other mechanisms balancing Jagged and Dll4 signaling are yet to be described. The intermediate filament protein vimentin, which has been previously shown to affect vascular integrity and regenerative signaling, is here shown to regulate ligand-specific Notch signaling. Vimentin interacts with Jagged, impedes basal recycling endocytosis of ligands, but is required for efficient receptor ligand transendocytosis and Notch activation upon receptor binding. Analyses of Notch signal activation by using chimeric ligands with swapped intracellular domains (ICDs), demonstrated that the Jagged ICD binds to vimentin and contributes to signaling strength. Vimentin also suppresses expression of Fringe proteins, whereas depletion of vimentin enhances Fringe levels to promote Dll4 signaling. In line with these data, the vasculature in vimentin knockout (VimKO) embryos and placental tissue is underdeveloped with reduced branching. Disrupted angiogenesis in aortic rings from VimKO mice and in endothelial 3D sprouting assays can be rescued by reactivating Notch signaling by recombinant Jagged ligands. Taken together, we reveal a function of vimentin and demonstrate that vimentin regulates Notch ligand signaling activities during angiogenesis.
Collapse
|
95
|
Liu Z, Sanders AJ, Liang G, Song E, Jiang WG, Gong C. Hey Factors at the Crossroad of Tumorigenesis and Clinical Therapeutic Modulation of Hey for Anticancer Treatment. Mol Cancer Ther 2017; 16:775-786. [PMID: 28468863 DOI: 10.1158/1535-7163.mct-16-0576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Zihao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Gehao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetic and Gene Regulation, Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
96
|
Nwabo Kamdje AH, Takam Kamga P, Tagne Simo R, Vecchio L, Seke Etet PF, Muller JM, Bassi G, Lukong E, Kumar Goel R, Mbo Amvene J, Krampera M. Developmental pathways associated with cancer metastasis: Notch, Wnt, and Hedgehog. Cancer Biol Med 2017; 14:109-120. [PMID: 28607802 PMCID: PMC5444923 DOI: 10.20892/j.issn.2095-3941.2016.0032] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Master developmental pathways, such as Notch, Wnt, and Hedgehog, are signaling systems that control proliferation, cell death, motility, migration, and stemness. These systems are not only commonly activated in many solid tumors, where they drive or contribute to cancer initiation, but also in primary and metastatic tumor development. The reactivation of developmental pathways in cancer stroma favors the development of cancer stem cells and allows their maintenance, indicating these signaling pathways as particularly attractive targets for efficient anticancer therapies, especially in advanced primary tumors and metastatic cancers. Metastasis is the worst feature of cancer development. This feature results from a cascade of events emerging from the hijacking of epithelial-mesenchymal transition, angiogenesis, migration, and invasion by transforming cells and is associated with poor survival, drug resistance, and tumor relapse. In the present review, we summarize and discuss experimental data suggesting pivotal roles for developmental pathways in cancer development and metastasis, considering the therapeutic potential. Emerging targeted antimetastatic therapies based on Notch, Wnt, and Hedgehog pathways are also discussed.
Collapse
Affiliation(s)
| | - Paul Takam Kamga
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Richard Tagne Simo
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Lorella Vecchio
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | | | - Jean Marc Muller
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Giulio Bassi
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Erique Lukong
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Raghuveera Kumar Goel
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Jeremie Mbo Amvene
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| | - Mauro Krampera
- Department of Biomedical Sciences, University of Ngaoundere, Ngaoundere 454, Cameroon
| |
Collapse
|
97
|
Abstract
Anti-angiogenic therapy has become an important component in the treatment of many solid tumors given the importance of adequate blood supply for tumor growth and metastasis. Despite promising preclinical data and early clinical trials, anti-angiogenic agents have failed to show a survival benefit in randomized controlled trials of patients with glioblastoma. In particular, agents targeting vascular endothelial growth factor (VEGF) appear to prolong progression free survival, possibly improve quality of life, and decrease steroid usage, yet the trials to date have demonstrated no extension of overall survival. In order to improve duration of response and convey a survival benefit, additional research is still needed to explore alternative pro-angiogenic pathways, mechanisms of resistance, combination strategies, and biomarkers to predict therapeutic response.
Collapse
Affiliation(s)
- Nancy Wang
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Rakesh K Jain
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Tracy T Batchelor
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Hematology/Oncology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
98
|
Abou-Fayçal C, Hatat AS, Gazzeri S, Eymin B. Splice Variants of the RTK Family: Their Role in Tumour Progression and Response to Targeted Therapy. Int J Mol Sci 2017; 18:ijms18020383. [PMID: 28208660 PMCID: PMC5343918 DOI: 10.3390/ijms18020383] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) belong to a family of transmembrane receptors that display tyrosine kinase activity and trigger the activation of downstream signalling pathways mainly involved in cell proliferation and survival. RTK amplification or somatic mutations leading to their constitutive activation and oncogenic properties have been reported in various tumour types. Numerous RTK-targeted therapies have been developed to counteract this hyperactivation. Alternative splicing of pre-mRNA has recently emerged as an important contributor to cancer development and tumour maintenance. Interestingly, RTKs are alternatively spliced. However, the biological functions of RTK splice variants, as well as the upstream signals that control their expression in tumours, remain to be understood. More importantly, it remains to be determined whether, and how, these splicing events may affect the response of tumour cells to RTK-targeted therapies, and inversely, whether these therapies may impact these splicing events. In this review, we will discuss the role of alternative splicing of RTKs in tumour progression and response to therapies, with a special focus on two major RTKs that control proliferation, survival, and angiogenesis, namely, epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor-1 (VEGFR1).
Collapse
Affiliation(s)
- Cherine Abou-Fayçal
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| | - Anne-Sophie Hatat
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| | - Sylvie Gazzeri
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| | - Beatrice Eymin
- Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, University Grenoble Alpes, Grenoble 38702, France.
| |
Collapse
|
99
|
Nwabo Kamdje A, Vecchio L, Takam Kamga P, Seke Etet P, Muller J, Bassi G, Krampera M. Developmental Pathways. INTRODUCTION TO CANCER METASTASIS 2017:337-352. [DOI: 10.1016/b978-0-12-804003-4.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
100
|
Human Cord Blood-Derived CD133 +/C-Kit +/Lin - Cells Have Bipotential Ability to Differentiate into Mesenchymal Stem Cells and Outgrowth Endothelial Cells. Stem Cells Int 2016; 2016:7162160. [PMID: 28074098 PMCID: PMC5203918 DOI: 10.1155/2016/7162160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Recent evidence suggests that mononuclear cells (MNCs) derived from bone marrow and cord blood can differentiate into mesenchymal stem cells (MSCs) or outgrowth endothelial cells (OECs). However, controversy exists as to whether MNCs have the pluripotent capacity to differentiate into MSCs or OECs or are a mixture of cell lineage-determined progenitors of MSCs or OECs. Here, using CD133+/C-kit+/Lin− mononuclear cells (CKL− cells) isolated from human umbilical cord blood using magnetic cell sorting, we characterized the potency of MNC differentiation. We first found that CKL− cells cultured with conditioned medium of OECs or MSCs differentiated into OECs or MSCs and this differentiation was also induced by cell-to-cell contact. When we cultured single CKL− cells on OEC- or MSC-conditioned medium, the cells differentiated morphologically and genetically into OEC- or MSC-like cells, respectively. Moreover, we confirmed that OECs or MSCs differentiated from CKL− cells had the ability to form capillary-like structures in Matrigel and differentiate into osteoblasts, chondrocytes, and adipocytes. Finally, using microarray analysis, we identified specific factors of OECs or MSCs that could potentially be involved in the differentiation fate of CKL− cells. Together, these results suggest that cord blood-derived CKL− cells possess at least bipotential differentiation capacity toward MSCs or OECs.
Collapse
|