51
|
Salman MY, Stein EM. Revumenib for patients with acute leukemia: a new tool for differentiation therapy. Haematologica 2024; 109:3488-3495. [PMID: 39086307 PMCID: PMC11532683 DOI: 10.3324/haematol.2022.282621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Treatment of acute leukemia is gradually moving away from a "one-size-fits-all" approach, as scientific and clinical advances expand the arsenal of available targeted therapies. One of the recent additions is the group of menin inhibitors; oral, selective, small molecules that disrupt the interaction between the chromatin adapter menin, and an epigenetic regulator, the lysine methyltransferase 2A (KMT2A) complex. Two susceptible leukemia subtypes have been identified: (i) acute myeloid leukemia with a mutation in nucleophosmin 1 (NPM1), and (ii) any acute leukemia, myeloid or lymphoid, with a translocation resulting in the rearrangement of KMT2A. These leukemias share a distinct genetic expression, maintained by the KMT2A-menin interaction. Together they account for approximately 40% of patients with acute myeloid leukemia and 10% of patients with acute lymphoblastic leukemia. This spotlight review follows the journey of revumenib, as a representative of menin inhibitors, from bench to bedside. It focuses on the pathophysiology of leukemias sensitive to menin inhibition, delineation of how this understanding led to targeted drug development, and data from clinical trials. The important discovery of resistance mechanisms is also explored, as well as future directions in the use of menin inhibitors for treating leukemia.
Collapse
Affiliation(s)
- Meira Yisraeli Salman
- Leukemia Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Hematology, Shaare Zedek Medical Center, Jerusalem
| | - Eytan M Stein
- Leukemia Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
52
|
Niscola P, Gianfelici V, Catalano G, Giovannini M, Mazzone C, Noguera NI, de Fabritiis P. Acute Myeloid Leukemia in Older Patients: From New Biological Insights to Targeted Therapies. Curr Oncol 2024; 31:6632-6658. [PMID: 39590121 PMCID: PMC11592437 DOI: 10.3390/curroncol31110490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous blood-related neoplasm that predominantly afflicts older adults with a poor prognosis due to their physical condition and the presence of medical accompanying comorbidities, adverse biological disease features, and suitability for induction intensive chemotherapy and allogenic stem cells transplantation. Recent research into the molecular and biological factors contributing to disease development and progression has led to significant advancements in treatment approaches for older patients with AML. This review article discusses the latest biological and therapeutic developments that are transforming the management of AML in older adults.
Collapse
Affiliation(s)
- Pasquale Niscola
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Valentina Gianfelici
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Gianfranco Catalano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
| | - Marco Giovannini
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Carla Mazzone
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
- Neurooncoemtology Units, Santa Lucia Foundation, I.R.C.C.S., 00143 Rome, Italy
| | - Paolo de Fabritiis
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00144 Rome, Italy; (V.G.); (M.G.); (C.M.); (P.d.F.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (G.C.); (N.I.N.)
| |
Collapse
|
53
|
Wu D, Li M, Hong Y, Jin L, Liu Q, Sun C, Li L, Han X, Deng S, Feng Y, Shen Y, Kai G. Integrated stress response activation induced by usnic acid alleviates BCL-2 inhibitor ABT-199 resistance in acute myeloid leukemia. J Adv Res 2024:S2090-1232(24)00436-3. [PMID: 39384125 DOI: 10.1016/j.jare.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION ABT-199 (venetoclax) is a BCL-2 suppressor with pronounced effects on acute myeloid leukemia (AML). However, its usefulness as a monotherapy or in combination with hypomethylating medicines like azacitidine is debatable due to acquired resistance. Usnic acid, a dibenzofuran extracted from lichen Usnea diffracta Vain, exhibits anticancer properties and may counteract multidrug resistance in leukemia cells. OBJECTIVE This study investigated whether usnic acid at low-cytotoxicity level could enhance sensitivity of AML cells with acquired resistance to ABT-199 by targeting the integrated stress response pathways. METHODS To investigate the combined effects on AML cells, we used a cell viability test, flow cytometry to quantify apoptosis, cell cycle analysis, and mitochondrial membrane potential measurement. RNA-seq and immunoblot were used to determine the potential mechanisms of ABT-199 + usnic acid combination. RESULTS Usnic acid, at a low cytotoxicity level, successfully restored ABT-199 sensitivity in AML cell lines that had developed ABT-199 resistance and increased ABT-199's antileukemic activity in a xenograft model. Mechanistically, the combination of usnic acid and ABT-199 cooperated to boost the expression of the integrated stress response (ISR)-associated genes ATF4, CHOP, and NOXA through the heme-regulated inhibitor kinase (HRI), while also promoting the degradation of the anti-apoptotic protein MCL-1. ISRIB, a compound that blocks the ISR, was able to reverse the growth suppression and cell death, the increase in expression of genes related with the ISR, and the inhibition of MCL-1 protein caused by combination therapy. Additionally, the downregulation of MCL-1 was linked to an increase in MCL-1 phosphorylation at serine 159 and subsequent destruction by the proteasome. CONCLUSION In summary, usnic acid improves chemosensitivity to ABT-199 by triggering the integrated stress response, leading to decreased levels of MCL-1 protein, suggesting a potential treatment for AML cases resistant to Bcl-2 inhibitors.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Man Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Jin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Xiaoxiao Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengqian Deng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Feng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
54
|
Sheth AI, Althoff MJ, Tolison H, Engel K, Amaya ML, Krug AE, Young TN, Minhajuddin M, Pei S, Patel SB, Winters A, Miller R, Shelton IT, St-Germain J, Ling T, Jones CL, Raught B, Gillen AE, Ransom M, Staggs S, Smith CA, Pollyea DA, Stevens BM, Jordan CT. Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium. Cancer Discov 2024; 14:1922-1939. [PMID: 38787341 PMCID: PMC11452272 DOI: 10.1158/2159-8290.cd-23-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and nonresponsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate an active metabolic (i.e., OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance. Significance: We identify increased utilization of mitochondrial calcium as a distinct metabolic requirement of venetoclax-resistant LSCs and demonstrate the potential of targeting mitochondrial calcium uptake as a therapeutic strategy.
Collapse
Affiliation(s)
- Anagha Inguva Sheth
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark J Althoff
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Hunter Tolison
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- These authors contributed equally
| | - Krysta Engel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maria L. Amaya
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna E. Krug
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tracy N. Young
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mohammad Minhajuddin
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shanshan Pei
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
| | - Sweta B. Patel
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Winters
- Division of Pediatric Hematology and Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Regan Miller
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ian T. Shelton
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tianyi Ling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Courtney L. Jones
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Austin E. Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Monica Ransom
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sarah Staggs
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Clayton A. Smith
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel A. Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brett M. Stevens
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Craig T. Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
55
|
Man CH, Li C, Xu X, Zhao M. Metabolic regulation in normal and leukemic stem cells. Trends Pharmacol Sci 2024; 45:919-930. [PMID: 39306527 DOI: 10.1016/j.tips.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024]
Abstract
Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) are crucial for ensuring hematopoietic homeostasis and driving leukemia progression, respectively. Recent research has revealed that metabolic adaptations significantly regulate the function and survival of these stem cells. In this review, we provide an overview of how metabolic pathways regulate oxidative and proteostatic stresses in HSCs during homeostasis and aging. Furthermore, we highlight targetable metabolic pathways and explore their interactions with epigenetics and the microenvironment in addressing the chemoresistance and immune evasion capacities of LSCs. The metabolic differences between HSCs and LSCs have profound implications for therapeutic strategies.
Collapse
Affiliation(s)
- Cheuk-Him Man
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| | - Changzheng Li
- Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xi Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510030, China
| | - Meng Zhao
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Stem Cells and Tissue Engineering (Ministry of Education), Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
56
|
Shahswar R, Ganser A. Relapse and resistance in acute myeloid leukemia post venetoclax: improving second lines therapy and combinations. Expert Rev Hematol 2024; 17:723-739. [PMID: 39246164 DOI: 10.1080/17474086.2024.2402283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION The combined use of the BCL-2 inhibitor venetoclax with azacitidine now is the standard of care for patients with acute myeloid leukemia (AML) unfit for intensive chemotherapy with outcomes exceeding those achieved with hypomethylating agents alone. Venetoclax in combination with intensive chemotherapy is also increasingly used both as frontline as well as salvage therapy. However, resistance to and relapse after venetoclax-based therapies are of major concern and outcomes after treatment failure remain poor. AREAS COVERED A comprehensive search was performed using PubMed database (up to April 2024). Studies evaluating venetoclax-based combination treatments in AML and studies assessing markers of response and resistance to venetoclax were investigated. We summarize the status of venetoclax-based therapies in the frontline and relapsed/refractory setting with focus on the main mechanisms of resistance to BCL-2 inhibition. Further, strategies to overcome resistance including combinatorial regimens of hypomethylating agent (HMA) + venetoclax + inhibitors targeting actionable mutations like IDH1/2 or FLT3-ITD and the introduction of novel agents like menin-inhibitors are addressed. EXPERT OPINION Although venetoclax is reshaping the treatment of unfit and fit AML patients, prognosis of patients after HMA/VEN failure remains dismal, and strategies to abrogate primary and secondary resistance are an unmet clinical need.
Collapse
Affiliation(s)
- Rabia Shahswar
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
57
|
Urrutia S, Takahashi K. Precision medicine in AML: overcoming resistance. Int J Hematol 2024; 120:439-454. [PMID: 39085680 DOI: 10.1007/s12185-024-03827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
The development of molecularly targeted therapy for acute myeloid leukemia is progressing at an accelerated pace. Therapies targeting FLT3, IDH1, IDH2, and BCL2 have been approved in the last 5 years. As we exploit these biological vulnerabilities, various mechanisms of resistance arise. Emergence of competing clones with different genetic drivers and acquisition of constitutional mutations in the target renders therapies ineffective, and enzymatic isoform changes can lead to reappearance of the disease phenotype. Understanding the timing and circumstances of resistance origination will allow clinicians to develop combinatorial and sequential therapeutic approaches to deepen responses and improve survival. The objective of this review is to illustrate the biological underpinnings of each therapy and the landscape of resistance mechanisms and discuss strategies to overcome on- and off-target resistance.
Collapse
Affiliation(s)
- Samuel Urrutia
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, 4SCR6.2085, Houston, TX, 77030-4009, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
58
|
Shi X, Feng M, Nakada D. Metabolic dependencies of acute myeloid leukemia stem cells. Int J Hematol 2024; 120:427-438. [PMID: 38750343 PMCID: PMC11779507 DOI: 10.1007/s12185-024-03789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy primarily driven by an immature population of AML cells termed leukemia stem cells (LSCs) that are implicated in AML development, chemoresistance, and relapse. An emerging area of research in AML focuses on identifying and targeting the aberrant metabolism in LSCs. Dysregulated metabolism is involved in sustaining functional properties of LSCs, impeding myeloid differentiation, and evading programmed cell death, both in the process of leukemogenesis and in response to chemotherapy. This review discusses recent discoveries regarding the aberrant metabolic processes of AML LSCs that have begun to change the therapeutic landscape of AML.
Collapse
Affiliation(s)
- Xiangguo Shi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
59
|
Rondeau V, Berman JM, Ling T, O'Brien C, Culp-Hill R, Reisz JA, Wunderlich M, Chueh Y, Jiménez-Camacho KE, Sexton C, Carter KM, Stillwell C, St-Germain J, Yendi D, Gupta A, Shi M, Bourdine A, Paralkar VR, Jahangiri S, Hope KJ, Tikhonova AN, Arruda A, Minden MD, Raught B, D'Alessandro A, Jones CL. Spermidine metabolism regulates leukemia stem and progenitor cell function through KAT7 expression in patient-derived mouse models. Sci Transl Med 2024; 16:eadn1285. [PMID: 39321266 DOI: 10.1126/scitranslmed.adn1285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Acute myeloid leukemia (AML) is a devastating disease initiated and maintained by a rare subset of cells called leukemia stem cells (LSCs). LSCs are responsible for driving disease relapse, making the development of new therapeutic strategies to target LSCs urgently needed. The use of mass spectrometry-based metabolomics profiling has enabled the discovery of unique and targetable metabolic properties in LSCs. However, we do not have a comprehensive understanding of metabolite differences between LSCs and their normal counterparts, hematopoietic stem and progenitor cells (HSPCs). In this study, we used an unbiased mass spectrometry-based metabolomics analysis to define differences in metabolites between primary human LSCs and HSPCs, which revealed that LSCs have a distinct metabolome. Spermidine was the most enriched metabolite in LSCs compared with HSPCs. Pharmacological reduction of spermidine concentrations decreased LSC function but spared normal HSPCs. Polyamine depletion also decreased leukemic burden in patient-derived xenografts. Mechanistically, spermidine depletion induced LSC myeloid differentiation by decreasing eIF5A-dependent protein synthesis, resulting in reduced expression of a select subset of proteins. KAT7, a histone acetyltransferase, was one of the top candidates identified to be down-regulated by spermidine depletion. Overexpression of KAT7 partially rescued polyamine depletion-induced decreased colony-forming ability, demonstrating that loss of KAT7 is an essential part of the mechanism by which spermidine depletion targets AML clonogenic potential. Together, we identified and mechanistically dissected a metabolic vulnerability of LSCs that has the potential to be rapidly translated into clinical trials to improve outcomes for patients with AML.
Collapse
Affiliation(s)
- Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Jacob M Berman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Tianyi Ling
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Cristiana O'Brien
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Yun Chueh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Karina E Jiménez-Camacho
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Christina Sexton
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Katharine M Carter
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Cody Stillwell
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Duhan Yendi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Aarushi Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Mary Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Aleksandra Bourdine
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Vikram R Paralkar
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Soheil Jahangiri
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Kristin J Hope
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Anastasia N Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Courtney L Jones
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C4, Canada
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA
- Advanced Leukemia Therapies and Research Center, Cincinnati Children's Hospital, Cincinnati, OH 45229 USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229 USA
- University of Cincinnati Cancer Center, Cincinnati, OH 45229 USA
| |
Collapse
|
60
|
Chen R, Zhou J, Chen B. Imputing abundance of over 2,500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles. Cell Syst 2024; 15:869-884.e6. [PMID: 39243755 PMCID: PMC11423933 DOI: 10.1016/j.cels.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/23/2024] [Accepted: 08/15/2024] [Indexed: 09/09/2024]
Abstract
Cell surface proteins serve as primary drug targets and cell identity markers. Techniques such as CITE-seq (cellular indexing of transcriptomes and epitopes by sequencing) have enabled the simultaneous quantification of surface protein abundance and transcript expression within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability of these computational approaches across diverse contexts (e.g., different tissues/disease states) impede their widespread adoption. Here, we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA sequencing), a context-agnostic zero-shot deep ensemble model, which enables large-scale protein abundance prediction and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2,500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER, including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Ruoqiao Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
61
|
Kim J, Schanzer N, Singh RS, Zaman MI, Garcia-Medina JS, Proszynski J, Ganesan S, Dan Landau, Park CY, Melnick AM, Mason CE. DOGMA-seq and multimodal, single-cell analysis in acute myeloid leukemia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 390:67-108. [PMID: 39864897 DOI: 10.1016/bs.ircmb.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a complex cancer, yet advances in recent years from integrated genomics methods have helped improve diagnosis, treatment, and means of patient stratification. A recent example of a powerful, multimodal method is DOGMA-seq, which can measure chromatin accessibility, gene expression, and cell-surface protein levels from the same individual cell simultaneously. Previous bimodal single-cell techniques, such as CITE-seq (Cellular indexing of transcriptomes and epitopes), have only permitted the transcriptome and cell-surface protein expression measurement. DOGMA-seq, however, builds on this foundation and has implications for examining epigenomic, transcriptomic, and proteomic interactions between various cell types. This technique has the potential to be particularly useful in the study of cancers such as AML. This is because the cellular mechanisms that drive AML are rather heterogeneous and require a more complete understanding of the interplay between the genetic mutations, disruptions in RNA transcription and translation, and surface protein expression that cause these cancers to develop and evolve. This technique will hopefully contribute to a more clear and complete understanding of the growth and progression of complex cancers.
Collapse
Affiliation(s)
- JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Nathan Schanzer
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Ruth Subhash Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Mohammed I Zaman
- Department of Biophysics and Physiology, Stony Brook University, Stony Brook, NY, United States
| | - J Sebastian Garcia-Medina
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Jacqueline Proszynski
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States
| | - Saravanan Ganesan
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States; New York Genome Center, New York, NY, United States
| | - Dan Landau
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | | | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
62
|
Safina K, van Galen P. New frameworks for hematopoiesis derived from single-cell genomics. Blood 2024; 144:1039-1047. [PMID: 38985829 PMCID: PMC11561540 DOI: 10.1182/blood.2024024006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024] Open
Abstract
ABSTRACT Recent advancements in single-cell genomics have enriched our understanding of hematopoiesis, providing intricate details about hematopoietic stem cell biology, differentiation, and lineage commitment. Technological advancements have highlighted extensive heterogeneity of cell populations and continuity of differentiation routes. Nevertheless, intermediate "attractor" states signify structure in stem and progenitor populations that link state transition dynamics to fate potential. We discuss how innovative model systems quantify lineage bias and how stress accelerates differentiation, thereby reducing fate plasticity compared with native hematopoiesis. We conclude by offering our perspective on the current model of hematopoiesis and discuss how a more precise understanding can translate to strategies that extend healthy hematopoiesis and prevent disease.
Collapse
Affiliation(s)
- Ksenia Safina
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Ludwig Center at Harvard, Boston, MA
| | - Peter van Galen
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Ludwig Center at Harvard, Boston, MA
| |
Collapse
|
63
|
Parmar K, Kundu R, Maiti A, Ball S. Updates in biology, classification, and management of acute myeloid leukemia with antecedent hematologic disorder and therapy related acute myeloid leukemia. Leuk Res 2024; 144:107546. [PMID: 38986173 DOI: 10.1016/j.leukres.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024]
Abstract
Acute myeloid leukemia with antecedent hematologic disorder (AHD-AML) and therapy related AML (t-AML) constitute a heterogenous disease with inferior outcomes. It is often characterized by high-risk cytogenetic and molecular alterations associated with AHD or prior cancer therapy. Historically, the standard of care treatment has been intensive induction with "7 + 3", with an improved overall response rate and survival with CPX-351. Results from large registry-based studies suggested that allogeneic hematopoietic stem cell transplant is preferable to consolidation chemotherapy alone for achieving long-term survival in patients with AHD-AML. Prevalence of high-risk genetic features and advanced age and comorbidities in patients make AHD-AML and t-AML clinically challenging subgroups to treat with intensive approaches. Recent reports on less intensive treatment options, particularly the hypomethylating agent-venetoclax combination, have shown encouraging response rates in these patients. However, emerging resistance mechanisms compromise duration of response and overall survival. Several novel agents targeting apoptotic machinery, signaling pathways, and immune checkpoints are under clinical investigation, with an aim to truly improve overall outcomes in this subgroup. We reviewed updates in biology, classification, and clinical data comparing safety and efficacy of intensive and less intensive treatment options, and summarized ongoing studies with promising novel therapies in AHD-AML and t-AML.
Collapse
Affiliation(s)
- Kanak Parmar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rupayan Kundu
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Somedeb Ball
- Division of Hematology and Oncology, Vanderbilt University School of Medicine and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
64
|
Quesnel-Vallières M, Schultz DC, Orlenko A, Lo Y, Moore J, Ritchie M, Roth D, Carroll M, Barash Y, Lynch KW, Cherry S. Trametinib Sensitivity is Defined by a Myeloid Differentiation Profile in Acute Myeloid Leukemia. Drugs R D 2024; 24:489-499. [PMID: 39316279 PMCID: PMC11456044 DOI: 10.1007/s40268-024-00491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Acute myelogenous leukemia (AML) is a common blood cancer marked by heterogeneity in disease and diverse genetic abnormalities. Additional therapies are needed as the 5-year survival remains below 30%. Trametinib is a mitogen-activated extracellular signal-regulated kinase (MEK) inhibitor that is widely used in solid tumors and also in tumors with activating RAS mutations. A subset of patients with AML carry activating RAS mutations; however, a small-scale clinical trial with trametinib showed little efficacy. Here, we sought to identify transcriptomic determinants of trametinib sensitivity in AML. METHODS We tested the activity of trametinib against a panel of tumor cells from patients with AML ex vivo and compared this with RNA sequencing (RNA-Seq) data from untreated blasts from the same patient samples. We then used a correlation analysis between gene expression and trametinib sensitivity to identify potential biomarkers predictive of drug response. RESULTS We found that a subset of AML tumor cells were sensitive to trametinib ex vivo, only a fraction of which (3/10) carried RAS mutations. On the basis of our RNA-Seq analysis we found that markers of trametinib sensitivity are associated with a myeloid differentiation profile that includes high expression of CD14 and CLEC7A (Dectin-1), similar to the gene expression profile of monocytes. Further characterization confirmed that trametinib-sensitive samples display features of monocytic differentiation with high CD14 surface expression and were enriched for the M4 subtypes of the FAB classification. CONCLUSIONS Our study identifies additional molecular markers that can be used with molecular features including RAS status to identify patients with AML that may benefit from trametinib treatment.
Collapse
Affiliation(s)
- Mathieu Quesnel-Vallières
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alena Orlenko
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yancy Lo
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason Moore
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marylyn Ritchie
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Roth
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yoseph Barash
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Computer and Information Sciences, School of Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
65
|
Chang YH, Yamamoto K, Fujino T, Wang TW, Sugimoto E, Zhang W, Yabushita T, Suzaki K, Pietsch EC, Weir BA, Crescenzo R, Cowley GS, Attar R, Philippar U, Wunderlich M, Mizukawa B, Zheng Y, Enomoto Y, Imai Y, Kitamura T, Goyama S. SETDB1 suppresses NK cell-mediated immunosurveillance in acute myeloid leukemia with granulo-monocytic differentiation. Cell Rep 2024; 43:114536. [PMID: 39096901 DOI: 10.1016/j.celrep.2024.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/15/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
Monocytic acute myeloid leukemia (AML) responds poorly to current treatments, including venetoclax-based therapy. We conducted in vivo and in vitro CRISPR-Cas9 library screenings using a mouse monocytic AML model and identified SETDB1 and its binding partners (ATF7IP and TRIM33) as crucial tumor promoters in vivo. The growth-inhibitory effect of Setdb1 depletion in vivo is dependent mainly on natural killer (NK) cell-mediated cytotoxicity. Mechanistically, SETDB1 depletion upregulates interferon-stimulated genes and NKG2D ligands through the demethylation of histone H3 Lys9 at the enhancer regions, thereby enhancing their immunogenicity to NK cells and intrinsic apoptosis. Importantly, these effects are not observed in non-monocytic leukemia cells. We also identified the expression of myeloid cell nuclear differentiation antigen (MNDA) and its murine counterpart Ifi203 as biomarkers to predict the sensitivity of AML to SETDB1 depletion. Our study highlights the critical and selective role of SETDB1 in AML with granulo-monocytic differentiation and underscores its potential as a therapeutic target for current unmet needs.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Animals
- Cell Differentiation
- Mice
- Histone-Lysine N-Methyltransferase/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Humans
- Mice, Inbred C57BL
- Cell Line, Tumor
- Immunologic Surveillance
- Monocytes/metabolism
- Monocytes/immunology
- Apoptosis
Collapse
Affiliation(s)
- Yu-Hsuan Chang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan; Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takeshi Fujino
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Teh-Wei Wang
- Division of Cancer Cell Biology, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Emi Sugimoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomohiro Yabushita
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Ken Suzaki
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | | | - Barbara A Weir
- Janssen Research and Development, Cambridge, MA 02141, USA
| | | | - Glenn S Cowley
- Janssen Research and Development, Spring House, PA 19002, USA
| | - Ricardo Attar
- Janssen Research and Development, Spring House, PA 19002, USA
| | | | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Benjamin Mizukawa
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yutaka Enomoto
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshio Kitamura
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan; Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
66
|
Zhang L, Zhou X, Aryal S, Veasey V, Zhang P, Li FJ, Luan Y, Bhatia R, Zhou Y, Lu R. CRISPR screen of venetoclax response-associated genes identifies transcription factor ZNF740 as a key functional regulator. Cell Death Dis 2024; 15:627. [PMID: 39191721 DOI: 10.1038/s41419-024-06995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BCL-2 inhibitors such as venetoclax offer therapeutic promise in acute myeloid leukemia (AML) and other cancers, but drug resistance poses a significant challenge. It is crucial to understand the mechanisms that regulate venetoclax response. While correlative studies have identified numerous genes linked to venetoclax sensitivity, their direct impact on the drug response remains unclear. In this study, we targeted around 1400 genes upregulated in venetoclax-sensitive primary AML samples and carried out a CRISPR knockout screen to evaluate their direct effects on venetoclax response. Our screen identified the transcription factor ZNF740 as a critical regulator, with its expression consistently predicting venetoclax sensitivity across subtypes of the FAB classification. ZNF740 depletion leads to increased resistance to ventoclax, while its overexpression enhances sensitivity to the drug. Mechanistically, our integrative transcriptomic and genomic analysis identifies NOXA as a direct target of ZNF740, which negatively regulates MCL-1 protein stability. Loss of ZNF740 downregulates NOXA and increases the steady state protein levels of MCL-1 in AML cells. Restoring NOXA expression in ZNF740-depleted cells re-sensitizes AML cells to venetoclax treatment. Furthermore, we demonstrated that dual targeting of MCL-1 and BCL-2 effectively treats ZNF740-deficient AML in vivo. Together, our work systematically elucidates the causal relationship between venetoclax response signature genes and establishes ZNF740 as a novel transcription factor regulating venetoclax sensitivity.
Collapse
MESH Headings
- Sulfonamides/pharmacology
- Humans
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Animals
- Cell Line, Tumor
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Clustered Regularly Interspaced Short Palindromic Repeats/genetics
- Mice
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Transcription Factors/metabolism
- Transcription Factors/genetics
- CRISPR-Cas Systems/genetics
Collapse
Affiliation(s)
- Lixia Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Zhou
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sajesan Aryal
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Virginia Veasey
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Pengcheng Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Fu Jun Li
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yu Luan
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ravi Bhatia
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yang Zhou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui Lu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
67
|
Meyer CT, Smith BN, Wang J, Teuscher KB, Grieb BC, Howard GC, Silver AJ, Lorey SL, Stott GM, Moore WJ, Lee T, Savona MR, Weissmiller AM, Liu Q, Quaranta V, Fesik SW, Tansey WP. Expanded profiling of WD repeat domain 5 inhibitors reveals actionable strategies for the treatment of hematologic malignancies. Proc Natl Acad Sci U S A 2024; 121:e2408889121. [PMID: 39167600 PMCID: PMC11363251 DOI: 10.1073/pnas.2408889121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
WD40 Repeat Domain 5 (WDR5) is a highly conserved nuclear protein that recruits MYC oncoprotein transcription factors to chromatin to stimulate ribosomal protein gene expression. WDR5 is tethered to chromatin via an arginine-binding cavity known as the "WIN" site. Multiple pharmacological inhibitors of the WDR5-interaction site of WDR5 (WINi) have been described, including those with picomolar affinity and oral bioavailability in mice. Thus far, however, WINi have only been shown to be effective against a number of rare cancer types retaining wild-type p53. To explore the full potential of WINi for cancer therapy, we systematically profiled WINi across a panel of cancer cells, alone and in combination with other agents. We report that WINi are unexpectedly active against cells derived from both solid and blood-borne cancers, including those with mutant p53. Among hematologic malignancies, we find that WINi are effective as a single agent against leukemia and diffuse large B cell lymphoma xenograft models, and can be combined with the approved drug venetoclax to suppress disseminated acute myeloid leukemia in vivo. These studies reveal actionable strategies for the application of WINi to treat blood-borne cancers and forecast expanded utility of WINi against other cancer types.
Collapse
Affiliation(s)
- Christian T. Meyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO80309
- Duet BioSystems, Nashville, TN37212
| | - Brianna N. Smith
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN37232
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Kevin B. Teuscher
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Brian C. Grieb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Alexander J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Gordon M. Stott
- Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD21701-4907
| | - William J. Moore
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD21702-1201
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN37232
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN37232
| | - Vito Quaranta
- Duet BioSystems, Nashville, TN37212
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - William P. Tansey
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN37240
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37240
| |
Collapse
|
68
|
Chai Y, Sun X, Zhou Q, Li H, Xi Y. Exploration of the mechanism of fraxetin in treating acute myeloid leukemia based on network pharmacology and experimental verification. Heliyon 2024; 10:e34717. [PMID: 39166080 PMCID: PMC11334658 DOI: 10.1016/j.heliyon.2024.e34717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/22/2024] Open
Abstract
Objective To explore the pharmacological mechanism of the effect of fraxetin in treating acute myeloid leukemia (AML) by the network pharmacology method combined with experimental validation. Methods The targets of fraxetin were identified through Swisstarget prediction, PhammerMap, and CTDBASE. Disease-related targets of AML were explored using GeneCards and DisGenet databases, and the intersected targets were analyzed in the String website to construct a protein-protein interaction (PPI) network. Subsequently, gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were conducted using the DAVID database. Molecular docking of core proteins with drugs was performed using Auto Dock Vina software. Finally, the effect of fraxetin on AML was evaluated by in vitro experiments. The effect of fraxetin on AML cell proliferation was assessed by CCK8, the effect of fraxetin on AML cell apoptosis was assessed by flow cytometry, and the expression of relevant protein targets was detected by Western blotting to evaluate the anti-AML effect of fraxetin. Results In this study, fraxetin exerts its effect against AML through 101 intersecting genes. The pathway enrichment analysis revealed that the pharmacological effects of fraxetin on AML were related to the Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway, and the molecular docking results indicated that fraxetin had an excellent binding affinity to both the core target and AMPK. In vitro experiments have demonstrated that fraxetin inhibited the proliferation and induced apoptosis of THP1 and HL60 cells, and the western blotting results indicated that the p-AMPK of the fraxetin intervention group was significantly changed in a dose-dependent manner. Conclusion Fraxetin may modulate the AMPK signal pathway by interactine with the core target, thereby potentially therapeutic effect on AML.
Collapse
Affiliation(s)
- Yihong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaohong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Qi Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Hongxing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Yaming Xi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
- Department of Hematology, First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| |
Collapse
|
69
|
Zhang C, Qin Y, Tang Y, Gu M, Li Z, Xu H. MEG3 in hematologic malignancies: from the role of disease biomarker to therapeutic target. Pharmacogenet Genomics 2024; 34:209-216. [PMID: 38743429 DOI: 10.1097/fpc.0000000000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Maternally expressed gene 3 ( MEG3 ) is a noncoding RNA that is known as a tumor suppressor in solid cancers. Recently, a line of studies has emphasized its potential role in hematological malignancies in terms of tumorigenesis, metastasis, and drug resistance. Similar to solid cancers, MEG3 can regulate various cancer hallmarks via sponging miRNA, transcriptional, or posttranslational regulation mechanisms, but may regulate different key elements. In contrast with solid cancers, in some subtypes of leukemia, MEG3 has been found to be upregulated and oncogenic. In this review, we systematically describe the role and underlying mechanisms of MEG3 in multiple types of hematological malignancies. Particularly, we highlight the role of MEG3 in drug resistance and as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Xu
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
70
|
Chen R, Zhou J, Chen B. Imputing abundance of over 2500 surface proteins from single-cell transcriptomes with context-agnostic zero-shot deep ensembles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605432. [PMID: 39131290 PMCID: PMC11312525 DOI: 10.1101/2024.07.31.605432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Cell surface proteins serve as primary drug targets and cell identity markers. The emergence of techniques like CITE-seq has enabled simultaneous quantification of surface protein abundance and transcript expression for multimodal data analysis within individual cells. The published data have been utilized to train machine learning models for predicting surface protein abundance based solely from transcript expression. However, the small scale of proteins predicted and the poor generalization ability for these computational approaches across diverse contexts, such as different tissues or disease states, impede their widespread adoption. Here we propose SPIDER (surface protein prediction using deep ensembles from single-cell RNA-seq), a context-agnostic zero-shot deep ensemble model, which enables the large-scale prediction of cell surface protein abundance and generalizes better to various contexts. Comprehensive benchmarking shows that SPIDER outperforms other state-of-the-art methods. Using the predicted surface abundance of >2500 proteins from single-cell transcriptomes, we demonstrate the broad applications of SPIDER including cell type annotation, biomarker/target identification, and cell-cell interaction analysis in hepatocellular carcinoma and colorectal cancer.
Collapse
Affiliation(s)
- Ruoqiao Chen
- Department of Pharmacology and Toxicology, Michigan State University, MI, USA
| | - Jiayu Zhou
- Department of Computer Science and Engineering, Michigan State University, MI, USA
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Department of Pediatrics and Human Development, Michigan State University, MI, USA
| |
Collapse
|
71
|
Zhang S, Lou S, Bian W, Liu J, Wang R, Wang Y, Zhao Y, Zou X, Jin D, Liang Y, Sun J, Liu L. Selective eradication of venetoclax-resistant monocytic acute myeloid leukemia with iron oxide nanozymes. Biochem Biophys Res Commun 2024; 719:150117. [PMID: 38761635 DOI: 10.1016/j.bbrc.2024.150117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The clinical treatment of human acute myeloid leukemia (AML) is rapidly progressing from chemotherapy to targeted therapies led by the BCL-2 inhibitor venetoclax (VEN). Despite its unprecedented success, VEN still encounters clinical resistance. Thus, uncovering the biological vulnerability of VEN-resistant AML disease and identifying effective therapies to treat them are urgently needed. We have previously demonstrated that iron oxide nanozymes (IONE) are capable of overcoming chemoresistance in AML. The current study reports a new activity of IONE in overcoming VEN resistance. Specifically, we revealed an aberrant redox balance with excessive intracellular reactive oxygen species (ROS) in VEN-resistant monocytic AML. Treatment with IONE potently induced ROS-dependent cell death in monocytic AML in both cell lines and primary AML models. In primary AML with developmental heterogeneity containing primitive and monocytic subpopulations, IONE selectively eradicated the VEN-resistant ROS-high monocytic subpopulation, successfully resolving the challenge of developmental heterogeneity faced by VEN. Overall, our study revealed an aberrant redox balance as a therapeutic target for monocytic AML and identified a candidate IONE that could selectively and potently eradicate VEN-resistant monocytic disease.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Reactive Oxygen Species/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Leukemia, Monocytic, Acute/drug therapy
- Leukemia, Monocytic, Acute/metabolism
- Leukemia, Monocytic, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Ferric Compounds/pharmacology
Collapse
Affiliation(s)
- Shaoqi Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Shang Lou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Wei Bian
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Jun Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Rong Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Yanan Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Yin Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Xiaoqing Zou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Diange Jin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Yue Liang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Jie Sun
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Lina Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China.
| |
Collapse
|
72
|
Chamberlin JT, Gillen AE, Quinlan AR. Improved characterization of single-cell RNA-seq libraries with paired-end avidity sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602909. [PMID: 39026715 PMCID: PMC11257511 DOI: 10.1101/2024.07.10.602909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Prevailing poly(dT)-primed 3' single-cell RNA-seq protocols generate barcoded cDNA fragments containing the reverse transcriptase priming site, which is expected to be the poly(A) tail or a genomic adenine homopolymer. Direct sequencing across this priming site was historically difficult because of DNA sequencing errors induced by the homopolymeric primer at the 'barcode' end. Here, we evaluate the capability of "avidity base chemistry" DNA sequencing from Element Biosciences to sequence through this homopolymer accurately, and the impact of the additional cDNA sequence on read alignment and precise quantification of polyadenylation site usage. We find that the Element Aviti instrument sequences through the thymine homopolymer into the subsequent cDNA sequence without detectable loss of accuracy. The resulting paired-end alignments enable direct and independent assignment of reads to polyadenylation sites, which bypasses complexities and limitations of conventional approaches but does not consistently improve read mapping rates compared to single-end alignment. We also characterize low-level artifacts and arrive at an adjusted adapter trimming and alignment workflow that significantly improves the alignment of sequence data from Element and Illumina, particularly in the context of extended read lengths. Our analyses confirm that Element avidity sequencing is an effective alternative to Illumina sequencing for standard single-cell RNA-seq, particularly for polyadenylation site analyses but do not rule out the potential for similar performance from other emerging platforms.
Collapse
Affiliation(s)
- John T Chamberlin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Austin E Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, 80045, USA
| | - Aaron R Quinlan
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| |
Collapse
|
73
|
Márton A, Veres KB, Erdődi F, Udvardy M, Illés Á, Rejtő L. The roles of phosphorylation of signaling proteins in the prognosis of acute myeloid leukemia. Pathol Oncol Res 2024; 30:1611747. [PMID: 39035053 PMCID: PMC11257863 DOI: 10.3389/pore.2024.1611747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024]
Abstract
Signaling pathways of Retinoblastoma (Rb) protein, Akt-kinase, and Erk-kinase (extracellular signal-regulated kinase) have an important role in the pathogenesis of acute myeloid leukemia. Constitutive activation of these proteins by phosphorylation contributes to cell survival by regulation of cell cycle, proliferation and proapoptotic signaling processes. According to previous data phosphorylated forms of these proteins represent a worse outcome for cancer patients. We investigated the presence of phosphorylated Rb (P-Rb), Akt (P-Akt) and Erk (P-Erk) proteins by Western blot technique using phospho-specific antibodies in bone marrow or peripheral blood samples of 69 AML patients, 36 patients with myelodysplastic syndrome (MDS) and 10 healthy volunteers. Expression level of PTEN (Phosphatase and tensin homolog) and PHLPP (PH domain and leucine-rich repeat Protein Phosphatase) phosphatases, the negative regulators of Akt kinase pathway were also examined. We tested the effect of these proteins on survival and on the correlation with known prognostic features in AML. We found 46.3% of AML patients had detectable P-Rb, 34.7% had P-Akt and 28.9% had P-Erk protein. 66.1% of patients expressing PTEN, 38.9% PHLPP, 37.2% both PTEN and PHLPP and 32.2% neither PTEN nor PHLPP phosphatases. Compared to nucleophosmin mutation (NPMc) negative samples P-Erk was significantly less in nucleophosmin mutated patients, P-Rb was significantly less in patients' group with more than 30 G/L peripheral leukocyte count by diagnosis. PHLPP was significantly present in FAB type M5. The expression of P-Rb represented significant better overall survival (OS), while P-Akt represented significantly worse event-free survival (EFS) in unfavorable cytogenetics patients. The presence of both PHLPP and PTEN phosphatases contributes to better OS and EFS, although the differences were not statistically significant. We confirmed significant positive correlation between P-Akt and PHLPP. Assessing the phosphorylation of Rb, Akt and Erk may define a subgroup of AML patients who would benefit especially from new targeted treatment options complemented the standard chemotherapy, and it may contribute to monitoring remission, relapse or progression of AML.
Collapse
Affiliation(s)
- Adrienn Márton
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | | | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklós Udvardy
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Illés
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Rejtő
- Department of Hematology, Szabolcs-Szatmár-Bereg County Teaching Hospital, Nyíregyháza, Hungary
| |
Collapse
|
74
|
Jen WY, Kantarjian H, Kadia TM, DiNardo CD, Issa GC, Short NJ, Yilmaz M, Borthakur G, Ravandi F, Daver NG. Combination therapy with novel agents for acute myeloid leukaemia: Insights into treatment of a heterogenous disease. Br J Haematol 2024; 205:30-47. [PMID: 38724457 DOI: 10.1111/bjh.19519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/27/2024] [Indexed: 07/13/2024]
Abstract
The treatment landscape of acute myeloid leukaemia (AML) is evolving rapidly. Venetoclax in combination with intensive chemotherapy or doublets or triplets with targeted or immune therapies is the focus of numerous ongoing trials. The development of mutation-targeted therapies has greatly enhanced the treatment armamentarium, with FLT3 inhibitors and isocitrate dehydrogenase inhibitors improving outcomes in frontline and relapsed/refractory (RR) AML, and menin inhibitors showing efficacy in RR NPM1mut and KMT2A-rearranged AML. With so many new drugs approved, the number of potential combinatorial approaches to leverage the maximal benefit of these agents has increased dramatically, while at the same time introducing clinical challenges, such as key preclinical and clinical data supporting the development of combinatorial therapy, how to optimally combine or sequence these novel agents, how to optimise dose and duration to maintain safety while enhancing efficacy, the optimal duration of therapy and the role of measurable residual disease in decision-making in both intensive and low-intensity therapy settings. In this review, we will outline the evidence leading to the approval of key agents in AML, their on-label current approvals and how they may be optimally combined in a safe and deliverable fashion to further improve outcomes in AML.
Collapse
Affiliation(s)
- Wei-Ying Jen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Naval G Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
75
|
Wang D, He J, Liu S, Zhang H, Tang D, Chen P, Yang M. Anlotinib synergizes with venetoclax to induce mitotic catastrophe in acute myeloid leukemia. Cancer Lett 2024; 593:216970. [PMID: 38763475 DOI: 10.1016/j.canlet.2024.216970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Venetoclax is a BCL2-targeted drug employed in treating various cancers, particularly hematologic malignancies. Venetoclax combination therapies are increasingly recognized as promising treatment strategies for acute myeloid leukemia (AML). In this study, we conducted an unbiased drug screen and identified anlotinib, a promising multi-targeted receptor tyrosine kinase inhibitor with oral activity currently utilized in the treatment of solid tumor, as a potent enhancer of venetoclax's anticancer activity in AML. Our investigation encompassed AML cell lines, primary cells, and mouse models, demonstrating effective low-dose combination therapy of anlotinib and venetoclax with minimal cytopenia or organ damage. Proteomic analysis revealed abnormal mitotic signals induced by this combination in AML cells. Mechanistically, anlotinib synergized with venetoclax by suppressing ARPP19 protein, leading to sustained activation of PP2A-B55δ. This inhibited AML cells from entering the mitotic phase, culminating in mitotic catastrophe and apoptosis. Additionally, we identified a specific synthetic lethal vulnerability in AML involving an ARPP19 mutation at S62 phosphorylation. These findings underscore the therapeutic potential of anlotinib and venetoclax combination therapy in AML, warranting further clinical investigation.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Animals
- Quinolines/pharmacology
- Quinolines/administration & dosage
- Mitosis/drug effects
- Mice
- Indoles/pharmacology
- Indoles/administration & dosage
- Drug Synergism
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
Collapse
Affiliation(s)
- Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Jing He
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Siyang Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Haixia Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410031, Hunan, China.
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China; Hunan Clinical Research Center of Pediatric Cancer, Changsha, 410013, Hunan, China.
| |
Collapse
|
76
|
Salamero O, Molero A, Pérez-Simón JA, Arnan M, Coll R, Garcia-Avila S, Acuña-Cruz E, Cano I, Somervaille TCP, Gutierrez S, Arévalo MI, Xaus J, Buesa C, Limón A, Faller DV, Bosch F, Montesinos P. Iadademstat in combination with azacitidine in patients with newly diagnosed acute myeloid leukaemia (ALICE): an open-label, phase 2a dose-finding study. Lancet Haematol 2024; 11:e487-e498. [PMID: 38824932 DOI: 10.1016/s2352-3026(24)00132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Iadademstat is a potent, selective, oral inhibitor of both the enzymatic and scaffolding activities of the transcriptional repressor lysine-specific demethylase 1 (LSD1; also known as KDM1A) that showed promising early activity and safety in a phase 1 trial and strong preclinical synergy with azacitidine in acute myeloid leukaemia cell lines. Therefore, we aimed to investigate the combination of iadademstat and azacitidine for the treatment of adult patients with newly diagnosed acute myeloid leukaemia. METHODS The open-label, phase 2a, dose-finding ALICE study was conducted at six hospitals in Spain and enrolled patients aged 18 years or older with newly diagnosed acute myeloid leukaemia not eligible for intensive chemotherapy and an ECOG performance status of 0-2. In the dose escalation portion of the trial, patients received a starting dose of iadademstat at 90 μg/m2 per day (with de-escalation to 60 μg/m2 per day and escalation up to 140 μg/m2 per day) orally, for 5 days on, 2 days off weekly, with azacitidine 75 mg/m2 subcutaneously, for seven of 28 days. The primary objectives were safety (analysed in the safety analysis set; all patients who received at least one dose of study treatment) and establishing the recommended phase 2 dose; secondary objectives included response rates in the efficacy analysis set (all patients who had at least one efficacy assessment). This study is registered on EudraCT (EudraCT 2018-000482-36) and has been completed. FINDINGS Between Nov 12, 2018, and Sept 30, 2021, 36 patients with newly diagnosed acute myeloid leukaemia were enrolled; the median age was 76 (IQR 74-79) years, all patients were White, 18 (50%) were male, and 18 (50%) were female, and all had intermediate-risk or adverse-risk acute myeloid leukaemia. The median follow-up was 22 (IQR 16-31) months. The most frequent (≥10%) adverse events considered to be related to treatment were decreases in platelet (25 [69%]) and neutrophil (22 [61%]) counts (all grade 3-4) and anaemia (15 [42%]; of which ten [28%] were grade 3-4). Three patients had treatment-related serious adverse events (one fatal grade 5 intracranial haemorrhage, one grade 3 differentiation syndrome, and one grade 3 febrile neutropenia). Based on safety, pharmacokinetic and pharmacodynamic data, and efficacy, the recommended phase 2 dose of iadademstat was 90 μg/m2 per day with azacitidine. 22 (82%; 95% CI 62-94) of 27 patients in the efficacy analysis set had an objective response. 14 (52%) of 27 patients had complete remission or complete remission with incomplete haematological recovery; of these, ten of 11 evaluable for measurable residual disease achieved negativity. In the safety analysis set, 22 (61%) of 36 patients had an objective response. INTERPRETATION The combination of iadademstat and azacitidine has a manageable safety profile and shows promising responses in patients with newly diagnosed acute myeloid leukaemia, including those with high-risk prognostic factors. FUNDING Oryzon Genomics and Spain's Ministerio de Ciencia, Innovacion y Universidades (MICIU)-Agencia Estatal de Investigacion (AEI).
Collapse
Affiliation(s)
- Olga Salamero
- Servei d'Hematologia de l'Hospital Vall d'Hebron i Unitat d'Hematología Experimental del Vall d'Hebron Institut d'Oncología, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Antonieta Molero
- Servei d'Hematologia de l'Hospital Vall d'Hebron i Unitat d'Hematología Experimental del Vall d'Hebron Institut d'Oncología, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Antonio Pérez-Simón
- Unidad de Hematología y Hematoterapia, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), CSIC, Universidad de Sevilla, Seville, Spain
| | - Montserrat Arnan
- Departament d'Hematología, Institut Català d'Oncología, Hospital Duran i Reynals, Barcelona, Spain
| | - Rosa Coll
- Departament d'Hematología, Institut Català d'Oncología, Hospital Dr Josep Trueta, Girona, Spain
| | - Sara Garcia-Avila
- Departament d'Hematología Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Evelyn Acuña-Cruz
- Servei d'Hematología i Hematoterapia, Institut d'Investigació Sanitaria La Fe Valencia, Valencia, Spain
| | - Isabel Cano
- Servei d'Hematología i Hematoterapia, Institut d'Investigació Sanitaria La Fe Valencia, Valencia, Spain
| | - Tim C P Somervaille
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK; The Christie NHS Foundation Trust, Manchester, UK
| | | | | | - Jordi Xaus
- Oryzon Genomics, Cornellà de Llobregat, Barcelona, Spain
| | - Carlos Buesa
- Oryzon Genomics, Cornellà de Llobregat, Barcelona, Spain
| | | | | | - Francesc Bosch
- Unitat d'Hematología Experimental, Vall d'Hebron Institut d'Oncología, Facultat de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pau Montesinos
- Servei d'Hematología i Hematoterapia, Institut d'Investigació Sanitaria La Fe Valencia, Valencia, Spain
| |
Collapse
|
77
|
Jin D, He J, Chen H, Wu W, Han X, Le J, Shu W, Yang Q, Pei S, Cai Z, He D. Impact of monocytic differentiation on acute myeloid leukemia patients treated with venetoclax and hypomethylating agents. Cancer Med 2024; 13:e7378. [PMID: 39031026 PMCID: PMC11258555 DOI: 10.1002/cam4.7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024] Open
Abstract
INTRODUCTION Although the combination of venetoclax (VEN) and hypomethylating agents (HMAs) results in impressive efficacy in acute myeloid leukemia (AML), there is still a subset of patients who are refractory. We investigated the outcomes of AML patients with monocytic differentiation who were treated with frontline VEN/HMA. METHODS A total of 155 patients with newly diagnosed AML treated with frontline VEN/HMA were enrolled in the study. Monocyte-like AML was identified by flow cytometry with typical expression of monocytic markers, and M5 was identified according to French, American, and British category. We compared the outcomes of patients with different characteristics. RESULTS The rate of complete remission (CR) and CR with incomplete recovery of blood counts (CRi), progression-free survival (PFS), and overall survival (OS) in monocyte-like AML were inferior to those in nonmonocyte-like AML (CR/CRi rates, 26.7% vs. 80.0%, p < 0.001; median PFS, 2.1 vs. 8.8 months, p < 0.001; median OS, 9.2 vs. 19 months, p = 0.013). CR/CRi rate in M5 was lower than that in non-M5 (60.7% vs. 75.5%, p = 0.049). Multivariate analyses showed that monocyte-like AML was associated with lower odds of CR/CRi and higher risk of progression. CONCLUSION Our study suggested that newly diagnosed AML with a monocytic immunophenotype had a poor prognosis with VEN/HMA treatment.
Collapse
Affiliation(s)
- Dian Jin
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Haoguang Chen
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Jing Le
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Wenxiu Shu
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Qianqian Yang
- Department of HematologyNingbo Medical Treatment Center Li Huili HospitalNingboChina
| | - Shanshan Pei
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Liangzhu LaboratoryZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity TherapyHangzhouChina
| |
Collapse
|
78
|
Cao Y, Shu W, Jin P, Li J, Zhu H, Chen X, Zhu Y, Huang X, Cheng W, Shen Y. NAD metabolism-related genes provide prognostic value and potential therapeutic insights for acute myeloid leukemia. Front Immunol 2024; 15:1417398. [PMID: 38966636 PMCID: PMC11222388 DOI: 10.3389/fimmu.2024.1417398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is an aggressive blood cancer with high heterogeneity and poor prognosis. Although the metabolic reprogramming of nicotinamide adenine dinucleotide (NAD) has been reported to play a pivotal role in the pathogenesis of acute myeloid leukemia (AML), the prognostic value of NAD metabolism and its correlation with the immune microenvironment in AML remains unclear. Methods We utilized our large-scale RNA-seq data on 655 patients with AML and the NAD metabolism-related genes to establish a prognostic NAD metabolism score based on the sparse regression analysis. The signature was validated across three independent datasets including a total of 1,215 AML patients. ssGSEA and ESTIMATE algorithms were employed to dissect the tumor immune microenvironment. Ex vivo drug screening and in vitro experimental validation were performed to identify potential therapeutic approaches for the high-risk patients. In vitro knockdown and functional experiments were employed to investigate the role of SLC25A51, a mitochondrial NAD+ transporter gene implicated in the signature. Results An 8-gene NAD metabolism signature (NADM8) was generated and demonstrated a robust prognostic value in more than 1,800 patients with AML. High NADM8 score could efficiently discriminate AML patients with adverse clinical characteristics and genetic lesions and serve as an independent factor predicting a poor prognosis. Immune microenvironment analysis revealed significant enrichment of distinct tumor-infiltrating immune cells and activation of immune checkpoints in patients with high NADM8 scores, acting as a potential biomarker for immune response evaluation in AML. Furthermore, ex vivo drug screening and in vitro experimental validation in a panel of 9 AML cell lines demonstrated that the patients with high NADM8 scores were more sensitive to the PI3K inhibitor, GDC-0914. Finally, functional experiments also substantiated the critical pathogenic role of the SLC25A51 in AML, which could be a promising therapeutic target. Conclusion Our study demonstrated that NAD metabolism-related signature can facilitate risk stratification and prognosis prediction in AML and guide therapeutic decisions including both immunotherapy and targeted therapies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Prognosis
- NAD/metabolism
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Biomarkers, Tumor/genetics
- Female
- Male
- Middle Aged
- Gene Expression Regulation, Leukemic
- Gene Expression Profiling
- Transcriptome
- Cell Line, Tumor
Collapse
Affiliation(s)
- Yuncan Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Shu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Huang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
79
|
Montalban-Bravo G, Thongon N, Rodriguez-Sevilla JJ, Ma F, Ganan-Gomez I, Yang H, Kim YJ, Adema V, Wildeman B, Tanaka T, Darbaniyan F, Al-Atrash G, Dwyer K, Loghavi S, Kanagal-Shamanna R, Song X, Zhang J, Takahashi K, Kantarjian H, Garcia-Manero G, Colla S. Targeting MCL1-driven anti-apoptotic pathways overcomes blast progression after hypomethylating agent failure in chronic myelomonocytic leukemia. Cell Rep Med 2024; 5:101585. [PMID: 38781960 PMCID: PMC11228590 DOI: 10.1016/j.xcrm.2024.101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 11/27/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
RAS pathway mutations, which are present in 30% of patients with chronic myelomonocytic leukemia (CMML) at diagnosis, confer a high risk of resistance to and progression after hypomethylating agent (HMA) therapy, the current standard of care for the disease. Here, using single-cell, multi-omics technologies, we seek to dissect the biological mechanisms underlying the initiation and progression of RAS pathway-mutated CMML. We identify that RAS pathway mutations induce transcriptional reprogramming of hematopoietic stem and progenitor cells (HSPCs) and downstream monocytic populations in response to cell-intrinsic and -extrinsic inflammatory signaling that also impair the functions of immune cells. HSPCs expand at disease progression after therapy with HMA or the BCL2 inhibitor venetoclax and rely on the NF-κB pathway effector MCL1 to maintain survival. Our study has implications for the development of therapies to improve the survival of patients with RAS pathway-mutated CMML.
Collapse
MESH Headings
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/pathology
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors
- Humans
- Apoptosis/drug effects
- Animals
- Mutation/genetics
- Mice
- Signal Transduction/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/drug effects
- Disease Progression
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- NF-kappa B/metabolism
- DNA Methylation/drug effects
- DNA Methylation/genetics
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Blast Crisis/pathology
- Blast Crisis/drug therapy
- Blast Crisis/genetics
- Blast Crisis/metabolism
Collapse
Affiliation(s)
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yi June Kim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Tanaka
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faezeh Darbaniyan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
80
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
81
|
Bruserud Ø, Selheim F, Hernandez-Valladares M, Reikvam H. Monocytic Differentiation in Acute Myeloid Leukemia Cells: Diagnostic Criteria, Biological Heterogeneity, Mitochondrial Metabolism, Resistance to and Induction by Targeted Therapies. Int J Mol Sci 2024; 25:6356. [PMID: 38928061 PMCID: PMC11203697 DOI: 10.3390/ijms25126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
We review the importance of monocytic differentiation and differentiation induction in non-APL (acute promyelocytic leukemia) variants of acute myeloid leukemia (AML), a malignancy characterized by proliferation of immature myeloid cells. Even though the cellular differentiation block is a fundamental characteristic, the AML cells can show limited signs of differentiation. According to the French-American-British (FAB-M4/M5 subset) and the World Health Organization (WHO) 2016 classifications, monocytic differentiation is characterized by morphological signs and the expression of specific molecular markers involved in cellular communication and adhesion. Furthermore, monocytic FAB-M4/M5 patients are heterogeneous with regards to cytogenetic and molecular genetic abnormalities, and monocytic differentiation does not have any major prognostic impact for these patients when receiving conventional intensive cytotoxic therapy. In contrast, FAB-M4/M5 patients have decreased susceptibility to the Bcl-2 inhibitor venetoclax, and this seems to be due to common molecular characteristics involving mitochondrial regulation of the cellular metabolism and survival, including decreased dependency on Bcl-2 compared to other AML patients. Thus, the susceptibility to Bcl-2 inhibition does not only depend on general resistance/susceptibility mechanisms known from conventional AML therapy but also specific mechanisms involving the molecular target itself or the molecular context of the target. AML cell differentiation status is also associated with susceptibility to other targeted therapies (e.g., CDK2/4/6 and bromodomain inhibition), and differentiation induction seems to be a part of the antileukemic effect for several targeted anti-AML therapies. Differentiation-associated molecular mechanisms may thus become important in the future implementation of targeted therapies in human AML.
Collapse
MESH Headings
- Humans
- Cell Differentiation
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mitochondria/metabolism
- Monocytes/metabolism
- Monocytes/pathology
- Drug Resistance, Neoplasm/genetics
- Molecular Targeted Therapy
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway;
| | - Maria Hernandez-Valladares
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, 5007 Bergen, Norway; (M.H.-V.); (H.R.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| |
Collapse
|
82
|
Luo Q, Raulston EG, Prado MA, Wu X, Gritsman K, Whalen KS, Yan K, Booth CAG, Xu R, van Galen P, Doench JG, Shimony S, Long HW, Neuberg DS, Paulo JA, Lane AA. Targetable leukaemia dependency on noncanonical PI3Kγ signalling. Nature 2024; 630:198-205. [PMID: 38720074 DOI: 10.1038/s41586-024-07410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.
Collapse
Affiliation(s)
- Qingyu Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Evangeline G Raulston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Xiaowei Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kira Gritsman
- Department of Medical Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karley S Whalen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kezhi Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christopher A G Booth
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ran Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Peter van Galen
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - John G Doench
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Rabin Medical Center, Tel Aviv Faculty of Medicine, Tel Aviv, Israel
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
83
|
Winters AC, Minhajuddin M, Stevens BM, Major A, Bosma G, Abbott D, Miltgen N, Yuan J, Treece AL, Siegele BJ, Ewalt MD, Gutman JA, Jordan CT, Pollyea DA. Multi-gene measurable residual disease assessed by digital polymerase chain reaction has clinical and biological utility in acute myeloid leukemia patients receiving venetoclax/azacitidine. Haematologica 2024; 109:1766-1778. [PMID: 38105738 PMCID: PMC11141685 DOI: 10.3324/haematol.2023.283790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Venetoclax with azacitidine (ven/aza) is a lower-intensity therapeutic regimen that has been shown to improve outcomes in elderly patients with acute myeloid leukemia (AML). Measurable residual disease (MRD) using flow cytometry is a valuable tool for the prediction of relapse in AML using conventional therapies and ven/aza; however, the prognostic value for broadscale molecular MRD after ven/aza treatment is less clear. We aimed to determine the utility of retrospective assessment using multi-gene molecular MRD by droplet digital polymerase chain reaction (ddPCR). We found this approach correlates with outcomes in a cohort of patients receiving frontline ven/aza for AML. The predictive value of ddPCR MRD persisted when NPM1 mutations were removed from analysis, as well as after adjustment for the impact of stem cell transplant on outcomes. Late achievement of MRD negativity, including after SCT, was still associated with superior outcomes compared to persistently detectable MRD. We further explored the impact of ven/aza on the burden of different classes of mutations, and identified the persistence of splicing factor mutations, commonly associated with MDS, as a consistent finding after ven/aza treatment. These data add to our understanding of the effects of ven/aza on AML disease biology and provide details on molecular depth of remission that can guide prospective trials in the future.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Neoplasm, Residual/diagnosis
- Nucleophosmin
- Sulfonamides/therapeutic use
- Sulfonamides/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Aged
- Male
- Female
- Azacitidine/therapeutic use
- Azacitidine/administration & dosage
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Mutation
- Polymerase Chain Reaction/methods
- Prognosis
- Aged, 80 and over
- Retrospective Studies
- Adult
- Treatment Outcome
Collapse
Affiliation(s)
- Amanda C Winters
- Center for Cancer and Blood Disorders, Department of Pediatrics, University of Colorado, Aurora.
| | - Mohd Minhajuddin
- Division of Hematology, Department of Medicine, University of Colorado, Aurora
| | - Brett M Stevens
- Division of Hematology, Department of Medicine, University of Colorado, Aurora
| | - Ajay Major
- Division of Hematology, Department of Medicine, University of Colorado, Aurora
| | - Grace Bosma
- Department of Biostatistics and Informatics, University of Colorado, Aurora
| | - Diana Abbott
- Department of Biostatistics and Informatics, University of Colorado, Aurora
| | | | - Ji Yuan
- Molecular Diagnostics, Children's Hospital Colorado, Aurora
| | - Amy L Treece
- Pediatric Pathology, Children's of Alabama, Birmingham
| | | | - Mark D Ewalt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Jonathan A Gutman
- Division of Hematology, Department of Medicine, University of Colorado, Aurora
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado, Aurora
| | - Daniel A Pollyea
- Division of Hematology, Department of Medicine, University of Colorado, Aurora
| |
Collapse
|
84
|
Karakaslar EO, Severens JF, Sánchez-López E, van Veelen PA, Zlei M, van Dongen JJM, Otte AM, Halkes CJM, van Balen P, Veelken H, Reinders MJT, Griffioen M, van den Akker EB. A transcriptomic based deconvolution framework for assessing differentiation stages and drug responses of AML. NPJ Precis Oncol 2024; 8:105. [PMID: 38762545 PMCID: PMC11102519 DOI: 10.1038/s41698-024-00596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/03/2024] [Indexed: 05/20/2024] Open
Abstract
The diagnostic spectrum for AML patients is increasingly based on genetic abnormalities due to their prognostic and predictive value. However, information on the AML blast phenotype regarding their maturational arrest has started to regain importance due to its predictive power for drug responses. Here, we deconvolute 1350 bulk RNA-seq samples from five independent AML cohorts on a single-cell healthy BM reference and demonstrate that the morphological differentiation stages (FAB) could be faithfully reconstituted using estimated cell compositions (ECCs). Moreover, we show that the ECCs reliably predict ex-vivo drug resistances as demonstrated for Venetoclax, a BCL-2 inhibitor, resistance specifically in AML with CD14+ monocyte phenotype. We validate these predictions using LUMC proteomics data by showing that BCL-2 protein abundance is split into two distinct clusters for NPM1-mutated AML at the extremes of CD14+ monocyte percentages, which could be crucial for the Venetoclax dosing patients. Our results suggest that Venetoclax resistance predictions can also be extended to AML without recurrent genetic abnormalities and possibly to MDS-related and secondary AML. Lastly, we show that CD14+ monocytic dominated Ven/Aza treated patients have significantly lower overall survival. Collectively, we propose a framework for allowing a joint mutation and maturation stage modeling that could be used as a blueprint for testing sensitivity for new agents across the various subtypes of AML.
Collapse
Affiliation(s)
- E Onur Karakaslar
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeppe F Severens
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mihaela Zlei
- Department of Flow Cytometry, Medical Laboratory, Regional Institute of Oncology, Iasi, Romania
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Annemarie M Otte
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hendrik Veelken
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik B van den Akker
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, The Netherlands.
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
85
|
Rodems BJ, Sharma S, Baker CD, Kaszuba CM, Ito T, Liesveld JL, Calvi LM, Becker MW, Jordan CT, Ashton JM, Bajaj J. Temporal Single Cell Analysis of Leukemia Microenvironment Identifies Taurine-Taurine Transporter Axis as a Key Regulator of Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593633. [PMID: 38798540 PMCID: PMC11118281 DOI: 10.1101/2024.05.11.593633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Signals from the microenvironment are known to be critical for development, sustaining adult stem cells, and for oncogenic progression. While candidate niche-driven signals that can promote cancer progression have been identified1-6, concerted efforts to comprehensively map microenvironmental ligands for cancer stem cell specific surface receptors have been lacking. Here, we use temporal single cell RNA-sequencing to identify molecular cues from the bone marrow stromal niche that engage leukemia stem cells (LSC) during oncogenic progression. We integrate these data with our RNA-seq analysis of human LSCs from distinct aggressive myeloid cancer subtypes and our CRISPR based in vivo LSC dependency map7 to develop a temporal receptor-ligand interactome essential for disease progression. These analyses identify the taurine transporter (TauT)-taurine axis as a critical dependency of myeloid malignancies. We show that taurine production is restricted to the osteolineage population during cancer initiation and expansion. Inhibiting taurine synthesis in osteolineage cells impairs LSC growth and survival. Our experiments with the TauT genetic loss of function murine model indicate that its loss significantly impairs the progression of aggressive myeloid leukemias in vivo by downregulating glycolysis. Further, TauT inhibition using a small molecule strongly impairs the growth and survival of patient derived myeloid leukemia cells. Finally, we show that TauT inhibition can synergize with the clinically approved oxidative phosphorylation inhibitor venetoclax8, 9 to block the growth of primary human leukemia cells. Given that aggressive myeloid leukemias continue to be refractory to current therapies and have poor prognosis, our work indicates targeting the taurine transporter may be of therapeutic significance. Collectively, our data establishes a temporal landscape of stromal signals during cancer progression and identifies taurine-taurine transporter signaling as an important new regulator of myeloid malignancies.
Collapse
Affiliation(s)
- Benjamin J. Rodems
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sonali Sharma
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Cameron D. Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina M. Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA
| | - Takashi Ito
- Department of Bioscience and Technology, Graduate School of Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Jane L. Liesveld
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura M. Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Michael W. Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Division of Hematology and Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Craig T. Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John M. Ashton
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jeevisha Bajaj
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
86
|
Selheim F, Aasebø E, Reikvam H, Bruserud Ø, Hernandez-Valladares M. Monocytic Differentiation of Human Acute Myeloid Leukemia Cells: A Proteomic and Phosphoproteomic Comparison of FAB-M4/M5 Patients with and without Nucleophosmin 1 Mutations. Int J Mol Sci 2024; 25:5080. [PMID: 38791118 PMCID: PMC11121526 DOI: 10.3390/ijms25105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/14/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased responsiveness) and possibly also bromodomain inhibition (increased responsiveness). FAB-M4/M5 patients are heterogeneous with regard to genetic abnormalities, even though monocytic differentiation is common for patients with Nucleophosmin 1 (NPM1) insertions/mutations; to further study the heterogeneity of FAB-M4/M5 patients we did a proteomic and phosphoproteomic comparison of FAB-M4/M5 patients with (n = 13) and without (n = 12) NPM1 mutations. The proteomic profile of NPM1-mutated FAB-M4/M5 patients was characterized by increased levels of proteins involved in the regulation of endocytosis/vesicle trafficking/organellar communication. In contrast, AML cells without NPM1 mutations were characterized by increased levels of several proteins involved in the regulation of cytoplasmic translation, including a large number of ribosomal proteins. The phosphoproteomic differences between the two groups were less extensive but reflected similar differences. To conclude, even though FAB classification/monocytic differentiation are associated with differences in responsiveness to new targeted therapies (e.g., Bcl-2 inhibition), our results shows that FAB-M4/M5 patients are heterogeneous with regard to important biological characteristics of the leukemic cells.
Collapse
Affiliation(s)
- Frode Selheim
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Elise Aasebø
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
| | - Håkon Reikvam
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Øystein Bruserud
- Acute Leukemia Research Group, Department of Clinical Science, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; (E.A.); (H.R.); (Ø.B.)
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Proteomics Unit of University of Bergen (PROBE), University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
- Department of Physical Chemistry, University of Granada, Avenida de la Fuente Nueva S/N, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
87
|
Liu J, Li S, Wang Q, Feng Y, Xing H, Yang X, Guo Y, Guo Y, Sun H, Liu X, Yang S, Mei Z, Zhu Y, Cheng Z, Chen S, Xu M, Zhang W, Wan N, Wang J, Ma Y, Zhang S, Luan X, Xu A, Li L, Wang H, Yang X, Hong Y, Xue H, Yuan X, Hu N, Song X, Wang Z, Liu X, Wang L, Liu Y. Sonrotoclax overcomes BCL2 G101V mutation-induced venetoclax resistance in preclinical models of hematologic malignancy. Blood 2024; 143:1825-1836. [PMID: 38211332 PMCID: PMC11076911 DOI: 10.1182/blood.2023019706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.
Collapse
Affiliation(s)
- Jiuyang Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuran Li
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Qin Wang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yingcai Feng
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haimei Xing
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuefei Yang
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ying Guo
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yunhang Guo
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hanzi Sun
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaoxin Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shasha Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhu Mei
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yutong Zhu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhenzhen Cheng
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuaishuai Chen
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Min Xu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Wenjing Zhang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nanyan Wan
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Jia Wang
- Department of Bioinformatics, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yanwen Ma
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Shuo Zhang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xudong Luan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Aiying Xu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lin Li
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Haitao Wang
- Department of Translational Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaolong Yang
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Yuan Hong
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Hai Xue
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xi Yuan
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Nan Hu
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xiaomin Song
- Department of Pharmacology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Zhiwei Wang
- Department of Medicinal Chemistry, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Xuesong Liu
- Department of Discovery Biology, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Lai Wang
- Research and Clinical Development, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| | - Ye Liu
- Department of Molecular Science, BeiGene (Beijing) Co, Ltd, Beijing, People’s Republic of China
| |
Collapse
|
88
|
Candoni A, Coppola G. A 2024 Update on Menin Inhibitors. A New Class of Target Agents against KMT2A-Rearranged and NPM1-Mutated Acute Myeloid Leukemia. Hematol Rep 2024; 16:244-254. [PMID: 38651453 PMCID: PMC11036224 DOI: 10.3390/hematolrep16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Menin inhibitors are new and promising agents currently in clinical development that target the HOX/MEIS1 transcriptional program which is critical for leukemogenesis in histone-lysine N-methyltransferase 2A-rearranged (KMT2Ar) and in NPM1-mutated (NPM1mut) acute leukemias. The mechanism of action of this new class of agents is based on the disruption of the menin-KMT2A complex (consisting of chromatin remodeling proteins), leading to the differentiation and apoptosis of AML cells expressing KMT2A or with mutated NPM1. To date, this new class of drugs has been tested in phase I and II clinical trials, both alone and in combination with synergistic drugs showing promising results in terms of response rates and safety in heavily pre-treated acute leukemia patients. In this brief review, we summarize the key findings on menin inhibitors, focusing on the mechanism of action and preliminary clinical data on the treatment of acute myeloid leukemia with this promising new class of agents, particularly revumenib and ziftomenib.
Collapse
Affiliation(s)
- Anna Candoni
- Section of Haematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41123 Modena, Italy;
| | | |
Collapse
|
89
|
Hollands CG, Boyd AL, Zhao X, Reid JC, Henly C, ElRafie A, Boylan D, Broder E, Kalau O, Johnson P, Mark A, McNicol J, Xenocostas A, Berg T, Foley R, Trus M, Leber B, Garcia-Horton A, Campbell C, Bhatia M. Identification of cells of leukemic stem cell origin with non-canonical regenerative properties. Cell Rep Med 2024; 5:101485. [PMID: 38582086 PMCID: PMC11031376 DOI: 10.1016/j.xcrm.2024.101485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/08/2024]
Abstract
Despite most acute myeloid leukemia (AML) patients entering remission following chemotherapy, outcomes remain poor due to surviving leukemic cells that contribute to relapse. The nature of these enduring cells is poorly understood. Here, through temporal single-cell transcriptomic characterization of AML hierarchical regeneration in response to chemotherapy, we reveal a cell population: AML regeneration enriched cells (RECs). RECs are defined by CD74/CD68 expression, and although derived from leukemic stem cells (LSCs), are devoid of stem/progenitor capacity. Based on REC in situ proximity to CD34-expressing cells identified using spatial transcriptomics on AML patient bone marrow samples, RECs demonstrate the ability to augment or reduce leukemic regeneration in vivo based on transfusion or depletion, respectively. Furthermore, RECs are prognostic for patient survival as well as predictive of treatment failure in AML cohorts. Our study reveals RECs as a previously unknown functional catalyst of LSC-driven regeneration contributing to the non-canonical framework of AML regeneration.
Collapse
Affiliation(s)
- Cameron G Hollands
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Allison L Boyd
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Xueli Zhao
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jennifer C Reid
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Charisa Henly
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Amro ElRafie
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - David Boylan
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Emily Broder
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Olivia Kalau
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Paige Johnson
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Alyssa Mark
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Jamie McNicol
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Anargyros Xenocostas
- Department of Medicine, Division of Hematology, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 3K7, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada
| | - Tobias Berg
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Ronan Foley
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Michael Trus
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Brian Leber
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Alejandro Garcia-Horton
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Oncology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Clinton Campbell
- Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Mickie Bhatia
- Michael G. DeGroote School of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; Hematology Exploration and Applications in Leukemia (HEAL) Program, Hamilton, ON, Canada.
| |
Collapse
|
90
|
Nachmias B, Aumann S, Haran A, Schimmer AD. Venetoclax resistance in acute myeloid leukaemia-Clinical and biological insights. Br J Haematol 2024; 204:1146-1158. [PMID: 38296617 DOI: 10.1111/bjh.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 04/11/2024]
Abstract
Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.
Collapse
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomzion Aumann
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
91
|
Chatzikalil E, Roka K, Diamantopoulos PT, Rigatou E, Avgerinou G, Kattamis A, Solomou EE. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J Clin Med 2024; 13:2046. [PMID: 38610812 PMCID: PMC11012941 DOI: 10.3390/jcm13072046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past two decades, the prognosis in adolescents and young adults (AYAs) diagnosed with acute myeloid leukemia (AML) has significantly improved. The standard intensive cytotoxic treatment approach for AYAs with AML, consisting of induction chemotherapy with anthracycline/cytarabine combination followed by consolidation chemotherapy or stem cell transplantation, has lately been shifting toward novel targeted therapies, mostly in the fields of clinical trials. One of the most recent advances in treating AML is the combination of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax with hypomethylating agents, which has been studied in elderly populations and was approved by the Food and Drug Administration (FDA) for patients over 75 years of age or patients excluded from intensive chemotherapy induction schemas due to comorbidities. Regarding the AYA population, venetoclax combination therapy could be a therapeutic option for patients with refractory/relapsed (R/R) AML, although data from real-world studies are currently limited. Venetoclax is frequently used by AYAs diagnosed with advanced hematologic malignancies, mainly acute lymphoblastic leukemia and myelodysplastic syndromes, as a salvage therapeutic option with considerable efficacy and safety. Herein, we aim to summarize the evidence obtained from clinical trials and observational studies on venetoclax use in AYAs with AML. Based on the available evidence, venetoclax is a safe and effective therapeutic option for R/R AML AYA patients. However, further research in larger cohorts is needed to confirm these data, establishing the benefits of a venetoclax-based regimen for this special population.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Efthymia Rigatou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
92
|
Zhang X, Song B, Carlino MJ, Li G, Ferchen K, Chen M, Thompson EN, Kain BN, Schnell D, Thakkar K, Kouril M, Jin K, Hay SB, Sen S, Bernardicius D, Ma S, Bennett SN, Croteau J, Salvatori O, Lye MH, Gillen AE, Jordan CT, Singh H, Krause DS, Salomonis N, Grimes HL. An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors. Nat Immunol 2024; 25:703-715. [PMID: 38514887 PMCID: PMC11003869 DOI: 10.1038/s41590-024-01782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Analysis of the human hematopoietic progenitor compartment is being transformed by single-cell multimodal approaches. Cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) enables coupled surface protein and transcriptome profiling, thereby revealing genomic programs underlying progenitor states. To perform CITE-seq systematically on primary human bone marrow cells, we used titrations with 266 CITE-seq antibodies (antibody-derived tags) and machine learning to optimize a panel of 132 antibodies. Multimodal analysis resolved >80 stem, progenitor, immune, stromal and transitional cells defined by distinctive surface markers and transcriptomes. This dataset enables flow cytometry solutions for in silico-predicted cell states and identifies dozens of cell surface markers consistently detected across donors spanning race and sex. Finally, aligning annotations from this atlas, we nominate normal marrow equivalents for acute myeloid leukemia stem cell populations that differ in clinical response. This atlas serves as an advanced digital resource for hematopoietic progenitor analyses in human health and disease.
Collapse
Affiliation(s)
- Xuan Zhang
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Baobao Song
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Maximillian J Carlino
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kyle Ferchen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mi Chen
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
| | - Evrett N Thompson
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Bailee N Kain
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Dan Schnell
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kairavee Thakkar
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michal Kouril
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stuart B Hay
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sidharth Sen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David Bernardicius
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Siyuan Ma
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sierra N Bennett
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | - Austin E Gillen
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Harinder Singh
- Departments of Immunology and Computational and Systems Biology, Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
93
|
Zhao L, Yang J, Chen M, Xiang X, Ma H, Niu T, Gong Y, Chen X, Liu J, Wu Y. Myelomonocytic and monocytic acute myeloid leukemia demonstrate comparable poor outcomes with venetoclax-based treatment: a monocentric real-world study. Ann Hematol 2024; 103:1197-1209. [PMID: 38329487 DOI: 10.1007/s00277-024-05646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Venetoclax (VEN), a BCL-2 inhibitor, has transformed treatment strategies for elderly and unfit acute myeloid leukemia (AML) patients by significantly improving response rates and survival. However, the predictive factors for VEN efficacy differ from traditional chemotherapy. The clinical relevance of the FAB (French-American-British) monocytic subtype, including M4 and M5, has been debated as a marker for VEN resistance. This real-world study examined 162 newly diagnosed (ND) and 85 relapsed/refractory (R/R) AML patients who received VEN-based therapy at West China Hospital, Sichuan University, from January 2019 to January 2023. We retrospectively collected clinical and treatment data from electronic medical records. The median age of the cohort was 55.5 years (range: 16.5-83.5). The composite complete remission (cCR) rate in the entire cohort was 60.7%. Specifically, among newly diagnosed (ND) patients, FAB monocytic subtypes exhibited lower cCR compared to non-monocytic subtypes (55.1% vs. 76.3%, P = 0.007). Additionally, there were no significant differences observed between M4 and M5 subtypes, both in the ND group (61.7% vs. 40.9%, p = 0.17) and the R/R group (38.2% vs. 40%, p > 0.9). Furthermore, the median follow-up was 238 (range: 7-1120) days. ND patients with monocytic subtypes had shorter overall survival compared to non-monocytic subtypes (295 days vs. not reached, p = 0.0017). Conversely, R/R patients showed no such difference (204 vs. 266 days, p = 0.72). In summary, our study suggests that the FAB monocytic subtype can predict VEN resistance and shorter survival in ND AML patients. Moreover, there is no significant distinction between M4 and M5 subtypes.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Mengran Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xinrong Xiang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Hongbing Ma
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yuping Gong
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xinchuan Chen
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiazhuo Liu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Wu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
94
|
Seipel K, Mandhair H, Bacher U, Pabst T. FLT3 and IRAK4 Inhibitor Emavusertib in Combination with BH3-Mimetics in the Treatment of Acute Myeloid Leukemia. Curr Issues Mol Biol 2024; 46:2946-2960. [PMID: 38666914 PMCID: PMC11049208 DOI: 10.3390/cimb46040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML.
Collapse
Affiliation(s)
- Katja Seipel
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Harpreet Mandhair
- Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland;
| | - Ulrike Bacher
- Department of Hematology, University Hospital Bern, 3010 Bern, Switzerland;
| | - Thomas Pabst
- Department of Medical Oncology, University Hospital Bern, 3010 Bern, Switzerland
| |
Collapse
|
95
|
Zhu J, Fan J, Xie T, Zhao H, Lu R, Zhang Y, Li Y, Xie X, Wan D, Jiang Z, He F, Guo R. Venetoclax combined chemotherapy versus chemotherapy alone for acute myeloid leukemia: a systematic review and meta-analysis. Front Oncol 2024; 14:1361988. [PMID: 38595818 PMCID: PMC11002170 DOI: 10.3389/fonc.2024.1361988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Objective To compare the efficacy and safety of venetoclax (VEN) in combination with chemotherapy (chemo) versus chemo alone in the treatment of acute myeloid leukemia (AML). Method To compare the efficacy and/or safety of VEN+chemo versus chemotherapy alone for AML, PubMed, Embase, Web of Science, and the Cochrane Library were used to searching up to June 2023. Comparisons included complete remission (CR), CR with incomplete hematologic recovery (CRi), morphologic leukemia-free state (MLFS), overall response rate (ORR), and adverse events (AEs). Result A total of 9 articles were included, including 3124 patients. The baseline characteristics between two patient groups were similar. The combined analysis showed that compared with the group receiving chemo alone, the VEN+chemo group exhibited higher rates of CR, CRi, MLFS and ORR. Additionally, the VEN+chemo group had longer event-free survival (EFS) and overall survival (OS) durations. The incidence rates of AEs and serious AEs (SAEs) were similar between the two groups, but the early 30-day mortality rate was lower in the VEN+chemo group than in the chemo alone group. Conclusion The VEN+chemo therapy demonstrates significant efficacy and safety profile in AML patients. However, more prospective studies are needed in the future to provide more accurate and robust evidence for treatment selection in patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023439288, identifier CRD42023439288.
Collapse
Affiliation(s)
- Jingkui Zhu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixin Fan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiqiu Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runqing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinsheng Xie
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dingming Wan
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei He
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
96
|
Li D, Yuan Y, Meng C, Lin Z, Zhao M, Shi L, Li M, Ye D, Cai Y, He X, Ye H, Zhou S, Zhou H, Gao S. Low expression of miR-182 caused by DNA hypermethylation accelerates acute lymphocyte leukemia development by targeting PBX3 and BCL2: miR-182 promoter methylation is a predictive marker for hypomethylation agents + BCL2 inhibitor venetoclax. Clin Epigenetics 2024; 16:48. [PMID: 38528641 PMCID: PMC10964616 DOI: 10.1186/s13148-024-01658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND miR-182 promoter hypermethylation frequently occurs in various tumors, including acute myeloid leukemia, and leads to low expression of miR-182. However, whether adult acute lymphocyte leukemia (ALL) cells have high miR-182 promoter methylation has not been determined. METHODS To assess the methylation status of the miR-182 promoter, methylation and unmethylation-specific PCR analysis, bisulfite-sequencing analysis, and MethylTarget™ assays were performed to measure the frequency of methylation at the miR-182 promoter. Bone marrow cells were isolated from miR-182 knockout (182KO) and 182 wild type (182WT) mice to construct BCR-ABL (P190) and Notch-induced murine B-ALL and T-ALL models, respectively. Primary ALL samples were performed to investigate synergistic effects of the hypomethylation agents (HMAs) and the BCL2 inhibitor venetoclax (Ven) in vitro. RESULTS miR-182 (miR-182-5P) expression was substantially lower in ALL blasts than in normal controls (NCs) because of DNA hypermethylation at the miR-182 promoter in ALL blasts but not in normal controls (NCs). Knockout of miR-182 (182KO) markedly accelerated ALL development, facilitated the infiltration, and shortened the OS in a BCR-ABL (P190)-induced murine B-ALL model. Furthermore, the 182KO ALL cell population was enriched with more leukemia-initiating cells (CD43+B220+ cells, LICs) and presented higher leukemogenic activity than the 182WT ALL population. Furthermore, depletion of miR-182 reduced the OS in a Notch-induced murine T-ALL model, suggesting that miR-182 knockout accelerates ALL development. Mechanistically, overexpression of miR-182 inhibited proliferation and induced apoptosis by directly targeting PBX3 and BCL2, two well-known oncogenes, that are key targets of miR-182. Most importantly, DAC in combination with Ven had synergistic effects on ALL cells with miR-182 promoter hypermethylation, but not on ALL cells with miR-182 promoter hypomethylation. CONCLUSIONS Collectively, we identified miR-182 as a tumor suppressor gene in ALL cells and low expression of miR-182 because of hypermethylation facilitates the malignant phenotype of ALL cells. DAC + Ven cotreatment might has been applied in the clinical try for ALL patients with miR-182 promoter hypermethylation. Furthermore, the methylation frequency at the miR-182 promoter should be a potential biomarker for DAC + Ven treatment in ALL patients.
Collapse
Affiliation(s)
- Danyang Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yigang Yuan
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Chen Meng
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Zihan Lin
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Min Zhao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Min Li
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Daijiao Ye
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
| | - Yue Cai
- Department of Clinical Medicine, Wenzhou Medical University, Chashan District, Wenzhou, Zhejiang Province, China
| | - Xiaofei He
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, Zhejiang Province, China
| | - Haixia Zhou
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
| | - Shenmeng Gao
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, 1 Xuefubei Street, Ouhai District, Wenzhou, 325000, Zhejiang Province, China.
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xuanyuanxi Road, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
97
|
Rodriguez-Sevilla JJ, Ganan-Gomez I, Ma F, Chien K, Del Rey M, Loghavi S, Montalban-Bravo G, Adema V, Wildeman B, Kanagal-Shamanna R, Bazinet A, Chifotides HT, Thongon N, Calvo X, Hernández-Rivas JM, Díez-Campelo M, Garcia-Manero G, Colla S. Hematopoietic stem cells with granulo-monocytic differentiation state overcome venetoclax sensitivity in patients with myelodysplastic syndromes. Nat Commun 2024; 15:2428. [PMID: 38499526 PMCID: PMC10948794 DOI: 10.1038/s41467-024-46424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024] Open
Abstract
The molecular mechanisms of venetoclax-based therapy failure in patients with acute myeloid leukemia were recently clarified, but the mechanisms by which patients with myelodysplastic syndromes (MDS) acquire secondary resistance to venetoclax after an initial response remain to be elucidated. Here, we show an expansion of MDS hematopoietic stem cells (HSCs) with a granulo-monocytic-biased transcriptional differentiation state in MDS patients who initially responded to venetoclax but eventually relapsed. While MDS HSCs in an undifferentiated cellular state are sensitive to venetoclax treatment, differentiation towards a granulo-monocytic-biased transcriptional state, through the acquisition or expansion of clones with STAG2 or RUNX1 mutations, affects HSCs' survival dependence from BCL2-mediated anti-apoptotic pathways to TNFα-induced pro-survival NF-κB signaling and drives resistance to venetoclax-mediated cytotoxicity. Our findings reveal how hematopoietic stem and progenitor cell (HSPC) can eventually overcome therapy-induced depletion and underscore the importance of using close molecular monitoring to prevent HSPC hierarchical change in MDS patients enrolled in clinical trials of venetoclax.
Collapse
Affiliation(s)
| | - Irene Ganan-Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monica Del Rey
- Hematology Department, University Hospital of Salamanca, IBSAL Cancer Center, Salamanca, Spain
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bethany Wildeman
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Bazinet
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen T Chifotides
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xavier Calvo
- Laboratori de Citologia Hematològica, Servei de Patologia, Grup de Recerca Translacional en Neoplàsies Hematològiques (GRETNHE), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | | | - Maria Díez-Campelo
- Hematology Department, University Hospital of Salamanca, IBSAL Cancer Center, Salamanca, Spain
| | | | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
98
|
Yashar WM, Estabrook J, Holly HD, Somers J, Nikolova O, Babur Ö, Braun TP, Demir E. Predicting transcription factor activity using prior biological information. iScience 2024; 27:109124. [PMID: 38455978 PMCID: PMC10918219 DOI: 10.1016/j.isci.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Dysregulation of normal transcription factor activity is a common driver of disease. Therefore, the detection of aberrant transcription factor activity is important to understand disease pathogenesis. We have developed Priori, a method to predict transcription factor activity from RNA sequencing data. Priori has two key advantages over existing methods. First, Priori utilizes literature-supported regulatory information to identify transcription factor-target gene relationships. It then applies linear models to determine the impact of transcription factor regulation on the expression of its target genes. Second, results from a third-party benchmarking pipeline reveals that Priori detects aberrant activity from 124 single-gene perturbation experiments with higher sensitivity and specificity than 11 other methods. We applied Priori and other top-performing methods to predict transcription factor activity from two large primary patient datasets. Our work demonstrates that Priori uniquely discovered significant determinants of survival in breast cancer and identified mediators of drug response in leukemia.
Collapse
Affiliation(s)
- William M. Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joseph Estabrook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hannah D. Holly
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia Somers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Olga Nikolova
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Özgün Babur
- Computer Science Department, University of Massachusetts, Boston, MA 02125, USA
| | - Theodore P. Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Emek Demir
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Pacific Northwest National Laboratories, Richland, WA 99354, USA
| |
Collapse
|
99
|
Du M, Wang M, Liu M, Fu S, Lin Y, Huo Y, Yu J, Yu X, Wang C, Xiao H, Wang L. C/EBPα-p30 confers AML cell susceptibility to the terminal unfolded protein response and resistance to Venetoclax by activating DDIT3 transcription. J Exp Clin Cancer Res 2024; 43:79. [PMID: 38475919 DOI: 10.1186/s13046-024-02975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) with biallelic (CEBPAbi) as well as single mutations located in the bZIP region is associated with a favorable prognosis, but the underlying mechanisms are still unclear. Here, we propose that two isoforms of C/EBPα regulate DNA damage-inducible transcript 3 (DDIT3) transcription in AML cells corporately, leading to altered susceptibility to endoplasmic reticulum (ER) stress and related drugs. METHODS Human AML cell lines and murine myeloid precursor cell line 32Dcl3 cells were infected with recombinant lentiviruses to knock down CEBPA expression or over-express the two isoforms of C/EBPα. Quantitative real-time PCR and western immunoblotting were employed to determine gene expression levels. Cell apoptosis rates were assessed by flow cytometry. CFU assays were utilized to evaluate the differentiation potential of 32Dcl3 cells. Luciferase reporter analysis, ChIP-seq and ChIP-qPCR were used to validate the transcriptional regulatory ability and affinity of each C/EBPα isoform to specific sites at DDIT3 promoter. Finally, an AML xenograft model was generated to evaluate the in vivo therapeutic effect of agents. RESULTS We found a negative correlation between CEBPA expression and DDIT3 levels in AML cells. After knockdown of CEBPA, DDIT3 expression was upregulated, resulting in increased apoptotic rate of AML cells induced by ER stress. Cebpa knockdown in mouse 32Dcl3 cells also led to impaired cell viability due to upregulation of Ddit3, thereby preventing leukemogenesis since their differentiation was blocked. Then we discovered that the two isoforms of C/EBPα regulate DDIT3 transcription in the opposite way. C/EBPα-p30 upregulated DDIT3 transcription when C/EBPα-p42 downregulated it instead. Both isoforms directly bound to the promoter region of DDIT3. However, C/EBPα-p30 has a unique binding site with stronger affinity than C/EBPα-p42. These findings indicated that balance of two isoforms of C/EBPα maintains protein homeostasis and surveil leukemia, and at least partially explained why AML cells with disrupted C/EBPα-p42 and/or overexpressed C/EBPα-p30 exhibit better response to chemotherapy stress. Additionally, we found that a low C/EBPα p42/p30 ratio induces resistance in AML cells to the BCL2 inhibitor venetoclax since BCL2 is a major target of DDIT3. This resistance can be overcome by combining ER stress inducers, such as tunicamycin and sorafenib in vitro and in vivo. CONCLUSION Our results indicate that AML patients with a low C/EBPα p42/p30 ratio (e.g., CEBPAbi) may not benefit from monotherapy with BCL2 inhibitors. However, this issue can be resolved by combining ER stress inducers.
Collapse
Affiliation(s)
- Mengbao Du
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Meng Liu
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Shan Fu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Yankun Huo
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China
| | - Jian Yu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xiaohong Yu
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Chong Wang
- Hematology Department, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Rd., Zhengzhou, 450000, Henan Province, People's Republic of China.
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| | - Limengmeng Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, No.79 Qingchun Rd., Hangzhou, 310003, Zhejiang Province, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
100
|
Lin S, Schneider C, Su AH, Alexe G, Root DE, Stegmaier K. The UBE2J2/UBE2K-MARCH5 ubiquitination machinery regulates apoptosis in response to venetoclax in acute myeloid leukemia. Leukemia 2024; 38:652-656. [PMID: 38366087 PMCID: PMC10912020 DOI: 10.1038/s41375-024-02178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Constanze Schneider
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Angela H Su
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|