51
|
Multiple Faces of Chronic Lymphocytic Leukaemia: A Patient with Renal, Cardiac, and Skeletal Complications. Case Rep Nephrol 2019; 2019:5390235. [PMID: 30993024 PMCID: PMC6434293 DOI: 10.1155/2019/5390235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/27/2019] [Indexed: 11/21/2022] Open
Abstract
We describe a patient who had chronic lymphocytic leukaemia (CLL) Binet stage A at presentation with further evidence of disease at multiple sites but who initially required no treatment. However, several years later, her peripheral blood lymphocyte count started to increase, and soon after that she suffered an acute myocardial infarct (in the absence of coronary atheroma) together with proteinuric renal failure due to membranoproliferative glomerulonephritis. Her renal function improved markedly following anti-CLL chemotherapy. We postulate that her cardiac and renal disease were both complications of her CLL. In patients with CLL who develop new clinical signs or symptoms (even if apparently unrelated), consideration should be given as to whether these may be disease complications as this may serve as an indication to commence anti-CLL therapy; close liaison between different specialties is vital.
Collapse
|
52
|
Williams JW, Huang LH, Randolph GJ. Cytokine Circuits in Cardiovascular Disease. Immunity 2019; 50:941-954. [PMID: 30995508 PMCID: PMC6924925 DOI: 10.1016/j.immuni.2019.03.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Arterial inflammation is a hallmark of atherosclerosis, and appropriate management of this inflammation represents a major unmet therapeutic need for cardiovascular disease patients. Here, we review the diverse contributions of immune cells to atherosclerosis, the mechanisms of immune cell activation in this context, and the cytokine circuits that underlie disease progression. We discuss the recent application of these insights in the form of immunotherapy to treat cardiovascular disease and highlight how studies on the cardiovascular co-morbidity that arises in autoimmunity might reveal additional roles for cytokines in atherosclerosis. Currently, data point to interleukin-1β (IL-1β), tumor necrosis factor (TNF), and IL-17 as cytokines that, at least in some settings, are effective targets to reduce cardiovascular disease progression.
Collapse
Affiliation(s)
- Jesse W Williams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63139, USA.
| |
Collapse
|
53
|
Unfolding of hidden white blood cell count phenotypes for gene discovery using latent class mixed modeling. Genes Immun 2018; 20:555-565. [PMID: 30459343 DOI: 10.1038/s41435-018-0051-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022]
Abstract
Resting-state white blood cell (WBC) count is a marker of inflammation and immune system health. There is evidence that WBC count is not fixed over time and there is heterogeneity in WBC trajectory that is associated with morbidity and mortality. Latent class mixed modeling (LCMM) is a method that can identify unobserved heterogeneity in longitudinal data and attempts to classify individuals into groups based on a linear model of repeated measurements. We applied LCMM to repeated WBC count measures derived from electronic medical records of participants of the National Human Genetics Research Institute (NHRGI) electronic MEdical Record and GEnomics (eMERGE) network study, revealing two WBC count trajectory phenotypes. Advancing these phenotypes to GWAS, we found genetic associations between trajectory class membership and regions on chromosome 1p34.3 and chromosome 11q13.4. The chromosome 1 region contains CSF3R, which encodes the granulocyte colony-stimulating factor receptor. This protein is a major factor in neutrophil stimulation and proliferation. The association on chromosome 11 contain genes RNF169 and XRRA1; both involved in the regulation of double-strand break DNA repair.
Collapse
|
54
|
Barbui T, Finazzi G, Vannucchi AM, De Stefano V. Targeting myeloid cells to prevent recurrent stroke in general population: the lesson of hydroxyurea in myeloproliferative neoplasms. Blood Cancer J 2018; 8:103. [PMID: 30405115 PMCID: PMC6221886 DOI: 10.1038/s41408-018-0143-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiziano Barbui
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | - Guido Finazzi
- Hematology Unit, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessandro M Vannucchi
- CRIMM-Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, and Department Experimental and Clinical Medicine, University of Florence, Firenze, Italy
| | - Valerio De Stefano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, and Istituto di Ematologia, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
55
|
Gómez-Moreno D, Adrover JM, Hidalgo A. Neutrophils as effectors of vascular inflammation. Eur J Clin Invest 2018; 48 Suppl 2:e12940. [PMID: 29682731 DOI: 10.1111/eci.12940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Abstract
Vascular inflammation underlies most forms of cardiovascular disease, which remains a prevalent cause of death among the global population. Advances in the biology of neutrophils, as well as insights into their dynamics in tissues, have revealed that these cells are prominent drivers of vascular inflammation though derailed activation within blood vessels. The development of powerful imaging techniques, as well as identification of cells and molecules that regulate their activation within vessels, including platelets and catecholamines, has been instrumental to better understand the mechanisms through which neutrophils protect or damage the organism. Other advances in our understanding of how these leucocytes exert detrimental functions on neighbouring cells, including the formation of DNA-based extracellular traps, constitute milestones in defining neutrophil-driven inflammation. Here, we review emerging mechanisms that regulate intravascular activation and effector functions of neutrophils, and discuss specific pathologies in which these processes are relevant. We argue that identification of pathways and mechanisms specifically engaged within the vasculature may provide effective therapies to treat this prevalent group of pathologies.
Collapse
Affiliation(s)
- Diego Gómez-Moreno
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José María Adrover
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
56
|
ERSOY E, SOYALTIN UE, PEKER A, ÇOLAK A, CEYLAN C, AKAR H. Ischemia-Modified Albumin Levels in Patients With Essential Thrombocytosis. KONURALP TIP DERGISI 2018. [DOI: 10.18521/ktd.376723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
57
|
Jacinto TA, Meireles GS, Dias AT, Aires R, Porto ML, Gava AL, Vasquez EC, Pereira TMC, Campagnaro BP, Meyrelles SS. Increased ROS production and DNA damage in monocytes are biomarkers of aging and atherosclerosis. Biol Res 2018; 51:33. [PMID: 30185234 PMCID: PMC6123971 DOI: 10.1186/s40659-018-0182-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/31/2018] [Indexed: 01/11/2023] Open
Abstract
Background New evidence demonstrates that aging and dyslipidemia are closely associated with oxidative stress, DNA damage and apoptosis in some cells and extravascular tissues. However, in monocytes, which are naturally involved in progression and/or resolution of plaque in atherosclerosis, this concurrence has not yet been fully investigated. In this study, we evaluated the influence of aging and hypercholesterolemia on serum pro-inflammatory cytokines, oxidative stress, DNA damage and apoptosis in monocytes from apolipoprotein E-deficient (apoE−/−) mice compared with age-matched wild-type C57BL/6 (WT) mice. Experiments were performed in young (2-months) and in old (18-months) male wild-type (WT) and apoE−/− mice. Results Besides the expected differences in serum lipid profile and plaque formation, we observed that atherosclerotic mice exhibited a significant increase in monocytosis and in serum levels of pro-inflammatory cytokines compared to WT mice. Moreover, it was observed that the overproduction of ROS, led to an increased DNA fragmentation and, consequently, apoptosis in monocytes from normocholesterolemic old mice, which was aggravated in age-matched atherosclerotic mice. Conclusions In this study, we demonstrate that a pro-inflammatory systemic status is associated with an impairment of functionality of monocytes during aging and that these parameters are fundamental extra-arterial contributors to the aggravation of atherosclerosis. The present data open new avenues for the development of future strategies with the purpose of treating atherosclerosis.
Collapse
Affiliation(s)
- Thais A Jacinto
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Giselle S Meireles
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Ananda T Dias
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| | - Marcella L Porto
- Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Agata L Gava
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil.,Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil.,Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil
| | - Thiago Melo C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil.,Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Rua Mercúrio, s/n, Boa Vista 1, Vila Velha, ES, 29102-623, Brazil.
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Health Sciences Center, Federal University of Espirito Santo (UFES), Vitoria, Brazil
| |
Collapse
|
58
|
Lacy M, Atzler D, Liu R, de Winther M, Weber C, Lutgens E. Interactions between dyslipidemia and the immune system and their relevance as putative therapeutic targets in atherosclerosis. Pharmacol Ther 2018; 193:50-62. [PMID: 30149100 DOI: 10.1016/j.pharmthera.2018.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of death worldwide with atherosclerosis being the major underlying pathology. The interplay between lipids and immune cells is believed to be a driving force in the chronic inflammation of the arterial wall during atherogenesis. Atherosclerosis is initiated as lipid particles accumulate and become trapped in vessel walls. The subsequent immune response, involving both adaptive and immune cells, progresses plaque development, which may be exacerbated under dyslipidemic conditions. Broad evidence, especially from animal models, clearly demonstrates the effect of lipids on immune cells from their development in the bone marrow to their phenotypic switching in circulation. Interestingly, recent research has also shown a long-lasting epigenetic signature from lipids on immune cells. Traditionally, cardiovascular therapies have approached atherosclerosis through lipid-lowering medications because, until recently, anti-inflammatory therapies have been largely unsuccessful in clinical trials. However, the recent Canakinumab Antiinflammatory Thrombosis Outcomes Study (CANTOS) provided pivotal support of the inflammatory hypothesis of atherosclerosis in man spurring on anti-inflammatory strategies to treat atherosclerosis. In this review, we describe the interactions between lipids and immune cells along with their specific outcomes as well as discuss their future perspective as potential cardiovascular targets.
Collapse
Affiliation(s)
- Michael Lacy
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany; Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Rongqi Liu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Menno de Winther
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany; Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany; Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
59
|
Affiliation(s)
- Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston.
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
60
|
Abstract
PURPOSE OF REVIEW Leukocytosis, elevated blood leukocyte levels, is associated with enhanced cardiovascular risk in humans. Hematopoietic stem and progenitor cells (HSPCs) drive leukocyte production in a process called hematopoiesis, which mainly occurs in the bone marrow, and under certain conditions also in other organs such as the spleen. Cholesterol accumulation in HSPCs enhances hematopoiesis, increasing levels of blood monocytes that infiltrate into atherosclerotic plaques. Although HSPC proliferation and monocytosis enhance atherogenesis in several studies, concomitant decreases in LDL-cholesterol levels have also been reported, associated with anti-atherogenic effects. This review focuses on the link between HSPC proliferation, leukocytosis, plasma LDL-cholesterol levels, and atherogenesis. RECENT FINDINGS Recent studies have shown that an acute infection enhances cholesterol accumulation in HSPCs, driving HSPC proliferation, and leading to the expansion of myeloid cells (monocytes, neutrophils, and macrophages). Enhanced hematopoiesis is associated with low plasma LDL-cholesterol levels in animal models and humans, probably because of the increased number of myeloid cells that take up LDL-cholesterol. Despite low-plasma LDL-cholesterol levels, specific patient populations with enhanced hematopoiesis show increased cardiovascular risk. SUMMARY Enhanced hematopoiesis and monocytosis may accelerate atherogenesis. Studies on these processes may lead to the identification of new therapeutic targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Venetia Bazioti
- Section of Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
61
|
Lareyre F, Raffort J, Le D, Chan HL, Houerou TL, Cochennec F, Touma J, Desgranges P. High Neutrophil to Lymphocyte Ratio Is Associated With Symptomatic and Ruptured Thoracic Aortic Aneurysm. Angiology 2018; 69:686-691. [PMID: 29334754 DOI: 10.1177/0003319717751758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The predictive value of the neutrophil to lymphocyte ratio (NLR) has been demonstrated in several cardiovascular diseases. The aim of our study was to investigate the association between the preoperative NLR and aneurysm characteristics as well as 30-day postoperative morbidity and mortality in patients with thoracic aortic aneurysm (TAA) undergoing aortic surgical repair. Consecutive patients (n = 75) with TAA were retrospectively included over a 10-year period. Clinical characteristics, aneurysm characteristics, and 30-day postoperative outcome were recorded. The median age of patients was 71 (67-80) years. The median preoperative NLR was 3.5 (2.3-5.8). The proportion of asymptomatic TAA was significantly lower in patients with an NLR > 3.5 compared with those with an NLR < 3.5 (52.6% vs 75.7%; P = .054). The proportion of patients with pain or with ruptured TAA was significantly higher in patients with an NLR > 3.5 compared with those with NLR < 3.5 (42.1% vs 16.2%; P = .022 and 26.3% vs 2.7%; P = .007, respectively). No significant difference was observed regarding the 30-day overall postoperative mortality and morbidity. The preoperative NLR did not correlate with TAA diameter. A high preoperative NLR is significantly associated with symptomatic and ruptured TAA, suggesting a potential interest as a marker and/or player in the disease.
Collapse
Affiliation(s)
- Fabien Lareyre
- 1 Department of Vascular Surgery, Henri Mondor University Hospital, Créteil, Paris, France.,2 Department of Vascular Surgery, University Hospital of Nice, Nice, France.,3 Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France
| | - Juliette Raffort
- 3 Université Côte d'Azur, CNRS, Inserm, IRCAN, Nice, France.,4 Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France
| | - Duy Le
- 1 Department of Vascular Surgery, Henri Mondor University Hospital, Créteil, Paris, France
| | - Hon Lai Chan
- 1 Department of Vascular Surgery, Henri Mondor University Hospital, Créteil, Paris, France
| | - Thomas Le Houerou
- 1 Department of Vascular Surgery, Henri Mondor University Hospital, Créteil, Paris, France
| | - Frédéric Cochennec
- 1 Department of Vascular Surgery, Henri Mondor University Hospital, Créteil, Paris, France
| | - Joseph Touma
- 1 Department of Vascular Surgery, Henri Mondor University Hospital, Créteil, Paris, France
| | - Pascal Desgranges
- 1 Department of Vascular Surgery, Henri Mondor University Hospital, Créteil, Paris, France
| |
Collapse
|
62
|
Sager HB, Dutta P, Dahlman JE, Hulsmans M, Courties G, Sun Y, Heidt T, Vinegoni C, Borodovsky A, Fitzgerald K, Wojtkiewicz GR, Iwamoto Y, Tricot B, Khan OF, Kauffman KJ, Xing Y, Shaw TE, Libby P, Langer R, Weissleder R, Swirski FK, Anderson DG, Nahrendorf M. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci Transl Med 2017; 8:342ra80. [PMID: 27280687 DOI: 10.1126/scitranslmed.aaf1435] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
Abstract
Myocardial infarction (MI) leads to a systemic surge of vascular inflammation in mice and humans, resulting in secondary ischemic complications and high mortality. We show that, in ApoE(-/-) mice with coronary ligation, increased sympathetic tone up-regulates not only hematopoietic leukocyte production but also plaque endothelial expression of adhesion molecules. To counteract the resulting arterial leukocyte recruitment, we developed nanoparticle-based RNA interference (RNAi) that effectively silences five key adhesion molecules. Simultaneously encapsulating small interfering RNA (siRNA)-targeting intercellular cell adhesion molecules 1 and 2 (Icam1 and Icam2), vascular cell adhesion molecule 1 (Vcam1), and E- and P-selectins (Sele and Selp) into polymeric endothelial-avid nanoparticles reduced post-MI neutrophil and monocyte recruitment into atherosclerotic lesions and decreased matrix-degrading plaque protease activity. Five-gene combination RNAi also curtailed leukocyte recruitment to ischemic myocardium. Therefore, targeted multigene silencing may prevent complications after acute MI.
Collapse
Affiliation(s)
- Hendrik B Sager
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James E Dahlman
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Maarten Hulsmans
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Gabriel Courties
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yuan Sun
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Timo Heidt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Claudio Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | - Gregory R Wojtkiewicz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Benoit Tricot
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Omar F Khan
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Kevin J Kauffman
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA.,Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Yiping Xing
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Taylor E Shaw
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Robert Langer
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA.,Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel G Anderson
- Harvard-Massachusetts Institute of Technology (MIT) Division of Health Sciences and Technology, Cambridge, MA 02139, USA.,David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA.,Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.,Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
63
|
Stiekema LCA, Schnitzler JG, Nahrendorf M, Stroes ESG. The maturation of a 'neural-hematopoietic' inflammatory axis in cardiovascular disease. Curr Opin Lipidol 2017; 28:507-512. [PMID: 28877089 DOI: 10.1097/mol.0000000000000457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Atherogenesis is the result of a complex interplay between lipids and innate immune cells, which are descendants of upstream progenitors residing in hematopoietic organs. In this review, we will discuss recent advances in the connection between hematopoiesis and atherogenesis. RECENT FINDINGS The relevance of a neural-hematopoietic axis was recently supported by the demonstration of a correlation between metabolic activity in the amygdala and the bone marrow. During follow-up, both amygdalar and bone marrow activities also predicted cardiovascular risk in patients, lending further support to a connection between neural stress and cardiovascular events mediated via increased hematopoietic activity.In parallel, functional changes in hematopoietic stem cells may also convey cardiovascular risk. In experimental models, knock-out of the ten-eleven translocation 2 (TET2) gene leading to monocyte-macrophage hyperresponsiveness, was associated with accelerated atherogenesis in murine experiments. In humans, whole-exome sequencing reporting on the 'clonal hematopoiesis of indeterminate potential' gene substantiated a two-fold elevated risk for developing coronary heart disease compared with noncarriers. SUMMARY Recent studies support the relevance of a 'neural-hematopoietic' inflammatory axis and clonal hematopoiesis as drivers of atherogenesis in humans. These data warrant further studies addressing the role of novel 'hematopoietic' targets for the treatment of patients with increased cardiovascular risk.
Collapse
Affiliation(s)
- Lotte C A Stiekema
- aDepartment of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands bDepartment of Imaging, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
64
|
The correlation between plasma human neutrophil peptide 1-3 levels and severity of coronary artery disease. ARCHIVES OF MEDICAL SCIENCES. ATHEROSCLEROTIC DISEASES 2017; 1:e133-e138. [PMID: 28905035 PMCID: PMC5421531 DOI: 10.5114/amsad.2016.64164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/22/2016] [Indexed: 11/17/2022]
Abstract
Introduction Inflammation plays a key role in atherosclerosis, and discovering new biomarkers of inflammation is becoming important in order to uncover the pathogenesis of atherosclerotic coronary artery disease (CAD). Recent studies have focused on polymorphonuclear neutrophils. It has been suggested that human neutrophil peptide 1-3 (HNP1-3) is proatherogenic. In this study, we aimed to investigate the associations between plasma HNP1-3 levels and the severity of atherosclerosis via a generally accepted scoring system. Material and methods This cross-sectional, observational study included 107 consecutive patients suffering from stable angina pectoris and undergoing coronary angiography (CAG). Patients were divided into two groups according to the Gensini scoring (GS) system evaluating disease severity. Group 1 was composed of mild CAD patients with GS < 20 and group 2 consisted of severe CAD patients with GS ≥ 20. Plasma HNP1-3 levels were assessed by the ELISA method. Results The mean HNP1-3 levels were found to be lower in group 1 than group 2 (134.7 ng/ml vs. 147.5 ng/ml). HNP1-3 levels were significantly higher in the severe CAD group than the mild CAD group according to GS (p < 0.001). The results of multivariate logistic regression analysis revealed that only age > 62 years and HNP1-3 > 134 ng/ml were independent predictors of the severity of CAD after adjusting for gender, smoking, hypertension, hyperlipidemia, diabetes, family history of CAD and white blood cell count. In predicting the severity of CAD, the sensitivity and specificity of HNP1-3 were 83.9% (p < 0.001) and 58.8% (p < 0.001), respectively. Conclusions This study revealed that the plasma levels of HNP1-3 were significantly higher in severe CAD than mild CAD.
Collapse
|
65
|
Nicolás-Ávila JÁ, Adrover JM, Hidalgo A. Neutrophils in Homeostasis, Immunity, and Cancer. Immunity 2017; 46:15-28. [PMID: 28099862 DOI: 10.1016/j.immuni.2016.12.012] [Citation(s) in RCA: 293] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/12/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022]
Abstract
Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease.
Collapse
Affiliation(s)
- José Ángel Nicolás-Ávila
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain
| | - José M Adrover
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 20829, Spain; Institute for Cardiovascular Prevention, Ludwig Maximilians University, Munich 80539, Germany.
| |
Collapse
|
66
|
Cervantes-García E, Salazar-Schettino PM. Clinical and surgical characteristics of infected diabetic foot ulcers in a tertiary hospital of Mexico. Diabet Foot Ankle 2017; 8:1367210. [PMID: 28904744 PMCID: PMC5590539 DOI: 10.1080/2000625x.2017.1367210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/04/2017] [Indexed: 05/15/2023]
Abstract
Background: The objective of this study was to determine the clinical and surgical characteristics of diabetic foot ulcers in a tertiary level hospital in Mexico. Methods: We performed a longitudinal, descriptive study from July, 2012 to August, 2015 on a sample composed of 100 patients with type 2 diabetes mellitus and infected diabetic foot ulcers. We analyzed socio-demographic variables, comorbidities, characteristics of ulcers, and the applied treatment. Results: We found that the most affected areas were the forefoot (48%) and the plantar region (55%) of the foot. Also, most of the patients arrived with advanced stages of diabetic foot ulcers, since 93% of the lesions were of grades III-V according to the Wagner classification. Moreover, lesions usually present with advanced states of infection, since 60% of the lesions were of grades 3-4 in the PEDIS scale. In addition, the great majority of the patients are prone to complications because we found that 43% of the patients suffered from hypertension, 47% of the patients had chronic kidney disease, and 45% reported smoking. In fact, 45% of the patients eventually suffered an amputation. We also found that the situation is more difficult because the great majority of the patients (96%) have a low level of education and very low income and they do not have any health insurance. Nevertheless, we also found that an efficient treatment can help in avoiding amputations, since 53% of grade IV and 25% of grade V lesions according to the Wagner system did not suffer an amputation. Conclusions: Therefore, an effective antibiotic treatment and an education of the patient on the adequate care of their lesions are essential in increasing the welfare of patients, especially when they have a low level of education.
Collapse
|
67
|
Preoperative White Blood Cell Count in Patients with Abdominal Aortic Aneurysms and Its Relation to Survival following Surgery. Ann Vasc Surg 2017; 41:127-134. [DOI: 10.1016/j.avsg.2016.08.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/22/2022]
|
68
|
Abstract
Myocardial infarction (MI) is one of the major contributors to worldwide morbidity and mortality. It is atherosclerosis' most dreadful complication and occurs after the supply of oxygenated blood to the heart is blocked. Understanding how cardiac tissue is injured and later regenerates is of crucial importance to improve the sequelae after the acute event. We now understand that the immune system substantially contributes to both the acute inflammatory response and the regenerative response that follow tissue injury after MI. In this review, we will focus on the role of monocytes and macrophages, which are cellular protagonists of the immune system, in acute cardiac injury and post-MI repair.
Collapse
Affiliation(s)
- Hendrik B Sager
- Department of Cardiology, German Heart Center Munich, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Munich, Germany
| | | |
Collapse
|
69
|
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, New York 10032, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
70
|
Giakoumidakis K, Fotos NV, Patelarou A, Theologou S, Argiriou M, Chatziefstratiou AA, Katzilieri C, Brokalaki H. Perioperative neutrophil to lymphocyte ratio as a predictor of poor cardiac surgery patient outcomes. Pragmat Obs Res 2017; 8:9-14. [PMID: 28243161 PMCID: PMC5317302 DOI: 10.2147/por.s130560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of the present study was to investigate the association between the perioperative neutrophil to lymphocyte ratio (NLR) and cardiac surgery patient outcomes. Patients and methods A retrospective cohort study of 145 patients who underwent cardiac surgery in a tertiary hospital of Athens, Greece, from January to March 2015, was conducted. By using a structured short questionnaire, this study reviewed the electronic hospital database and the medical and nursing patient records for data collection purposes. The statistical significance was two-tailed, and p-values <0.05 were considered significant. The statistical analysis was performed with Mann–Whitney U test and Spearman’s correlation coefficient, by using the Statistical Package for Social Sciences software (IBM SPSS 21.0 for Windows). Results The increased preoperative levels of NLR were associated with significantly higher mortality, both in-hospital (p=0.001) and 30-day (p=0.002), prolonged postoperative hospital length of stay (LOS), both in the cardiac intensive care unit (ICU) (p=0.002), and in-hospital (p=0.018), and likewise with delayed tracheal extubation (p≤0.001). Furthermore, patients with elevated NLR during the second postoperative day had significantly higher in-hospital mortality (p=0.018), increased incidence of pneumonia (p=0.022), higher probability of readmission to the ICU (p=0.002), prolonged ICU LOS (p≤0.001), and delayed tracheal extubation (p≤0.001). Conclusion Increased perioperative NLR seems to be associated with significantly higher mortality and morbidity in cardiac surgery patients. At the same time, NLR is a significant and inexpensive biomarker for the early identification of patients at high risk for complications. In addition, NLR levels could lead clinicians to perform measures for the optimal therapeutic patient approach.
Collapse
Affiliation(s)
| | - Nikolaos V Fotos
- Faculty of Nursing, School of Healthcare Sciences, National & Kapodistrian University of Athens, Athens
| | - Athina Patelarou
- Department of Anaesthesiology, University Hospital of Heraklion, Heraklion
| | - Stavros Theologou
- Cardiac Surgery Intensive Care Unit, "Evangelismos" General Hospital of Athens
| | - Mihalis Argiriou
- Department of Cardiothoracic Surgery, "Evangelismos" General Hospital of Athens
| | | | - Christina Katzilieri
- Intensive Care Unit, "Korgalenio - Benakio Hellenic Red Cross" General Hospital of Athens, Athens, Greece
| | - Hero Brokalaki
- Faculty of Nursing, School of Healthcare Sciences, National & Kapodistrian University of Athens, Athens
| |
Collapse
|
71
|
Acute Coronary Syndromes in Patients with Hematological Disorders. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2016. [DOI: 10.1515/jce-2016-0024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract
Hematological conditions can lead to serious disturbances in blood rheology, being frequently associated with increased systemic inflammation and increased risk of bleeding. The imbalance between coagulation and thrombolytic factors in patients with acute coronary syndromes may lead to undesirable outcomes, and the success of emergency coronary angioplasty or by-pass grafting may be altered by increased bleeding in coagulopathies such as hemophilia. This paper intends to review the present knowledge in the field of acute coronary syndromes in subjects with hematological and onco-hematological disorders such as thrombotic thrombocytopenic purpura, immune thrombocytopenic purpura, von Willebrand disease, hemophilia, polycythemia vera, erythrocyte disorders, myelodysplastic syndrome, leukemia, lymphoma or myeloma.
Collapse
|
72
|
van Diepen JA, Thiem K, Stienstra R, Riksen NP, Tack CJ, Netea MG. Diabetes propels the risk for cardiovascular disease: sweet monocytes becoming aggressive? Cell Mol Life Sci 2016; 73:4675-4684. [PMID: 27469259 PMCID: PMC5097107 DOI: 10.1007/s00018-016-2316-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/27/2022]
Abstract
Diabetes strongly predisposes to cardiovascular disease (CVD), the leading cause of mortality in these patients, as well as in the entire population. Hyperglycemia is an important cardiovascular risk factor as shown by the observation that even transient periods of hyperglycemia, despite return to normoglycemia during follow-up, increase the risk for CVD, a phenomenon termed 'hyperglycemic memory'. The molecular mechanisms underlying this phenomenon remain largely unknown. As inflammation plays an important role in the pathogenesis of atherosclerosis, we propose that long-term functional reprogramming of monocytes and macrophages, induced by hyperglycemia, plays an important role in the phenomenon of hyperglycemic memory leading to cardiovascular complications in patients with diabetes. In this review, we discuss recent insights showing that innate immune cells possess the capacity to reprogram their function through epigenetically mediated rewiring of gene transcription, a process termed 'trained immunity'. The long-term reprogramming of monocytes can be induced by microbial as well as metabolic products, and involves a shift in cellular metabolism from oxidative phosphorylation to aerobic glycolysis. We hypothesize that hyperglycemia in diabetes patients induces long-term activation of monocytes and macrophages through similar mechanisms, thereby contributing to plaque development and subsequent macrovascular complications.
Collapse
Affiliation(s)
- Janna A van Diepen
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Radboudumc, (463), P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Kathrin Thiem
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Radboudumc, (463), P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Radboudumc, (463), P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, 6703 HA, Wageningen, The Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Radboudumc, (463), P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Radboudumc, (463), P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Radboudumc, (463), P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
73
|
Obayashi K, Saeki K, Kurumatani N. Gender differences in the association between objective sleep quality and leukocyte count: The HEIJO-KYO cohort. Physiol Behav 2016; 164:19-24. [DOI: 10.1016/j.physbeh.2016.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/02/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022]
|
74
|
Al Najjar S, Adam S, Ahmed N, Qari M. Markers of endothelial dysfunction and leucocyte activation in Saudi and non-Saudi haplotypes of sickle cell disease. Ann Hematol 2016; 96:141-146. [PMID: 27686084 DOI: 10.1007/s00277-016-2823-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is an autosomal recessive inherited hemoglobinopathy, characterized by chronic hemolysis and recurrent vaso-occlusive crisis (VOC). This study investigates changes in leucocyte subsets and the relationship between cell adhesion molecule expression and disease manifestations in patients during steady state and acute VOC. We compared soluble E-selectin and P-selectin levels in 84 SCD patients, in steady state and during VOC to 84 healthy controls. Using immunophenotyping, we also compared lymphocyte subsets in these three groups. Further, we compared E-selectin and P-selectin levels in patients of Saudi ethnicity to non-Saudi patients, in all three groups. Lymphocyte subsets showed high percentages of total T lymphocytes, T helper and suppressor lymphocytes, B lymphocytes as well as NK cells in patients with SCD during steady state, while B lymphocytes and NK cells were significantly higher during acute VOC crisis. High levels of both soluble E-selectin (sE-selectin) and soluble P-selectin (sP-selectin) markers were demonstrated in the serum of patients with SCD during both steady state and acute VOC. Levels of selectins were significantly higher in acute VOC. The immunophenotypic expression of L-selectin, on leucocytes, was high in SCD both during steady state and during acute VOC in comparison to normal control subjects. There was no significant difference in all three study groups between Saudi and non-Saudi patients. These findings suggest that patients with SCD have increased expression of adhesion molecules: E-selectin and P-selectin, which play an important role in the pathogenesis of VOC. Despite the distinct phenotype of Saudi patients with SCD, there was no significant difference in levels of soluble E-selectin and soluble P-selectin between Saudi and non-Saudi patients in all three groups. While sickle cell disease is a well-recognized state of chronic inflammation, the role of specific adhesion molecules is steadily unraveling. Studies are underway to investigate the potential role of selectin antagonists, for prevention and reversal of acute vascular occlusions in SCD patients.
Collapse
Affiliation(s)
- Salwa Al Najjar
- Department of Hematology, King Abdulaziz University, Jeddah, SA, Saudi Arabia
| | - Soheir Adam
- Department of Hematology, King Abdulaziz University, Jeddah, SA, Saudi Arabia. .,Duke University Medical Center, Durham, NC, USA.
| | - Nessar Ahmed
- Manchester Metropolitan University, Manchester, UK
| | - Mohamed Qari
- Department of Hematology, King Abdulaziz University, Jeddah, SA, Saudi Arabia
| |
Collapse
|
75
|
Wang W, Tang Y, Wang Y, Tascau L, Balcerek J, Tong W, Levine RL, Welch C, Tall AR, Wang N. LNK/SH2B3 Loss of Function Promotes Atherosclerosis and Thrombosis. Circ Res 2016; 119:e91-e103. [PMID: 27430239 DOI: 10.1161/circresaha.116.308955] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
RATIONALE Human genome-wide association studies have revealed novel genetic loci that are associated with coronary heart disease. One such locus resides in LNK/SH2B3, which in mice is expressed in hematopoietic cells and suppresses thrombopoietin signaling via its receptor myeloproliferative leukemia virus oncogene. However, the mechanisms underlying the association of LNK single-nucleotide polymorphisms with coronary heart disease are poorly understood. OBJECTIVE To understand the functional effects of LNK single-nucleotide polymorphisms and explore the mechanisms whereby LNK loss of function impacts atherosclerosis and thrombosis. METHODS AND RESULTS Using human cord blood, we show that the common TT risk genotype (R262W) of LNK is associated with expansion of hematopoietic stem cells and enhanced megakaryopoiesis, demonstrating reduced LNK function and increased myeloproliferative leukemia virus oncogene signaling. In mice, hematopoietic Lnk deficiency leads to accelerated arterial thrombosis and atherosclerosis, but only in the setting of hypercholesterolemia. Hypercholesterolemia acts synergistically with LNK deficiency to increase interleukin 3/granulocyte-macrophage colony-stimulating factor receptor signaling in bone marrow myeloid progenitors, whereas in platelets cholesterol loading combines with Lnk deficiency to increase activation. Platelet LNK deficiency increases myeloproliferative leukemia virus oncogene signaling and AKT activation, whereas cholesterol loading decreases SHIP-1 phosphorylation, acting convergently to increase AKT and platelet activation. Together with increased myelopoiesis, platelet activation promotes prothrombotic and proatherogenic platelet/leukocyte aggregate formation. CONCLUSIONS LNK (R262W) is a loss-of-function variant that promotes thrombopoietin/myeloproliferative leukemia virus oncogene signaling and platelet and leukocyte production. In mice, LNK deficiency is associated with both increased platelet production and activation. Hypercholesterolemia acts in platelets and hematopoietic progenitors to exacerbate thrombosis and atherosclerosis associated with LNK deficiency.
Collapse
Affiliation(s)
- Wei Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yang Tang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Liana Tascau
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Joanna Balcerek
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wei Tong
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ross L Levine
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carrie Welch
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alan R Tall
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY
| | - Nan Wang
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (W.W., Y.T., Y.W., L.T., C.W., A.R.T., N.W.); Division of Hematology, Children's Hospital of Philadelphia, PA (W.T.); Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia (J.B., W.T.); and Human Oncology and Pathogenesis Program (R.L.L.) and Leukemia Service, Department of Medicine (R.L.L.), Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
76
|
Relevance of Immune-Sympathetic Nervous System Interplay for the Development of Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 884:37-43. [PMID: 26453069 DOI: 10.1007/5584_2015_169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Historically, the sympathetic nervous system (SNS) has been mostly associated with the 'fight or flight' response and the regulation of cardiovascular function. However, evidence over the past 30 years suggests that SNS may also influence the function of immune cells. In this review we describe the basic research being done in the area of SNS regulation of immune function. Further, we show that the SNS-immune interplay during circadian rhythm may modulate the robustness of the inflammatory response, critical for survival during periods of increased activity. Finally, new concepts of a close relationship between these systems in the pathogenesis of hypertension are discussed.
Collapse
|
77
|
Ferrari JP, Lueneberg ME, da Silva RL, Fattah T, Gottschall CAM, Moreira DM. Correlation between leukocyte count and infarct size in ST segment elevation myocardial infarction. Arch Med Sci Atheroscler Dis 2016; 1:e44-e48. [PMID: 28905018 PMCID: PMC5421522 DOI: 10.5114/amsad.2016.60759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Regarding the inflammatory mechanisms involved in ischemic heart disease, currently the leukocyte count is the subject of studies related to its association with the prognosis and mortality of ST segment elevation myocardial infarction (STEMI). Our aim is correlate the leukocyte count rise with the size of STEMI, evaluated with the area under the curve (AUC) and the peak of necrosis markers release. MATERIAL AND METHODS This study is a sub-analysis of the TETHYS trial, a clinical trial that evaluated the effects of methotrexate in STEMI. We evaluated the correlation between quantitative variables with Pearson's correlation, and the variables that did not follow a normal distribution were subjected to logarithmic transformation to base 10. The value of p < 0.05 indicated statistical significance. RESULTS Males accounted for 73% of the participants, who had an average age of 59 years. A total of 58% were hypertensive and 53% smokers. The leukocyte count at hospital admission was significantly correlated with the AUC creatine kinase (CK) (r = 0.256, p = 0.021), troponin AUC (r = 0.247, p = 0.026), peak CK (r = 0.270, p = 0.015) and troponin peak (r = 0.233, p = 0.037). The leukocyte count at 72 h was significantly correlated with CK AUC (r = 0.238, p = 0.032), AUC of MB portion of CK (r = 0.240, p = 0.031) and peak CK (r = 0.224, p = 0.045). CONCLUSIONS White blood cell count correlates with STEMI size assessed by serial cardiac biomarker levels.
Collapse
Affiliation(s)
| | | | | | - Tammuz Fattah
- Instituto de Cardiologia de Santa Catarina – ICSC, São José, Brazil
| | | | | |
Collapse
|
78
|
Adrover JM, Nicolás-Ávila JA, Hidalgo A. Aging: A Temporal Dimension for Neutrophils. Trends Immunol 2016; 37:334-345. [PMID: 27083489 DOI: 10.1016/j.it.2016.03.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/28/2022]
Abstract
Neutrophils are first-responders, providing early protection against invading pathogens. Recent findings have revealed a temporal dimension to neutrophil function, associated with the clearance cycles for aging neutrophils, and also with a program that endows circulating neutrophils with distinct phenotypic and functional properties at different times of the day, before they are cleared from blood. We review here the process of neutrophil aging and its impact on homeostasis and inflammation. We outline the features of aged neutrophils, examine proposed mechanisms that drive aging, and discuss how these processes may contribute to tissue homeostasis and pathology. In this context we propose that neutrophil aging may optimize host defense by allowing neutrophils to anticipate infections while avoiding permanent activation and subsequent damage.
Collapse
Affiliation(s)
- José M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - José A Nicolás-Ávila
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
| |
Collapse
|
79
|
Sarrazy V, Viaud M, Westerterp M, Ivanov S, Giorgetti-Peraldi S, Guinamard R, Gautier EL, Thorp EB, De Vivo DC, Yvan-Charvet L. Disruption of Glut1 in Hematopoietic Stem Cells Prevents Myelopoiesis and Enhanced Glucose Flux in Atheromatous Plaques of ApoE(-/-) Mice. Circ Res 2016; 118:1062-77. [PMID: 26926469 PMCID: PMC4824305 DOI: 10.1161/circresaha.115.307599] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
RATIONALE Inflamed atherosclerotic plaques can be visualized by noninvasive positron emission and computed tomographic imaging with (18)F-fluorodeoxyglucose, a glucose analog, but the underlying mechanisms are poorly understood. OBJECTIVE Here, we directly investigated the role of Glut1-mediated glucose uptake in apolipoprotein E-deficient (ApoE(-/-)) mouse model of atherosclerosis. METHODS AND RESULTS We first showed that the enhanced glycolytic flux in atheromatous plaques of ApoE(-/-) mice was associated with the enhanced metabolic activity of hematopoietic stem and multipotential progenitor cells and higher Glut1 expression in these cells. Mechanistically, the regulation of Glut1 in ApoE(-/-) hematopoietic stem and multipotential progenitor cells was not because of alterations in hypoxia-inducible factor 1α signaling or the oxygenation status of the bone marrow but was the consequence of the activation of the common β subunit of the granulocyte-macrophage colony-stimulating factor/interleukin-3 receptor driving glycolytic substrate utilization by mitochondria. By transplanting bone marrow from WT, Glut1(+/-), ApoE(-/-), and ApoE(-/-)Glut1(+/-) mice into hypercholesterolemic ApoE-deficient mice, we found that Glut1 deficiency reversed ApoE(-/-) hematopoietic stem and multipotential progenitor cell proliferation and expansion, which prevented the myelopoiesis and accelerated atherosclerosis of ApoE(-/-) mice transplanted with ApoE(-/-) bone marrow and resulted in reduced glucose uptake in the spleen and aortic arch of these mice. CONCLUSIONS We identified that Glut1 connects the enhanced glucose uptake in atheromatous plaques of ApoE(-/-) mice with their myelopoiesis through regulation of hematopoietic stem and multipotential progenitor cell maintenance and myelomonocytic fate and suggests Glut1 as potential drug target for atherosclerosis.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Apolipoproteins E/deficiency
- Bone Marrow Transplantation
- Cell Division
- Cytokine Receptor Common beta Subunit/physiology
- Disease Progression
- Energy Metabolism
- Gene Expression Regulation
- Glucose/metabolism
- Glucose Transporter Type 1/deficiency
- Glucose Transporter Type 1/physiology
- Glycolysis
- Hematopoietic Stem Cells/metabolism
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Metformin/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multipotent Stem Cells/metabolism
- Myelopoiesis/physiology
- Plaque, Atherosclerotic/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Interleukin-3/antagonists & inhibitors
- Receptors, Interleukin-3/physiology
- Spleen/metabolism
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Vincent Sarrazy
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Manon Viaud
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Marit Westerterp
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Stoyan Ivanov
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Sophie Giorgetti-Peraldi
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Rodolphe Guinamard
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Emmanuel L Gautier
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Edward B Thorp
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Darryl C De Vivo
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.)
| | - Laurent Yvan-Charvet
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France (V.S., M.V., S.I., S.G.-P., R.G., L.Y.-C.); Division of Molecular Medicine, Department of Medicine (M.W.) and Department of Neurology (D.C.D.V.), Columbia University, New York, NY; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Hôpital de la Pitié, Paris, France (E.L.G.); Pierre & Marie Curie University, Université Paris 06, Paris, France (E.L.G.); Institute of Cardiometabolism and Nutrition (ICAN), Boulevard de l'Hôpital, Paris, France (E.L.G.); and Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL (E.B.T.).
| |
Collapse
|
80
|
Pende A, Artom N, Bertolotto M, Montecucco F, Dallegri F. Role of neutrophils in atherogenesis: an update. Eur J Clin Invest 2016; 46:252-63. [PMID: 26573245 DOI: 10.1111/eci.12566] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/07/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND The role of neutrophils in the beginning and the progression of the atherosclerotic process did not receive much attention until the last years. On the contrary, recent data, in both the experimental animals and humans, suggest important effects of these cells with possible clinical consequences. MATERIALS AND METHODS This narrative review was based on the papers found on PubMed and MEDLINE up to July 2015. The search terms used were 'neutrophil, atherosclerosis' in combination with 'recruitment, chemokine, plaque destabilization and pathophysiology'. RESULTS Different models demonstrate the presence and the actions of neutrophils in the early steps of the atherogenesis confirming the fundamental role of these cells in the response of the innate immune system to different pathogens (in this context the modified lipoproteins). However, also the late phases of the atherosclerotic process, in particular the destabilization of a mature plaque, seem to be modulated by the neutrophils, possibly through the interaction with recently discovered biological systems such as the endocannabinoids. CONCLUSIONS The understanding of the mechanisms involved in the modulation exerted by neutrophils in atherosclerosis is pivotal in terms of the complete definition of the overall picture. This approach will certainly give us new targets and new pharmacological opportunities for the anti-inflammatory strategy of the cardiovascular prevention.
Collapse
Affiliation(s)
- Aldo Pende
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Nathan Artom
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Maria Bertolotto
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| | - Fabrizio Montecucco
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy.,Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland.,Division of Cardiology, Faculty of Medicine, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Franco Dallegri
- Clinic of Internal Medicine 1, Department of Internal Medicine, University of Genoa School of Medicine, IRCCS Azienda Ospedaliera Universitaria San Martino - IST, Genoa, Italy
| |
Collapse
|
81
|
Gardner CS, Jaffe TA. Acute gastrointestinal vaso-occlusive ischemia in sickle cell disease: CT imaging features and clinical outcome. Abdom Radiol (NY) 2016; 41:466-75. [PMID: 27039317 DOI: 10.1007/s00261-015-0621-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of this study was to determine the incidence, specific imaging features, and outcome of gastrointestinal vaso-occlusive ischemia (GVOI) in sickle cell patients undergoing CT for acute abdominal pain. METHODS This HIPAA-compliant, IRB-approved retrospective study evaluated sickle cell patients with an abdominal pain crisis and acute gastrointestinal abnormalities on CT from 1/2006 to 1/2014. CT findings were divided into those compatible and incompatible with bowel ischemia or clinical diagnosis of GVOI. Two abdominal radiologists (1, 13 years' experience) reviewed the CTs for specific imaging features of ischemia. Clinical laboratory values (lactate, WBC) and outcome were recorded. Descriptive statistics and Wilcoxon-Mann-Whitney two-sample rank-sum test were performed. RESULTS Of 217 CTs, 33 had acute gastrointestinal abnormalities: 75% (25/33) consistent with ischemia and clinical GVOI. Complications of ischemia occurred in 16% (4/25): ileus (50%), perforation (25%), and pneumatosis (25%). In uncomplicated cases, all had bowel wall thickening: segmental 52% (11/21) or diffuse 48% (10/21). The colon was commonly involved (76%, 16/21), particularly the ascending (57%, 12/21). Most abnormalities (52%, 11/21) were in the superior mesenteric artery distribution. Average lactate (4.3 ± 4.0 mmol/L, p = 0.02) and WBC count (20.1 ± 10.4, ×1000 cells/μL, p = 0.01) were significantly higher in GVOI. Overall mortality in patients with GVOI was 17% (3/18). CONCLUSION GVOI is an important feature of the acute abdominal crisis in patients with sickle cell disease and can be seen in up to 75% of patients with abnormal bowel findings on CT. The diagnosis should be strongly considered in sickle cell patients with CT findings of diffuse or segmental bowel wall thickening, particularly involving the colon.
Collapse
Affiliation(s)
- Carly S Gardner
- Baylor College of Medicine, One Baylor Plaza, BCM360, Houston, TX, 77030, USA.
| | - Tracy A Jaffe
- Duke University Medical Center, 2301 Erwin Road, Box 3808, Durham, NC, 27710, USA
| |
Collapse
|
82
|
Totani L, Amore C, Di Santo A, Dell'Elba G, Piccoli A, Martelli N, Tenor H, Beume R, Evangelista V. Roflumilast inhibits leukocyte-platelet interactions and prevents the prothrombotic functions of polymorphonuclear leukocytes and monocytes. J Thromb Haemost 2016; 14:191-204. [PMID: 26484898 DOI: 10.1111/jth.13173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/04/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED ESSENTIALS: Thrombosis is a major comorbidity in patients with chronic obstructive pulmonary disease (COPD). Roflumilast is a selective phosphodiesterase type-4 (PDE4) inhibitor approved for treatment of severe COPD. PDE4 blockade by roflumilast inhibits prothrombotic functions of neutrophils and monocytes. PDE4 inhibitors may reduce thrombotic risk in COPD as well as in other vascular diseases. BACKGROUND Roflumilast, an oral selective phosphodiesterase type 4 inhibitor, is approved for the treatment of severe chronic obstructive pulmonary disease (COPD). A recent meta-analysis of trials on COPD revealed that treatment with roflumilast was associated with a significant reduction in the rate of major cardiovascular events. The mechanisms of this effect remain unknown. OBJECTIVES We tested the hypothesis that roflumilast N-oxide (RNO), the active metabolite of roflumilast, curbs the molecular mechanisms required for leukocyte-platelet (PLT) interactions and prevents the prothrombotic functions of polymorphonuclear leukocytes (PMNs) and monocytes (MNs). METHODS Using well-characterized in vitro models, we analysed the effects of RNO on: (i) PMN adhesiveness; (ii) the release of neutrophil extracellular traps (NETs); and (iii) tissue factor expression in MNs. Key biochemical events underlying the inhibitory effects of RNO were defined. RESULTS AND CONCLUSIONS In PMNs, RNO prevented phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt on Ser473, and Src family kinase (SFK)-mediated Pyk2 phosphorylation on Tyr579-580, while inducing protein kinase A-mediated phosphorylation of C-terminal Src kinase, the major negative regulator of SFKs. Modulation of these signaling pathways by RNO resulted in a significant impairment of PMN adhesion to activated PLTs or human umbilical vein endothelial cells, mainly mediated by inhibition of the adhesive function of Mac-1. Moreover RNO curbed SFK/PI3K-mediated NET release by PMNs adherent on fibrinogen-coated surfaces. In MNs interacting with activated PLTs, RNO curbed PI3K-mediated expression of tissue factor. The efficacy of RNO was significantly potentiated by formoterol, a long acting β-adrenergic receptor agonist. This study reveals novel antithrombotic activities by which roflumilast may exert protective effects against cardiovascular comorbodities in COPD.
Collapse
Affiliation(s)
- L Totani
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Italy
| | - C Amore
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Italy
| | - A Di Santo
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Italy
| | - G Dell'Elba
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Italy
| | - A Piccoli
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Italy
| | - N Martelli
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Italy
| | - H Tenor
- Takeda Pharmaceuticals International GmbH, Glattpark-Opfikon, Switzerland
| | - R Beume
- Takeda Pharmaceuticals International GmbH, Glattpark-Opfikon, Switzerland
| | - V Evangelista
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Italy
| |
Collapse
|
83
|
Sarrazy V, Sore S, Viaud M, Rignol G, Westerterp M, Ceppo F, Tanti JF, Guinamard R, Gautier EL, Yvan-Charvet L. Maintenance of Macrophage Redox Status by ChREBP Limits Inflammation and Apoptosis and Protects against Advanced Atherosclerotic Lesion Formation. Cell Rep 2015; 13:132-144. [PMID: 26411684 DOI: 10.1016/j.celrep.2015.08.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 07/20/2015] [Accepted: 08/23/2015] [Indexed: 01/04/2023] Open
Abstract
Enhanced glucose utilization can be visualized in atherosclerotic lesions and may reflect a high glycolytic rate in lesional macrophages, but its causative role in plaque progression remains unclear. We observe that the activity of the carbohydrate-responsive element binding protein ChREBP is rapidly downregulated upon TLR4 activation in macrophages. ChREBP inactivation refocuses cellular metabolism to a high redox state favoring enhanced inflammatory responses after TLR4 activation and increased cell death after TLR4 activation or oxidized LDL loading. Targeted deletion of ChREBP in bone marrow cells resulted in accelerated atherosclerosis progression in Ldlr(-/-) mice with increased monocytosis, lesional macrophage accumulation, and plaque necrosis. Thus, ChREBP-dependent macrophage metabolic reprogramming hinders plaque progression and establishes a causative role for leukocyte glucose metabolism in atherosclerosis.
Collapse
Affiliation(s)
- Vincent Sarrazy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France
| | - Sophie Sore
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France
| | - Manon Viaud
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France
| | - Guylène Rignol
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France
| | - Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Franck Ceppo
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France
| | - Jean-Francois Tanti
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France
| | - Rodolphe Guinamard
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1166, Pierre and Marie Curie University Paris 6, ICAN Institute of Cardiometabolism and Nutrition, 75006 Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, 06204 Nice, France.
| |
Collapse
|
84
|
Katiyar S, Ganjsinghani PK, Jain RK. Thrombocytosis following splenectomy and aortic valve replacement for idiopathic thrombocytopaenic purpura with bicuspid aortic valve. Indian J Anaesth 2015; 59:503-6. [PMID: 26379295 PMCID: PMC4551029 DOI: 10.4103/0019-5049.162990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Idiopathic thrombocytopaenic purpura (ITP) patients are at high risk for complications during and after cardiac surgeries involving cardiopulmonary bypass. The main clinical problem of primary ITP is an increased risk of bleeding although bleeding may not always be present. More recently, thrombosis has become appreciated as another potential complication of the procedure. We report a 22-year-old female patient with ITP with bicuspid aortic valve and splenomegaly, who underwent uncomplicated aortic valve replacement and splenectomy simultaneously. She was readmitted with chest pain due to coronary thrombosis following splenectomy which made the management difficult. We describe our experience in managing this patient who presented with thrombotic complication rather than bleeding in post-operative period and the challenges met in maintaining appropriate anticoagulation for aortic valve replacement as well as thrombosis, post-splenectomy
Collapse
Affiliation(s)
- Sarika Katiyar
- Department of Anaesthesiology and Critical Care, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| | - Payal Kamlesh Ganjsinghani
- Department of Anaesthesiology and Critical Care, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| | - Rajnish Kumar Jain
- Department of Anaesthesiology and Critical Care, Bhopal Memorial Hospital and Research Centre, Bhopal, Madhya Pradesh, India
| |
Collapse
|
85
|
NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood 2015; 126:1952-64. [PMID: 26333777 DOI: 10.1182/blood-2014-10-605261] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
Platelet-leukocyte interactions on activated endothelial cells play an important role during microvascular occlusion under oxidative stress conditions. However, it remains poorly understood how neutrophil-platelet interactions are regulated during vascular inflammation. By using intravital microscopy with mice lacking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and their bone marrow chimera, we demonstrated that NOX2 from both hematopoietic and endothelial cells is crucial for neutrophil-platelet interactions during tumor necrosis factor alpha-induced venular inflammation. Platelet NOX2-produced reactive oxygen species (ROS) regulated P-selectin exposure upon agonist stimulation and the ligand-binding function of glycoprotein Ibα. Furthermore, neutrophil NOX2-generated ROS enhanced the activation and ligand-binding activity of αMβ2 integrin following N-formyl-methionyl-leucyl phenylalanine stimulation. Studies with isolated cells and a mouse model of hepatic ischemia/reperfusion injury revealed that NOX2 from both platelets and neutrophils is required for cell-cell interactions, which contribute to the pathology of hepatic ischemia/reperfusion injury. Platelet NOX2 modulated intracellular Ca(2+) release but not store-operated Ca(2+) entry (SOCE), whereas neutrophil NOX2 was crucial for SOCE but not intracellular Ca(2+) release. Different regulation of Ca(2+) signaling by platelet and neutrophil NOX2 correlated with differences in the phosphorylation of AKT, ERK, and p38MAPK. Our results indicate that platelet and neutrophil NOX2-produced ROS are critical for the function of surface receptors essential for neutrophil-platelet interactions during vascular inflammation.
Collapse
|
86
|
Bonaccio M, Di Castelnuovo A, Rago L, de Curtis A, Assanelli D, Badilini F, Vaglio M, Costanzo S, Persichillo M, Cerletti C, Donati MB, de Gaetano G, Iacoviello L. T-wave axis deviation is associated with biomarkers of low-grade inflammation. Findings from the MOLI-SANI study. Thromb Haemost 2015; 114:1199-206. [PMID: 26155907 DOI: 10.1160/th15-02-0177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/26/2015] [Indexed: 11/05/2022]
Abstract
T-wave axis deviation (TDev) may help identifying subjects at risk for major cardiac events and mortality, but the pathogenesis of TDev is not well established; in particular, the possible association between TDev and inflammation is unexplored and unknown. We aimed at investigating the association between low-grade inflammation and TDev abnormalities by conducting a cross-sectional analysis on 17,507 subjects apparently free from coronary heart and haematological diseases enrolled in the MOLI-SANI study. TDev was measured from a standard 12-lead resting electrocardiogram. High sensitivity (Hs) C-reactive protein (CRP), leukocyte (WBC) and platelet counts, neutrophil or granulocyte to lymphocyte ratios were used as markers of inflammation. In multivariable model subjects reporting high CRP levels had higher odds of having borderline and abnormal TDev (OR=1.70; 95 %CI: 1.53-1.90 and OR=1.72; 95 %CI: 1.23-2.41, respectively); the association was still significant, although reduced, after controlling for body mass index (OR=1.17; 95 %CI: 1.05-1.32, for borderline and OR=1.46; 95 %CI: 1.03-2.08, for abnormal). Similarly, higher neutrophil or granulocyte to lymphocyte ratios were associated with increased odds of having abnormal TDev. Neither platelet nor leukocyte counts were associated with abnormal TDev. The relationship between CRP with TDev abnormalities was significantly stronger in men, in non- obese or normotensive individuals, and in those without metabolic syndrome. In conclusion, C-reactive protein and some cellular biomarkers of inflammation such as granulocyte or neutrophil to lymphocyte ratios were independently associated with abnormal TDev, especially in subjects at low CVD risk. These results suggest that a low-grade inflammation likely contributes to the pathogenesis of T- wave axis deviation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Licia Iacoviello
- Licia Iacoviello, Laboratory of Molecular and Nutritional Epidemiology, Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via dell'Elettronica, 86077 Pozzilli (Isernia), Italy, Tel.: +39 0865929664, Fax:+39 0865927575, E-mail:
| | | |
Collapse
|
87
|
Venkatraghavan L, Tan TP, Mehta J, Arekapudi A, Govindarajulu A, Siu E. Neutrophil Lymphocyte Ratio as a predictor of systemic inflammation - A cross-sectional study in a pre-admission setting. F1000Res 2015. [PMID: 26213612 PMCID: PMC4505778 DOI: 10.12688/f1000research.6474.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Neutrophil:lymphocyte ratio (NLR) is an emerging biomarker that is used to predict postoperative mortality and morbidity in cardiac and cancer surgeries. The association of this biomarker with systemic illness and its usefulness in risk assessment of preoperative patients has not been fully elucidated. Objectives: To determine the prevalence of elevated NLR in preoperative patients and to examine the relationship between elevated NLR and the presence of systemic illnesses as well as anaesthesia risk indices such as American Society of Anesthesia (ASA) and the revised cardiac risk index (RCRI) scores.
Design: Cross-sectional study Setting: Anaesthesia pre-admission clinic, Toronto Western Hospital, Toronto, Canada Patients: We evaluated 1117 pre-operative patients seen at an anesthesia preadmission clinic. Results: NLR was elevated (>3.3) in 26.6% of target population. In multivariate analysis, congestive cardiac failure, diabetes mellitus and malignancy were independent risk factors predicting raised NLR. After regression analysis, a relationship between NLR and ASA score (Odds Ratio 1.78; 95% CI: 1.42-2.24) and revised cardiac risk index (RCRI, odds ratio 1.33; 95% CI: 1.09-1.64, p-value: 0.0063) was observed. Conclusions: NLR was elevated (> 3.3) in 26.6% of patients. Congestive cardiac failure and malignancy were two constant predictors of elevated NLR at >3.3 and > 4.5. There was a strong association between NLR and anesthesia risk scoring tools of ASA and RCRI.
Collapse
Affiliation(s)
- Lashmi Venkatraghavan
- Department of Anesthesia, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Tze Ping Tan
- Department of Anesthesia, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Jigesh Mehta
- Department of Anesthesia, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Anil Arekapudi
- Department of Anesthesia, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Arun Govindarajulu
- Department of Anesthesia, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| | - Eric Siu
- Department of Anesthesia, Toronto Western Hospital, University Health Network, Toronto, Ontario, M5T 2S8, Canada
| |
Collapse
|
88
|
Tan TP, Arekapudi A, Metha J, Prasad A, Venkatraghavan L. Neutrophil-lymphocyte ratio as predictor of mortality and morbidity in cardiovascular surgery: a systematic review. ANZ J Surg 2015; 85:414-9. [PMID: 25781147 DOI: 10.1111/ans.13036] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Neutrophil-lymphocyte ratio (NLR) is an emerging biomarker of inflammation and predicts poorer outcome in cancer surgery. The prognostic value of NLR in cardiovascular surgery is unclear. METHODS Systematic review and meta-analysis of studies of in cardiovascular surgical patients were conducted to assess the role of perioperative NLR in predicting post-operative mortality and morbidity. Electronic searches were conducted on Ovid Medline, EMBASE, Cochrane Central Register of Controlled Trials and Cochrane Database of Systemic Reviews for all prospective clinical studies reporting on NLR and post-operative morbidity and mortality in cardiovascular surgical patient population. Our primary end point was all-cause post-operative mortality and the secondary end point was post-operative morbidity. Mortality outcome from prospective studies were pooled for a meta-analysis using a random-effect model. RESULTS Of the 999 citations identified, five studies with 3487 patients met the inclusion criteria. In a pooled analysis of three prospective studies of 3108 patients, a preoperative increase in NLR (>3.3 in cardiac surgery, >5 in vascular surgery) was associated with increased mortality at a mean follow-up of 34.8 months (hazard ratio 1.85, 95% confidence interval 1.46-2.36; P < 0.00001). Raised NLR value was also associated with increased cardiac mortality, amputation in vascular operations and raised risk of post-operative re-intubation. CONCLUSIONS Elevated NLR were associated with increased long-term mortality and morbidity after major cardiac and vascular surgery. NLR may guide perioperative management and risk-stratification of patients.
Collapse
Affiliation(s)
- Tze Ping Tan
- Department of Anaesthesia, Shepparton Hospital, Shepparton, Victoria, Australia
| | - Anil Arekapudi
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Jigesh Metha
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Arun Prasad
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Anesthesia and Pain Management, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
89
|
Obayashi K, Saeki K, Kurumatani N. Higher melatonin secretion is associated with lower leukocyte and platelet counts in the general elderly population: the HEIJO-KYO cohort. J Pineal Res 2015; 58:227-33. [PMID: 25612158 DOI: 10.1111/jpi.12209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022]
Abstract
Circulating white blood cell (WBC) and platelet (PLT) counts are widely available and inexpensive cellular biomarkers of systemic inflammation and have been associated with a risk of cardiovascular disease, cancer, and mortality. Melatonin may reduce systemic inflammation through its direct and indirect antioxidative effect; however, the associations of melatonin secretion with systemic inflammation remain unclear. In this cross-sectional study on 1088 elderly individuals (mean age, 71.8 years), we measured overnight urinary 6-sulfatoxymelatonin excretion (UME) and WBC and PLT counts as indices of melatonin secretion and systemic inflammation, respectively. UME was naturally log-transformed for linear regression models because of skewed distribution (median, 6.8 μg; interquartile range, 4.1-10.6 μg). Univariate models revealed that higher log-transformed UME levels were significantly associated with lower WBC and PLT counts (P = 0.046 and 0.018). After adjusting for potential confounding factors significantly associated with WBC or PLT counts, higher log-transformed UME levels were significantly associated with lower WBC and PLT counts (WBC: β, -0.143; 95% confidence interval, -0.267 to -0.020; P = 0.023; PLT: β, -6.786; 95% confidence interval, -12.047 to -1.525; P = 0.012). Furthermore, the adjusted mean differences in WBC and PLT counts between the lowest and highest UME tertile groups were 0.225 × 10(9) /L and 9.480 × 10(9) /L, respectively. In conclusion, melatonin secretion was significantly and inversely associated with WBC and PLT counts in the general elderly population. The associations were independent of several major causes of systemic inflammation, including aging, obesity, smoking, hypertension, diabetes, and physical inactivity.
Collapse
Affiliation(s)
- Kenji Obayashi
- Department of Community Health and Epidemiology, Nara Medical University School of Medicine, Nara, Japan
| | | | | |
Collapse
|
90
|
Neutrophil to lymphocyte ratio (NLR) of five predicts 30-day morbidity in ruptured abdominal aortic aneurysms (rAAA): A retrospective cohort study. Int J Surg 2015; 15:45-8. [DOI: 10.1016/j.ijsu.2015.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 11/18/2022]
|
91
|
Li J, Kim K, Barazia A, Tseng A, Cho J. Platelet-neutrophil interactions under thromboinflammatory conditions. Cell Mol Life Sci 2015; 72:2627-43. [PMID: 25650236 DOI: 10.1007/s00018-015-1845-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/07/2015] [Accepted: 01/26/2015] [Indexed: 12/11/2022]
Abstract
Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, 835 S. Wolcott Ave, E403, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
92
|
Abstract
Hypercholesterolaemia leads to cholesterol accumulation in macrophages and other immune cells, which promotes inflammatory responses, including augmentation of Toll-like receptor (TLR) signalling, inflammasome activation, and the production of monocytes and neutrophils in the bone marrow and spleen. On a cellular level, activation of TLR signalling leads to decreased cholesterol efflux, which results in further cholesterol accumulation and the amplification of inflammatory responses. Although cholesterol accumulation through the promotion of inflammatory responses probably has beneficial effects in the response to infections, it worsens diseases that are associated with chronic metabolic inflammation, including atherosclerosis and obesity. Therapeutic interventions such as increased production or infusion of high-density lipoproteins may sever the links between cholesterol accumulation and inflammation, and have beneficial effects in patients with metabolic diseases.
Collapse
Affiliation(s)
- Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168th Street, New York, New York 10032, USA
| | - Laurent Yvan-Charvet
- University of Nice, Unité Mixte de Recherce (UMR), Institut national de la Santé et de la Recherche Médicale U1065, 062104 Nice Cedex 3, France
| |
Collapse
|
93
|
Yevtushenko SK, Filimonov DA, Yevtushenko IS. New risk factors of stroke in young adults. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:3-12. [DOI: 10.17116/jnevro20151151223-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
94
|
Orange juice intake during a fatty meal consumption reduces the postprandial low-grade inflammatory response in healthy subjects. Thromb Res 2014; 135:255-9. [PMID: 25550188 DOI: 10.1016/j.thromres.2014.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND AIMS Evidence associates polyphenol-rich foods to reduction of low-grade inflammation and mortality for cardiovascular disease, the mechanisms underlying such effects being still unclear. Consumption of a fatty meal by healthy volunteers induces rapid and reversible low-grade inflammation. The aim of the present study was to evaluate the effect of orange juice on cellular modifications induced by a fatty meal. METHODS AND RESULTS 18 apparently healthy subjects consumed a fatty meal, during which they drunk orange juice, either blond or red, or water, according to a randomized cross-over design. Two hours after the end of the fatty meal, both white blood cell (WBC) and platelet counts significantly increased (12.5 and 5%, respectively), while mean platelet volume decreased and a 25% release of myeloperoxidase (MPO) from polymorphonuclear leukocyte occurred. Both juices significantly prevented WBC increase and MPO degranulation, in respect to control. Triglycerides significantly increased (42%) after the fatty meal, but at a lower extent when red orange juice was consumed with the meal (20%), in respect to blond orange juice or control. This effect was statistically significant in the subgroup of 8 subjects with hypertriglyceridemia. Vascular stiffness (augmentation index), measured by Endo-PAT2000, significantly decreased after the meal only in conjunction with red orange juice. CONCLUSION In healthy subjects the concomitant intake of orange juice may prevent the low-grade inflammatory reaction induced by a fatty meal, at cellular and possibly at vascular function levels. The relative role of different polyphenols on the observed effects of orange juices remains to be established.
Collapse
|
95
|
Abstract
Spurred by advances in understanding the molecular basis of thrombosis, this issue of the Journal of Thrombosis and Thrombolysis is devoted to exploring aspects of novel paradigms and their potential impact on diagnosis and treatment. Complex interplay between blood and vascular cells, inflammation, and pro- and anti-coagulant pathways determines the formation and stability of arterial and venous thrombosis. A causal role for inflammation in coronary artery disease is currently being tested in large clinical trials. Basic science observations implicate inflammation in venous thromboembolic disorders and inflammatory processes, may have a similar influence on device thrombosis. In this article and throughout this issue of the Journal, we discuss biomarkers and mediators associated with arterial and venous thrombosis, atrial fibrillation, and other clinical scenarios.
Collapse
Affiliation(s)
- Travis Sexton
- Division of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, 255 BBRSB, 741 S. Limestone Street, Lexington, KY, 40536-0200, USA
| | | |
Collapse
|
96
|
Association between peak neutrophil count, clopidogrel loading dose, and left ventricular systolic function in patients with primary percutaneous coronary intervention. Mediators Inflamm 2014; 2014:482763. [PMID: 25147436 PMCID: PMC4131512 DOI: 10.1155/2014/482763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/26/2014] [Accepted: 07/10/2014] [Indexed: 01/20/2023] Open
Abstract
Inflammation plays an important role in plaque development and left ventricular remodeling during acute myocardial infarction (AMI). Clopidogrel may exhibit some anti-inflammatory properties and high loading dose of clopidogrel results in improved clinical outcomes in patients with AMI. 357 patients who received successful primary percutaneous coronary intervention from January 2008 to March 2011 in Peking University Third Hospital were included in this study. Different loading dose of clopidogrel (300 mg, 450 mg, or 600 mg) was given at the discretion of the clinician. Neutrophils reached their peak values on the first day after AMI. Higher levels of peak neutrophil and lower left ventricular ejection fraction (LVEF) were found in patients of low clopidogrel loading dose group (300 mg or 450 mg). After adjusting for the related confounders, a logistic regression model showed that low clopidogrel loading dose remained an independent predictor of low LVEF (LVEF ≤ 50%) [OR: 1.97, 95% CI: 1.03–3.79, P = 0.04]. Low clopidogrel loading dose was associated with higher peak neutrophil count and poor left ventricular systolic function, suggesting an important role of clopidogrel loading dose in the improvement of left ventricular function and high loading dose may exhibit better anti-inflammatory properties.
Collapse
|
97
|
Totani L, Piccoli A, Dell'Elba G, Concetta A, Di Santo A, Martelli N, Federico L, Pamuklar Z, Smyth SS, Evangelista V. Phosphodiesterase type 4 blockade prevents platelet-mediated neutrophil recruitment at the site of vascular injury. Arterioscler Thromb Vasc Biol 2014; 34:1689-96. [PMID: 24925970 DOI: 10.1161/atvbaha.114.303939] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Platelet-neutrophil interactions play a key role in cardiovascular disease and inflammatory processes. Src family kinases mediate P-selectin glycoprotein ligand-1-Mac-1 cross talk necessary for firm platelet-neutrophil adhesion. Because Src family kinase activity can be regulated by cAMP-dependent pathways, in this work, we evaluated the role of phosphodiesterases in the signaling events that are required to sustain platelet-neutrophil interactions and neutrophil recruitment at the site of vascular injury. APPROACH AND RESULTS In neutrophils exposed to P-selectin, selective phosphodiesterase 4 (PDE4) inhibition prevented Src family kinase-mediated phosphorylation of the proline-rich tyrosine kinase 2 on Tyr579/Tyr580. The effects of PDE4 inhibition required protein kinase A, likely through protein kinase A-mediated activation of COOH-terminal Src kinase, a major negative regulator of Src family kinases. PDE4, but not other phosphodiesterase inhibitors, reduced platelet-neutrophil conjugates as well as neutrophil firm adhesion on spread platelets under flow conditions. The effect of PDE4 inhibition on neutrophil adhesion was primarily mediated by downregulation of P-selectin-induced activation of Mac-1. In a murine model of endovascular injury, selective inhibition of PDE4 significantly reduced neutrophil recruitment at the site of vascular damage. CONCLUSIONS This study identifies PDE4 as a central node in the signaling network that mediates platelet-neutrophil adhesion and suggests that pharmacological inhibition of PDE4 may represent a novel therapeutic avenue for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Licia Totani
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Antonio Piccoli
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Giuseppe Dell'Elba
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Amore Concetta
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Angelomaria Di Santo
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Nicola Martelli
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Lorenzo Federico
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Zehra Pamuklar
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Susan S Smyth
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.)
| | - Virgilio Evangelista
- From the Department of Translational Pharmacology, Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy (L.T., A.P., G.D., A.C., A.D.S., N.M., V.E.); Division of Cardiovascular Medicine, The Gill Heart Institute, Lexington, KY (L.F., Z.P., S.S.S.); and VA Medical Center, Lexington, KY (S.S.S.).
| |
Collapse
|
98
|
Adherence to the Mediterranean diet is associated with lower platelet and leukocyte counts: results from the Moli-sani study. Blood 2014; 123:3037-44. [DOI: 10.1182/blood-2013-12-541672] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
Adherence to a Mediterranean diet is associated with reduced platelet and leukocyte counts. The observed associations are partially explained by the high dietary fiber and antioxidant content of the Mediterranean diet.
Collapse
|
99
|
Sergin I, Razani B. Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab 2014; 25:225-34. [PMID: 24746519 PMCID: PMC4061377 DOI: 10.1016/j.tem.2014.03.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/31/2022]
Abstract
Autophagy (or 'self-eating') is the process by which cellular contents are recycled to support downstream metabolism. An explosion in research in the past decade has implicated its role in both health and disease and established the importance of the autophagic response during periods of stress and nutrient deprivation. Atherosclerosis is a state where chronic exposure to cellular stressors promotes disease progression, and alterations in autophagy are predicted to be consequential. Recent reports linking macrophage autophagy to lipid metabolism, blunted inflammatory signaling, and an overall suppression of proatherogenic processes support this notion. We review these data and provide a framework for understanding the role of macrophage autophagy in the pathogenesis of atherosclerosis, one of the most formidable diseases of our time.
Collapse
Affiliation(s)
- Ismail Sergin
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
100
|
Bornfeldt KE. 2013 Russell Ross memorial lecture in vascular biology: cellular and molecular mechanisms of diabetes mellitus-accelerated atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:705-14. [PMID: 24665124 PMCID: PMC3967130 DOI: 10.1161/atvbaha.113.301928] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/22/2013] [Indexed: 01/12/2023]
Abstract
Adults with diabetes mellitus are much more likely to have cardiovascular disease than those without diabetes mellitus. Genetically engineered mouse models have started to provide important insight into the mechanisms whereby diabetes mellitus promotes atherosclerosis. Such models have demonstrated that diabetes mellitus promotes formation of atherosclerotic lesions, progression of lesions into advanced hemorrhaged lesions, and that it prevents lesion regression. The proatherosclerotic effects of diabetes mellitus are driven in part by the altered function of myeloid cells. The protein S100A9 and the receptor for advanced glycation end-products are important modulators of the effect of diabetes mellitus on myelopoiesis, which might promote monocyte accumulation in lesions. Furthermore, myeloid cell expression of the enzyme acyl-CoA synthetase 1 (ACSL1), which converts long-chain fatty acids into their acyl-CoA derivatives, has emerged as causal to diabetes mellitus-induced lesion initiation. The protective effects of myeloid ACSL1-deficiency in diabetic mice, but not in nondiabetic mice, indicate that myeloid cells are activated by diabetes mellitus through mechanisms that play minor roles in the absence of diabetes mellitus. The roles of reactive oxygen species and insulin resistance in diabetes mellitus-accelerated atherosclerosis are also discussed, primarily in relation to endothelial cells. Translational studies addressing whether the mechanisms identified in mouse models are equally important in humans with diabetes mellitus will be paramount.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- From the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, and Department of Pathology, Diabetes and Obesity Center of Excellence, University of Washington, Seattle, WA
| |
Collapse
|