51
|
Dobreva I, Waeber G, James RW, Widmann C. Interleukin-8 secretion by fibroblasts induced by low density lipoproteins is p38 MAPK-dependent and leads to cell spreading and wound closure. J Biol Chem 2005; 281:199-205. [PMID: 16251188 DOI: 10.1074/jbc.m508857200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.
Collapse
Affiliation(s)
- Iveta Dobreva
- Department of Cellular Biology and Morphology, Faculty of Biology and Medicine, Lausanne University, 1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
52
|
Kim T, Chan KK, Dhaliwall JK, Huynh N, Suen R, Uchino H, Naigamwalla D, Bendeck MP, Giacca A. Anti-Atherogenic Effect of Insulin in vivo. J Vasc Res 2005; 42:455-62. [PMID: 16155361 DOI: 10.1159/000088099] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Accepted: 06/09/2005] [Indexed: 01/27/2023] Open
Abstract
Metabolic syndrome is a risk factor for atherosclerosis and restenosis. In metabolic syndrome, insulin resistance coexists with hyperinsulinemia and hyperlipidemia. Hyperlipidemia has growth-promoting effects, whereas insulin has both growth-promoting and growth-inhibitory effects on vascular smooth muscle cells in vitro. The objective of this study was to investigate the effects of hyperlipidemia and hyperinsulinemia on vascular cell growth in vivo after arterial injury. Rats fed a low-fat diet were treated with either subcutaneous blank (LFC) or insulin (LFI) implants. Rats fed a high-fat diet also received blank (HFC) or insulin (HFI) implants. After 3 days, rats received balloon carotid injury, and 14 days later they were sacrificed to measure neointimal area and proliferation. Hyperinsulinemia was present in LFI and HFI and hyperlipidemia was present in HFC and HFI. Neointimal area was higher in HFC (0.153 +/- 0.009 mm(2), p < 0.05) but lower in LFI (0.098 +/- 0.005, p < 0.01) than LFC (0.127 +/- 0.005). In HFI (0.142 +/- 0.008, p < 0.05) neointimal area was not different from HFC or LFC. In conclusion, insulin reduced neointimal growth, but the effect of insulin was diminished by the high-fat diet. Thus, our results demonstrate an anti-atherogenic effect of insulin in vivo and suggest that in metabolic syndrome insulin resistance rather than hyperinsulinemia is the atherogenic risk factor.
Collapse
Affiliation(s)
- Tony Kim
- Department of Physiology, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Jones SA, Richards PJ, Scheller J, Rose-John S. IL-6 transsignaling: the in vivo consequences. J Interferon Cytokine Res 2005; 25:241-53. [PMID: 15871661 DOI: 10.1089/jir.2005.25.241] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokine receptors exist in membrane-bound and soluble forms. They bind their ligands with comparable affinity. Although most soluble receptors are antagonists because they compete with their membrane counterparts for their ligands, some soluble receptors are agonists. In this case, on target cells, the complex of cytokine and soluble cytokine receptor binds to a second receptor subunit and initiates intracellular signal transduction. The soluble receptors of the interleukin-6 (IL-6) family of cytokines--soluble IL-6 receptor (sIL-6R), sIL-11R, and soluble ciliary neurotrophic factor receptor (sCNTFR)--are agonists. In vivo, the IL-6/sIL-6R complex stimulates several types of target cells not stimulated by IL-6 alone, as they do not express the membrane- bound IL-6R. This process has been named transsignaling. We have shown recently that in several chronic inflammatory diseases, such as chronic inflammatory bowl disease, peritonitis, and rheumatoid arthritis, as well as in colon cancer, transsignaling via the sIL-6R complexed to IL-6 is a crucial point in the maintenance of the disease. The mechanism by which the IL-6/sIL-6R complex regulates the inflammatory or neoplastic state is discussed.
Collapse
Affiliation(s)
- Simon A Jones
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, UK
| | | | | | | |
Collapse
|
54
|
Gómez SL, Turchiello RF, Jurado MC, Boschcov P, Gidlund M, Neto AMF. Characterization of native and oxidized human low-density lipoproteins by the Z-scan technique. Chem Phys Lipids 2005; 132:185-95. [PMID: 15555604 DOI: 10.1016/j.chemphyslip.2004.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/05/2004] [Accepted: 07/05/2004] [Indexed: 11/29/2022]
Abstract
The nonlinear optical response of human normal and oxidized by Cu2+ low-density lipoproteins particles (LDL), were investigated by the Z-scan technique as a function of temperature and concentration of LDL particles. The Z-scan signals increase linearly with concentration of normal LDL particles, following the usual Beer-Lambert law in a broad range of concentrations. The oxidized LDL particles do not show nonlinear optical response. On the other hand, normal LDL increases its nonlinear optical response as a function of temperature. These behaviors can be attributed to an absorbing element that is modified by the oxidative process. Contrarily, changes in the physical state of the cores and conformation of the ApoB100 protein due to an increase in temperature seems to enhance their nonlinear optical properties. This tendency is not due to aggregation of particles. The main contribution to the nonlinear optical response of normal LDL particles comes from the phospholipid fraction of the particles.
Collapse
Affiliation(s)
- S L Gómez
- Complex Fluids Group, Institute of Physics, University of São Paulo, Caixa Postal 66318, 05315-970 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
55
|
Kusano KF, Nakamura K, Kusano H, Nishii N, Banba K, Ikeda T, Hashimoto K, Yamamoto M, Fujio H, Miura A, Ohta K, Morita H, Saito H, Emori T, Nakamura Y, Kusano I, Ohe T. Significance of the level of monocyte chemoattractant protein-1 in human atherosclerosis. Circ J 2005; 68:671-6. [PMID: 15226634 DOI: 10.1253/circj.68.671] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Monocyte chemoattractant protein-1 (MCP-1), a potent chemoattractant for monocytes, plays an important role in the earliest events of atherogenesis. However, direct evidence of the effects of MCP-1 on atherosclerosis in chronic hemodialysis (HD) patients has not been reported. METHODS AND RESULTS The serum MCP-1 concentrations and the intimal - medial thickness (IMT) in the carotid arteries were measured in 42 non-diabetic chronic HD patients and 20 age-matched controls. The expression of MCP-1 was examined immunohistochemically in radial arterial tissues obtained from the HD patients. IMT and the serum concentration of MCP-1 in the HD patients were both significantly greater than in controls. Multiple regression analysis revealed that the serum concentration of MCP-1 was an independent factor influencing IMT. Tissue immunostaining showed that MCP-1 is expressed in both endothelial and smooth muscle cells and that its level of expression correlates with the serum concentration of MCP-1. CONCLUSIONS An increase in MCP-1 may be an important factor in the progression of atherosclerosis in non-diabetic HD patients.
Collapse
Affiliation(s)
- Kengo Fukushima Kusano
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Klouche M, Peri G, Knabbe C, Eckstein HH, Schmid FX, Schmitz G, Mantovani A. Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells. Atherosclerosis 2005; 175:221-8. [PMID: 15262177 DOI: 10.1016/j.atherosclerosis.2004.03.020] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/01/2004] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Abstract
Inflammation is a critical contributing factor to the development and the progression of atherosclerosis. Recently, the acute-phase protein pentraxin-3 (PTX3), which has C-terminal sequence homology with the classic pentraxin C-reactive protein (CRP), was described to be increased in patients with myocardial infarction. In this study, we have investigated the capacity of human primary vascular smooth muscle cells (VSMC), derived from arterial specimens of ten different patients, to express PTX3 after incubation with atherogenic lipoproteins. Enzymatically degraded LDL (E-LDL), which is present in human early lesions, mediated a rapid cholesterol loading and foam cell transformation of primary VSMC, which was paralleled by a marked dose- and time-dependent expression of PTX3 mRNA and release of the acute-phase protein. Expression of PTX3 mRNA was delayed and remained almost undetectable for up to 6 h of incubation with E-LDL. However, during extended exposure to E-LDL for more than 24 h, PTX3 mRNA expression increased by more than 15-fold in VSMC foam cells, which was reflected by a concomitant release of up to 211 ng/ml PTX3 protein. We provide evidence for marked expression of PTX3 by VSMC induced by degraded lipoproteins, which may lead to an in situ vascular acute-phase reaction, contributing to the inflammatory pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Mariam Klouche
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss Allee 11 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
57
|
Rattazzi M, Puato M, Faggin E, Bertipaglia B, Zambon A, Pauletto P. C-reactive protein and interleukin-6 in vascular disease: culprits or passive bystanders? J Hypertens 2004; 21:1787-803. [PMID: 14508181 DOI: 10.1097/00004872-200310000-00002] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances in basic science have shown that atherosclerosis should be considered as a chronic inflammatory process, and that a pivotal role of inflammation is evident from initiation through progression and complication of atherosclerosis. In the past few years many studies have examined the potential for biochemical markers of inflammation to act as predictors of coronary heart disease (CHD) risk in a variety of clinical settings. Several large, prospective epidemiological studies have shown consistently that C-reactive protein (CRP) and interleukin-6 (IL-6) plasma levels are strong independent predictors of risk of future cardiovascular events, both in patients with a history of CHD and in apparently healthy subjects. These molecules could be useful to complement traditional risk factors, as well as to identify new categories of subjects prone to atherosclerosis development. An intriguing question is whether these inflammatory molecules simply represent sensitive markers of systemic inflammation or if they actively contribute to atherosclerotic lesion formation and instability. In this paper we will review the evidence concerning the cardiovascular prognostic value and the potential direct involvement of CRP and IL-6 in atherogenesis.
Collapse
Affiliation(s)
- Marcello Rattazzi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Padova, Italy
| | | | | | | | | | | |
Collapse
|
58
|
Lindemann SW, Yost CC, Denis MM, McIntyre TM, Weyrich AS, Zimmerman GA. Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs. Proc Natl Acad Sci U S A 2004; 101:7076-81. [PMID: 15118085 PMCID: PMC406468 DOI: 10.1073/pnas.0401901101] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms by which neutrophils, key effector cells of the innate immune system, express new gene products in inflammation are largely uncharacterized. We found that they rapidly translate constitutive mRNAs when activated, a previously unrecognized response. One of the proteins synthesized without a requirement for transcription is the soluble IL-6 receptor alpha, which translocates to endothelial cells and induces a temporal switch to mononuclear leukocyte recruitment. Its synthesis is regulated by a specialized translational control pathway that is inhibited by rapamycin, a bacterial macrolide with therapeutic efficacy in transplantation, inflammatory syndromes, and neoplasia. Signal-dependent translation in activated neutrophils may be a critical mechanism for alteration of the inflammatory milieu and a therapeutic target.
Collapse
Affiliation(s)
- Stephan W Lindemann
- Program in Human Molecular Biology and Genetics, University of Utah, 15 North, 20230 East, Building 533, Room 4220, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|
59
|
Oestvang J, Bonnefont-Rousselot D, Ninio E, Hakala JK, Johansen B, Anthonsen MW. Modification of LDL with human secretory phospholipase A(2) or sphingomyelinase promotes its arachidonic acid-releasing propensity. J Lipid Res 2004; 45:831-8. [PMID: 14754906 DOI: 10.1194/jlr.m300310-jlr200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidation and lipolytic remodeling of LDL are believed to stimulate LDL entrapment in the arterial wall, expanding the inflammatory response and promoting atherosclerosis. However, the cellular responses and molecular mechanisms underlying the atherogenic effects of lipolytically modified LDL are incompletely understood. Human THP-1 monocytes were prelabeled with [(3)H]arachidonic acid (AA) before incubation with LDL or LDL lipolytically modified by secretory PLA(2) (sPLA(2)) or bacterial sphingomyelinase (SMase). LDL elicited rapid and dose-dependent extracellular release of AA in monocytes. Interestingly, LDL modified by sPLA(2) or SMase displayed a marked increase in AA mobilization relative to native LDL, and this increase correlated with enhanced activity of cytosolic PLA(2) (cPLA(2)) assayed in vitro as well as increased monocyte tumor necrosis factor-alpha secretion. The AA liberation was attenuated by inhibitors toward cPLA(2) and sPLA(2), indicating that both PLA(2) enzymes participate in LDL-induced AA release. In conclusion, these results demonstrate that LDL lipolytically modified by sPLA(2) or SMase potentiates cellular AA release and cPLA(2) activation in human monocytes. From our results, we suggest novel atherogenic properties for LDL modified by sPLA(2) and SMase in AA release and signaling, which could contribute to the inflammatory gene expression observed in atherosclerosis.
Collapse
Affiliation(s)
- Janne Oestvang
- Faculty of Natural Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
60
|
Rong JX, Shapiro M, Trogan E, Fisher EA. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A 2003; 100:13531-6. [PMID: 14581613 PMCID: PMC263848 DOI: 10.1073/pnas.1735526100] [Citation(s) in RCA: 398] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mouse aortic smooth muscle cells (SMCs) were loaded for 72 h with cholesterol by using cholesterol:methyl-beta-cyclodextrin complexes, leading to approximately 2-fold and approximately 10-fold increases in the contents of total cholesterol and cholesteryl ester, respectively. Foam-cell formation was demonstrated by accumulation of intracellular, Oil Red O-stained lipid droplets. Immunostaining showed decreased protein levels of smooth muscle alpha-actin and alpha-tropomyosin and increased levels of macrophage markers CD68 and Mac-2 antigen. Quantitative real-time RT-PCR revealed that after cholesterol loading, the expression of SMC-related genes alpha-actin, alpha-tropomyosin, myosin heavy chain, and calponin H1 decreased (to 11.5 +/- 0.5%, 29.3 +/- 1.4%, 23.8 +/- 1.4%, and 3.8 +/- 0.5% of unloaded cells, respectively; P < 0.05 for all), whereas expression of macrophage-related genes CD68, Mac-2, and ABCA1 mRNA increased (to 709 +/- 84%, 330 +/- 11%, and 207 +/- 13% of unloaded cells, respectively; P < 0.05 for all), thereby demonstrating that the protein changes were regulated at the mRNA level. Furthermore, these changes were accompanied by a gain in macrophage-like function as assessed by phagocytotic activity. Expression of vascular cell adhesion molecule 1 and monocyte chemoattractant protein 1, known responders to inflammation, were not changed. In conclusion, cholesterol loading of SMC causes phenotypic changes regulated at the mRNA level that result in a transdifferentiation to a macrophage-like state. This finding suggests that not all foam cells in lesions may have a macrophage origin, despite what is indicated by immunostaining for macrophage-related markers. Furthermore, inflammatory changes in foam cells observed in vivo may not be simple consequences of cholesterol accumulation.
Collapse
Affiliation(s)
- James X Rong
- Department of Medicine and The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
61
|
Nowell MA, Richards PJ, Horiuchi S, Yamamoto N, Rose-John S, Topley N, Williams AS, Jones SA. Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble glycoprotein 130. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3202-9. [PMID: 12960349 DOI: 10.4049/jimmunol.171.6.3202] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies in IL-6-deficient (IL-6(-/-)) mice highlight that IL-6 contributes to arthritis progression. However, the molecular mechanism controlling its activity in vivo remains unclear. Using an experimental arthritis model in IL-6(-/-) mice, we have established a critical role for the soluble IL-6R in joint inflammation. Although intra-articular administration of IL-6 itself was insufficient to reconstitute arthritis within these mice, a soluble IL-6R-IL-6 fusion protein (HYPER-IL-6) restored disease activity. Histopathological assessment of joint sections demonstrated that HYPER-IL-6 increased arthritis severity and controlled intrasynovial mononuclear leukocyte recruitment through the CC-chemokine CCL2. Activation of synovial fibroblasts by soluble IL-6R and IL-6 emphasized that these cells may represent the source of CCL2 in vivo. Specific blockade of soluble IL-6R signaling in wild-type mice using soluble gp130 ameliorated disease. Consequently, soluble IL-6R-mediated signaling represents a promising therapeutic target for the treatment of rheumatoid arthritis.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Antigens, CD/pharmacology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Cell Movement/genetics
- Cell Movement/immunology
- Chemokine CCL2/biosynthesis
- Cytokine Receptor gp130
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Humans
- Interleukin-6/administration & dosage
- Interleukin-6/deficiency
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Male
- Membrane Glycoproteins/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protein Isoforms/analysis
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/pharmacology
- Protein Isoforms/physiology
- Receptors, Interleukin-6/administration & dosage
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/physiology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/therapeutic use
- Severity of Illness Index
- Signal Transduction/genetics
- Signal Transduction/immunology
- Solubility
- Synovial Fluid/chemistry
- Synovial Fluid/immunology
- Synovial Fluid/metabolism
Collapse
Affiliation(s)
- Mari A Nowell
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
62
|
von der Thüsen JH, Kuiper J, van Berkel TJC, Biessen EAL. Interleukins in atherosclerosis: molecular pathways and therapeutic potential. Pharmacol Rev 2003; 55:133-66. [PMID: 12615956 DOI: 10.1124/pr.55.1.5] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Interleukins are considered to be key players in the chronic vascular inflammatory response that is typical of atherosclerosis. Thus, the expression of proinflammatory interleukins and their receptors has been demonstrated in atheromatous tissue, and the serum levels of several of these cytokines have been found to be positively correlated with (coronary) arterial disease and its sequelae. In vitro studies have confirmed the involvement of various interleukins in pro-atherogenic processes, such as the up-regulation of adhesion molecules on endothelial cells, the activation of macrophages, and smooth muscle cell proliferation. Furthermore, studies in mice deficient or transgenic for specific interleukins have demonstrated that, whereas some interleukins are indeed intrinsically pro-atherogenic, others may have anti-atherogenic qualities. As the roles of individual interleukins in atherosclerosis are being uncovered, novel anti-atherogenic therapies, aimed at the modulation of interleukin function, are being explored. Several approaches have produced promising results in this respect, including the transfer of anti-inflammatory interleukins and the administration of decoys and antibodies directed against proinflammatory interleukins. The chronic nature of the disease and the generally pleiotropic effects of interleukins, however, will demand high specificity of action and/or effective targeting to prevent the emergence of adverse side effects with such treatments. This may prove to be the real challenge for the development of interleukin-based anti-atherosclerotic therapies, once the mediators and their targets have been delineated.
Collapse
Affiliation(s)
- Jan H von der Thüsen
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
63
|
Jones SA, Rose-John S. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:251-63. [PMID: 12421670 DOI: 10.1016/s0167-4889(02)00319-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytokines perform ever-increasing roles in both, the regulation of general homeostasis and in orchestrating the immune response during disease. To ensure that control of the cytokine network is tightly regulated, nature has developed a series of systems designed for this purpose. In this respect, researchers have placed considerable emphasis on identifying and characterising the regulatory properties of soluble cytokine receptors. These proteins bind their ligands with similar affinities to those of their cognate transmembrane receptors and are effective at prolonging the circulating half-life of cytokines they bind. However, it is the individual capacity of these soluble receptors to act as either antagonists or agonists which has been the principal focus of most research studies. This review provides an overview of the activities of soluble cytokine receptors, but primarily concentrates on those that possess agonistic properties.
Collapse
Affiliation(s)
- Simon A Jones
- Molecular Cell Biology Research Group, Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Wales, UK.
| | | |
Collapse
|
64
|
Kallen KJ. The role of transsignalling via the agonistic soluble IL-6 receptor in human diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:323-43. [PMID: 12421676 DOI: 10.1016/s0167-4889(02)00325-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of cells that do not express the membrane bound interleukin-6 6 receptor (IL-6R) by IL-6 and the soluble IL-6 receptor (sIL-6R) is termed transsignalling. Transsignalling may be an pathogenetic factor in human diseases as diverse as multiple myeloma (MM), Castleman's disease, prostate carcinoma, Crohn's disease, systemic sclerosis, Still's disease, osteoporosis and cardiovascular diseases. IL-6 and sIL-6R may directly or indirectly enhance their own production on endothelial or bone marrow stromal cells. Positive feedback autocrine loops thus created in affected organs may either cause or maintain disease progression. In autoimmune or vasculitic disease, the ability of the IL-6/sIL-6R complex to inhibit apoptosis of autoreactive T-cells may be central to the development of tissue specific autoimmunity. The anti-apoptotic effect of the IL-6/sIL-6R complex may be involved in tumour genesis and resistance to chemotherapy. Only in rare cases, where counterregulation has failed, there is a notable systemic effect of IL-6/sIL-6R. Appropriate animal models are necessary to establish the pathogenetic role of the IL-6/sIL-6R complex. A specific treatment option for diseases influenced by the sIL-6R could be based on gp130-Fc, a soluble gp130 (sgp130) linked to the Fc-fragment of IgG1. gp130-Fc has shown efficacy in vivo in animal models of Crohn's disease.
Collapse
Affiliation(s)
- Karl-Josef Kallen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Germany.
| |
Collapse
|
65
|
Ishii I, Satoh H, Kawachi H, Jingami H, Matsuoka N, Ohmori S, Bujo H, Yamamoto T, Saito Y, Kitada M. Intimal smooth muscle cells up-regulate beta-very low density lipoprotein-mediated cholesterol accumulation by enhancing beta-very low density lipoprotein uptake and decreasing cholesterol efflux. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1585:30-8. [PMID: 12457712 DOI: 10.1016/s1388-1981(02)00305-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To clarify the mechanism of smooth muscle cell (SMC)-derived foam cell formation, we investigated beta-very low density lipoprotein (beta-VLDL) cholesterol metabolism in vascular medial SMCs (M-SMCs) from normal rabbits compared with intimal SMCs (I-SMCs) from normal rabbits fed a high-cholesterol diet and LDL receptor-deficient rabbits. For both types of I-SMCs, uptake of [3H]cholesteryl oleate labeled beta-VLDL increased 1.6 times and release of [3H]cholesterol decreased 40% compared with M-SMCs. M-SMCs took up part of the beta-VLDL through the LDL receptor but I-SMCs did not. mRNAs for the VLDL receptor and the LDL receptor relative with 11 ligand binding repeats were expressed at similar levels in all SMCs. M-SMCs expressed more LDL receptor-related protein than I-SMCs. Ligand blotting analysis revealed greater 125I-beta-VLDL binding to a 700-kDa protein in I-SMCs compared with M-SMCs. I-SMCs had higher activities of acid cholesterol esterase and acyl-CoA:cholesterol acyltransferase, and lower activity of neutral cholesterol esterase than M-SMCs in both the absence and the presence of beta-VLDL. These results indicate that I-SMCs accumulate more cholesteryl ester than M-SMCs by taking up more beta-VLDL and by effluxing less cholesterol.
Collapse
Affiliation(s)
- Itsuko Ishii
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, 263-8522, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Gouni-Berthold I, Sachinidis A. Does the coronary risk factor low density lipoprotein alter growth and signaling in vascular smooth muscle cells? FASEB J 2002; 16:1477-87. [PMID: 12374770 DOI: 10.1096/fj.02-0260rev] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There is increasing evidence that hypertension promotes low density lipoprotein (LDL) transportation into the subendothelial space of the vascular wall. Vascular smooth muscle cell (VSMC) proliferation plays an important role in the development and progression of cardiovascular diseases. Recently, several studies have demonstrated that LDL acts as a classic growth factor promoting VSMC growth via mitogenic signals normally elicited by classic growth factors. The present work summarizes current nontraditional concepts regarding possible cellular mechanisms through which hypertension and LDL may promote the development of atherosclerosis. Especially addressed are the possible effects of an elevated blood pressure in combination with LDL on VSMC growth. The new research concept concerning LDL as a growth factor and carrier for biological active phospholipids such as sphingosine-1-phosphate and sphingosylphosphorylcholine may contribute to an understanding of the pathogenesis of atherosclerosis by elevated high blood pressure.
Collapse
|
67
|
Klouche M, Brockmeyer N, Knabbe C, Rose-John S. Human herpesvirus 8-derived viral IL-6 induces PTX3 expression in Kaposi's sarcoma cells. AIDS 2002; 16:F9-18. [PMID: 12004288 DOI: 10.1097/00002030-200205240-00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To analyse if human herpesvirus 8 (HHV8)-derived viral interleukin-6 (vIL-6) has the capacity to activate Kaposi's sarcoma (KS) cells to elicit a local acute-phase response. DESIGN Proinflammatory activation of KS cells was compared using vIL-6, human IL-6, as well as the complex of human IL-6 with the soluble IL-6 receptor, and expression of the novel acute-phase protein pentraxin-3 (PTX3) was analysed. METHODS We established primary KS cell cultures from patients with AIDS-associated and classical KS and expressed recombinant HHV8-derived vIL-6 in COS-7 cells. Expression of PTX3 by vIL-6-stimulated KS cell cultures was analysed by quantitative real-time reverse transcriptase-polymerase chain reaction. Mitogenic effects of vIL-6 on the KS cells of distinct aetiology were compared by [3H]thymidine incorporation. RESULTS We show that vIL-6 induced a marked and sustained expression of the novel acute-phase protein PTX3 in human primary KS cell cultures. vIL-6 directly activated KS cells, which uniquely expressed gp130, the signal-transducing subunit of the IL-6 receptor, but were negative for the IL-6-binding unit (IL-6R). In contrast, human IL-6 did not stimulate KS cells in the absence of the full IL-6R. Expression of PTX3 messenger RNA increased by more than 25-fold in vIL-6-stimulated KS cells after 24 h. Particularly after extended incubation with the virokine, vIL-6 mediated a pronounced mitogenic effect on KS cells. CONCLUSION The induction of an extrahepatic acute-phase response by vIL-6-activated KS cells may contribute to local tissue damage and the attraction of inflammatory cells, and add to a more aggressive phenotype.
Collapse
Affiliation(s)
- Mariam Klouche
- Institute of Clinical Pathology, Department of Laboratory Medicine, Robert Bosch Hospital and Robert Bosch Society for Medical Research, Stuttgart, Germany.
| | | | | | | |
Collapse
|
68
|
Sachais BS, Kuo A, Nassar T, Morgan J, Kariko K, Williams KJ, Feldman M, Aviram M, Shah N, Jarett L, Poncz M, Cines DB, Higazi AAR. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface. Blood 2002; 99:3613-22. [PMID: 11986215 DOI: 10.1182/blood.v99.10.3613] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The influence of platelets on the cellular metabolism of atherogenic lipoproteins has not been characterized in detail. Therefore, we investigated the effect of platelet factor 4 (PF4), a cationic protein released in high concentration by activated platelets, on the uptake and degradation of low-density lipoprotein (LDL) via the LDL receptor (LDL-R). LDL-R-dependent binding, internalization, and degradation of LDL by cultured cells were inhibited 50%, 80%, and 80%, respectively, on addition of PF4. PF4 bound specifically to the ligand-binding domain of recombinant soluble LDL-R (half-maximal binding 0.5 microg/mL PF4) and partially (approximately 50%) inhibited the binding of LDL. Inhibition of internalization and degradation by PF4 required the presence of cell-associated proteoglycans, primarily those rich in chondroitin sulfate. PF4 variants with impaired heparin binding lacked the capacity to inhibit LDL. PF4, soluble LDL-R, and LDL formed ternary complexes with cell-surface proteoglycans. PF4 induced the retention of LDL/LDL-R complexes on the surface of human fibroblasts in multimolecular clusters unassociated with coated pits, as assessed by immuno-electron microscopy. These studies demonstrate that PF4 inhibits the catabolism of LDL in vitro in part by competing for binding to LDL-R, by promoting interactions with cell-associated chondroitin sulfate proteoglycans, and by disrupting the normal endocytic trafficking of LDL/LDL-R complexes. Retention of LDL on cell surfaces may facilitate proatherogenic modifications and support an expanded role for platelets in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Bruce S Sachais
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Cytokines and the pathogenesis of atherosclerosis. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1566-3124(02)11027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
70
|
Kielar D, Dietmaier W, Langmann T, Aslanidis C, Probst M, Naruszewicz M, Schmitz G. Rapid Quantification of Human ABCA1 mRNA in Various Cell Types and Tissues by Real-Time Reverse Transcription-PCR. Clin Chem 2001. [DOI: 10.1093/clinchem/47.12.2089] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractBackground: The ABCA1 gene encodes for a member of subfamily A of the ATP-binding cassette transporters that plays an important role in cellular export of cholesterol and phospholipids; therefore, quantification of the ABCA1 mRNA is critical in many studies related to its expression and regulation by metabolic factors, nutritional status, and new antiatherogenic drug candidates. We developed a rapid, sensitive, specific, and reproducible real-time reverse transcription-PCR (RT-PCR) method for detection and quantification of ABCA1 transcripts in total RNA isolated from cultured human cells and tissues.Methods: To quantify ABCA1 mRNA, we generated a calibration curve from serial dilutions of in vitro-transcribed RNA corresponding to an amplified ABCA1 cDNA 205-bp fragment (homologous calibrator). Two pairs of fluorescent hybridization probes were used to detect the ABCA1 and porphobilinogen deaminase (PBGD) mRNAs; the latter served as an internal control. PCR was performed as real-time amplification of ABCA1 mRNA in 100 ng of total RNA isolated from various human tissues, and cultured cells were calculated from the calibration curve. In addition, normalized values of target (ABCA1/PBGD ratio) were calculated.Results: Using this method, we quantified ABCA1 transcripts in various human tissue samples as well as in monocytes, THP-1 cells, fibroblasts, and adipocytes. We demonstrated ABCA1 mRNA up-regulation during human adipocyte and monocyte differentiation. In addition, we examined the effect of cholesterol loading and deloading on ABCA1 expression in monocytes, THP-1 cells, and fibroblasts.Conclusions: Our RT-PCR assay allows the specific and highly reproducible detection and quantification of minute amounts of human ABCA1 mRNA. This new method is more accurate, more informative, and less laborious than the classic RT-PCR methods and Northern blot; it therefore could simplify all studies on ABCA1 mRNA expression.
Collapse
Affiliation(s)
- Danuta Kielar
- Institute for Clinical Chemistry and Laboratory Medicine and
- Department of Clinical Biochemistry, Pomeranian Medical Academy, 70-111 Szczecin, Poland
| | - Wolfgang Dietmaier
- Institute of Pathology, University of Regensburg, 93042 Regensburg, Germany
| | - Thomas Langmann
- Institute for Clinical Chemistry and Laboratory Medicine and
| | | | - Mario Probst
- Institute for Clinical Chemistry and Laboratory Medicine and
| | - Marek Naruszewicz
- Department of Clinical Biochemistry, Pomeranian Medical Academy, 70-111 Szczecin, Poland
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine and
| |
Collapse
|
71
|
Diederich W, Orsó E, Drobnik W, Schmitz G. Apolipoprotein AI and HDL(3) inhibit spreading of primary human monocytes through a mechanism that involves cholesterol depletion and regulation of CDC42. Atherosclerosis 2001; 159:313-24. [PMID: 11730811 DOI: 10.1016/s0021-9150(01)00518-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of the current study was to characterize the influence of high density lipoproteins (HDL) on processes related to the vascular recruitment of human monocytes, which may contribute to the anti-atherogenic properties of these lipoproteins. We show that HDL(3) and apo AI inhibit the following processes in primary human monocytes: (1) M-CSF induced cell spreading; (2) M-CSF stimulated expression of surface molecules involved in adhesion, migration, and scavenging; (3) fMLP induced chemotaxis. These processes are obviously modulated by the regulation of cellular cholesterol pools as indicated by the following findings. In Tangier monocytes with defective apo AI induced cholesterol efflux, apo AI had no influence on the spreading response. In control cells, stimulation of cholesterol efflux by p-cyclodextrin mimicked the effect of apo AI and HDL(3) on spreading and chemotaxis, whereas cholesterol loading with enzymatically modified LDL (E-LDL) showed the opposite effect. Finally, a similar inverse regulation by E-LDL and apo AI/HDL(3) was also observed in regard to the surface expression of beta(1)- and beta(2)-integrins as well as the hemoglobin/haptoglobin scavenger receptor CD163 and the Fcgamma-IIIaR CD16. CDC42 was identified as a potential downstream target linking changes in cellular cholesterol content to monocyte spreading and chemotaxis. Thus, CDC42 antisense markedly reduced spreading and, in parallel with their influence on monocyte spreading, HDL(3), apo AI and p-cyclodextrin down-regulated CDC42 expression while E-LDL had the inverse effect. The apo AI induced decrease of CDC42 protein expression was paralleled by the reduction of active GTP-bound CDC42. In summary, we provide evidence that HDL(3) and apo AI are able to inhibit processes in primary human monocytes, which are related to the recruitment of monocytes into the vessel wall and probably involve regulation of cellular cholesterol pools and CDC42 function.
Collapse
Affiliation(s)
- W Diederich
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, D-93042, Regensburg, Germany
| | | | | | | |
Collapse
|
72
|
Stoyanova E, Tesch A, Armstrong VW, Wieland E. Enzymatically degraded low density lipoproteins are more potent inducers of egr-1 mRNA than oxidized or native low density lipoproteins. Clin Biochem 2001; 34:483-90. [PMID: 11676978 DOI: 10.1016/s0009-9120(01)00258-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The transcription factor early growth response gene-1 (Egr-1) may contribute to atherosclerosis by inducing genes that mediate inflammation and thrombosis. Egr-1 mRNA is highly expressed in human atherosclerotic lesions. Enzymatic modification transforms LDL into atherogenic molecules (E-LDL) which are also present in atherosclerotic lesions. We have investigated whether E-LDL induces egr-1 mRNA in human monocytes. DESIGN AND METHODS Mono-Mac-6 cells were incubated with E-LDL, oxidized (Ox-LDL) and native LDL (N-LDL). Egr-1 mRNA expression was followed by quantitative RT-PCR. RESULTS E-LDL (25 microg cholesterol/mL) induced egr-1 mRNA maximally within 1 h and were 2.3 and 3.6 fold (p < 0.05) more effective than Ox-LDL or N-LDL. At a concentration of 10 microg/mL cholesterol, E-LDL were twofold less effective. CONCLUSIONS These results show that E-LDL are potent inducers of egr-1 mRNA and may therefore represent a link between lipoproteins trapped in the subendothelium and enhanced expression of egr-1 in human atherosclerotic lesions.
Collapse
Affiliation(s)
- E Stoyanova
- Abteilung Klinische Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
73
|
Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA. Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 2001; 14:705-14. [PMID: 11420041 DOI: 10.1016/s1074-7613(01)00151-0] [Citation(s) in RCA: 636] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During acute inflammation, leukocyte recruitment is characterized by an initial infiltration of neutrophils, which are later replaced by a more sustained population of mononuclear cells. Based on both clinical and experimental evidence, we present a role for IL-6 and its soluble receptor (sIL-6R) in controlling this pattern of leukocyte recruitment during peritoneal inflammation. Liberation of sIL-6R from the initial neutrophil infiltrate acts as a regulator of CXC and CC chemokine expression, which contributes to a suppression of neutrophil recruitment and the concurrent attraction of mononuclear leukocytes. Soluble IL-6R-mediated signaling is therefore an important intermediary in the resolution of inflammation and supports transition between the early predominantly neutrophilic stage of an infection and the more sustained mononuclear cell influx.
Collapse
MESH Headings
- Animals
- Ascitic Fluid
- Cell Migration Inhibition
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Disease Models, Animal
- Epithelium
- Humans
- Interleukin-6/genetics
- Interleukin-6/immunology
- Kidney Failure, Chronic/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peritoneum/cytology
- Peritonitis/immunology
- Receptors, Interleukin-6/biosynthesis
- Receptors, Interleukin-6/genetics
- Receptors, Interleukin-6/immunology
- Solubility
Collapse
Affiliation(s)
- S M Hurst
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Chakraborti T, Mandal A, Mandal M, Das S, Chakraborti S. Complement activation in heart diseases. Role of oxidants. Cell Signal 2000; 12:607-17. [PMID: 11080612 DOI: 10.1016/s0898-6568(00)00111-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing evidence demonstrated that atherosclerosis is an immunologically mediated disease. Myocardial ischemia/reperfusion injury is accompanied by an inflammatory response contributing to reversible and irreversible changes in tissue viability and organ function. Three major components are recognized as the major contributing factors in reperfusion injury. These are: (1) molecular oxygen; (2) cellular blood elements (especially the neutrophils); and (3) components of the activated complement system. The latter two often act in concert. Endothelial and leukocyte responses are involved in tissue injury, orchestrated primarily by the complement cascade. Anaphylatoxins and assembly of the membrane attack complex contribute directly and indirectly to further tissue damage. Tissue damage mediated by neutrophils can be initiated by complement fragments, notably C5a, which are potent stimulators of neutrophil superoxide production and adherence to coronary artery endothelium. The complement cascade, particularly the alternative pathway, is activated during myocardial ischemia/reperfusion. Complement fragments such as the anaphylatoxins C3a and C5a, are produced both locally and systematically, and the membrane attack complex is deposited on cell membranes and subsequent release of mediators such as histamine and platelet activating factor (PAF), thereby causing an increase in vascular permeability with concomitant manifestation of cellular edema. Complement increases the expression of CD18 on the neutrophils and increases P-selectin expression on the surface of the endothelium. Mitochondria may be a source of molecules that activate complements during ischemia/reperfusion injury to myocardium, providing therewith a stimulus for infiltration of polymorphonuclear leukocytes. Tissue salvage can be achieved by depletion of complement components, thus making evident a contributory role for the complement cascade in ischemia/reperfusion injury. The complexities of the complement cascade provide numerous sites as potential targets for therapeutic interventions designed to modulate the complement response to injury. The latter is exemplified by the ability of soluble form of complement receptor 1 (sCR1) to decrease infarct size in in vitro models of ischemia/reperfusion injury. The mechanism(s) that initiates complement activation is not clearly known, although loss of CD59 (protectin) from cells compromised by ischemia/reperfusion may contribute to direct damage of the coronary vascular bed by the terminal complement complex. Therapeutic approaches to ischemia/reperfusion injury in general, and especially those involving complements, are at the very beginning and their potential benefits have still to be adequately evaluated. It may be noted that complement activation has both positive and negative effects and, therefore, might be modulated rather than abruptly blunted.
Collapse
Affiliation(s)
- T Chakraborti
- Department of Neuroscience, Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|