51
|
Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 2018; 19:ijms19113426. [PMID: 30388787 PMCID: PMC6275065 DOI: 10.3390/ijms19113426] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022] Open
Abstract
Cholesterol is an essential component of cell barrier formation and signaling transduction involved in many essential physiologic processes. For this reason, cholesterol metabolism must be tightly controlled. Cell cholesterol is mainly acquired from two sources: Dietary cholesterol, which is absorbed in the intestine and, intracellularly synthesized cholesterol that is mainly synthesized in the liver. Once acquired, both are delivered to peripheral tissues in a lipoprotein dependent mechanism. Malfunctioning of cholesterol metabolism is caused by multiple hereditary diseases, including Familial Hypercholesterolemia, Sitosterolemia Type C and Niemann-Pick Type C1. Of these, familial hypercholesterolemia (FH) is a common inherited autosomal co-dominant disorder characterized by high plasma cholesterol levels. Its frequency is estimated to be 1:200 and, if untreated, increases the risk of premature cardiovascular disease. This review aims to summarize the current knowledge on cholesterol metabolism and the relation of FH to cholesterol homeostasis with special focus on the genetics, diagnosis and treatment.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Kepa B Uribe
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Shifa Jebari
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Unai Galicia-Garcia
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Helena Ostolaza
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| | - Cesar Martin
- Departamento de Bioquímica, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco, Apdo.644, 48080 Bilbao, Spain.
| |
Collapse
|
52
|
Munir MT, Ponce C, Powell CA, Tarafdar K, Yanagita T, Choudhury M, Gollahon LS, Rahman SM. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer. J Steroid Biochem Mol Biol 2018; 183:1-9. [PMID: 29733910 DOI: 10.1016/j.jsbmb.2018.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022]
Abstract
Breast cancer is one of the most commonly diagnosed cancers in women. Accumulating evidence suggests that cholesterol plays an important role in the development of breast cancer. Even though the mechanistic link between these two factors is not well understood, one possibility is that dysregulated cholesterol metabolism may affect lipid raft and membrane fluidity and can promote tumor development. Current studies have shown oxysterol 27-hydroxycholesterol (27-HC) as a critical regulator of cholesterol and breast cancer pathogenesis. This is supported by the significantly higher expression of CYP27A1 (cytochrome P450, family 27, subfamily A, polypeptide 1) in breast cancers. This enzyme is responsible for 27-HC synthesis from cholesterol. It has been shown that 27-HC can not only increase the proliferation of estrogen receptor (ER)-positive breast cancer cells but also stimulate tumor growth and metastasis in several breast cancer models. This phenomenon is surprising since 27-HC and other oxysterols generally reduce intracellular cholesterol levels by activating the liver X receptors (LXRs). Resolving this paradox will elucidate molecular pathways by which cholesterol, ER, and LXR are connected to breast cancer. These findings will also provide the rationale for evaluating pharmaceutical approaches that manipulate cholesterol or 27-HC synthesis in order to mitigate the impact of cholesterol on breast cancer pathophysiology. In addition to cholesterol, epigenetic changes including non-coding RNAs, and microRNAs, DNA methylation, and histone modifications, have all been shown to control tumorigenesis. The purpose of this review is to discuss the link between altered cholesterol metabolism and epigenetic modification during breast cancer progression.
Collapse
Affiliation(s)
- Maliha T Munir
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | | | - Catherine A Powell
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | | | | | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Sciences Center, College Station, Texas, USA
| | - Lauren S Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Shaikh M Rahman
- Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA.
| |
Collapse
|
53
|
Wangeline MA, Vashistha N, Hampton RY. Proteostatic Tactics in the Strategy of Sterol Regulation. Annu Rev Cell Dev Biol 2018; 33:467-489. [PMID: 28992438 DOI: 10.1146/annurev-cellbio-111315-125036] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the synthesis and uptake of sterols undergo stringent multivalent regulation. Both individual enzymes and transcriptional networks are controlled to meet changing needs of the many sterol pathway products. Regulation is tailored by evolution to match regulatory constraints, which can be very different in distinct species. Nevertheless, a broadly conserved feature of many aspects of sterol regulation is employment of proteostasis mechanisms to bring about control of individual proteins. Proteostasis is the set of processes that maintain homeostasis of a dynamic proteome. Proteostasis includes protein quality control pathways for the detection, and then the correction or destruction, of the many misfolded proteins that arise as an unavoidable feature of protein-based life. Protein quality control displays not only the remarkable breadth needed to manage the wide variety of client molecules, but also extreme specificity toward the misfolded variants of a given protein. These features are amenable to evolutionary usurpation as a means to regulate proteins, and this approach has been used in sterol regulation. We describe both well-trod and less familiar versions of the interface between proteostasis and sterol regulation and suggest some underlying ideas with broad biological and clinical applicability.
Collapse
Affiliation(s)
- Margaret A Wangeline
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Nidhi Vashistha
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
54
|
Subramanian I, Singh VK, Jere A. Elucidating mechanistic insights into drug action for atopic dermatitis: a systems biology approach. BMC DERMATOLOGY 2018; 18:3. [PMID: 29415693 PMCID: PMC5803917 DOI: 10.1186/s12895-018-0070-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Topical Betamethasone (BM) and Pimecrolimus (PC) are widely used drugs in the treatment of atopic dermatitis (AD). Though the biomolecules and biological pathways affected by the drugs are known, the causal inter-relationships among these pathways in the context of skin is not available. We aim to derive this insight by using transcriptomic data of AD skin samples treated with BM and PC using systems biology approach. METHODS Transcriptomic datasets of 10 AD patients treated with Betamethasone and Pimecrolimus were obtained from GEO datasets. We used a novel computational platform, eSkIN ( www.persistent.com/eskin ), to perform pathway enrichment analysis for the given datasets. eSkIN consists of 35 skin specific pathways, thus allowing skin-centric analysis of transcriptomic data. Fisher's exact test was used to compute the significance of the pathway enrichment. The enriched pathways were further analyzed to gain mechanistic insights into the action of these drugs. RESULTS Our analysis highlighted the molecular details of the mechanism of action of the drugs and corroborated the known facts about these drugs i.e. BM is more effective in triggering anti-inflammatory response but also causes more adverse effect on skin barrier than PC. In particular, eSkIN helped enunciate the biological pathways activated by these drugs to trigger anti-inflammatory response and its effect on skin barrier. BM suppresses pathways like TNF and TLRs, thus inhibiting NF-κB while PC targets inflammatory genes like IL13 and IL6 via known calcineurin-NFAT pathway. Furthermore, we show that the reduced skin barrier function by BM is due to the suppression of activators like AP1 transcription factors, CEBPs. CONCLUSION We thus demonstrate the detailed mechanistic insight into drug action of AD using a novel computational approach.
Collapse
Affiliation(s)
| | - Vivek K Singh
- LABS, Persistent Systems Limited, 9A/12, Erandwane, Pune, Maharashtra, 411004, India.
| | - Abhay Jere
- LABS, Persistent Systems Limited, 9A/12, Erandwane, Pune, Maharashtra, 411004, India
| |
Collapse
|
55
|
Stopsack KH, Gerke TA, Andrén O, Andersson SO, Giovannucci EL, Mucci LA, Rider JR. Cholesterol uptake and regulation in high-grade and lethal prostate cancers. Carcinogenesis 2017; 38:806-811. [PMID: 28595267 DOI: 10.1093/carcin/bgx058] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
Lethal prostate cancers have higher expression of squalene monooxygenase (SQLE), the second rate-limiting enzyme of cholesterol synthesis. Preclinical studies suggested that aberrant cholesterol regulators, receptors and transporters contribute to cholesterol accumulation uniformly. We assessed their association with features of aggressive cancers. In the prospective prostate cancer cohorts within the Health Professional Follow-up Study, the Physicians' Health Study and the Swedish Watchful Waiting Study, tumor mRNA expression profiling was performed. Lethal disease was defined as mortality or metastases from prostate cancer (n = 266) in contrast to non-lethal disease without metastases after >8 years of follow-up (n = 476). Associations with Gleason grade were additionally assessed using The Cancer Genome Atlas primary prostate cancer dataset (n = 333). Higher Gleason grade was associated with lower LDLR expression, lower SOAT1 and higher SQLE expression. Besides high SQLE expression, cancers that became lethal despite primary treatment were characterized by low LDLR expression (odds ratio for highest versus lowest quintile, 0.37; 95% CI 0.18-0.76) and by low SOAT1 expression (odds ratio, 0.41; 95% CI 0.21-0.83). The association of LDLR expression and lethality was not present in tumors with high IDOL expression. ABCA1, PCSK9 or SCARB1 expressions were not associated with Gleason grade or lethal cancer. In summary, prostate cancers that progress to lethal disease rely on de novo cholesterol synthesis (via SQLE), rather than transcellular uptake (via LDLR) or cholesterol esterification (via SOAT1). These results may help design pharmacotherapy for high-risk patients.
Collapse
Affiliation(s)
- Konrad H Stopsack
- To whom correspondence should be addressed. Tel: +507 284 2511; Fax: +507 266 1799;
| | - Travis A Gerke
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA, Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ove Andrén
- Department of Urology, School of Health and Medical Sciences, University of Örebro, 70182 Örebro, Sweden
| | - Swen-Olof Andersson
- Department of Urology, School of Health and Medical Sciences, University of Örebro, 70182 Örebro, Sweden
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.,Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
56
|
Chen SF, Chen PY, Hsu HJ, Wu MJ, Yen JH. Xanthohumol Suppresses Mylip/Idol Gene Expression and Modulates LDLR Abundance and Activity in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7908-7918. [PMID: 28812343 DOI: 10.1021/acs.jafc.7b02282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthohumol, a prenylated flavonoid found in hops (Humulus lupulus L.), exhibits multiple biological activities such as antiatherosclerosis and hypolipidemic activities. In this study, we aim to investigate the hypocholesterolemic effects and molecular mechanisms of xanthohumol in hepatic cells. We found that xanthohumol (10 and 20 μM) increased the amount of cell-surface low-density lipoprotein receptor (LDLR) from 100.0 ± 2.1% to 115.0 ± 1.3% and 135.2 ± 2.7%, and enhanced the LDL uptake activity from 100.0 ± 0.9% to 139.1 ± 13.2% in HepG2 cells (p < 0.01). The mRNA levels of LDLR, HMGCR, and PCSK9 were not altered. Xanthohumol (20 μM) reduced the expression of inducible degrader of the LDL receptor (Mylip/Idol) mRNA and protein by approximately 45% (p < 0.01), which was reported to be associated with increases of LDLR level. We demonstrated that xanthohumol suppressed hepatic Mylip/Idol expression via counteracting liver X receptor (LXR) activation. The molecular docking results predicted that xanthohumol has a high binding affinity to interact with the LXRα ligand-binding domain, which may result in attenuation of LXRα-induced Mylip/Idol expression. Finally, we demonstrated that the Mylip/Idol expression and LDLR activity were synergistically changed by a combination of xanthohumol and simvastatin treatment. Our findings indicated that xanthohumol may regulate the LXR-Mylip/Idol axis to modulate hepatic LDLR abundance and activity.
Collapse
Affiliation(s)
- Shih-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| | - Pei-Yi Chen
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital , Hualien 970, Taiwan
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University , Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science , Tainan 717, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| |
Collapse
|
57
|
Idriss AA, Hu Y, Sun Q, Jia L, Jia Y, Omer NA, Abobaker H, Zhao R. Prenatal betaine exposure modulates hypothalamic expression of cholesterol metabolic genes in cockerels through modifications of DNA methylation. Poult Sci 2017; 96:1715-1724. [DOI: 10.3382/ps/pew437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
|
58
|
Scott Kiss R, Sniderman A. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte. J Biomed Res 2017; 31:95-107. [PMID: 28808191 PMCID: PMC5445212 DOI: 10.7555/jbr.31.20160139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The liver directs cholesterol metabolism in the organism. All the major fluxes of cholesterol within the body involve the liver: dietary cholesterol is directed to the liver; cholesterol from peripheral cells goes to the liver; the liver is a major site of cholesterol synthesis for the organism; cholesterol is secreted from the liver within the bile, within apoB lipoproteins and translocated to nascent HDL. The conventional model of cholesterol homeostasis posits that cholesterol from any source enters a common, rapidly exchangeable pool within the cell, which is in equilibrium with a regulatory pool. Increased influx of cholesterol leads rapidly to decreased synthesis of cholesterol. This model was developed based on in vitro studies in the fibroblast and validated only for LDL particles. The challenges the liver must meet in vivo to achieve cholesterol homeostasis are far more complex. Our model posits that the cholesterol derived from three different lipoproteins endosomes has three different fates: LDL-derived cholesterol is largely recycled within VLDL with most of the cholesterol shunted through the hepatocyte without entering the exchangeable pool of cholesterol; high density lipoprotein-derived CE is transcytosed into bile; and chylomicron remnant-derived cholesterol primarily enters the regulatory pool within the hepatocyte. These endosomal channels represent distinct physiological pathways and hepatic homeostasis represents the net result of the outcomes of these distinct channels. Our model takes into account the distinct physiological challenges the hepatocyte must meet, underlie the pathophysiology of many of the apoB dyslipoproteinemias and account for the sustained effectiveness of therapeutic agents such as statins.
Collapse
Affiliation(s)
- Robert Scott Kiss
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Allan Sniderman
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada.,Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
59
|
Mode-of-action evaluation for the effect of trans fatty acids on low-density lipoprotein cholesterol. Food Chem Toxicol 2016; 98:282-294. [DOI: 10.1016/j.fct.2016.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/06/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023]
|
60
|
Maternal Betaine Supplementation throughout Gestation and Lactation Modifies Hepatic Cholesterol Metabolic Genes in Weaning Piglets via AMPK/LXR-Mediated Pathway and Histone Modification. Nutrients 2016; 8:nu8100646. [PMID: 27763549 PMCID: PMC5084033 DOI: 10.3390/nu8100646] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/20/2016] [Accepted: 10/02/2016] [Indexed: 11/16/2022] Open
Abstract
Betaine serves as an animal and human nutrient which has been heavily investigated in glucose and lipid metabolic regulation, yet the underlying mechanisms are still elusive. In this study, feeding sows with betaine-supplemented diets during pregnancy and lactation increased cholesterol content and low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SR-BI) gene expression, but decreasing bile acids content and cholesterol-7a-hydroxylase (CYP7a1) expression in the liver of weaning piglets. This was associated with the significantly elevated serum betaine and methionine levels and hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) content. Concurrently, the hepatic nuclear transcription factor liver X receptor LXR was downregulated along with activated signal protein AMP-activated protein kinase (AMPK). Moreover, a chromatin immunoprecipitation assay showed lower LXR binding on CYP7a1 gene promoter and more enriched activation histone marker H3K4me3 on LDLR and SR-BI promoters. These results suggest that gestational and lactational betaine supplementation modulates hepatic gene expression involved in cholesterol metabolism via an AMPK/LXR pathway and histone modification in the weaning offspring.
Collapse
|
61
|
LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis. Blood 2016; 128:2694-2707. [PMID: 27702801 DOI: 10.1182/blood-2016-06-724807] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.
Collapse
|
62
|
Intracellular cholesterol transport proteins: roles in health and disease. Clin Sci (Lond) 2016; 130:1843-59. [DOI: 10.1042/cs20160339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
Effective cholesterol homoeostasis is essential in maintaining cellular function, and this is achieved by a network of lipid-responsive nuclear transcription factors, and enzymes, receptors and transporters subject to post-transcriptional and post-translational regulation, whereas loss of these elegant, tightly regulated homoeostatic responses is integral to disease pathologies. Recent data suggest that sterol-binding sensors, exchangers and transporters contribute to regulation of cellular cholesterol homoeostasis and that genetic overexpression or deletion, or mutations, in a number of these proteins are linked with diseases, including atherosclerosis, dyslipidaemia, diabetes, congenital lipoid adrenal hyperplasia, cancer, autosomal dominant hearing loss and male infertility. This review focuses on current evidence exploring the function of members of the ‘START’ (steroidogenic acute regulatory protein-related lipid transfer) and ‘ORP’ (oxysterol-binding protein-related proteins) families of sterol-binding proteins in sterol homoeostasis in eukaryotic cells, and the evidence that they represent valid therapeutic targets to alleviate human disease.
Collapse
|
63
|
Chronic Moderate Alcohol Intakes Accelerate SR-B1 Mediated Reverse Cholesterol Transport. Sci Rep 2016; 6:33032. [PMID: 27618957 PMCID: PMC5020497 DOI: 10.1038/srep33032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 11/17/2022] Open
Abstract
Cholesterol is essential for all animal life. However, a high level of cholesterol in the body is strongly associated with the progression of various severe diseases. In our study, the potential involvement of alcohol in the regulation of high density lipoprotein (HDL) receptor scavenger receptor class B and type I (SR-B1)-mediated reverse cholesterol transport was investigated. We separated male C57BL/6 mice into four diets: control, alcohol, Control + HC and alcohol + HC. The SR-B1 level and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate- high- density lipoprotein (DiI-HDL) uptake were also measured in AML12 cells and HL7702 cells treated with alcohol. The control + HC diet led to increased hepatic triglyceride and cholesterol levels while alcohol + HC led no significant change. Compared with that of the control group, the SR-B1 mRNA level was elevated by 27.1% (P < 0.05), 123.8% (P < 0.001) and 343.6% (P < 0.001) in the alcohol, control + HC and alcohol + HC groups, respectively. In AML12 and HL7702 cells, SR-B1 level and DiI-HDL uptake were repressed by SR-B1 siRNA or GW9662. However, these effects were reversed through alcohol treatment. These data suggest that a moderate amount of alcohol plays a novel role in reverse cholesterol transport, mainly mediated by PPARγ and SR-B1.
Collapse
|
64
|
Combined Effects of Rosuvastatin and Exercise on Gene Expression of Key Molecules Involved in Cholesterol Metabolism in Ovariectomized Rats. PLoS One 2016; 11:e0159550. [PMID: 27442011 PMCID: PMC4956224 DOI: 10.1371/journal.pone.0159550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day). Six groups were formed: Sham-Sed treated with saline (Sal) or Ros (Sham-Sed-Sal; Sham-Sed-Ros), Ovx-Sed treated with Sal or Ros (Ovx-Sed-Sal; Ovx-Sed-Ros), Ovx trained treated with Sal or Ros (Ovx-Tr-Sal; Ovx-Tr-Ros). Ovx-Sed-Sal rats depicted higher (P < 0.05) body weight, plasma total cholesterol (TC) and LDL-C, and liver TC content compared to Sham-Sed-Sal rats. In contrast, mRNA levels of liver PCSK9, LDLR, LRP-1 as well as plasma PCSK9 concentrations and protein levels of LRP-1 were reduced (P < 0.01) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. However, protein levels of LDLR increased (P < 0.05) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. Treatment of Ovx rats with Ros increased (P < 0.05) mRNA and protein levels of LRP-1 and PCSK9 but not mRNA levels of LDLR, while its protein abundance was reduced at the level of Sham rats. As a result, plasma LDL-C was not reduced. Exercise alone did not affect the expression of any of these markers in Ovx rats. Overall, Ros treatment corrected Ovx-induced decrease in gene expression of markers of cholesterol metabolism in liver of Ovx rats, but without reducing plasma LDL-C concentrations. Increased plasma PCSK9 levels could be responsible for the reduction of liver LDLR protein abundance and the absence of reduction of plasma LDL-C after Ros treatment.
Collapse
|
65
|
Khetarpal SA, Millar JS. Lnc-ing Common Polymorphisms to Statin Responsiveness at the MYLIP Locus. CIRCULATION. CARDIOVASCULAR GENETICS 2016; 9:206-209. [PMID: 27329651 DOI: 10.1161/circgenetics.116.001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Sumeet A Khetarpal
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John S Millar
- Departments of Medicine and Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
66
|
Courtney R, Landreth GE. LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol Metab 2016; 27:404-414. [PMID: 27113081 PMCID: PMC4986614 DOI: 10.1016/j.tem.2016.03.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/07/2023]
Abstract
Liver X receptors (LXRs) are master regulators of cholesterol homeostasis and inflammation in the central nervous system (CNS). The brain, which contains a disproportionately large amount of the body's total cholesterol (∼25%), requires a complex and delicately balanced cholesterol metabolism to maintain neuronal function. Dysregulation of cholesterol metabolism has been implicated in numerous neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Due to their cholesterol-sensing and anti-inflammatory activities, LXRs are positioned centrally in the everyday maintenance of CNS function. This review focuses on recent research into the role of LXRs in the CNS during normal development and homeostasis and in disease states.
Collapse
Affiliation(s)
- Rebecca Courtney
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary E Landreth
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
67
|
|
68
|
Vaziri ND. Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 2016; 90:41-52. [PMID: 27165836 DOI: 10.1016/j.kint.2016.02.026] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/02/2016] [Accepted: 02/11/2016] [Indexed: 12/17/2022]
Abstract
Nephrotic syndrome results in hyperlipidemia and profound alterations in lipid and lipoprotein metabolism. Serum cholesterol, triglycerides, apolipoprotein B (apoB)-containing lipoproteins (very low-density lipoprotein [VLDL], immediate-density lipoprotein [IDL], and low-density lipoprotein [LDL]), lipoprotein(a) (Lp[a]), and the total cholesterol/high-density lipoprotein (HDL) cholesterol ratio are increased in nephrotic syndrome. This is accompanied by significant changes in the composition of various lipoproteins including their cholesterol-to-triglyceride, free cholesterol-to-cholesterol ester, and phospholipid-to-protein ratios. These abnormalities are mediated by changes in the expression and activities of the key proteins involved in the biosynthesis, transport, remodeling, and catabolism of lipids and lipoproteins including apoproteins A, B, C, and E; 3-hydroxy-3-methylglutaryl-coenzyme A reductase; fatty acid synthase; LDL receptor; lecithin cholesteryl ester acyltransferase; acyl coenzyme A cholesterol acyltransferase; HDL docking receptor (scavenger receptor class B, type 1 [SR-B1]); HDL endocytic receptor; lipoprotein lipase; and hepatic lipase, among others. The disorders of lipid and lipoprotein metabolism in nephrotic syndrome contribute to the development and progression of cardiovascular and kidney disease. In addition, by limiting delivery of lipid fuel to the muscles for generation of energy and to the adipose tissues for storage of energy, changes in lipid metabolism contribute to the reduction of body mass and impaired exercise capacity. This article provides an overview of the mechanisms, consequences, and treatment of lipid disorders in nephrotic syndrome.
Collapse
Affiliation(s)
- Nosratola D Vaziri
- Division of Nephrology and Hypertension, Departments of Medicine, Physiology, and Biophysics, University of California, Irvine, Irvine, California.
| |
Collapse
|
69
|
Baek AE, Nelson ER. The Contribution of Cholesterol and Its Metabolites to the Pathophysiology of Breast Cancer. Discov Oncol 2016; 7:219-28. [PMID: 27020054 DOI: 10.1007/s12672-016-0262-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
As the most common cancer in women, one in eight will develop invasive breast cancer over their lifetime making it the second most common cause of cancer-related death among women. Of the many known risk factors for developing breast cancer, obesity stands out as prominent and modifiable. Interestingly, elevated cholesterol is highly associated with obesity and has emerged as an independent risk factor for breast cancer onset and recurrence. This indicates that cholesterol also contributes to the breast cancer pathogenicity of obesity. This review highlights our current understanding of the mechanisms by which cholesterol impacts breast cancer. Key preclinical studies have been highlighted, including the discussion of homeostatic control of cholesterol levels, signaling by cholesterol metabolites through the estrogen receptors, cholesterol formation of lipid rafts and subsequent signaling, and the potential roles of cholesterol in creating a pro-inflammatory tumor microenvironment. Future directions and avenues for therapeutic exploitation are also considered.
Collapse
Affiliation(s)
- Amy E Baek
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S. Goodwin Ave (MC-114), Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S. Goodwin Ave (MC-114), Urbana, IL, 61801, USA. .,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
70
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
71
|
Hu HJ, Luo XG, Dong QQ, Mu A, Shi GL, Wang QT, Chen XY, Zhou H, Zhang TC, Pan LW. Ethanol extract of Zhongtian hawthorn lowers serum cholesterol in mice by inhibiting transcription of 3-hydroxy-3-methylglutaryl-CoA reductase via nuclear factor-kappa B signal pathway. Exp Biol Med (Maywood) 2016; 241:667-74. [PMID: 26825354 DOI: 10.1177/1535370215627032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/15/2015] [Indexed: 12/26/2022] Open
Abstract
Hawthorn is a berry-like fruit from the species of Crataegus. In China, it has another more famous name, Shan-Zha, which has been used to improve digestion as a traditional Chinese medicine or food for thousands of years. Moreover, during the last decades, hawthorn has received more attention because of its potential to treat cardiovascular diseases. However, currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included as Shan-Zha in the Chinese Pharmacopoeia. In this study, our results showed that the ethanol extract of Zhongtian hawthorn, a novel grafted cultivar of C. cuneata (wild Shan-Zha), could markedly reduce body weight and levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, and liver cholesterol of hyperlipidemia mice. It could suppress the stimulation effect of high-fat diet on the transcription of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and p65, and counteract the downregulation of CYP7A1 and LDLR. In addition, the results of luciferase reporter assay and Western blot showed that the transcriptional activity of HMGCR promoter was inhibited by Zhongtian hawthorn ethanol extract in a dose-dependent manner, while overexpression of p65 could reverse this transcriptional repression effect. These results suggested that Zhongtian hawthorn could provide health benefits by counteracting the high-fat diet-induced hypercholesteolemic and hyperlipidemic effects in vivo, and the mechanism underlying this event was mainly dependent on the suppressive effect of Zhongtian hawthorn ethanol extract on the transcription of HMGCR via nuclear factor-kappa B (NF-κB) signal pathway. Therefore, this novel cultivar of hawthorn cultivar which has much bigger fruits, early bearing, high yield, cold resistance, and drought resistance, might be considered as a good alternative to Shan-Zha and has great value in the food and medicine industry. In addition, to our best knowledge, this is also the first report that the extract of Crataegus could suppress the transcription of HMGCR via NF-κB signal pathway.
Collapse
Affiliation(s)
- Hai-Jie Hu
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xue-Gang Luo
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qing-Qing Dong
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Ai Mu
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Guo-Long Shi
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Qiu-Tong Wang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiao-Ying Chen
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hao Zhou
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Tong-Cun Zhang
- Key Lab of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, P. R. China Tianjin Key Lab of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Li-Wen Pan
- Hezhou University, Hezhou 542800, P. R. China
| |
Collapse
|
72
|
Ibrahim S, Somanathan S, Billheimer J, Wilson JM, Rader DJ. Stable liver-specific expression of human IDOL in humanized mice raises plasma cholesterol. Cardiovasc Res 2016; 110:23-9. [PMID: 26786161 DOI: 10.1093/cvr/cvw010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/15/2015] [Indexed: 02/01/2023] Open
Abstract
AIMS IDOL (inducible degrader of the low-density lipoprotein receptor, LDLR) is an E3 ubiquitin ligase that promotes the ubiquitination and degradation of the LDLR. IDOL is a potential therapeutic target for the development of a novel class of low-density lipoprotein cholesterol (LDL-C)-lowering therapies. In an attempt to develop a mouse model for testing IDOL inhibitors, we examined the effects of adeno-associated virus (AAV)-mediated stable expression of human IDOL in the livers of mice 'humanized' with regard to lipoprotein metabolism. METHODS AND RESULTS Using a liver-specific AAV serotype 8 (AAV8)-mediated delivery, AAV-hIDOL produced a dose-dependent increase in LDL-C levels and a decrease in liver LDLR protein. Furthermore, we expressed hIDOL in a 'humanized' mouse model of heterozygous familial hypercholesterolaemia (LDLR(+/-)/Apobec1(-/-)/hApoB-Tg, LAhB). In this model, total cholesterol (TC) and LDL-C levels were increased by ∼60% starting from 1 week and were sustainable for at least 3 weeks post-injection. Finally, we demonstrate that the effects caused by hIDOL expression are LDLR- dependent given the unchanged plasma lipids in LAhB mice lacking LDLR. CONCLUSION In conclusion, our study demonstrates a dose-dependent physiological effect of human IDOL on LDL metabolism in mice. This provides a potential model for preclinical testing of IDOL inhibitors for reduction of LDL-C levels.
Collapse
Affiliation(s)
- Salam Ibrahim
- Department of Genetics, Division of Translational Medicine and Human Genetics of the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Suryanarayan Somanathan
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Jeffrey Billheimer
- Department of Genetics, Division of Translational Medicine and Human Genetics of the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - James M Wilson
- Gene Therapy Program, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Division of Translational Medicine and Human Genetics of the Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
73
|
Brautbar A, Leary E, Rasmussen K, Wilson DP, Steiner RD, Virani S. Genetics of familial hypercholesterolemia. Curr Atheroscler Rep 2015; 17:491. [PMID: 25712136 DOI: 10.1007/s11883-015-0491-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200-500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics.
Collapse
Affiliation(s)
- Ariel Brautbar
- Division of Genetics, Cook Children's Medical Center, Fort Worth, TX, USA,
| | | | | | | | | | | |
Collapse
|
74
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW To summarize recent findings from genome-wide association studies (GWAS), whole-exome sequencing of patients with familial hypercholesterolemia and 'exome chip' studies pointing to novel genes in LDL metabolism. RECENT FINDINGS The genetic loci for ATP-binding cassette transporters G5 and G8, Niemann-Pick C1-Like protein 1, sortilin-1, ABO blood-group glycosyltransferases, myosin regulatory light chain-interacting protein and cholesterol 7α-hydroxylase have all consistently been associated with LDL cholesterol levels and/or coronary artery disease in GWAS. Whole-exome sequencing and 'exome chip' studies have additionally suggested several novel genes in LDL metabolism including insulin-induced gene 2, signal transducing adaptor family member 1, lysosomal acid lipase A, patatin-like phospholipase domain-containing protein 5 and transmembrane 6 superfamily member 2. Most of these findings still require independent replications and/or functional studies to confirm the exact role in LDL metabolism and the clinical implications for human health. SUMMARY GWAS, exome sequencing studies, and recently 'exome chip' studies have suggested several novel genes with effects on LDL cholesterol. Novel genes in LDL metabolism will improve our understanding of mechanisms in LDL metabolism, and may lead to the identification of new drug targets to reduce LDL cholesterol levels.
Collapse
Affiliation(s)
- Mette Christoffersen
- aDepartment of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital bFaculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
76
|
IDOL N342S Variant, Atherosclerosis Progression and Cardiovascular Disorders in the Italian General Population. PLoS One 2015; 10:e0122414. [PMID: 25927920 PMCID: PMC4415795 DOI: 10.1371/journal.pone.0122414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/20/2015] [Indexed: 11/19/2022] Open
Abstract
Inducible degrader of the low density lipoprotein receptor (IDOL), is an E3 ubiquitin ligase that negatively modulates low density lipoprotein receptor (LDL-R) expression. Genome-wide association studies (GWAS) indicated that genetic variants in IDOL gene contributes to variation in LDL-C plasma levels and the detailed analysis of a specific locus resulted in the identification of the functional common single nucleotide polymorphism (SNP) rs9370867 (c.G1025A, p.N342S) associates with increased LDL-R degradation and increased LDL-C levels. These findings, however, were not confirmed in two other independent cohorts and no data about the impact of this variant on atherosclerosis progression and cardiovascular risk are available. Aim of this study was to investigate the association between a functional variant in IDOL and atherosclerosis progression in an Italian general population. 1384 subjects enrolled in the PLIC study (Progression of Lesions in the Intima of Carotid) were genotyped by Q-PCR allelic discrimination and the association with anthropometric parameters, plasma lipids and the carotid intima media thickness (cIMT) and the impact on cardiovascular disease (CVD) incidence were investigated. The N342S variant was not associated with changes of the plasma lipid profile among GG, AG or AA carriers, including total cholesterol (249±21, 249±19 and 248±21 mg/dl respectively), LDL-C (158±25, 161±22 and 160±23 mg/dL), cIMT (0.74±0.14, 0.75±0.17 and 0.77±0.15 mm) and CVD incidence. In agreement, the expression of LDLR and the uptake of LDL was similar in macrophages derived from GG and AA carriers. Taken together our findings indicate that the N342S variant does not impact plasma lipid profile and is not associated with atherosclerosis progression and CVD in the general population, suggesting that other variants in the IDOL gene might be functionally linked with cholesterol metabolism.
Collapse
|
77
|
Buckley ML, Ramji DP. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1498-510. [PMID: 25887161 DOI: 10.1016/j.bbadis.2015.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the underlying cause of myocardial infarction and thrombotic cerebrovascular events, is responsible for the majority of deaths in westernized societies. Mortality from this disease is also increasing at a marked rate in developing countries due to the acquisition of a westernized lifestyle accompanied with elevated rates of obesity and diabetes. Atherosclerosis is recognized as a chronic inflammatory disorder associated with lipid accumulation and the development of fibrotic plaques within the walls of medium and large arteries. A range of immune cells, such as macrophages and T-lymphocytes, through the action of various cytokines, such as interleukins-1 and -33, transforming growth factor-β and interferon-γ, orchestrates the inflammatory response in this disease. The disease is also characterized by marked dysfunction in lipid homeostasis and signaling pathways that control the inflammatory response. This review will discuss the molecular basis of atherosclerosis with particular emphasis on the roles of the immune cells and cytokines along with the dysfunctional lipid homeostasis and cell signaling associated with this disease.
Collapse
Affiliation(s)
- Melanie L Buckley
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
78
|
|
79
|
Mani S, Li H, Yang G, Wu L, Wang R. Deficiency of cystathionine gamma-lyase and hepatic cholesterol accumulation during mouse fatty liver development. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-014-0722-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
80
|
Fellin R, Arca M, Zuliani G, Calandra S, Bertolini S. The history of Autosomal Recessive Hypercholesterolemia (ARH). From clinical observations to gene identification. Gene 2015; 555:23-32. [PMID: 25225128 DOI: 10.1016/j.gene.2014.09.020] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/01/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
The most frequent form of monogenic hypercholesterolemia, also known as Familial Hypercholesterolemia (FH), is characterized by plasma accumulation of cholesterol transported in Low Density Lipoproteins (LDLs). FH has a co-dominant transmission with a gene-dosage effect. FH heterozygotes have levels of plasma LDL-cholesterol (LDL-C) twice normal and present xanthomas and coronary heart disease (CHD) in adulthood. In rare FH homozygotes plasma LDL-C level is four times normal, while xanthomas and CHD are present from infancy. Most FH patients are carriers of mutations of the LDL receptor (LDLR); a minority of them carry either mutations in the Apolipoprotein B (ApoB), the protein constituent of LDLs which is the ligand for LDLR, or gain of function mutations of PCSK9, the protein responsible for the intracellular degradation of the LDLR. From 1970 to the mid 90s some publications described children with the clinical features of homozygous FH, who were born from normocholesterolemic parents, strongly suggesting a recessive transmission of FH. In these patients the involvement of LDLR and APOB genes was excluded. Interestingly, several patients were identified in the island of Sardinia (Italy), whose population has a peculiar genetic background due to geographical isolation. In this review, starting from the early descriptions of patients with putative recessive hypercholesterolemia, we highlight the milestones that led to the identification of a novel gene involved in LDL metabolism and the characterization of its encoded protein. The latter turned out to be an adaptor protein required for the LDLR-mediated endocytosis of LDLs in hepatocytes. The loss of function of this protein is the cause of Autosomal Recessive Hypercholesterolemia (ARH).
Collapse
Affiliation(s)
- Renato Fellin
- Department of Clinical & Experimental Medicine, Section of Internal Medicine, Gerontology & Nutrition, University of Ferrara, Via A. Moro, 8, I-44124 Ferrara, Italy
| | - Marcello Arca
- Department of Internal Medicine and Allied Sciences, Atherosclerosis Center, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy
| | - Giovanni Zuliani
- Department of Clinical & Experimental Medicine, Section of Internal Medicine, Gerontology & Nutrition, University of Ferrara, Via A. Moro, 8, I-44124 Ferrara, Italy
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Via Campi 287, I-41125 Modena, Italy.
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Viale Bendetto XV, I-16132 Genova, Italy
| |
Collapse
|
81
|
Ali K, Abo-Ali EM, Kabir MD, Riggins B, Nguy S, Li L, Srivastava U, Thinn SMM. A Western-fed diet increases plasma HDL and LDL-cholesterol levels in apoD-/- mice. PLoS One 2014; 9:e115744. [PMID: 25548917 PMCID: PMC4280175 DOI: 10.1371/journal.pone.0115744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 11/27/2014] [Indexed: 01/26/2023] Open
Abstract
Objective Plasma apolipoprotein (apo)D, a ubiquitously expressed protein that binds small hydrophobic ligands, is found mainly on HDL particles. According to studies of human genetics and lipid disorders, plasma apoD levels positively correlate with HDL-cholesterol and apoAI levels. Thus, we tested the hypothesis that apoD was a regulator of HDL metabolism. Methods & Results We compared the plasma lipid and lipoprotein profiles of wild-type (WT) C57BL/6 mice with apoD−/− mice on a C57BL/6 background after receiving a high fat-high cholesterol diet for 12 weeks. ApoD−/− mice had higher HDL-cholesterol levels (61±13-apoD−/− vs. 52±10-WT-males; 37±11-apoD−/− vs. 22±2 WT-female) than WT mice with sex-specific changes in total plasma levels of cholesterol and other lipids. Compared to WT, the HDL of apoD−/− mice showed an increase in large, lipid-rich HDL particles and according to size various quantities and sizes of LDL particles. Plasma levels of lecithin:cholesterol acyltransferase in the control and apoD−/− mice were not different, however, plasma phospholipid transfer protein activity was modestly elevated (+10%) only in male apoD−/− mice. An invivo HDL metabolism experiment with isolated Western-fed apoD−/− HDL particles showed that female apoD−/− mice had a 36% decrease in the fractional catabolic rate of HDL cholesteryl ester. Hepatic SR-BI and LDLR protein levels were significantly decreased; accordingly, LDL-cholesterol and apoB levels were increased in female mice. Conclusion In the context of a high fat-high cholesterol diet, apoD deficiency in female mice is associated with increases in both plasma HDL and LDL-cholesterol levels, reflecting changes in expression of SR-BI and LDL receptors, which may impact diet-induced atherosclerosis.
Collapse
Affiliation(s)
- Kamilah Ali
- The City College of New York, Biology Department, New York, New York, United States of America
- Graduate Center at CUNY, New York, New York, United States of America
- * E-mail:
| | - Ehab M. Abo-Ali
- The City College of New York, Biology Department, New York, New York, United States of America
- Graduate Center at CUNY, New York, New York, United States of America
| | - M. D. Kabir
- The City College of New York, Biology Department, New York, New York, United States of America
| | - Bethany Riggins
- The City College of New York, Biology Department, New York, New York, United States of America
| | - Susanna Nguy
- The City College of New York, Biology Department, New York, New York, United States of America
| | - Lisa Li
- The City College of New York, Biology Department, New York, New York, United States of America
| | - Ujala Srivastava
- The City College of New York, Biology Department, New York, New York, United States of America
| | - Su Mya Mya Thinn
- The City College of New York, Biology Department, New York, New York, United States of America
| |
Collapse
|
82
|
Nelson ER, Chang CY, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab 2014; 25:649-55. [PMID: 25458418 PMCID: PMC4268141 DOI: 10.1016/j.tem.2014.10.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 01/05/2023]
Abstract
Cholesterol is a risk factor for breast cancer although the mechanisms by which this occurs are not well understood. One hypothesis is that dyslipidemia results in increased cholesterol content in cell membranes, thus impacting upon membrane fluidity and subsequent signaling. In addition, studies demonstrate that the metabolite, 27-hydroxycholesterol (27HC), can function as an estrogen, increasing the proliferation of estrogen receptor (ER)-positive breast cancer cells. This was unexpected because 27HC and other oxysterols activate the liver X receptors (LXR), resulting in a reduction of intracellular cholesterol. Resolution of this paradox will require dissection of the molecular mechanisms by which ER and LXR converge in breast cancer cells. Regardless, the observation that 27HC influences breast cancer provides a rationale for strategies that target cholesterol metabolism.
Collapse
Affiliation(s)
- Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Ching-yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
83
|
Kim GH, Oh GS, Yoon J, Lee GG, Lee KU, Kim SW. Hepatic TRAP80 selectively regulates lipogenic activity of liver X receptor. J Clin Invest 2014; 125:183-93. [PMID: 25437875 DOI: 10.1172/jci73615] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/30/2014] [Indexed: 01/08/2023] Open
Abstract
Inflammation in response to excess low-density lipoproteins in the blood is an important driver of atherosclerosis development. Due to its ability to enhance ATP-binding cassette A1-dependent (ABCA1-dependent) reverse cholesterol transport (RCT), liver X receptor (LXR) is an attractive target for the treatment of atherosclerosis. However, LXR also upregulates the expression of sterol regulatory element-binding protein 1c (SREBP-1c), leading to increased hepatic triglyceride synthesis, an independent risk factor for atherosclerosis. Here, we developed a strategy to separate the favorable and unfavorable effects of LXR by exploiting the specificity of the coactivator thyroid hormone receptor-associated protein 80 (TRAP80). Using human hepatic cell lines, we determined that TRAP80 selectively promotes the transcription of SREBP-1c but not ABCA1. Adenovirus-mediated expression of shTRAP80 inhibited LXR-dependent SREBP-1c expression and RNA polymerase II recruitment to the LXR responsive element (LXRE) of SREBP-1c, but not to the LXRE of ABCA1. In murine models, liver-specific knockdown of TRAP80 ameliorated liver steatosis and hypertriglyceridemia induced by LXR activation and maintained RCT stimulation by the LXR ligand. Together, these data indicate that TRAP80 is a selective regulator of hepatic lipogenesis and is required for LXR-dependent SREBP-1c activation. Moreover, targeting the interaction between TRAP80 and LXR should facilitate the development of potential LXR agonists that effectively prevent atherosclerosis.
Collapse
|
84
|
McDonnell DP, Chang CY, Nelson ER. The estrogen receptor as a mediator of the pathological actions of cholesterol in breast cancer. Climacteric 2014; 17 Suppl 2:60-5. [PMID: 25320023 DOI: 10.3109/13697137.2014.966949] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite increased survivorship among patients, breast cancer remains the most common cancer among women and is the second leading cause of cancer death in women. The magnitude of this problem provides a strong impetus for new chemopreventative strategies and/or lifestyle changes that reduce cancer incidence. It is of significance, therefore, that several studies positively correlate obesity to the development of breast cancer. Importantly, obesity is also highly associated with elevated cholesterol, and cholesterol itself is a risk factor for breast cancer. Furthermore, patients taking statins demonstrate a lower breast cancer incidence and decreased recurrence. The recent observation that 27-hydroxycholesterol (27HC) is produced in a stoichiometric manner from cholesterol, together with our recent demonstration that it exerts partial agonist activity on both the estrogen and liver X receptors, suggested a potential mechanistic link between hyper-cholesterolemia and breast cancer incidence. Using genetic and pharmacological approaches, we have recently shown that elevation of circulating 27HC significantly increases tumor growth and metastasis in murine models of breast cancer. Further, we have demonstrated in appropriate animal models that the impact of high-fat diet on tumor pathogenesis can be mitigated by statins or by small molecule inhibitors of CYP27A1. These findings suggest that pharmacological or dietary modifications that lower total cholesterol, and by inference 27HC, are likely to reduce the impact of obesity/metabolic syndrome on breast cancer incidence.
Collapse
Affiliation(s)
- D P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine , Durham, NC , USA
| | | | | |
Collapse
|
85
|
Zheng W, Mast N, Saadane A, Pikuleva IA. Pathways of cholesterol homeostasis in mouse retina responsive to dietary and pharmacologic treatments. J Lipid Res 2014; 56:81-97. [PMID: 25293590 DOI: 10.1194/jlr.m053439] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Effects of serum cholesterol on cholesterol content in the retina are currently unknown. It is also unclear how cholesterol levels are controlled in the retina. High-cholesterol diet and oral administrations of simvastatin were used to modulate serum cholesterol in mice. These treatments only modestly affected cholesterol content in the retina and had no significant effect on retinal expression of the major cholesterol- and vision-related genes; the sterol-regulatory element binding protein pathway of transcriptional regulation does not seem to be operative in the retina under the experimental conditions used. Evidence is obtained that posttranslational mechanisms play a role in the control of retinal cholesterol. Retinal genes were only upregulated by oral administrations of TO901317 activating liver X receptors. Three of the upregulated genes could be of particular importance (apoD, Idol, and Rpe65) and have not yet been considered in the context of cholesterol homeostasis in the retina. Collectively, the data obtained identify specific features of retinal cholesterol maintenance and suggest additional therapies for age-related macular degeneration, a blinding disease characterized by cholesterol and lipid accumulations in chorioretinal tissues.
Collapse
Affiliation(s)
- Wenchao Zheng
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Aicha Saadane
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
86
|
McDonnell DP, Park S, Goulet MT, Jasper J, Wardell SE, Chang CY, Norris JD, Guyton JR, Nelson ER. Obesity, cholesterol metabolism, and breast cancer pathogenesis. Cancer Res 2014; 74:4976-82. [PMID: 25060521 PMCID: PMC4167494 DOI: 10.1158/0008-5472.can-14-1756] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition, significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor in macrophages and possibly other cells, is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. Cancer Res; 74(18); 4976-82. ©2014 AACR.
Collapse
Affiliation(s)
- Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina.
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Matthew T Goulet
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Jeff Jasper
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - John R Guyton
- Division of Endocrinology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Illinois
| |
Collapse
|
87
|
Somanathan S, Jacobs F, Wang Q, Hanlon AL, Wilson JM, Rader DJ. AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res 2014; 115:591-9. [PMID: 25023731 DOI: 10.1161/circresaha.115.304008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
RATIONALE Familial hypercholesterolemia is a genetic disorder that arises because of loss-of-function mutations in the low-density lipoprotein receptor (LDLR) and homozygous familial hypercholesterolemia is a candidate for gene therapy using adeno-associated viral vectors. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL) negatively regulate LDLR protein and could dampen adeno-associated viral vector encoded LDLR expression. OBJECTIVE We sought to create vectors expressing gain-of-function human LDLR variants that are resistant to degradation by human PCSK9 (hPCSK9) and IDOL and thereby enhance hepatic LDLR protein abundance and plasma LDL cholesterol reduction. METHODS AND RESULTS Amino acid substitutions were introduced into the coding sequence of human LDLR cDNA to reduce interaction with hPCSK9 and human IDOL. A panel of mutant human LDLRs was initially screened in vitro for escape from PCSK9. The variant human LDLR-L318D was further evaluated using a mouse model of homozygous familial hypercholesterolemia lacking endogenous LDLR and apolipoprotein B mRNA editing enzyme catalytic, APOBEC-1 (double knockout). Administration of wild-type human LDLR to double knockout mice, expressing hPCSK9, led to diminished LDLR activity. However, LDLR-L318D was resistant to hPCSK9-mediated degradation and effectively reduced cholesterol levels. Similarly, the LDLR-K809R\C818A construct avoided human IDOL regulation and achieved stable reductions in serum cholesterol. An adeno-associated viral vector serotype 8.LDLR-L318D\K809R\C818A vector that carried all 3 amino acid substitutions conferred partial resistance to both hPCSK9- and human IDOL-mediated degradation. CONCLUSIONS Amino acid substitutions in the human LDLR confer partial resistance to PCSK9 and IDOL regulatory pathways with improved reduction in cholesterol levels and improve on a potential gene therapeutic approach to treat homozygous familial hypercholesterolemia subjects.
Collapse
Affiliation(s)
- Suryanarayan Somanathan
- From the Gene Therapy Program, Department of Pathology and Laboratory Medicine (S.S., F.J., Q.W., J.M.W.), Department of Nursing Research, School of Nursing (A.L.H.), and Departments of Medicine and Genetics and Cardiovascular Institute (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Discovery Sciences, Janssen, Pharmaceutical companies of Johnson and Johnson, Beerse, Belgium (F.J.)
| | - Frank Jacobs
- From the Gene Therapy Program, Department of Pathology and Laboratory Medicine (S.S., F.J., Q.W., J.M.W.), Department of Nursing Research, School of Nursing (A.L.H.), and Departments of Medicine and Genetics and Cardiovascular Institute (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Discovery Sciences, Janssen, Pharmaceutical companies of Johnson and Johnson, Beerse, Belgium (F.J.)
| | - Qiang Wang
- From the Gene Therapy Program, Department of Pathology and Laboratory Medicine (S.S., F.J., Q.W., J.M.W.), Department of Nursing Research, School of Nursing (A.L.H.), and Departments of Medicine and Genetics and Cardiovascular Institute (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Discovery Sciences, Janssen, Pharmaceutical companies of Johnson and Johnson, Beerse, Belgium (F.J.)
| | - Alexandra L Hanlon
- From the Gene Therapy Program, Department of Pathology and Laboratory Medicine (S.S., F.J., Q.W., J.M.W.), Department of Nursing Research, School of Nursing (A.L.H.), and Departments of Medicine and Genetics and Cardiovascular Institute (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Discovery Sciences, Janssen, Pharmaceutical companies of Johnson and Johnson, Beerse, Belgium (F.J.)
| | - James M Wilson
- From the Gene Therapy Program, Department of Pathology and Laboratory Medicine (S.S., F.J., Q.W., J.M.W.), Department of Nursing Research, School of Nursing (A.L.H.), and Departments of Medicine and Genetics and Cardiovascular Institute (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Discovery Sciences, Janssen, Pharmaceutical companies of Johnson and Johnson, Beerse, Belgium (F.J.).
| | - Daniel J Rader
- From the Gene Therapy Program, Department of Pathology and Laboratory Medicine (S.S., F.J., Q.W., J.M.W.), Department of Nursing Research, School of Nursing (A.L.H.), and Departments of Medicine and Genetics and Cardiovascular Institute (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Discovery Sciences, Janssen, Pharmaceutical companies of Johnson and Johnson, Beerse, Belgium (F.J.)
| |
Collapse
|
88
|
Cagnone G, Sirard MA. The impact of exposure to serum lipids during in vitro culture on the transcriptome of bovine blastocysts. Theriogenology 2013; 81:712-22.e1-3. [PMID: 24439163 DOI: 10.1016/j.theriogenology.2013.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/27/2013] [Accepted: 12/11/2013] [Indexed: 10/25/2022]
Abstract
In vitro culture has a detrimental impact on early embryonic development, and serum addition to IVC is recognized to compromise blastocyst quality. Particularly, serum fatty acids affect embryonic lipid composition and reduce cryopreservation survival. To understand the molecular pathways of serum-induced embryonic stress, this study examined the early development of bovine embryos produced in different protein- or lipid-supplemented culture media: BSA alone (control), BSA + serum lipid fraction (SELF), delipidated serum and total serum. These protein-lipid treatments were applied from the eight to 16 cell stages to the blastocyst stage. As planned, SELF treatment increased the fatty acid concentration in the medium compared with control medium but did not induce embryo toxicity. However, microarray comparison between blastocysts cultured in BSA without or with SELF revealed differential transcriptomic profile associated with ceramide-induced oxidative stress and inflammation. Moreover, the SELF treatment had a significant impact on genes involved in cholesterol metabolism (LDLR, HMGCS1), with the potential upstream control of the transcription factors SREBP and PPARA, two major regulators of cholesterol metabolism. In addition, the expression of pluripotence-related genes (APEX, CLDN6) was downregulated in blastocysts subjected to either SELF or total serum. Taken together, these results illustrate how the early embryonic transcriptome responds to increased lipid exposure through an inflammatory and metabolic signature.
Collapse
Affiliation(s)
- Gael Cagnone
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Qc, Canada
| | - Marc-André Sirard
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Qc, Canada.
| |
Collapse
|
89
|
Kappus MS, Murphy AJ, Abramowicz S, Ntonga V, Welch CL, Tall AR, Westerterp M. Activation of liver X receptor decreases atherosclerosis in Ldlr⁻/⁻ mice in the absence of ATP-binding cassette transporters A1 and G1 in myeloid cells. Arterioscler Thromb Vasc Biol 2013; 34:279-84. [PMID: 24311381 DOI: 10.1161/atvbaha.113.302781] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Liver X receptor (LXR) activators decrease atherosclerosis in mice. LXR activators (1) directly upregulate genes involved in reverse cholesterol transport and (2) exert anti-inflammatory effects mediated by transrepression of nuclear factor-κB target genes. We investigated whether myeloid cell deficiency of ATP-binding cassette transporters A1 and G1 (ABCA1/G1), principal targets of LXR that promote macrophage cholesterol efflux and initiate reverse cholesterol transport, would abolish the beneficial effects of LXR activation on atherosclerosis. APPROACH AND RESULTS LXR activator T0901317 substantially reduced inflammatory gene expression in macrophages lacking ABCA1/G1. Ldlr(-/-) mice were transplanted with Abca1(-/-)Abcg1(-/-) or wild-type bone marrow (BM) and fed a Western-type diet for 6 weeks with or without T0901317 supplementation. Abca1/g1 BM deficiency increased atherosclerotic lesion complexity and inflammatory cell infiltration into the adventitia and myocardium. T0901317 markedly decreased lesion area, complexity, and inflammatory cell infiltration in the Abca1(-/-)Abcg1(-/-) BM-transplanted mice. To investigate whether this was because of macrophage Abca1/g1 deficiency, Ldlr(-/-) mice were transplanted with LysmCreAbca1(fl/fl)Abcg1(fl/fl) or Abca1(fl/fl)Abcg1(fl/fl) BM and fed Western-type diet with or without the more specific LXR agonist GW3965 for 12 weeks. GW3965 decreased lesion size in both groups, and the decrease was more prominent in the LysmCreAbca1(fl/fl)Abcg1(fl/fl) group. CONCLUSIONS The results suggest that anti-inflammatory effects of LXR activators are of key importance to their antiatherosclerotic effects in vivo independent of cholesterol efflux pathways mediated by macrophage ABCA1/G1. This has implications for the development of LXR activators that lack adverse effects on lipogenic genes while maintaining the ability to transrepress inflammatory genes.
Collapse
Affiliation(s)
- Mojdeh S Kappus
- From the Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.S.K., A.J.M., S.A., V.N., C.L.W., A.R.T., M.W.); Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY (M.S.K.); and Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, The Netherlands (M.W.)
| | | | | | | | | | | | | |
Collapse
|
90
|
Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol Dial Transplant 2013; 29:538-43. [PMID: 24166456 DOI: 10.1093/ndt/gft439] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) leads to elevation of serum total and LDL cholesterol. This is largely due to impaired LDL clearance, which is caused by hepatic LDL receptor (LDLR) deficiency despite normal LDLR mRNA expression, pointing to a post-transcriptional process. The mechanism(s) by which NS causes LDLR deficiency is not known. By promoting degradation of LDLR, Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and inducible degrader of the LDL receptor (IDOL) play a major role in post-translational regulation of LDLR. We, therefore, tested the hypothesis that LDLR deficiency despite its normal gene expression in NS may be due to upregulation of hepatic PCSK9 and IDOL. METHODS LDLR, IDOL and PCSK9 expressions and nuclear translocation of liver X receptor (LXR) that regulates IDOL expression were determined in the liver of rats with puromycin-induced NS and control (CTL) rats. RESULTS Compared with the CTLs, the NS rats showed marked elevation of serum total and LDL cholesterol and a significant reduction in hepatic LDLR protein expression. This was accompanied by marked upregulation of hepatic PCSK9 and IDOL expressions and heightened LXR activation. CONCLUSIONS LDLR deficiency, hypercholesterolemia and elevated plasma LDL in NS are associated with upregulation of PCSK9 and IDOL. Interventions targeting these pathways may be effective in the management of hypercholesterolemia and the associated cardiovascular and other complications of NS.
Collapse
Affiliation(s)
- Shuman Liu
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, CA, USA
| | | |
Collapse
|
91
|
Dávalos A, Fernández-Hernando C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res 2013; 75:60-72. [PMID: 23435093 PMCID: PMC3825518 DOI: 10.1016/j.phrs.2013.02.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 02/09/2023]
Abstract
There has been strong evolutionary pressure to ensure that an animal cell maintains levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies.
Collapse
|
92
|
Sniderman AD, Qi Y, Ma CIJ, Wang RHL, Naples M, Baker C, Zhang J, Adeli K, Kiss RS. Hepatic cholesterol homeostasis: is the low-density lipoprotein pathway a regulatory or a shunt pathway? Arterioscler Thromb Vasc Biol 2013; 33:2481-90. [PMID: 23990208 DOI: 10.1161/atvbaha.113.301517] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The hypothesis that cholesterol that enters the cell within low-density lipoprotein (LDL) particles rapidly equilibrates with the regulatory pool of intracellular cholesterol and maintains cholesterol homeostasis by reducing cholesterol and LDL receptor synthesis was validated in the fibroblast but not in the hepatocyte. Accordingly, the present studies were designed to compare the effects of cholesterol that enters the hepatocyte within an LDL particle with those of cholesterol that enters via other lipoprotein particles. APPROACH AND RESULTS We measured cholesterol synthesis and esterification in hamster hepatocytes treated with LDL and other lipoprotein particles, including chylomicron remnants and VLDL. Endogenous cholesterol synthesis was not significantly reduced by uptake of LDL, but cholesterol esterification (280%) and acyl CoA:cholesterol acyltransferase 2 expression (870%) were increased. In contrast, cholesterol synthesis was significantly reduced (70% decrease) with other lipoprotein particles. Furthermore, more cholesterol that entered the hepatocyte within LDL particles was secreted within VLDL particles (480%) compared with cholesterol from other sources. CONCLUSIONS Much of the cholesterol that enters the hepatocyte within LDL particles is shunted through the cell and resecreted within VLDL particles without reaching equilibrium with the regulatory pool.
Collapse
Affiliation(s)
- Allan D Sniderman
- From the Department of Medicine, Cardiovascular Research Laboratories, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada (A.D.S., Y.Q., C.J.M., R.H.L.W., R.S.K.); Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada (M.N., C.B., J.Z., K.A.); and Department of Biochemistry and Laboratory Medicine, University of Toronto, Toronto, Ontario, Canada (M.N., C.B., J.Z., K.A.)
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Pietiäinen V, Vassilev B, Blom T, Wang W, Nelson J, Bittman R, Bäck N, Zelcer N, Ikonen E. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. J Cell Sci 2013; 126:3961-71. [PMID: 23813961 DOI: 10.1242/jcs.128132] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.
Collapse
Affiliation(s)
- Vilja Pietiäinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Steffensen KR, Jakobsson T, Gustafsson JÅ. Targeting liver X receptors in inflammation. Expert Opin Ther Targets 2013; 17:977-90. [PMID: 23738533 DOI: 10.1517/14728222.2013.806490] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The two oxysterol receptors, 'liver X receptors (LXRs)' LXRα and LXRβ, are amongst the emerging newer drug targets within the nuclear receptor family and targeting LXRs represents novel strategies needed for prevention and treatment of diseases where current therapeutics is inadequate. AREAS COVERED This review discusses the current understanding of LXR biology with an emphasis on the molecular aspects of LXR signalling establishing their potential as drug targets. Recent advances of their transcriptional mechanisms in inflammatory pathways and their physiological roles in inflammation and immunity are described. EXPERT OPINION The new discoveries of LXR-regulated inflammatory pathways have ignited new promises for LXRs as drug targets. The broad physiological roles of LXRs involve a high risk of unwanted side effects. Recent insights into LXR biology of the brain indicate a highly important role in neuronal development and a clinical trial testing an LXR agonist reported adverse neurological side effects. This suggests that drug development must focus on limiting the range of LXR signalling - possibly achieved through subtype, tissue specific, promoter specific or pathway specific activation of LXRs where a successful candidate drug must be carefully studied for its effect in the central nervous system.
Collapse
Affiliation(s)
- Knut R Steffensen
- Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, S-14183 Stockholm, Sweden.
| | | | | |
Collapse
|
95
|
Zhang X, Wu C, Wu H, Sheng L, Su Y, Zhang X, Luan H, Sun G, Sun X, Tian Y, Ji Y, Guo P, Xu X. Anti-hyperlipidemic effects and potential mechanisms of action of the caffeoylquinic acid-rich Pandanus tectorius fruit extract in hamsters fed a high fat-diet. PLoS One 2013; 8:e61922. [PMID: 23613974 PMCID: PMC3628350 DOI: 10.1371/journal.pone.0061922] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 03/15/2013] [Indexed: 12/20/2022] Open
Abstract
Hyperlipidemia is considered to be one of the greatest risk factors contributing to the prevalence and severity of cardiovascular diseases. In this work, we investigated the anti-hyperlipidemic effect and potential mechanism of action of the Pandanus tectorius fruit extract in hamsters fed a high fat-diet (HFD). The n-butanol fraction of the P. tectorius fruit ethanol extract (PTF-b) was rich in caffeoylquinic acids (CQAs). Administration of PTF-b for 4 weeks effectively decreased retroperitoneal fat and the serum levels of total cholesterol (TC), triglycerides (TG) and low density lipoprotein-cholesterol (LDL-c) and hepatic TC and TG. The lipid signals (fatty acids, and cholesterol) in the liver as determined by nuclear magnetic resonance (NMR) were correspondingly reduced. Realtime quantitative PCR showed that the mRNA levels of PPARα and PPARα-regulated genes such as ACO, CPT1, LPL and HSL were largely enhanced by PTF-b. The transcription of LDLR, CYP7A1, and PPARγ was also upregulated. Treatment with PTF-b significantly stimulated the activation of AMP-activated protein kinase (AMPK) as well as the activity of serum and hepatic lipoprotein lipase (LPL). Together, these results suggest that administration of the PTF-b enriched in CQAs moderates hyperlipidemia and improves the liver lipid profile. These effects may be caused, at least in part, by increasing the expression of PPARα and its downstream genes and by upregulation of LPL and AMPK activities.
Collapse
Affiliation(s)
- Xiaopo Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chongming Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haifeng Wu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Yan Su
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Xue Zhang
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Hong Luan
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Guibo Sun
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaobo Sun
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Tian
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yubin Ji
- Research Centre on Life Sciences and Environment Sciences, Harbin University of Commerce, Harbin, China
| | - Peng Guo
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- * E-mail: (PG); (XX)
| | - Xudong Xu
- Pharmacology and Toxicology Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- * E-mail: (PG); (XX)
| |
Collapse
|
96
|
Pompey S, Zhao Z, Luby-Phelps K, Michaely P. Quantitative fluorescence imaging reveals point of release for lipoproteins during LDLR-dependent uptake. J Lipid Res 2013; 54:744-753. [PMID: 23296879 PMCID: PMC3617948 DOI: 10.1194/jlr.m033548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/21/2012] [Indexed: 11/20/2022] Open
Abstract
The LDL receptor (LDLR) supports efficient uptake of both LDL and VLDL remnants by binding lipoprotein at the cell surface, internalizing lipoprotein through coated pits, and releasing lipoprotein in endocytic compartments before returning to the surface for further rounds of uptake. While many aspects of lipoprotein binding and receptor entry are well understood, it is less clear where, when, and how the LDLR releases lipoprotein. To address these questions, the current study employed quantitative fluorescence imaging to visualize the uptake and endosomal processing of LDL and the VLDL remnant β-VLDL. We find that lipoprotein release is rapid, with most release occurring prior to entry of lipoprotein into early endosomes. Published biochemical studies have identified two mechanisms of lipoprotein release: one that involves the β-propeller module of the LDLR and a second that is independent of this module. Quantitative imaging comparing uptake supported by the normal LDLR or by an LDLR variant incapable of β-propeller-dependent release shows that the β-propeller-independent process is sufficient for release for both lipoproteins but that the β-propeller process accelerates both LDL and β-VLDL release. Together these findings define where, when, and how lipoprotein release occurs and provide a generalizable methodology for visualizing endocytic handling in situ.
Collapse
Affiliation(s)
- Shanica Pompey
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|