51
|
Bar S, Seaton LR, Weissbein U, Eldar-Geva T, Benvenisty N. Global Characterization of X Chromosome Inactivation in Human Pluripotent Stem Cells. Cell Rep 2020; 27:20-29.e3. [PMID: 30943402 DOI: 10.1016/j.celrep.2019.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/15/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023] Open
Abstract
Dosage compensation of sex-chromosome gene expression between male and female mammals is achieved via X chromosome inactivation (XCI) by employing epigenetic modifications to randomly silence one X chromosome during early embryogenesis. Human pluripotent stem cells (hPSCs) were reported to present various states of XCI that differ according to the expression of the long non-coding RNA XIST and the degree of X chromosome silencing. To obtain a comprehensive perspective on XCI in female hPSCs, we performed a large-scale analysis characterizing different XCI parameters in more than 700 RNA high-throughput sequencing samples. Our findings suggest differences in XCI status between most published samples of embryonic stem cells (ESCs) and induced PSCs (iPSCs). While the majority of iPSC lines maintain an inactive X chromosome, ESC lines tend to silence the expression of XIST and upregulate distal chromosomal regions. Our study highlights significant epigenetic heterogeneity within hPSCs, which may bear implications for their use in research and regenerative therapy.
Collapse
Affiliation(s)
- Shiran Bar
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Lev Roz Seaton
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Uri Weissbein
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel
| | - Talia Eldar-Geva
- IVF Unit, Division of Obstetrics and Gynecology, Shaare Zedek Medical Center, Jerusalem, Israel; The Hebrew University School of Medicine, Jerusalem, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
52
|
Burkholder A, Akrobetu D, Pandiri AR, Ton K, Kim S, Labow BI, Nuzzi LC, Firriolo JM, Schneider SS, Fenton SE, Shaw ND. Investigation of the adolescent female breast transcriptome and the impact of obesity. Breast Cancer Res 2020; 22:44. [PMID: 32393308 PMCID: PMC7216667 DOI: 10.1186/s13058-020-01279-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/15/2020] [Indexed: 01/07/2023] Open
Abstract
Background Early life environmental exposures affect breast development and breast cancer risk in adulthood. The breast is particularly vulnerable during puberty when mammary epithelial cells proliferate exponentially. In overweight/obese (OB) women, inflammation increases breast aromatase expression and estrogen synthesis and promotes estrogen-receptor (ER)-positive breast cancer. In contrast, recent epidemiological studies suggest that obesity during childhood decreases future breast cancer risk. Studies on environmental exposures and breast cancer risk have thus far been limited to animal models. Here, we present the first interrogation of the human adolescent breast at the molecular level and investigate how obesity affects the immature breast. Methods We performed RNA-seq in 62 breast tissue samples from adolescent girls/young women (ADOL; mean age 17.8 years) who underwent reduction mammoplasty. Thirty-one subjects were non-overweight/obese (NOB; mean BMI 23.4 kg/m2) and 31 were overweight/obese (OB; BMI 32.1 kg/m2). We also compared our data to published mammary transcriptome datasets from women (mean age 39 years) and young adult mice, rats, and macaques. Results The ADOL breast transcriptome showed limited (30%) overlap with other species, but 88% overlap with adult women for the 500 most highly expressed genes in each dataset; only 43 genes were shared by all groups. In ADOL, there were 120 differentially expressed genes (DEG) in OB compared with NOB samples (padj < 0.05). Based on these DEG, Ingenuity Pathway Analysis (IPA) identified the cytokines CSF1 and IL-10 and the chemokine receptor CCR2 as among the most highly activated upstream regulators, suggesting increased inflammation in the OB breast. Classical ER targets (e.g., PR, AREG) were not differentially expressed, yet IPA identified the ER and PR and growth factors/receptors (VEGF, HGF, HER3) and kinases (AKT1) involved in hormone-independent ER activation as activated upstream regulators in OB breast tissue. Conclusions These studies represent the first investigation of the human breast transcriptome during late puberty/young adulthood and demonstrate that obesity is associated with a transcriptional signature of inflammation which may augment estrogen action in the immature breast microenvironment. We anticipate that these studies will prompt more comprehensive cellular and molecular investigations of obesity and its effect on the breast during this critical developmental window.
Collapse
Affiliation(s)
- Adam Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Dennis Akrobetu
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A2-03, Research Triangle Park, NC, 27709, USA
| | - Arun R Pandiri
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), NIEHS, Research Triangle Park, NC, USA
| | - Kiki Ton
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), NIEHS, Research Triangle Park, NC, USA
| | - Sue Kim
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A2-03, Research Triangle Park, NC, 27709, USA
| | - Brian I Labow
- Adolescent Breast Clinic, the Department of Plastic and Oral Surgery, Division of Adolescent/Young Adult Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura C Nuzzi
- Adolescent Breast Clinic, the Department of Plastic and Oral Surgery, Division of Adolescent/Young Adult Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph M Firriolo
- Adolescent Breast Clinic, the Department of Plastic and Oral Surgery, Division of Adolescent/Young Adult Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sallie S Schneider
- Biospecimen Resource and Molecular Analysis Facility, Baystate Medical Center, Springfield, MA, USA
| | - Suzanne E Fenton
- National Toxicology Program Laboratory, DNTP, NIEHS, Research Triangle Park, NC, USA
| | - Natalie D Shaw
- Clinical Research Branch, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, MD A2-03, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
53
|
Fan J, Hu J, Xue C, Zhang H, Susztak K, Reilly MP, Xiao R, Li M. ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing. PLoS Genet 2020; 16:e1008786. [PMID: 32392242 PMCID: PMC7241832 DOI: 10.1371/journal.pgen.1008786] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/21/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Allele-specific expression (ASE) analysis, which quantifies the relative expression of two alleles in a diploid individual, is a powerful tool for identifying cis-regulated gene expression variations that underlie phenotypic differences among individuals. Existing methods for gene-level ASE detection analyze one individual at a time, therefore failing to account for shared information across individuals. Failure to accommodate such shared information not only reduces power, but also makes it difficult to interpret results across individuals. However, when only RNA sequencing (RNA-seq) data are available, ASE detection across individuals is challenging because the data often include individuals that are either heterozygous or homozygous for the unobserved cis-regulatory SNP, leading to sample heterogeneity as only those heterozygous individuals are informative for ASE, whereas those homozygous individuals have balanced expression. To simultaneously model multi-individual information and account for such heterogeneity, we developed ASEP, a mixture model with subject-specific random effect to account for multi-SNP correlations within the same gene. ASEP only requires RNA-seq data, and is able to detect gene-level ASE under one condition and differential ASE between two conditions (e.g., pre- versus post-treatment). Extensive simulations demonstrated the convincing performance of ASEP under a wide range of scenarios. We applied ASEP to a human kidney RNA-seq dataset, identified ASE genes and validated our results with two published eQTL studies. We further applied ASEP to a human macrophage RNA-seq dataset, identified genes showing evidence of differential ASE between M0 and M1 macrophages, and confirmed our findings by results from cardiometabolic trait-relevant genome-wide association studies. To the best of our knowledge, ASEP is the first method for gene-level ASE detection at the population level that only requires the use of RNA-seq data. With the growing adoption of RNA-seq, we believe ASEP will be well-suited for various ASE studies for human diseases.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Katalin Susztak
- Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Muredach P. Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York City, New York, United States of America
- The Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, New York, United States of America
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
54
|
Cao X, Yakala GK, van den Hil FE, Cochrane A, Mummery CL, Orlova VV. Differentiation and Functional Comparison of Monocytes and Macrophages from hiPSCs with Peripheral Blood Derivatives. Stem Cell Reports 2020; 12:1282-1297. [PMID: 31189095 PMCID: PMC6565887 DOI: 10.1016/j.stemcr.2019.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
A renewable source of human monocytes and macrophages would be a valuable alternative to primary cells from peripheral blood (PB) in biomedical research. We developed an efficient protocol to derive monocytes and macrophages from human induced pluripotent stem cells (hiPSCs) and performed a functional comparison with PB-derived cells. hiPSC-derived monocytes were functional after cryopreservation and exhibited gene expression profiles comparable with PB-derived monocytes. Notably, hiPSC-derived monocytes were more activated with greater adhesion to endothelial cells under physiological flow. hiPSC-derived monocytes were successfully polarized to M1 and M2 macrophage subtypes, which showed similar pan- and subtype-specific gene and surface protein expression and cytokine secretion to PB-derived macrophages. hiPSC-derived macrophages exhibited higher endocytosis and efferocytosis and similar bacterial and tumor cell phagocytosis to PB-derived macrophages. In summary, we developed a robust protocol to generate hiPSC monocytes and macrophages from independent hiPSC lines that showed aspects of functional maturity comparable with those from PB.
Collapse
Affiliation(s)
- Xu Cao
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Gopala K Yakala
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
55
|
Dang D, Taheri S, Das S, Ghosh P, Prince LS, Sahoo D. Computational Approach to Identifying Universal Macrophage Biomarkers. Front Physiol 2020; 11:275. [PMID: 32322218 PMCID: PMC7156600 DOI: 10.3389/fphys.2020.00275] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Macrophages engulf and digest microbes, cellular debris, and various disease-associated cells throughout the body. Understanding the dynamics of macrophage gene expression is crucial for studying human diseases. As both bulk RNAseq and single cell RNAseq datasets become more numerous and complex, identifying a universal and reliable marker of macrophage cell becomes paramount. Traditional approaches have relied upon tissue specific expression patterns. To identify universal biomarkers of macrophage, we used a previously published computational approach called BECC (Boolean Equivalent Correlated Clusters) that was originally used to identify conserved cell cycle genes. We performed BECC analysis using the known macrophage marker CD14 as a seed gene. The main idea behind BECC is that it uses massive database of public gene expression dataset to establish robust co-expression patterns identified using a combination of correlation, linear regression and Boolean equivalences. Our analysis identified and validated FCER1G and TYROBP as novel universal biomarkers for macrophages in human and mouse tissues.
Collapse
Affiliation(s)
- Dharanidhar Dang
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Sahar Taheri
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Pradipta Ghosh
- Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States.,Moores Cancer Center, San Diego, CA, United States
| | - Lawrence S Prince
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Rady Children's Hospital, San Diego, CA, United States
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Pediatrics, University of California, San Diego, San Diego, CA, United States.,Moores Cancer Center, San Diego, CA, United States
| |
Collapse
|
56
|
Liu E, Radmanesh B, Chung BH, Donnan MD, Yi D, Dadi A, Smith KD, Himmelfarb J, Li M, Freedman BS, Lin J. Profiling APOL1 Nephropathy Risk Variants in Genome-Edited Kidney Organoids with Single-Cell Transcriptomics. KIDNEY360 2020; 1:203-215. [PMID: 32656538 PMCID: PMC7351353 DOI: 10.34067/kid.0000422019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND DNA variants in APOL1 associate with kidney disease, but the pathophysiologic mechanisms remain incompletely understood. Model organisms lack the APOL1 gene, limiting the degree to which disease states can be recapitulated. Here we present single-cell RNA sequencing (scRNA-seq) of genome-edited human kidney organoids as a platform for profiling effects of APOL1 risk variants in diverse nephron cell types. METHODS We performed footprint-free CRISPR-Cas9 genome editing of human induced pluripotent stem cells (iPSCs) to knock in APOL1 high-risk G1 variants at the native genomic locus. iPSCs were differentiated into kidney organoids, treated with vehicle, IFN-γ, or the combination of IFN-γ and tunicamycin, and analyzed with scRNA-seq to profile cell-specific changes in differential gene expression patterns, compared with isogenic G0 controls. RESULTS Both G0 and G1 iPSCs differentiated into kidney organoids containing nephron-like structures with glomerular epithelial cells, proximal tubules, distal tubules, and endothelial cells. Organoids expressed detectable APOL1 only after exposure to IFN-γ. scRNA-seq revealed cell type-specific differences in G1 organoid response to APOL1 induction. Additional stress of tunicamycin exposure led to increased glomerular epithelial cell dedifferentiation in G1 organoids. CONCLUSIONS Single-cell transcriptomic profiling of human genome-edited kidney organoids expressing APOL1 risk variants provides a novel platform for studying the pathophysiology of APOL1-mediated kidney disease.
Collapse
Affiliation(s)
- Esther Liu
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Behram Radmanesh
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Byungha H. Chung
- Division of Nephrology, Department of Medicine, Kidney Research Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Michael D. Donnan
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dan Yi
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amal Dadi
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kelly D. Smith
- Department of Pathology, University of Washington, Seattle, Washington
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, Kidney Research Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Mingyao Li
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Benjamin S. Freedman
- Division of Nephrology, Department of Medicine, Kidney Research Institute, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
- Department of Pathology, University of Washington, Seattle, Washington
| | - Jennie Lin
- Division of Nephrology and Hypertension, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Section of Nephrology, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
57
|
Chen HJ, Li Yim AYF, Griffith GR, de Jonge WJ, Mannens MMAM, Ferrero E, Henneman P, de Winther MPJ. Meta-Analysis of in vitro-Differentiated Macrophages Identifies Transcriptomic Signatures That Classify Disease Macrophages in vivo. Front Immunol 2019; 10:2887. [PMID: 31921150 PMCID: PMC6917623 DOI: 10.3389/fimmu.2019.02887] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are heterogeneous leukocytes regulated in a tissue- and disease-specific context. While in vitro macrophage models have been used to study diseases empirically, a systematic analysis of the transcriptome thereof is lacking. Here, we acquired gene expression data from eight commonly-used in vitro macrophage models to perform a meta-analysis. Specifically, we obtained gene expression data from unstimulated macrophages (M0) and macrophages stimulated with lipopolysaccharides (LPS) for 2–4 h (M-LPSearly), LPS for 24 h (M-LPSlate), LPS and interferon-γ (M-LPS+IFNγ), IFNγ (M-IFNγ), interleukin-4 (M-IL4), interleukin-10 (M-IL10), and dexamethasone (M-dex). Our meta-analysis identified consistently differentially expressed genes that have been implicated in inflammatory and metabolic processes. In addition, we built macIDR, a robust classifier capable of distinguishing macrophage activation states with high accuracy (>0.95). We classified in vivo macrophages with macIDR to define their tissue- and disease-specific characteristics. We demonstrate that alveolar macrophages display high resemblance to IL10 activation, but show a drop in IFNγ signature in chronic obstructive pulmonary disease patients. Adipose tissue-derived macrophages were classified as unstimulated macrophages, but acquired LPS-activation features in diabetic-obese patients. Rheumatoid arthritis synovial macrophages exhibit characteristics of IL10- or IFNγ-stimulation. Altogether, we defined consensus transcriptional profiles for the eight in vitro macrophage activation states, built a classification model, and demonstrated the utility of the latter for in vivo macrophages.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Andrew Y F Li Yim
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Marcel M A M Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Enrico Ferrero
- Computational Biology, Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
58
|
Hansen M, von Lindern M, van den Akker E, Varga E. Human‐induced pluripotent stem cell‐derived blood products: state of the art and future directions. FEBS Lett 2019; 593:3288-3303. [DOI: 10.1002/1873-3468.13599] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Marten Hansen
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| | - Eszter Varga
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory Academic Medical Center University of Amsterdam The Netherlands
| |
Collapse
|
59
|
Happle C, Lachmann N, Ackermann M, Mirenska A, Göhring G, Thomay K, Mucci A, Hetzel M, Glomb T, Suzuki T, Chalk C, Glage S, Dittrich-Breiholz O, Trapnell B, Moritz T, Hansen G. Pulmonary Transplantation of Human Induced Pluripotent Stem Cell-derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2019; 198:350-360. [PMID: 29652170 DOI: 10.1164/rccm.201708-1562oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Although the transplantation of induced pluripotent stem cell (iPSC)-derived cells harbors enormous potential for the treatment of pulmonary diseases, in vivo data demonstrating clear therapeutic benefits of human iPSC-derived cells in lung disease models are missing. OBJECTIVES We have tested the therapeutic potential of iPSC-derived macrophages in a humanized disease model of hereditary pulmonary alveolar proteinosis (PAP). Hereditary PAP is caused by a genetic defect of the GM-CSF (granulocyte-macrophage colony-stimulating factor) receptor, which leads to disturbed macrophage differentiation and protein/surfactant degradation in the lungs, subsequently resulting in severe respiratory insufficiency. METHODS Macrophages derived from human iPSCs underwent intrapulmonary transplantation into humanized PAP mice, and engraftment, in vivo differentiation, and therapeutic efficacy of the transplanted cells were analyzed. MEASUREMENTS AND MAIN RESULTS On intratracheal application, iPSC-derived macrophages engrafted in the lungs of humanized PAP mice. After 2 months, transplanted cells displayed the typical morphology, surface markers, functionality, and transcription profile of primary human alveolar macrophages. Alveolar proteinosis was significantly reduced as demonstrated by diminished protein content and surfactant protein D levels, decreased turbidity of the BAL fluid, and reduced surfactant deposition in the lungs of transplanted mice. CONCLUSIONS We here demonstrate for the first time that pulmonary transplantation of human iPSC-derived macrophages leads to pulmonary engraftment, their in situ differentiation to an alveolar macrophage phenotype, and a reduction of alveolar proteinosis in a humanized PAP model. To our knowledge, this finding presents the first proof-of-concept for the therapeutic potential of human iPSC-derived cells in a pulmonary disease and may have profound implications beyond the rare disease of PAP.
Collapse
Affiliation(s)
- Christine Happle
- 1 Department of Pediatric Pneumology, Allergology and Neonatology.,2 Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL)
| | - Nico Lachmann
- 3 Junior Research Group (JRG) Translational Hematology of Congenital Diseases, Regenerative Biology and Reconstructive Therapies (REBIRTH) Cluster of Excellence.,4 Institute of Experimental Hematology
| | - Mania Ackermann
- 3 Junior Research Group (JRG) Translational Hematology of Congenital Diseases, Regenerative Biology and Reconstructive Therapies (REBIRTH) Cluster of Excellence.,4 Institute of Experimental Hematology
| | - Anja Mirenska
- 1 Department of Pediatric Pneumology, Allergology and Neonatology
| | | | | | - Adele Mucci
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Miriam Hetzel
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Torsten Glomb
- 7 Core Unit Transcriptomics, Institute for Physiological Chemistry, and
| | - Takuji Suzuki
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Claudia Chalk
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Silke Glage
- 9 Central Animal Facility, Hannover Medical School, Hannover, Germany; and
| | | | - Bruce Trapnell
- 8 Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas Moritz
- 4 Institute of Experimental Hematology.,6 Research Group-Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence
| | - Gesine Hansen
- 1 Department of Pediatric Pneumology, Allergology and Neonatology.,2 Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
60
|
Hu Y, Lin J, Hu J, Hu G, Wang K, Zhang H, Reilly MP, Li M. PennDiff: detecting differential alternative splicing and transcription by RNA sequencing. Bioinformatics 2019; 34:2384-2391. [PMID: 29474557 DOI: 10.1093/bioinformatics/bty097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/20/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation Alternative splicing and alternative transcription are a major mechanism for generating transcriptome diversity. Differential alternative splicing and transcription (DAST), which describe different usage of transcript isoforms across different conditions, can complement differential expression in characterizing gene regulation. However, the analysis of DAST is challenging because only a small fraction of RNA-seq reads is informative for isoforms. Several methods have been developed to detect exon-based and gene-based DAST, but they suffer from power loss for genes with many isoforms. Results We present PennDiff, a novel statistical method that makes use of information on gene structures and pre-estimated isoform relative abundances, to detect DAST from RNA-seq data. PennDiff has several advantages. First, grouping exons avoids multiple testing for 'exons' originated from the same isoform(s). Second, it utilizes all available reads in exon-inclusion level estimation, which is different from methods that only use junction reads. Third, collapsing isoforms sharing the same alternative exons reduces the impact of isoform expression estimation uncertainty. PennDiff is able to detect DAST at both exon and gene levels, thus offering more flexibility than existing methods. Simulations and analysis of a real RNA-seq dataset indicate that PennDiff has well-controlled type I error rate, and is more powerful than existing methods including DEXSeq, rMATS, Cuffdiff, IUTA and SplicingCompass. As the popularity of RNA-seq continues to grow, we expect PennDiff to be useful for diverse transcriptomics studies. Availability and implementation PennDiff source code and user guide is freely available for download at https://github.com/tigerhu15/PennDiff. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yu Hu
- Department of Biostatistics, Epidemiology and Informatics
| | - Jennie Lin
- Renal Electrolyte and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics
| | - Gang Hu
- Department of Information Theory and Data Science, School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Kui Wang
- Department of Information Theory and Data Science, School of Mathematical Sciences, Nankai University, Tianjin, China
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York City, NY, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York City, NY, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics
| |
Collapse
|
61
|
An elastic-net logistic regression approach to generate classifiers and gene signatures for types of immune cells and T helper cell subsets. BMC Bioinformatics 2019; 20:433. [PMID: 31438843 PMCID: PMC6704630 DOI: 10.1186/s12859-019-2994-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023] Open
Abstract
Background Host immune response is coordinated by a variety of different specialized cell types that vary in time and location. While host immune response can be studied using conventional low-dimensional approaches, advances in transcriptomics analysis may provide a less biased view. Yet, leveraging transcriptomics data to identify immune cell subtypes presents challenges for extracting informative gene signatures hidden within a high dimensional transcriptomics space characterized by low sample numbers with noisy and missing values. To address these challenges, we explore using machine learning methods to select gene subsets and estimate gene coefficients simultaneously. Results Elastic-net logistic regression, a type of machine learning, was used to construct separate classifiers for ten different types of immune cell and for five T helper cell subsets. The resulting classifiers were then used to develop gene signatures that best discriminate among immune cell types and T helper cell subsets using RNA-seq datasets. We validated the approach using single-cell RNA-seq (scRNA-seq) datasets, which gave consistent results. In addition, we classified cell types that were previously unannotated. Finally, we benchmarked the proposed gene signatures against other existing gene signatures. Conclusions Developed classifiers can be used as priors in predicting the extent and functional orientation of the host immune response in diseases, such as cancer, where transcriptomic profiling of bulk tissue samples and single cells are routinely employed. Information that can provide insight into the mechanistic basis of disease and therapeutic response. The source code and documentation are available through GitHub: https://github.com/KlinkeLab/ImmClass2019. Electronic supplementary material The online version of this article (10.1186/s12859-019-2994-z) contains supplementary material, which is available to authorized users.
Collapse
|
62
|
Zhang H, Reilly MP. LIPA Variants in Genome-Wide Association Studies of Coronary Artery Diseases: Loss-of-Function or Gain-of-Function? Arterioscler Thromb Vasc Biol 2019; 37:1015-1017. [PMID: 28539489 DOI: 10.1161/atvbaha.117.309344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., M.P.R.); and Irving Institute for Clinical and Translational Research, Columbia University, New York (M.P.R.)
| | - Muredach P Reilly
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., M.P.R.); and Irving Institute for Clinical and Translational Research, Columbia University, New York (M.P.R.).
| |
Collapse
|
63
|
Zhang S, Bories G, Lantz C, Emmons R, Becker A, Liu E, Abecassis MM, Yvan-Charvet L, Thorp EB. Immunometabolism of Phagocytes and Relationships to Cardiac Repair. Front Cardiovasc Med 2019; 6:42. [PMID: 31032261 PMCID: PMC6470271 DOI: 10.3389/fcvm.2019.00042] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide. Myocardial ischemia is a major contributor to cardiovascular morbidity and mortality. In the case of acute myocardial infarction, subsequent cardiac repair relies upon the acute, and coordinated response to injury by innate myeloid phagocytes. This includes neutrophils, monocytes, macrophage subsets, and immature dendritic cells. Phagocytes function to remove necrotic cardiomyocytes, apoptotic inflammatory cells, and to remodel extracellular matrix. These innate immune cells also secrete cytokines and growth factors that promote tissue replacement through fibrosis and angiogenesis. Within the injured myocardium, macrophages polarize from pro-inflammatory to inflammation-resolving phenotypes. At the core of this functional plasticity is cellular metabolism, which has gained an appreciation for its integration with phagocyte function and remodeling of the transcriptional and epigenetic landscape. Immunometabolic rewiring is particularly relevant after ischemia and clinical reperfusion given the rapidly changing oxygen and metabolic milieu. Hypoxia reduces mitochondrial oxidative phosphorylation and leads to increased reliance on glycolysis, which can support biosynthesis of pro-inflammatory cytokines. Reoxygenation is permissive for shifts back to mitochondrial metabolism and fatty acid oxidation and this is ultimately linked to pro-reparative macrophage polarization. Improved understanding of mechanisms that regulate metabolic adaptations holds the potential to identify new metabolite targets and strategies to reduce cardiac damage through nutrient signaling.
Collapse
Affiliation(s)
- Shuang Zhang
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gael Bories
- UMR INSERM U1065/UNS, C3M, Bâtiment Universitaire ARCHIMED, Nice, France
| | - Connor Lantz
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Russel Emmons
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amanda Becker
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, United States
| | - Esther Liu
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Michael M. Abecassis
- Comprehensive Transplant Center, Northwestern Feinberg School of Medicine, Chicago, IL, United States
| | | | - Edward B. Thorp
- Departments of Pathology and Pediatrics, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
64
|
Cypris O, Frobel J, Rai S, Franzen J, Sontag S, Goetzke R, Szymanski de Toledo MA, Zenke M, Wagner W. Tracking of epigenetic changes during hematopoietic differentiation of induced pluripotent stem cells. Clin Epigenetics 2019; 11:19. [PMID: 30717806 PMCID: PMC6360658 DOI: 10.1186/s13148-019-0617-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Background Differentiation of induced pluripotent stem cells (iPSCs) toward hematopoietic progenitor cells (HPCs) raises high hopes for disease modeling, drug screening, and cellular therapy. Various differentiation protocols have been established to generate iPSC-derived HPCs (iHPCs) that resemble their primary counterparts in morphology and immunophenotype, whereas a systematic epigenetic comparison was yet elusive. Results In this study, we compared genome-wide DNA methylation (DNAm) patterns of iHPCs with various different hematopoietic subsets. After 20 days of in vitro differentiation, cells revealed typical hematopoietic morphology, CD45 expression, and colony-forming unit (CFU) potential. DNAm changes were particularly observed in genes that are associated with hematopoietic differentiation. On the other hand, the epigenetic profiles of iHPCs remained overall distinct from natural HPCs. Furthermore, we analyzed if additional co-culture for 2 weeks with syngenic primary mesenchymal stromal cells (MSCs) or iPSC-derived MSCs (iMSCs) further supports epigenetic maturation toward the hematopoietic lineage. Proliferation of iHPCs and maintenance of CFU potential was enhanced upon co-culture. However, DNAm profiles support the notion that additional culture expansion with stromal support did not increase epigenetic maturation of iHPCs toward natural HPCs. Conclusion Differentiation of iPSCs toward the hematopoietic lineage remains epigenetically incomplete. These results substantiate the need to elaborate advanced differentiation regimen while DNAm profiles provide a suitable measure to track this process. Electronic supplementary material The online version of this article (10.1186/s13148-019-0617-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olivia Cypris
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Joana Frobel
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Shivam Rai
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Julia Franzen
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Stephanie Sontag
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany
| | - Marcelo A Szymanski de Toledo
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Pauwelsstraße 20, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
65
|
O'Reilly ME, Kajani S, Ralston JC, Lenighan YM, Roche HM, McGillicuddy FC. Nutritionally Derived Metabolic Cues Typical of the Obese Microenvironment Increase Cholesterol Efflux Capacity of Adipose Tissue Macrophages. Mol Nutr Food Res 2019; 63:e1800713. [PMID: 30411491 PMCID: PMC6492173 DOI: 10.1002/mnfr.201800713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/05/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cholesterol retention within plasma membranes of macrophages is associated with increased inflammatory signaling. Cholesterol efflux via the transporters ABCA1, ABCG1, and SR-BI to high-density lipoprotein (HDL) particles is a critical mechanism to maintain cellular cholesterol homeostasis. Little is known about the impact of the obese microenvironment on cholesterol efflux capacity (CEC) of macrophages. In this study, the CEC of obese-derived primary adipose-tissue macrophages (ATM) is evaluated and the in vivo microenvironment is modeled in vitro to determine mechanisms underlying modulated CEC. MATERIALS AND METHODS F4/80+ ATM are labeled with 3 H-cholesterol ex vivo, and CEC and ABCA1/ABCG1 protein levels are determined. Total, ABCA1-dependent, and ABCA1-independent CECs are determined in J774 macrophages polarized to M1 (LPS&IFNγ), M2 (IL-4&IL-13), or metabolic phenotypes (glucose, insulin, and palmitic acid). RESULTS Obese ATM exhibit enhanced CEC and ABCA1 and ABCG1 expression compared to lean ATM. In contrast, ABCA1-CEC is suppressed from M1 polarized macrophages compared to untreated in vitro, by activation of the JAK/STAT pathway. Incubation of macrophages in vitro in high glucose augments cAMP-induced ABCA1 protein expression and ABCA1-CEC. CONCLUSIONS These novel findings demonstrate remarkable plasticity of macrophages to respond to their environment with specific modulation of ABCA1 depending on whether classical pro-inflammatory or metabolic cues predominate.
Collapse
Affiliation(s)
- Marcella E. O'Reilly
- Nutrigenomics Research GroupSchool of Public Health Physiotherapy and Sports ScienceUniversity College DublinDublin 4Ireland
| | - Sarina Kajani
- Diabetes Complications Research CentreUCD Conway Institute and School of MedicineUniversity College DublinDublin 4Ireland
| | - Jessica C. Ralston
- Nutrigenomics Research GroupSchool of Public Health Physiotherapy and Sports ScienceUniversity College DublinDublin 4Ireland
| | - Yvonne M. Lenighan
- Nutrigenomics Research GroupSchool of Public Health Physiotherapy and Sports ScienceUniversity College DublinDublin 4Ireland
| | - Helen M. Roche
- Nutrigenomics Research GroupSchool of Public Health Physiotherapy and Sports ScienceUniversity College DublinDublin 4Ireland
- UCD Institute of Food and HealthUniversity College DublinDublin 4Ireland
| | - Fiona C. McGillicuddy
- UCD Institute of Food and HealthUniversity College DublinDublin 4Ireland
- Diabetes Complications Research CentreUCD Conway Institute and School of MedicineUniversity College DublinDublin 4Ireland
| |
Collapse
|
66
|
Abstract
High-throughput sequencing has ushered in a diversity of approaches for identifying genetic variants and understanding genome structure and function. When applied to individuals with rare genetic diseases, these approaches have greatly accelerated gene discovery and patient diagnosis. Over the past decade, exome sequencing has emerged as a comprehensive and cost-effective approach to identify pathogenic variants in the protein-coding regions of the genome. However, for individuals in whom exome-sequencing fails to identify a pathogenic variant, we discuss recent advances that are helping to reduce the diagnostic gap.
Collapse
Affiliation(s)
- Laure Frésard
- Department of Pathology, Stanford University, Stanford, California 94305, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA.,Department of Genetics, School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
67
|
Shi J, Xue C, Liu W, Zhang H. Differentiation of Human-Induced Pluripotent Stem Cells to Macrophages for Disease Modeling and Functional Genomics. ACTA ACUST UNITED AC 2018; 48:e74. [PMID: 30537374 DOI: 10.1002/cpsc.74] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages play important roles in many diseases. We describe a protocol and the associated resources for the differentiation of human induced pluripotent stem cell-derived macrophages (IPSDM) and their applications in understanding human macrophage physiology and relevant diseases. The protocol uses an embryoid body-based approach with a combination of serum-free condition for hematopoiesis specification, followed by adherent culture with serum and M-CSF for myeloid expansion and macrophage maturation. The protocol produced an almost pure culture of CD45+ /CD18+ macrophages yielding up to 2 × 107 cells per 6-well plate of iPSCs within 24 days, demonstrating high efficiency, purity, and scalability. The IPSDM and monocyte-derived macrophages (HMDM) cultured in the same medium were compared at morphological, functional and transcriptomic levels by RNA-sequencing. IPSDM and HMDM showed broadly similar profiles of coding transcriptome, alternative splicing events, and long noncoding RNAs, with advantages and successful applications in disease modeling using patients-derived and CRISPR-edited iPSC lines. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jianting Shi
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Wen Liu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Hanrui Zhang
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
68
|
Chen W, Tang D, Dai Y, Diao H. Establishment of microRNA, transcript and protein regulatory networks in Alport syndrome induced pluripotent stem cells. Mol Med Rep 2018; 19:238-250. [PMID: 30483741 PMCID: PMC6297794 DOI: 10.3892/mmr.2018.9672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is an inherited progressive disease caused by mutations in genes encoding for the α3, α4 and α5 chains, which are an essential component of type IV collagen and are required for formation of the glomerular basement membrane. However, the underlying etiology of AS remains largely unknown, and the aim of the present study was to examine the genetic mechanisms in AS. Induced pluripotent stem cells (iPSCs) were generated from renal tubular cells. The Illumina HiSeq™ 2000 system and iTRAQ‑coupled 2D liquid chromatography‑tandem mass spectrometry were used to generate the sequences of microRNAs (miRNAs), transcripts and proteins from AS‑iPSCs. Integration of miRNA, transcript and protein expression data was used to construct regulatory networks and identify specific miRNA targets amongst the transcripts and proteins. Relative quantitative proteomics using iTRAQ technology revealed 383 differentially abundant proteins, and high‑throughput sequencing identified 155 differentially expressed miRNAs and 1,168 differentially expressed transcripts. Potential miRNA targets were predicted using miRanda, TargetScan and Pictar. All target proteins and transcripts were subjected to network analysis with miRNAs. Gene ontology analysis of the miRNAs and their targets revealed functional information on the iPSCs, including biological process and cell signaling. Kyoto Encyclopedia of Genes and Genomes pathways analysis revealed that the transcripts and proteins were primarily enriched in metabolic and cell adhesion molecule pathways. In addition, the network maps identified hsa‑miRNA (miR)‑4775 as a prominent miRNA that was associated with a number of targets. Similarly, the prominent ELV‑like protein 1‑A and epidermal growth factor receptor (EGFR)‑associated transcripts were identified. Reverse transcription‑quantitative polymerase chain reaction analysis was used to confirm the upregulation of hsa‑miR‑4775 and EGFR. The integrated approach used in the present study provided a comprehensive molecular characterization of AS. The results may also further understanding of the genetic pathogenesis of AS and facilitate the identification of candidate biomarkers for AS.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
69
|
Rajab N, Rutar M, Laslett AL, Wells CA. Designer macrophages: Pitfalls and opportunities for modelling macrophage phenotypes from pluripotent stem cells. Differentiation 2018; 104:42-49. [PMID: 30453197 DOI: 10.1016/j.diff.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Macrophages are phagocytic immune cells resident in every tissue that are not only important for host defence, but are also involved in tissue homeostasis, injury, and disease. Despite increasingly sophisticated methods for in vitro macrophage isolation, expansion and activation over the past three decades, these have largely been restricted to modelling bone-marrow or blood-derived cells. The in vitro derivation of macrophages from human pluripotent stem cells provides new opportunities to study macrophage biology, including the factors that impact human myeloid development and those that induce macrophage activation. While sharing many of the functional characteristics of monocyte-derived macrophages, stem cell-derived macrophages may offer new opportunities to understand the role of development or tissue context in innate immune cell function. Immune responsiveness to pathogenic challenge is known to be impacted by a macrophage's history of prior exposure, as well as ontogeny and tissue context. Therefore, we explore the factors of in vitro derivation likely to influence macrophage phenotype and function.
Collapse
Affiliation(s)
- Nadia Rajab
- The Centre for Stem Cell Systems, MDHS, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Matthew Rutar
- The Centre for Stem Cell Systems, MDHS, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Andrew L Laslett
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| | - Christine A Wells
- The Centre for Stem Cell Systems, MDHS, University of Melbourne, Parkville, Victoria 3010, Australia; The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria 3010, Australia.
| |
Collapse
|
70
|
Westerterp M, Fotakis P, Ouimet M, Bochem AE, Zhang H, Molusky MM, Wang W, Abramowicz S, la Bastide-van Gemert S, Wang N, Welch CL, Reilly MP, Stroes ES, Moore KJ, Tall AR. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation 2018; 138:898-912. [PMID: 29588315 PMCID: PMC6160368 DOI: 10.1161/circulationaha.117.032636] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND The CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) showed that antagonism of interleukin (IL)-1β reduces coronary heart disease in patients with a previous myocardial infarction and evidence of systemic inflammation, indicating that pathways required for IL-1β secretion increase cardiovascular risk. IL-1β and IL-18 are produced via the NLRP3 inflammasome in myeloid cells in response to cholesterol accumulation, but mechanisms linking NLRP3 inflammasome activation to atherogenesis are unclear. The cholesterol transporters ATP binding cassette A1 and G1 (ABCA1/G1) mediate cholesterol efflux to high-density lipoprotein, and Abca1/g1 deficiency in myeloid cells leads to cholesterol accumulation. METHODS To interrogate mechanisms connecting inflammasome activation with atherogenesis, we used mice with myeloid Abca1/g1 deficiency and concomitant deficiency of the inflammasome components Nlrp3 or Caspase-1/11. Bone marrow from these mice was transplanted into Ldlr-/- recipients, which were fed a Western-type diet. RESULTS Myeloid Abca1/g1 deficiency increased plasma IL-18 levels in Ldlr-/- mice and induced IL-1β and IL-18 secretion in splenocytes, which was reversed by Nlrp3 or Caspase-1/11 deficiency, indicating activation of the NLRP3 inflammasome. Nlrp3 or Caspase-1/11 deficiency decreased atherosclerotic lesion size in myeloid Abca1/g1-deficient Ldlr-/- mice. Myeloid Abca1/g1 deficiency enhanced caspase-1 cleavage not only in splenic monocytes and macrophages, but also in neutrophils, and dramatically enhanced neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques, with reversal by Nlrp3 or Caspase-1/11 deficiency, suggesting that inflammasome activation promotes neutrophil recruitment and neutrophil extracellular trap formation in atherosclerotic plaques. These effects appeared to be indirectly mediated by systemic inflammation leading to activation and accumulation of neutrophils in plaques. Myeloid Abca1/g1 deficiency also activated the noncanonical inflammasome, causing increased susceptibility to lipopolysaccharide-induced mortality. Patients with Tangier disease, who carry loss-of-function mutations in ABCA1 and have increased myeloid cholesterol content, showed a marked increase in plasma IL-1β and IL-18 levels. CONCLUSIONS Cholesterol accumulation in myeloid cells activates the NLRP3 inflammasome, which enhances neutrophil accumulation and neutrophil extracellular trap formation in atherosclerotic plaques. Patients with Tangier disease, who have increased myeloid cholesterol content, showed markers of inflammasome activation, suggesting human relevance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/deficiency
- ATP Binding Cassette Transporter 1/genetics
- ATP Binding Cassette Transporter 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Animals
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Case-Control Studies
- Caspase 1/genetics
- Caspase 1/metabolism
- Caspases/genetics
- Caspases/metabolism
- Caspases, Initiator
- Cholesterol/metabolism
- Cytokines/blood
- Disease Models, Animal
- Extracellular Traps/metabolism
- Humans
- Inflammasomes/deficiency
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Inflammation/genetics
- Inflammation/metabolism
- Inflammation/pathology
- Inflammation/prevention & control
- Mice, Knockout
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Plaque, Atherosclerotic
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Spleen/metabolism
- Tangier Disease/blood
- Tangier Disease/genetics
Collapse
Affiliation(s)
- Marit Westerterp
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
- Department of Pediatrics, Section Molecular Genetics, University of
Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Panagiotis Fotakis
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Mireille Ouimet
- Department of Medicine, Division of Cardiology, New York University
Medical Center, New York NY
- University of Ottawa Heart Institute, Ontario, Canada &
Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine,
University of Ottawa, Ontario, Canada
| | - Andrea E. Bochem
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
- Department of Vascular Medicine, Academic Medical Center, University
of Amsterdam, Amsterdam, The Netherlands
| | - Hanrui Zhang
- Department of Medicine, Division of Cardiology, Columbia University,
New York NY
| | - Matthew M. Molusky
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Wei Wang
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Sandra Abramowicz
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Sacha la Bastide-van Gemert
- Department of Epidemiology, University of Groningen, University
Medical Center Groningen, Groningen, The Netherlands
| | - Nan Wang
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Carrie L. Welch
- Department of Medicine, Division of Molecular Medicine, Columbia
University, New York NY
| | - Muredach P. Reilly
- Department of Medicine, Division of Cardiology, Columbia University,
New York NY
| | - Erik S. Stroes
- Department of Vascular Medicine, Academic Medical Center, University
of Amsterdam, Amsterdam, The Netherlands
| | - Kathryn J. Moore
- Department of Medicine, Division of Cardiology, New York University
Medical Center, New York NY
| | | |
Collapse
|
71
|
Guo XY, Wang SN, Wu Y, Lin YH, Tang J, Ding SQ, Shen L, Wang R, Hu JG, Lü HZ. Transcriptome profile of rat genes in bone marrow-derived macrophages at different activation statuses by RNA-sequencing. Genomics 2018; 111:986-996. [PMID: 31307632 DOI: 10.1016/j.ygeno.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023]
Abstract
The underlying mechanisms of macrophage polarization have been detected by genome-wide transcriptome analysis in a variety of mammals. However, the transcriptome profile of rat genes in bone marrow-derived macrophages (BMM) at different activation statuses has not been reported. Therefore, we performed RNA-Sequencing to identify gene expression signatures of rat BMM polarized in vitro with different stimuli. The differentially expressed genes (DEGs) among unactivated (M0), classically activated pro-inflammatory (M1), and alternatively activated anti-inflammatory macrophages (M2) were analyzed by using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. In this study, not only we have identified the changes of global gene expression in rat M0, M1 and M2, but we have also made clear systematically the key genes and signaling pathways in the differentiation process of M0 to M1 and M2. These will provide a foundation for future researches of macrophage polarization.
Collapse
Affiliation(s)
- Xue-Yan Guo
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Sai-Nan Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yan Wu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Yu-Hong Lin
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Jie Tang
- Department of Immunology, Bengbu Medical College, Anhui 233030, PR China
| | - Shu-Qin Ding
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China
| | - Jian-Guo Hu
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China.
| | - He-Zuo Lü
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui 233004, PR China; Department of Immunology, Bengbu Medical College, Anhui 233030, PR China.
| |
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW Lysosomal acid lipase (LAL), encoded by the LIPA gene, is an essential lysosomal enzyme that hydrolyzes cholesteryl ester and triglyceride delivered to the lysosome. This review highlights the novel pathophysiological role of LAL, the functional genomic discoveries of LIPA as a risk locus for coronary heart diseases (CHD), and the clinical advance in therapies for LAL deficiency. RECENT FINDINGS The essential role of LAL in lipid metabolism has been confirmed in human and mice with LAL deficiency. In humans, loss-of-function mutations of LIPA cause rare lysosomal disorders, Wolman disease, and cholesteryl ester storage disease, in which LAL enzyme replacement therapy has shown significant benefits in a phase 3 clinical trial. Recent studies have revealed the role of LAL-mediated lysosomal lipolysis in regulating macrophage M2 polarization, lipid mediator production, VLDL secretion, lysosomal function and autophagy, extracellular degradation of aggregated-LDL, and adipose tissue lipolysis. Genome-wide association studies and functional genomic studies have identified LIPA as a risk locus for CHD, but the causal variants and mechanisms remain to be determined. SUMMARY Despite years of research, our understanding of LAL is incomplete. Future studies will continue to focus on the key pathophysiological functions of LAL in health and diseases including CHD.
Collapse
Affiliation(s)
- Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
73
|
Abstract
PURPOSE OF REVIEW To summarize recent advances with respect to the use of human pluripotent stem cells to study the genetics of blood lipid traits. RECENT FINDINGS Human pluripotent stem cell models have been used to elucidate the mechanisms by which genes contribute to dyslipidemia, to discover new lipid-related DNA variants and genes, and to perform drug screens. SUMMARY In addition to enabling a better understanding of the genetic basis of lipid metabolism, human pluripotent stem cells are identifying potential therapeutic targets as well as potential therapies.
Collapse
|
74
|
Brownjohn PW, Smith J, Solanki R, Lohmann E, Houlden H, Hardy J, Dietmann S, Livesey FJ. Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia. Stem Cell Reports 2018; 10:1294-1307. [PMID: 29606617 PMCID: PMC5998752 DOI: 10.1016/j.stemcr.2018.03.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 01/02/2023] Open
Abstract
The derivation of microglia from human stem cells provides systems for understanding microglial biology and enables functional studies of disease-causing mutations. We describe a robust method for the derivation of human microglia from stem cells, which are phenotypically and functionally comparable with primary microglia. We used stem cell-derived microglia to study the consequences of missense mutations in the microglial-expressed protein triggering receptor expressed on myeloid cells 2 (TREM2), which are causal for frontotemporal dementia-like syndrome and Nasu-Hakola disease. We find that mutant TREM2 accumulates in its immature form, does not undergo typical proteolysis, and is not trafficked to the plasma membrane. However, in the absence of plasma membrane TREM2, microglia differentiate normally, respond to stimulation with lipopolysaccharide, and are phagocytically competent. These data indicate that dementia-associated TREM2 mutations have subtle effects on microglia biology, consistent with the adult onset of disease in individuals with these mutations.
Collapse
Affiliation(s)
- Philip W Brownjohn
- The Gurdon Institute, ARUK Stem Cell Research Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - James Smith
- The Gurdon Institute, ARUK Stem Cell Research Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ravi Solanki
- The Gurdon Institute, ARUK Stem Cell Research Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Ebba Lohmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany; DZNE, German Center for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Sabine Dietmann
- Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Frederick J Livesey
- The Gurdon Institute, ARUK Stem Cell Research Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
75
|
Hong D, Ding J, Li O, He Q, Ke M, Zhu M, Liu L, Ou WB, He Y, Wu Y. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection. Stem Cell Res Ther 2018; 9:49. [PMID: 29482598 PMCID: PMC5828072 DOI: 10.1186/s13287-018-0800-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. METHODS In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. RESULTS With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P < 0.01) by using Annexin V-FITC Apoptosis Detection. Additionally, the rate of apoptosis of BCG-treated THP-1-Mφ was 37.1 ± 2.84% compared to that of the untreated group at 6.19 ± 1.68% (P < 0.001). The expression of TNF-α and the production of NO were significantly increased (P < 0.001), and the activity of Caspase-3 was increased. However, the expression of Bcl-2 was inhibited (P < 0.001). CONCLUSIONS Our results demonstrate that Mφ derived from hiPS perform the immunological function in response to Bacillus Calmette-Guérin infection by undergoing apoptosis, increasing the production of NO and expression of TNF-α. Thus, our study may help to overcome the limitations of research into certain rare diseases due to the lack of adequate supply of disease-specific primary cells.
Collapse
Affiliation(s)
- Danping Hong
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Jiongyan Ding
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Ouyang Li
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Quan He
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Minxia Ke
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Mengyi Zhu
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Lili Liu
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Wen-Bin Ou
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Yulong He
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| | - Yuehong Wu
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| |
Collapse
|
76
|
Musunuru K, Ingelsson E, Fornage M, Liu P, Murphy AM, Newby LK, Newton-Cheh C, Perez MV, Voora D, Woo D. The Expressed Genome in Cardiovascular Diseases and Stroke: Refinement, Diagnosis, and Prediction: A Scientific Statement From the American Heart Association. ACTA ACUST UNITED AC 2018; 10:HCG.0000000000000037. [PMID: 28760750 DOI: 10.1161/hcg.0000000000000037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There have been major advances in our knowledge of the contribution of DNA sequence variations to cardiovascular disease and stroke. However, the inner workings of the body reflect the complex interplay of factors beyond the DNA sequence, including epigenetic modifications, RNA transcripts, proteins, and metabolites, which together can be considered the "expressed genome." The emergence of high-throughput technologies, including epigenomics, transcriptomics, proteomics, and metabolomics, is now making it possible to address the contributions of the expressed genome to cardiovascular disorders. This statement describes how the expressed genome can currently and, in the future, potentially be used to diagnose diseases and to predict who will develop diseases such as coronary artery disease, stroke, heart failure, and arrhythmias.
Collapse
|
77
|
Musunuru K, Sheikh F, Gupta RM, Houser SR, Maher KO, Milan DJ, Terzic A, Wu JC. Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2018; 11:e000043. [PMID: 29874173 PMCID: PMC6708586 DOI: 10.1161/hcg.0000000000000043] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Induced pluripotent stem cells (iPSCs) offer an unprece-dented opportunity to study human physiology and disease at the cellular level. They also have the potential to be leveraged in the practice of precision medicine, for example, personalized drug testing. This statement comprehensively describes the provenance of iPSC lines, their use for cardiovascular disease modeling, their use for precision medicine, and strategies through which to promote their wider use for biomedical applications. Human iPSCs exhibit properties that render them uniquely qualified as model systems for studying human diseases: they are of human origin, which means they carry human genomes; they are pluripotent, which means that in principle, they can be differentiated into any of the human body's somatic cell types; and they are stem cells, which means they can be expanded from a single cell into millions or even billions of cell progeny. iPSCs offer the opportunity to study cells that are genetically matched to individual patients, and genome-editing tools allow introduction or correction of genetic variants. Initial progress has been made in using iPSCs to better understand cardiomyopathies, rhythm disorders, valvular and vascular disorders, and metabolic risk factors for ischemic heart disease. This promising work is still in its infancy. Similarly, iPSCs are only just starting to be used to identify the optimal medications to be used in patients from whom the cells were derived. This statement is intended to (1) summarize the state of the science with respect to the use of iPSCs for modeling of cardiovascular traits and disorders and for therapeutic screening; (2) identify opportunities and challenges in the use of iPSCs for disease modeling and precision medicine; and (3) outline strategies that will facilitate the use of iPSCs for biomedical applications. This statement is not intended to address the use of stem cells as regenerative therapy, such as transplantation into the body to treat ischemic heart disease or heart failure.
Collapse
|
78
|
Zhang H, Xue C, Wang Y, Shi J, Zhang X, Li W, Nunez S, Foulkes AS, Lin J, Hinkle CC, Yang W, Morrisey EE, Rader DJ, Li M, Reilly MP. Deep RNA Sequencing Uncovers a Repertoire of Human Macrophage Long Intergenic Noncoding RNAs Modulated by Macrophage Activation and Associated With Cardiometabolic Diseases. J Am Heart Assoc 2017; 6:JAHA.117.007431. [PMID: 29133519 PMCID: PMC5721798 DOI: 10.1161/jaha.117.007431] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Sustained and dysfunctional macrophage activation promotes inflammatory cardiometabolic disorders, but the role of long intergenic noncoding RNA (lincRNA) in human macrophage activation and cardiometabolic disorders is poorly defined. Through transcriptomics, bioinformatics, and selective functional studies, we sought to elucidate the lincRNA landscape of human macrophages. Methods and Results We used deep RNA sequencing to assemble the lincRNA transcriptome of human monocyte‐derived macrophages at rest and following stimulation with lipopolysaccharide and IFN‐γ (interferon γ) for M1 activation and IL‐4 (interleukin 4) for M2 activation. Through de novo assembly, we identified 2766 macrophage lincRNAs, including 861 that were previously unannotated. The majority (≈85%) was nonsyntenic or was syntenic but not annotated as expressed in mouse. Many macrophage lincRNAs demonstrated tissue‐enriched transcription patterns (21.5%) and enhancer‐like chromatin signatures (60.9%). Macrophage activation, particularly to the M1 phenotype, markedly altered the lincRNA expression profiles, revealing 96 lincRNAs differentially expressed, suggesting potential roles in regulating macrophage inflammatory functions. A subset of lincRNAs overlapped genomewide association study loci for cardiometabolic disorders. MacORIS (macrophage‐enriched obesity‐associated lincRNA serving as a repressor of IFN‐γ signaling), a macrophage‐enriched lincRNA not expressed in mouse macrophages, harbors variants associated with central obesity. Knockdown of MacORIS, which is located in the cytoplasm, enhanced IFN‐γ–induced JAK2 (Janus kinase 2) and STAT1 (signal transducer and activator of transcription 1) phosphorylation in THP‐1 macrophages, suggesting a potential role as a repressor of IFN‐γ signaling. Induced pluripotent stem cell–derived macrophages recapitulated the lincRNA transcriptome of human monocyte‐derived macrophages and provided a high‐fidelity model with which to study lincRNAs in human macrophage biology, particularly those not conserved in mouse. Conclusions High‐resolution transcriptomics identified lincRNAs that form part of the coordinated response during macrophage activation, including specific macrophage lincRNAs associated with human cardiometabolic disorders that modulate macrophage inflammatory functions.
Collapse
Affiliation(s)
- Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Ying Wang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Jianting Shi
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Wenjun Li
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sara Nunez
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA
| | - Andrea S Foulkes
- Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA
| | - Jennie Lin
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Christine C Hinkle
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wenli Yang
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Edward E Morrisey
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY .,Irving Institute for Clinical and Translational Research, Columbia University, New York, NY
| |
Collapse
|
79
|
Treatment-related survival associations of claudin-2 expression in fibroblasts of colorectal cancer. Virchows Arch 2017; 472:395-405. [PMID: 29134439 PMCID: PMC5887004 DOI: 10.1007/s00428-017-2263-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/02/2017] [Accepted: 11/01/2017] [Indexed: 12/18/2022]
Abstract
Claudin-2 is a trans-membrane protein—component of tight junctions in epithelial cells. Elevated claudin-2 expression has been reported in colorectal cancer (CRC). The aim of this study was to investigate the expression patterns of claudin-2 in human CRC samples and analyze its association with clinical characteristics and treatment outcome. TMAs of primary tumors from two cohorts of metastatic CRC (mCRC) were used. Claudin-2 IHC staining was evaluated in a semi-quantitative manner in different regions and cell types. Claudin-2 expression was also analyzed by immunofluorescence in primary cultures of human CRC cancer-associated fibroblasts (CAFs). Initial analyses identified previously unrecognized expression patterns of claudin-2 in CAFs of human CRC. Claudin-2 expression in CAFs of the invasive margin was associated with shorter progression-free survival. Subgroup analyses demonstrated that the survival associations occurred among cases that received 5-FU+oxaliplatin combination treatment, but not in patients receiving 5-FU±irinotecan. The finding was validated by analyses of the independent cohort. In summary, previously unreported stromal expression of claudin-2 in CAFs of human CRC was detected together with significant association between high claudin-2 expression in CAFs and shorter survival in 5-FU+oxaliplatin-treated mCRC patients.
Collapse
|
80
|
Kuhn A, Ackermann M, Mussolino C, Cathomen T, Lachmann N, Moritz T. TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Sci Rep 2017; 7:15195. [PMID: 29123113 PMCID: PMC5680188 DOI: 10.1038/s41598-017-14566-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
Hereditary pulmonary alveolar proteinosis (herPAP) constitutes a rare, life threatening lung disease characterized by the inability of alveolar macrophages to clear the alveolar airspaces from surfactant phospholipids. On a molecular level, the disorder is defined by a defect in the CSF2RA gene coding for the GM-CSF receptor alpha-chain (CD116). As therapeutic options are limited, we currently pursue a cell and gene therapy approach aiming for the intrapulmonary transplantation of gene-corrected macrophages derived from herPAP-specific induced pluripotent stem cells (herPAP-iPSC) employing transcriptional activator-like effector nucleases (TALENs). Targeted insertion of a codon-optimized CSF2RA-cDNA driven by the hybrid cytomegalovirus (CMV) early enhancer/chicken beta actin (CAG) promoter into the AAVS1 locus resulted in robust expression of the CSF2RA gene in gene-edited herPAP-iPSCs as well as thereof derived macrophages. These macrophages displayed typical morphology, surface phenotype, phagocytic and secretory activity, as well as functional CSF2RA expression verified by STAT5 phosphorylation and GM-CSF uptake studies. Thus, our study provides a proof-of-concept, that TALEN-mediated integration of the CSF2RA gene into the AAVS1 safe harbor locus in patient-specific iPSCs represents an efficient strategy to generate functionally corrected monocytes/macrophages, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of herPAP.
Collapse
Affiliation(s)
- Alexandra Kuhn
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany. .,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
81
|
Zhang H, Reilly MP. Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology. Arterioscler Thromb Vasc Biol 2017; 37:2000-2006. [PMID: 28982665 DOI: 10.1161/atvbaha.117.309195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases.
Collapse
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine (H.Z., M.P.R.) and Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Medical Center, New York, NY.
| | - Muredach P Reilly
- From the Division of Cardiology, Department of Medicine (H.Z., M.P.R.) and Irving Institute for Clinical and Translational Research (M.P.R.), Columbia University Medical Center, New York, NY.
| |
Collapse
|
82
|
Zhang H, Shi J, Hachet MA, Xue C, Bauer RC, Jiang H, Li W, Tohyama J, Millar J, Billheimer J, Phillips MC, Razani B, Rader DJ, Reilly MP. CRISPR/Cas9-Mediated Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase Function in Human Macrophages-Brief Report. Arterioscler Thromb Vasc Biol 2017; 37:2156-2160. [PMID: 28882870 DOI: 10.1161/atvbaha.117.310023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To gain mechanistic insights into the role of LIPA (lipase A), the gene encoding LAL (lysosomal acid lipase) protein, in human macrophages. APPROACH AND RESULTS We used CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) technology to knock out LIPA in human induced pluripotent stem cells and then differentiate to macrophage (human-induced pluripotent stem cells-derived macrophage [IPSDM]) to explore the human macrophage LIPA loss-of-function phenotypes. LIPA was abundantly expressed in monocyte-derived macrophages and was markedly induced on IPSDM differentiation to comparable levels as in human monocyte-derived macrophage. IPSDM with knockout of LIPA (LIPA-/-) had barely detectable LAL enzymatic activity. Control and LIPA-/- IPSDM were loaded with [3H]-cholesteryl oleate-labeled AcLDL (acetylated low-density lipoprotein) followed by efflux to apolipoprotein A-I. Efflux of liberated [3H]-cholesterol to apolipoprotein A-I was abolished in LIPA-/- IPSDM, indicating deficiency in LAL-mediated lysosomal cholesteryl ester hydrolysis. In cells loaded with [3H]-cholesterol-labeled AcLDL, [3H]-cholesterol efflux was, however, not different between control and LIPA-/- IPSDM. ABCA1 (ATP-binding cassette, subfamily A, member 1) expression was upregulated by AcLDL loading but to a similar extent between control and LIPA-/- IPSDM. In nonlipid loaded state, LIPA-/- IPSDM had high levels of cholesteryl ester mass compared with minute amounts in control IPSDM. Yet, with AcLDL loading, overall cholesteryl ester mass was increased to similar levels in both control and LIPA-/- IPSDM. LIPA-/- did not impact lysosomal apolipoprotein-B degradation or expression of IL1B, IL6, and CCL5. CONCLUSIONS: LIPA-/- IPSDM reveals macrophage-specific hallmarks of LIPA deficiency. CRISPR/Cas9 and IPSDM provide important tools to study human macrophage biology and more broadly for future studies of disease-associated LIPA genetic variation in human macrophages.
Collapse
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.).
| | - Jianting Shi
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Melanie A Hachet
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Chenyi Xue
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Robert C Bauer
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Hongfeng Jiang
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Wenjun Li
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Junichiro Tohyama
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - John Millar
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Jeffrey Billheimer
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Michael C Phillips
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Babak Razani
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Daniel J Rader
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| | - Muredach P Reilly
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York (H.Z., J.S., M.A.H., C.X., R.C.B., M.P.R.); Irving Institute for Clinical and Translational Research, Columbia University, New York (H.J., M.P.R.); Cardiovascular Institute, Perelman School of Medicine (W.L.), Division of Translational Medicine and Human Genetics, Departments of Genetics and Medicine, Perelman School of Medicine (J.T., J.B., M.C.P., D.J.R.), and Metabolic Tracer Resource, Institute for Diabetes, Obesity and Metabolism, Department of Medicine (J.M.), University of Pennsylvania, Philadelphia; and Department of Pathology and Immunology, Washington University in St. Louis, MO (B.R.)
| |
Collapse
|
83
|
Xue C, Zhang X, Zhang H, Ferguson JF, Wang Y, Hinkle CC, Li M, Reilly MP. De novo RNA sequence assembly during in vivo inflammatory stress reveals hundreds of unannotated lincRNAs in human blood CD14 + monocytes and in adipose tissue. Physiol Genomics 2017; 49:287-305. [PMID: 28389524 PMCID: PMC5495909 DOI: 10.1152/physiolgenomics.00001.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/20/2017] [Accepted: 04/04/2017] [Indexed: 12/29/2022] Open
Abstract
Long intergenic noncoding RNAs (lincRNAs) have emerged as key regulators of cellular functions and physiology. Yet functional lincRNAs often have low, context-specific and tissue-specific expression. We hypothesized that many human monocyte and adipose lincRNAs would be absent in current public annotations due to lincRNA tissue specificity, modest sequencing depth in public data, limitations of transcriptome assembly algorithms, and lack of dynamic physiological contexts. Deep RNA sequencing (RNA-Seq) was performed in peripheral blood CD14+ monocytes (monocytes; average ~247 million reads per sample) and adipose tissue (average ~378 million reads per sample) collected before and after human experimental endotoxemia, an in vivo inflammatory stress, to identify tissue-specific and clinically relevant lincRNAs. Using a stringent filtering pipeline, we identified 109 unannotated lincRNAs in monocytes and 270 unannotated lincRNAs in adipose. Most unannotated lincRNAs are not conserved in rodents and are tissue specific, while many have features of regulated expression and are enriched in transposable elements. Specific subsets have enhancer RNA characteristics or are expressed only during inflammatory stress. A subset of unannotated lincRNAs was validated and replicated for their presence and inflammatory induction in independent human samples and for their monocyte and adipocyte origins. Through interrogation of public genome-wide association data, we also found evidence of specific disease association for selective unannotated lincRNAs. Our findings highlight the critical need to perform deep RNA-Seq in a cell-, tissue-, and context-specific manner to annotate the full repertoire of human lincRNAs for a complete understanding of lincRNA roles in dynamic cell functions and in human disease.
Collapse
Affiliation(s)
- Chenyi Xue
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Xuan Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Hanrui Zhang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Jane F Ferguson
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ying Wang
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York
| | - Christine C Hinkle
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mingyao Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, New York; .,Irving Institute for Clinical and Translational Research, Columbia University, New York, New York
| |
Collapse
|
84
|
Bi X, Pashos EE, Cuchel M, Lyssenko NN, Hernandez M, Picataggi A, McParland J, Yang W, Liu Y, Yan R, Yu C, DerOhannessian SL, Phillips MC, Morrisey EE, Duncan SA, Rader DJ. ATP-Binding Cassette Transporter A1 Deficiency in Human Induced Pluripotent Stem Cell-Derived Hepatocytes Abrogates HDL Biogenesis and Enhances Triglyceride Secretion. EBioMedicine 2017; 18:139-145. [PMID: 28330813 PMCID: PMC5405159 DOI: 10.1016/j.ebiom.2017.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 11/05/2022] Open
Abstract
Despite the recognized role of the ATP-binding Cassette Transporter A1 (ABCA1) in high-density lipoprotein (HDL) metabolism, our understanding of ABCA1 deficiency in human hepatocytes is limited. To define the functional effects of human hepatocyte ABCA1 deficiency, we generated induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) from Tangier disease (TD) and matched control subjects. Control HLCs exhibited robust cholesterol efflux to apolipoprotein A-I (apoA-I) and formed nascent HDL particles. ABCA1-deficient HLCs failed to mediate lipid efflux or nascent HDL formation, but had elevated triglyceride (TG) secretion. Global transcriptome analysis revealed significantly increased ANGPTL3 expression in ABCA1-deficient HLCs. Angiopoietin-related protein 3 (ANGPTL3) was enriched in plasma of TD relative to control subjects. These results highlight the required role of ABCA1 in cholesterol efflux and nascent HDL formation by hepatocytes. Furthermore, our results suggest that hepatic ABCA1 deficiency results in increased hepatic TG and ANGPTL3 secretion, potentially underlying the elevated plasma TG levels in TD patients. ABCA1 deficiency in human hepatocytes abolishes nascent HDL formation, but elevates triglyceride secretion ABCA1 deficiency increases hepatic ANGPTL3 expression and secretion Tangier disease patients display higher plasma ANGPTL3 levels relative to normal HDL control subjects
ATP-Binding Cassette Transporter A1 (ABCA1) is a key regulator of high-density lipoprotein metabolism, but the intrinsic functional impact of human hepatocyte ABCA1 deficiency is yet to be defined. We generated hepatocyte-like cells (HLCs) from induced pluripotent stem cell (iPSC) of patients with Tangier disease (TD), a rare genetic disorder caused by mutations in ABCA1. ABCA1 deficiency in HLCs abrogates lipid efflux and nascent HDL formation but increases triglyceride secretion. ANGPTL3 has also been uncovered as a potential mediator of hypertriglyceridemia in TD. This study thus highlights the utility of iPSC-derived cells in disease modeling.
Collapse
Affiliation(s)
- Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evanthia E Pashos
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marina Cuchel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas N Lyssenko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mayda Hernandez
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonino Picataggi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James McParland
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wenli Yang
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruilan Yan
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Yu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie L DerOhannessian
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Phillips
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, SC 29425, USA
| | - Daniel J Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
85
|
Villasante A, Marturano-Kruik A, Robinson ST, Liu Z, Guo XE, Vunjak-Novakovic G. Tissue-Engineered Model of Human Osteolytic Bone Tumor. Tissue Eng Part C Methods 2017; 23:98-107. [PMID: 28068876 PMCID: PMC5314970 DOI: 10.1089/ten.tec.2016.0371] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Ewing's sarcoma (ES) is a poorly differentiated pediatric tumor of aggressive behavior characterized by propensity to metastasize to bone. Interactions between the tumor and bone cells orchestrate a vicious cycle in which tumor cells induce osteoclast differentiation and activation to cause osteolytic lesions, broken bones, pain, and hypercalcemia. The lack of controllable models that can recapitulate osteolysis in ES impedes the development of new therapies and limits our understanding of how tumor cells invade bone. In response to this need, tissue-engineered models are now being developed to enable quantitative, predictive studies of human tumors. In this study, we report a novel bioengineered model of ES that incorporates the osteolytic process. Our strategy is based on engineering human bone containing both osteoclasts and osteoblasts within three-dimensional mineralized bone matrix. We show that the bone matrix is resorbed by mature osteoclasts while the new bone matrix is formed by osteoblasts, leading to calcium release and bone remodeling. Introduction of ES cell aggregates into the bone niche induced decreases in bone density, connectivity, and matrix deposition. Additionally, therapeutic reagents, such as zoledronic acid, which have demonstrated efficacy in ES treatment, inhibited bone resorption mediated by osteoclasts in the tumor model.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Alessandro Marturano-Kruik
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Milan, Italy
| | - Samuel T. Robinson
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Zen Liu
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - X. Edward Guo
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York
- Department of Medicine, Columbia University, New York, New York
| |
Collapse
|
86
|
Shah RD, Xue C, Zhang H, Tuteja S, Li M, Reilly MP, Ferguson JF. Expression of Calgranulin Genes S100A8, S100A9 and S100A12 Is Modulated by n-3 PUFA during Inflammation in Adipose Tissue and Mononuclear Cells. PLoS One 2017; 12:e0169614. [PMID: 28125622 PMCID: PMC5268473 DOI: 10.1371/journal.pone.0169614] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022] Open
Abstract
Calgranulin genes (S100A8, S100A9 and S100A12) play key immune response roles in inflammatory disorders, including cardiovascular disease. Long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) may have systemic and adipose tissue-specific anti-inflammatory and cardio-protective action. Interactions between calgranulins and the unsaturated fatty acid arachidonic acid (AA) have been reported, yet little is known about the relationship between calgranulins and the LC n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We explored tissue-specific action of calgranulins in the setting of evoked endotoxemia and n-3 PUFA supplementation. Expression of calgranulins in adipose tissue in vivo was assessed by RNA sequencing (RNASeq) before and after n-3 PUFA supplementation and evoked endotoxemia in the fenofibrate and omega-3 fatty acid modulation of endotoxemia (FFAME) Study. Subjects received n-3 PUFA (n = 8; 3600mg/day EPA/DHA) or matched placebo (n = 6) for 6–8 weeks, before completing an endotoxin challenge (LPS 0.6 ng/kg). Calgranulin genes were up-regulated post-LPS, with greater increase in n-3 PUFA (S100A8 15-fold, p = 0.003; S100A9 7-fold, p = 0.003; S100A12 28-fold, p = 0.01) compared to placebo (S100A8 2-fold, p = 0.01; S100A9 1.4-fold, p = 0.4; S100A12 5-fold, p = 0.06). In an independent evoked endotoxemia study, calgranulin gene expression correlated with the systemic inflammatory response. Through in vivo and in vitro interrogation we highlight differential responses in adipocytes and mononuclear cells during inflammation, with n-3 PUFA leading to increased calgranulin expression in adipose, but decreased expression in circulating cells. In conclusion, we present a novel relationship between n-3 PUFA anti-inflammatory action in vivo and cell-specific modulation of calgranulin expression during innate immune activation.
Collapse
Affiliation(s)
- Rachana D. Shah
- Division of Pediatric Endocrinology, Children’s Hospital of Philadelphia, Pennsylvania, United States of America
| | - Chenyi Xue
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Hanrui Zhang
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Sony Tuteja
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mingyao Li
- Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Muredach P. Reilly
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, Columbia University, New York, New York, United States of America
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, and Vanderbilt Translational and Clinical Cardiovascular Research Center (VTRACC), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
87
|
Abstract
Whole-genome and exome sequencing in human populations has revealed the tolerance of each gene for loss-of-function variation. By understanding this tolerance, it has become increasingly possible to identify genes that would make safe therapeutic targets and to identify rare genetic risk factors and phenotypes at the scale of individual genomes. To date, the vast majority of surveyed loss-of-function variants are in protein-coding regions of the genome mainly due to the focus on these regions by exome-based sequencing projects and their relative ease of interpretability. As whole-genome sequencing becomes more prevalent, new strategies will be required to uncover impactful variation in non-coding regions of the genome where the architecture of genome function is more complex. In this review, we investigate recent studies of loss-of-function variation and emerging approaches for interpreting whole-genome sequencing data to identify rare and impactful non-coding loss-of-function variants.
Collapse
Affiliation(s)
- Zachary Zappala
- Department of Genetics, Stanford University, California, USA
| | - Stephen B. Montgomery
- Department of Genetics, Stanford University, California, USA
- Department of Pathology, Stanford University, California, USA
| |
Collapse
|
88
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
89
|
Namgaladze D, Brüne B. Macrophage fatty acid oxidation and its roles in macrophage polarization and fatty acid-induced inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1796-1807. [PMID: 27614008 DOI: 10.1016/j.bbalip.2016.09.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
Recent research considerably changed our knowledge how cellular metabolism affects the immune system. We appreciate that metabolism not only provides energy to immune cells, but also actively influences diverse immune cell phenotypes. Fatty acid metabolism, particularly mitochondrial fatty acid oxidation (FAO) emerges as an important regulator of innate and adaptive immunity. Catabolism of fatty acids also modulates the progression of disease, such as the development of obesity-driven insulin resistance and type II diabetes. Here, we summarize (i) recent developments in research how FAO modulates inflammatory signatures in macrophages in response to saturated fatty acids, and (ii) the role of FAO in regulating anti-inflammatory macrophage polarization. In addition, we define the contribution of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptors (PPARs), in controlling macrophage biology towards fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Dmitry Namgaladze
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
90
|
Lin J, Hu Y, Nunez S, Foulkes AS, Cieply B, Xue C, Gerelus M, Li W, Zhang H, Rader DJ, Musunuru K, Li M, Reilly MP. Transcriptome-Wide Analysis Reveals Modulation of Human Macrophage Inflammatory Phenotype Through Alternative Splicing. Arterioscler Thromb Vasc Biol 2016; 36:1434-47. [PMID: 27230130 PMCID: PMC4919157 DOI: 10.1161/atvbaha.116.307573] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Human macrophages can shift phenotype across the inflammatory M1 and reparative M2 spectrum in response to environmental challenges, but the mechanisms promoting inflammatory and cardiometabolic disease-associated M1 phenotypes remain incompletely understood. Alternative splicing (AS) is emerging as an important regulator of cellular function, yet its role in macrophage activation is largely unknown. We investigated the extent to which AS occurs in M1 activation within the cardiometabolic disease context and validated a functional genomic cell model for studying human macrophage-related AS events. APPROACH AND RESULTS From deep RNA-sequencing of resting, M1, and M2 primary human monocyte-derived macrophages, we found 3860 differentially expressed genes in M1 activation and detected 233 M1-induced AS events; the majority of AS events were cell- and M1-specific with enrichment for pathways relevant to macrophage inflammation. Using genetic variant data for 10 cardiometabolic traits, we identified 28 trait-associated variants within the genomic loci of 21 alternatively spliced genes and 15 variants within 7 differentially expressed regulatory splicing factors in M1 activation. Knockdown of 1 such splicing factor, CELF1, in primary human macrophages led to increased inflammatory response to M1 stimulation, demonstrating CELF1's potential modulation of the M1 phenotype. Finally, we demonstrated that an induced pluripotent stem cell-derived macrophage system recapitulates M1-associated AS events and provides a high-fidelity macrophage AS model. CONCLUSIONS AS plays a role in defining macrophage phenotype in a cell- and stimulus-specific fashion. Alternatively spliced genes and splicing factors with trait-associated variants may reveal novel pathways and targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Jennie Lin
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.).
| | - Yu Hu
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Sara Nunez
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Andrea S Foulkes
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Benjamin Cieply
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Chenyi Xue
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Mark Gerelus
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Wenjun Li
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Hanrui Zhang
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Daniel J Rader
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Kiran Musunuru
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Mingyao Li
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.)
| | - Muredach P Reilly
- From the Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine (J.L.), Department of Biostatistics and Epidemiology (Y.H., M.L.), Department of Genetics, Perelman School of Medicine (B.C., K.M., D.J.R.), and Cardiovascular Institute, Department of Medicine, Perelman School of Medicine (M.G., W.L., K.M.), University of Pennsylvania, Philadelphia; Irving Institute for Clinical and Translational Research (M.P.R.) and Division of Cardiology, Department of Medicine (C.X., H.Z., M.P.R.), Columbia University Medical Center, New York, NY; and Department of Mathematics and Statistics, Mount Holyoke College, South Hadley, MA (S.N., A.S.F.).
| |
Collapse
|
91
|
Williams R. Circulation Research “In This Issue” Anthology. Circ Res 2016. [DOI: 10.1161/res.0000000000000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Lin J, Musunuru K. Genome engineering tools for building cellular models of disease. FEBS J 2016; 283:3222-31. [PMID: 27218233 DOI: 10.1111/febs.13763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/21/2016] [Indexed: 12/18/2022]
Abstract
With the recent development of methods for genome editing of human pluripotent stem cells, study of the genetic basis of human diseases has been rapidly advancing. Genome-edited differentiated stem cells have provided new and more accurate insights into genomic underpinnings of diseases for which there have not been adequate treatments, and moving toward clinical application of genome editing holds great promise for acceleration of therapeutic translation. Here, we review recent advances in genome-editing technologies and their application to human biology in disease modeling and beyond.
Collapse
Affiliation(s)
- Jennie Lin
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
93
|
Affiliation(s)
- Jonathan D Smith
- From the Department of Cellular & Molecular Medicine, Cleveland Clinic, OH
| |
Collapse
|
94
|
Aslibekyan S, Weeke PE, Bouatia-Naji N. Top Advances in Functional Genomics and Translational Biology for 2015. ACTA ACUST UNITED AC 2016; 9:189-92. [PMID: 27094201 DOI: 10.1161/circgenetics.116.001421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Stella Aslibekyan
- From the Early Career Committee of the American Heart Association, Functional Genomics and Translational Biology Council, Dallas, TX
| | - Peter E Weeke
- From the Early Career Committee of the American Heart Association, Functional Genomics and Translational Biology Council, Dallas, TX
| | - Nabila Bouatia-Naji
- From the Early Career Committee of the American Heart Association, Functional Genomics and Translational Biology Council, Dallas, TX.
| |
Collapse
|
95
|
Affiliation(s)
- Hanrui Zhang
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| | - Muredach P Reilly
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
96
|
Gupta RM, Meissner TB, Cowan CA, Musunuru K. Genome-Edited Human Pluripotent Stem Cell-Derived Macrophages as a Model of Reverse Cholesterol Transport--Brief Report. Arterioscler Thromb Vasc Biol 2015; 36:15-8. [PMID: 26543098 DOI: 10.1161/atvbaha.115.305956] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 10/22/2015] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To create isogenic human pluripotent stem cell-derived macrophages with and without ABCA1 expression as a model for reverse cholesterol transport. APPROACH AND RESULTS The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) genome-editing system was used to introduce frameshift mutations into the coding sequence of ATP-binding cassette, subfamily A, member 1. Individual human pluripotent stem cell clones with deleterious mutations were identified, expanded, and differentiated into mature macrophages with a cytokine-based, feeder-free differentiation protocol. Wild-type cells demonstrated effective cholesterol efflux to apoAI acceptor, whereas ABCA1(-/-) cells displayed significantly reduced efflux ability and increased expression of proinflammatory cytokines. CONCLUSIONS Human pluripotent stem cell-derived macrophages capable of reverse cholesterol transport can be rapidly generated and genetically edited with CRISPR/Cas9. Introduction of homozygous frameshift mutations results in loss of ABCA1 expression in differentiated macrophages and subsequent reduction of cholesterol efflux capability. This facile genome-editing approach and differentiation protocol pave the way for future studies of the molecular determinants of reverse cholesterol transport and other macrophage properties.
Collapse
Affiliation(s)
- Rajat M Gupta
- From the Department of Stem Cell and Regenerative Biology, Harvard University, and Harvard Stem Cell Institute, Cambridge, MA (R.M.G., T.B.M., C.A.C., K.M.); and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (R.M.G., K.M.)
| | - Torsten B Meissner
- From the Department of Stem Cell and Regenerative Biology, Harvard University, and Harvard Stem Cell Institute, Cambridge, MA (R.M.G., T.B.M., C.A.C., K.M.); and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA (R.M.G., K.M.)
| | | | | |
Collapse
|
97
|
Spiller KL, Wrona EA, Romero-Torres S, Pallotta I, Graney PL, Witherel CE, Panicker LM, Feldman RA, Urbanska AM, Santambrogio L, Vunjak-Novakovic G, Freytes DO. Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp Cell Res 2015; 347:1-13. [PMID: 26500109 DOI: 10.1016/j.yexcr.2015.10.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 10/11/2015] [Accepted: 10/16/2015] [Indexed: 01/06/2023]
Abstract
The mechanisms by which macrophages control the inflammatory response, wound healing, biomaterial-interactions, and tissue regeneration appear to be related to their activation/differentiation states. Studies of macrophage behavior in vitro can be useful for elucidating their mechanisms of action, but it is not clear to what extent the source of macrophages affects their apparent behavior, potentially affecting interpretation of results. Although comparative studies of macrophage behavior with respect to cell source have been conducted, there has been no direct comparison of the three most commonly used cell sources: murine bone marrow, human monocytes from peripheral blood (PB), and the human leukemic monocytic cell line THP-1, across multiple macrophage phenotypes. In this study, we used multivariate discriminant analysis to compare the in vitro expression of genes commonly chosen to assess macrophage phenotype across all three sources of macrophages, as well as those derived from induced pluripotent stem cells (iPSCs), that were polarized towards four distinct phenotypes using the same differentiation protocols: M(LPS,IFN) (aka M1), M(IL4,IL13) (aka M2a), M(IL10) (aka M2c), and M(-) (aka M0) used as control. Several differences in gene expression trends were found among the sources of macrophages, especially between murine bone marrow-derived and human blood-derived M(LPS,IFN) and M(IL4,IL13) macrophages with respect to commonly used phenotype markers like CCR7 and genes associated with angiogenesis and tissue regeneration like FGF2 and MMP9. We found that the genes with the most similar patterns of expression among all sources were CXCL-10 and CXCL-11 for M(LPS,IFN) and CCL17 and CCL22 for M(IL4,IL13). Human PB-derived macrophages and human iPSC-derived macrophages showed similar gene expression patterns among the groups and genes studied here, suggesting that iPSC-derived monocytes have the potential to be used as a reliable cell source of human macrophages for in vitro studies. These findings could help select appropriate markers when testing macrophage behavior in vitro and highlight those markers that may confuse interpretation of results from experiments employing macrophages from different sources.
Collapse
Affiliation(s)
- Kara L Spiller
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, PA, United States
| | - Emily A Wrona
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | | | - Isabella Pallotta
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Pamela L Graney
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, PA, United States
| | - Claire E Witherel
- Drexel University, School of Biomedical Engineering, Science, and Health Systems, Philadelphia, PA, United States
| | - Leelamma M Panicker
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD, United States
| | - Ricardo A Feldman
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD, United States
| | - Aleksandra M Urbanska
- Columbia University, Departments of Biomedical Engineering and Medicine, New York, NY, United States
| | - Laura Santambrogio
- Albert Einstein College of Medicine, Department of Pathology, Microbiology, and Immunology, Bronx, NY, United States
| | - Gordana Vunjak-Novakovic
- Columbia University, Departments of Biomedical Engineering and Medicine, New York, NY, United States
| | - Donald O Freytes
- The New York Stem Cell Foundation Research Institute, New York, NY, United States.
| |
Collapse
|
98
|
Beringer PM, Bensman TJ, Ho H, Agnello M, Denovel N, Nguyen A, Wong-Beringer A, She R, Tran DQ, Moskowitz SM, Selsted ME. Rhesus θ-defensin-1 (RTD-1) exhibits in vitro and in vivo activity against cystic fibrosis strains of Pseudomonas aeruginosa. J Antimicrob Chemother 2015; 71:181-8. [PMID: 26433781 DOI: 10.1093/jac/dkv301] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/23/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Chronic endobronchial infections with Pseudomonas aeruginosa contribute to bronchiectasis and progressive loss of lung function in patients with cystic fibrosis. This study aimed to evaluate the therapeutic potential of a novel macrocyclic peptide, rhesus θ-defensin-1 (RTD-1), by characterizing its in vitro antipseudomonal activity and in vivo efficacy in a murine model of chronic Pseudomonas lung infection. METHODS Antibacterial testing of RTD-1 was performed on 41 clinical isolates of P. aeruginosa obtained from cystic fibrosis patients. MIC, MBC, time-kill and post-antibiotic effects were evaluated following CLSI-recommended methodology, but using anion-depleted Mueller-Hinton broth. RTD-1 was nebulized daily for 7 days to cystic fibrosis transmembrane conductance regulator (CFTR) F508del-homozygous mice infected using the agar bead model of chronic P. aeruginosa lung infection. In vivo activity was evaluated by change in lung bacterial burden, airway leucocytes and body weight. RESULTS RTD-1 exhibited potent in vitro bactericidal activity against mucoid and non-mucoid strains of P. aeruginosa (MIC90 = 8 mg/L). Cross-resistance was not observed when tested against MDR and colistin-resistant isolates. Time-kill studies indicated very rapid, concentration-dependent bactericidal activity of RTD-1 with ≥3 log10 cfu/mL reductions at concentrations ≥4× MIC. No post-antibiotic effect was observed. In vivo, nebulized treatment with RTD-1 significantly decreased lung P. aeruginosa burden (mean difference of -1.30 log10 cfu; P = 0.0061), airway leucocytes (mean difference of -0.37 log10; P = 0.0012) and weight loss (mean difference of -12.62% at day 7; P < 0.05) when compared with controls. CONCLUSIONS This study suggests that RTD-1 is a promising potential therapeutic agent for cystic fibrosis airway disease.
Collapse
Affiliation(s)
- Paul M Beringer
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Timothy J Bensman
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Henry Ho
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Melissa Agnello
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Nicole Denovel
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Albert Nguyen
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Annie Wong-Beringer
- School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Rosemary She
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Dat Q Tran
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | - Samuel M Moskowitz
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, 275 Cambridge Street, Boston, MA, USA
| | - Michael E Selsted
- Department of Pathology & Laboratory Medicine, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90033, USA USC Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA, USA
| |
Collapse
|