51
|
Rossi M, Fabris E, Barbisan D, Massa L, Sinagra G. Lipid-Lowering Drug Therapy: Critical Approach for Implementation in Clinical Practice. Am J Cardiovasc Drugs 2022; 22:141-155. [PMID: 34514551 PMCID: PMC8924077 DOI: 10.1007/s40256-021-00497-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
Increased levels of low-density lipoprotein cholesterol (LDL-C) are recognized as a primary risk factor for atherosclerotic cardiovascular disease, which remains the leading cause of death worldwide. Lowering LDL-C levels clearly reduces the risk of cardiovascular events, with benefits related to both absolute reduction and duration of treatment; however, a threshold below which low LDL-C levels can be dangerous has never been established. Since the discovery of statins, cardiovascular research has focused on developing new lipid-lowering agents. Ezetimibe and proprotein convertase subtilisin–kexin type 9 inhibitors have been found to further reduce LDL-C values and subsequent cardiovascular risk. Novel recently approved inclisiran and bempedoic acid, currently being tested in cardiovascular outcomes studies, are further expanding our pharmacological armamentarium, enabling the clinician to diminish residual risk related to LDL-C. Moreover, new agents are paving the way to successful treatment of homozygous familial hypercholesterolemia. This review summarizes the main characteristics of current and emerging lipid-lowering therapies to assist with comprehensive evidence-based decision making.
Collapse
Affiliation(s)
- Maddalena Rossi
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Enrico Fabris
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Davide Barbisan
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Laura Massa
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| |
Collapse
|
52
|
Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022; 21:417-439. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Recent years have seen unprecedented activity in the development of RNA-silencing oligonucleotide therapeutics for metabolic diseases. Improved oligonucleotide design and optimization of synthetic nucleic acid chemistry, in combination with the development of highly selective and efficient conjugate delivery technology platforms, have established and validated oligonucleotides as a new class of drugs. To date, there are five marketed oligonucleotide therapies, with many more in clinical studies, for both rare and common liver-driven metabolic diseases. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in metabolism, review past and current clinical trials, and discuss ongoing challenges and possible future developments.
Collapse
|
53
|
Youssef A, Clark JR, Marcovina SM, Boffa MB, Koschinsky ML. Apo(a) and ApoB Interact Noncovalently Within Hepatocytes: Implications for Regulation of Lp(a) Levels by Modulation of ApoB Secretion. Arterioscler Thromb Vasc Biol 2022; 42:289-304. [PMID: 35045727 DOI: 10.1161/atvbaha.121.317335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Elevated plasma Lp(a) (lipoprotein(a)) levels are associated with increased risk for atherosclerotic cardiovascular disease and aortic valve stenosis. However, the cell biology of Lp(a) biosynthesis remains poorly understood, with the locations of the noncovalent and covalent steps of Lp(a) assembly unclear and the nature of the apoB-containing particle destined for Lp(a) unknown. We, therefore, asked if apo(a) and apoB interact noncovalently within hepatocytes and if this impacts Lp(a) biosynthesis. METHODS Using human hepatocellular carcinoma cells expressing 17K (17 kringle) apo(a), or a 17KΔLBS7,8 variant with a reduced ability to bind noncovalently to apoB, we performed coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays to document intracellular apo(a):apoB interactions. We used a pulse-chase metabolic labeling approach to measure apo(a) and apoB secretion rates. RESULTS Noncovalent complexes containing apo(a)/apoB are present in lysates from cells expressing 17K but not 17KΔLBS7,8, whereas covalent apo(a)/apoB complexes are absent from lysates. 17K and apoB colocalized intracellularly, overlapping with staining for markers of endoplasmic reticulum trans-Golgi, and early endosomes, and less so with lysosomes. The 17KΔLBS7,8 had lower colocalization with apoB. Proximity ligation assays directly documented intracellular 17K/apoB interactions, which were dramatically reduced for 17KΔLBS7,8. Treatment of cells with PCSK9 (proprotein convertase subtilisin/kexin type 9) enhanced, and lomitapide reduced, apo(a) secretion in a manner dependent on the noncovalent interaction between apo(a) and apoB. Apo(a) secretion was also reduced by siRNA-mediated knockdown of APOB. CONCLUSIONS Our findings explain the coupling of apo(a) and Lp(a)-apoB production observed in human metabolic studies using stable isotopes as well as the ability of agents that inhibit apoB biosynthesis to lower Lp(a) levels.
Collapse
Affiliation(s)
- Amer Youssef
- Robarts Research Institute (A.Y., M.B.B., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Justin R Clark
- Department of Physiology & Pharmacology (J.R.C., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | | | - Michael B Boffa
- Robarts Research Institute (A.Y., M.B.B., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada.,Department of Biochemistry (M.B.B.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| | - Marlys L Koschinsky
- Robarts Research Institute (A.Y., M.B.B., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada.,Department of Physiology & Pharmacology (J.R.C., M.L.K.), Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
54
|
Wei D, Marrachelli VG, Melgarejo JD, Liao CT, Janssens S, Verhamme P, Vanassche T, Van Aelst L, Monleon D, Redón J, Zhang ZY. Lipoprotein profiles of fat distribution and its association with insulin sensitivity. Front Endocrinol (Lausanne) 2022; 13:978745. [PMID: 36387872 PMCID: PMC9640977 DOI: 10.3389/fendo.2022.978745] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fat deposition is associated with adverse outcomes. Waist-to-hip (WHR) ratio is a simple feasible index to assess fat distribution. Lipoprotein particle composition in relation to WHR and to what extent their association is mediated by insulin sensitivity are less investigated. METHODS In 504 randomly recruited Flemish (mean age: 48.9 years; women: 51.6%), we analyzed the lipoprotein particle constitutions using nuclear magnetic resonance spectroscopy. WHR obesity described a WHR of ≥ 0.85 for women or 0.9 for men. Insulin sensitivity was evaluated by the homeostasis model assessment-estimated insulin resistance (HOMA-IR). SCORE-2 risk algorithm was applied to estimate 10-year cardiovascular risk. Statistical methods included multivariable-adjusted linear regression analysis, logistic regression analysis, and mediation analysis. RESULTS The prevalence of WHR obesity was 54.6%, approximately 3 times of BMI-determined obesity (19.1%). Individuals with WHR obesity had significantly higher metabolic complications, such as hypertension (57.1%), dyslipidemia (61.8%), and insulin resistance (14.2%). WHR and WHR obesity were positively associated with total very-low-density lipoprotein (VLDL) particle concentration, remnant cholesterol, and triglycerides, but were negatively associated with VLDL particle size (P ≤ 0.027), independent of body mass index and other covariates. WHR was inversely associated with total high-density lipoprotein (HDL) particle concentration, whereas WHR obesity was inversely associated with HDL cholesterol (P ≤ 0.039). Neither WHR nor WHR obesity was associated with the concentration of total low-density lipoprotein (LDL) particles, LDL particle size, and LDL cholesterol (P ≥ 0.089). In the mediation analysis, insulin sensitivity significantly mediated the effect of WHR on total VLDL particle concentration (mediation percentage: 37.0%), remnant cholesterol (47.7%), and HDL cholesterol (41.1%). Individuals with WHR obesity were at increased cardiovascular risk, regardless of LDL cholesterol (P ≤0.028). In WHR obesity, higher total VLDL particle concent36ration and remnant cholesterol, and lower HDL cholesterol were associated with an increased cardiovascular risk (P≤ 0.002). CONCLUSIONS Upper-body fat deposition was independently associated with an unfavorable lipoprotein profile, and insulin sensitivity significantly mediated this association. LDL cholesterol might underestimate lipid abnormality for people with upper-body obesity and lowering VLDL particles and remnant cholesterol might potentially reduce the residual cardiovascular risk.
Collapse
Affiliation(s)
- Dongmei Wei
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Vannina González Marrachelli
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
- INCLIVA Research Institute, University of Valencia, Valencia, Spain
| | - Jesus D. Melgarejo
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Chia-Te Liao
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Stefan Janssens
- Division of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Division of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Van Aelst
- Division of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Daniel Monleon
- INCLIVA Research Institute, University of Valencia, Valencia, Spain
- Department of Pathology, University of Valencia, Valencia, Spain
| | - Josep Redón
- INCLIVA Research Institute, University of Valencia, Valencia, Spain
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- *Correspondence: Zhen-Yu Zhang,
| |
Collapse
|
55
|
Chan DC, Ying Q, Watts GF. Recent dynamic studies of the metabolism of atherogenic lipoproteins: elucidating the mode of action of new therapies. Curr Opin Lipidol 2021; 32:378-385. [PMID: 34636776 DOI: 10.1097/mol.0000000000000795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW LDL, triglyceride-rich lipoprotein (TRL) and lipoprotein(a) [Lp(a)] particles are the key atherogenic lipoproteins. Deranged metabolism of these lipoproteins accounts for a spectrum of clinically important dyslipidemias, such as FH, elevated Lp(a) and diabetic dyslipidemia. We review the findings from recent dynamic and tracer studies that have contributed to expanding knowledge in this field. RECENT FINDINGS Deficiency in LDL receptor activity does not only impair the catabolism of LDL-apoB-100 in FH, but also induces hepatic overproduction and decreases catabolism of TRLs. Patients with elevated Lp(a) are characterized by increased hepatic secretion of Lp(a) particles. Elevation of TRLs in diabetes is partly mediated by increased production of apoB-48 and apoC-III, and impaired clearance of apoB-48 in the postprandial state. Tracer kinetic studies show that proprotein convertase subtilisin/kexin type 9 mAbs alone or in combination with statin can increase the catabolism and decrease production of LDL and Lp(a) particles. By contrast, angiopoietin-like protein 3 inhibitors (e.g. evinacumab) reduce VLDL production and increase LDL clearance in FH. Glucagon-like peptide-1 receptor agonists can improve diabetic dyslipidemia by increasing the catabolism of apoB-48 and decreasing the production of apoB-48 and apoC-III. SUMMARY Dynamic studies of the metabolism of atherogenic lipoproteins provide new insight into the nature of dyslipidemias and point to how new therapies with complementary modes of action may have maximal clinical impact.
Collapse
Affiliation(s)
- Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia
| | - Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia
- Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
56
|
Durlach V, Bonnefont-Rousselot D, Boccara F, Varret M, Di-Filippo Charcosset M, Cariou B, Valero R, Charriere S, Farnier M, Morange PE, Meilhac O, Lambert G, Moulin P, Gillery P, Beliard-Lasserre S, Bruckert E, Carrié A, Ferrières J, Collet X, Chapman MJ, Anglés-Cano E. Lipoprotein(a): Pathophysiology, measurement, indication and treatment in cardiovascular disease. A consensus statement from the Nouvelle Société Francophone d'Athérosclérose (NSFA). Arch Cardiovasc Dis 2021; 114:828-847. [PMID: 34840125 DOI: 10.1016/j.acvd.2021.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
Lipoprotein(a) is an apolipoprotein B100-containing low-density lipoprotein-like particle that is rich in cholesterol, and is associated with a second major protein, apolipoprotein(a). Apolipoprotein(a) possesses structural similarity to plasminogen but lacks fibrinolytic activity. As a consequence of its composite structure, lipoprotein(a) may: (1) elicit a prothrombotic/antifibrinolytic action favouring clot stability; and (2) enhance atherosclerosis progression via its propensity for retention in the arterial intima, with deposition of its cholesterol load at sites of plaque formation. Equally, lipoprotein(a) may induce inflammation and calcification in the aortic leaflet valve interstitium, leading to calcific aortic valve stenosis. Experimental, epidemiological and genetic evidence support the contention that elevated concentrations of lipoprotein(a) are causally related to atherothrombotic risk and equally to calcific aortic valve stenosis. The plasma concentration of lipoprotein(a) is principally determined by genetic factors, is not influenced by dietary habits, remains essentially constant over the lifetime of a given individual and is the most powerful variable for prediction of lipoprotein(a)-associated cardiovascular risk. However, major interindividual variations (up to 1000-fold) are characteristic of lipoprotein(a) concentrations. In this context, lipoprotein(a) assays, although currently insufficiently standardized, are of considerable interest, not only in stratifying cardiovascular risk, but equally in the clinical follow-up of patients treated with novel lipid-lowering therapies targeted at lipoprotein(a) (e.g. antiapolipoprotein(a) antisense oligonucleotides and small interfering ribonucleic acids) that markedly reduce circulating lipoprotein(a) concentrations. We recommend that lipoprotein(a) be measured once in subjects at high cardiovascular risk with premature coronary heart disease, in familial hypercholesterolaemia, in those with a family history of coronary heart disease and in those with recurrent coronary heart disease despite lipid-lowering treatment. Because of its clinical relevance, the cost of lipoprotein(a) testing should be covered by social security and health authorities.
Collapse
Affiliation(s)
- Vincent Durlach
- Champagne-Ardenne University, UMR CNRS 7369 MEDyC & Cardio-Thoracic Department, Reims University Hospital, 51092 Reims, France
| | - Dominique Bonnefont-Rousselot
- Metabolic Biochemistry Department, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Université de Paris, CNRS, INSERM, UTCBS, 75006 Paris, France
| | - Franck Boccara
- Sorbonne University, GRC n(o) 22, C(2)MV, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, IHU ICAN, 75012 Paris, France; Service de Cardiologie, Hôpital Saint-Antoine, AP-HP, 75012 Paris, France
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM U1148, Centre Hospitalier Universitaire Xavier Bichat, 75018 Paris, France; Université de Paris, 75018 Paris, France
| | - Mathilde Di-Filippo Charcosset
- Hospices Civils de Lyon, UF Dyslipidémies, 69677 Bron, France; Laboratoire CarMen, INSERM, INRA, INSA, Université Claude-Bernard Lyon 1, 69495 Pierre-Bénite, France
| | - Bertrand Cariou
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, 44000 Nantes, France
| | - René Valero
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Sybil Charriere
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Michel Farnier
- PEC2, EA 7460, University of Bourgogne Franche-Comté, 21079 Dijon, France; Department of Cardiology, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Pierre E Morange
- Aix-Marseille University, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Olivier Meilhac
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Gilles Lambert
- INSERM, UMR 1188 DéTROI, Université de La Réunion, 97744 Saint-Denis de La Réunion, Reunion; CHU de La Réunion, CIC-EC 1410, 97448 Saint-Pierre, Reunion
| | - Philippe Moulin
- Hospices Civils de Lyon, INSERM U1060, Laboratoire CarMeN, Université Lyon 1, 69310 Pierre-Bénite, France
| | - Philippe Gillery
- Laboratory of Biochemistry-Pharmacology-Toxicology, Reims University Hospital, University of Reims Champagne-Ardenne, UMR CNRS/URCA n(o) 7369, 51092 Reims, France
| | - Sophie Beliard-Lasserre
- Endocrinology Department, La Conception Hospital, AP-HM, Aix-Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France
| | - Eric Bruckert
- Service d'Endocrinologie-Métabolisme, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France; IHU ICAN, Sorbonne University, 75013 Paris, France
| | - Alain Carrié
- Sorbonne University, UMR INSERM 1166, IHU ICAN, Laboratory of Endocrine and Oncological Biochemistry, Obesity and Dyslipidaemia Genetic Unit, Hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France
| | - Jean Ferrières
- Department of Cardiology and INSERM UMR 1295, Rangueil University Hospital, TSA 50032, 31059 Toulouse, France
| | - Xavier Collet
- INSERM U1048, Institute of Metabolic and Cardiovascular Diseases, Rangueil University Hospital, BP 84225, 31432 Toulouse, France
| | - M John Chapman
- Sorbonne University, Hôpital Pitié-Salpêtrière and National Institute for Health and Medical Research (INSERM), 75013 Paris, France
| | - Eduardo Anglés-Cano
- Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006 Paris, France.
| |
Collapse
|
57
|
Xia XD, Peng ZS, Gu HM, Wang M, Wang GQ, Zhang DW. Regulation of PCSK9 Expression and Function: Mechanisms and Therapeutic Implications. Front Cardiovasc Med 2021; 8:764038. [PMID: 34782856 PMCID: PMC8589637 DOI: 10.3389/fcvm.2021.764038] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes degradation of low-density lipoprotein receptor (LDLR) and plays a central role in regulating plasma levels of LDL cholesterol levels, lipoprotein(a) and triglyceride-rich lipoproteins, increasing the risk of cardiovascular disease. Additionally, PCSK9 promotes degradation of major histocompatibility protein class I and reduces intratumoral infiltration of cytotoxic T cells. Inhibition of PCSK9 increases expression of LDLR, thereby reducing plasma levels of lipoproteins and the risk of cardiovascular disease. PCSK9 inhibition also increases cell surface levels of major histocompatibility protein class I in cancer cells and suppresses tumor growth. Therefore, PCSK9 plays a vital role in the pathogenesis of cardiovascular disease and cancer, the top two causes of morbidity and mortality worldwide. Monoclonal anti-PCSK9 antibody-based therapy is currently the only available treatment that can effectively reduce plasma LDL-C levels and suppress tumor growth. However, high expenses limit their widespread use. PCSK9 promotes lysosomal degradation of its substrates, but the detailed molecular mechanism by which PCSK9 promotes degradation of its substrates is not completely understood, impeding the development of more cost-effective alternative strategies to inhibit PCSK9. Here, we review our current understanding of PCSK9 and focus on the regulation of its expression and functions.
Collapse
Affiliation(s)
- Xiao-Dan Xia
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhong-Sheng Peng
- School of Economics, Management and Law, University of South China, Hengyang, China
| | - Hong-Mei Gu
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Maggie Wang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Gui-Qing Wang
- Department of Orthopedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
58
|
Krittanawong C, Khawaja M, Rosenson RS, Amos CI, Nambi V, Lavie CJ, Virani SS. Association of PCSK9 Variants With the Risk of Atherosclerotic Cardiovascular Disease and Variable Responses to PCSK9 Inhibitor Therapy. Curr Probl Cardiol 2021; 47:101043. [PMID: 34780866 DOI: 10.1016/j.cpcardiol.2021.101043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Genetic polymorphisms or variations, randomly distributed in a population, may cause drug-gene response variations. Investigation into these polymorphisms may identify novel mechanisms contributing to a specific disease process. Such investigation necessitates the use of Mendelian randomization, an analytical method that uses genetic variants as instrumental variables for modifiable risk factors that affect population health.1 In the past decade, advances in our understanding of genetic polymorphisms have enabled the identification of genetic variants in candidate genes that impact low-density lipoprotein cholesterol (LDL-C) regulating pathways and cardiovascular disease (CVD) outcomes. A specific candidate gene of interest is that of the LDL receptor degrading protein, PCSK9. In fact, loss-of-function genetic variants for the PCSK9 gene are what first highlighted this pathway as a candidate for pharmacologic inhibition. PCSK9 inhibitors (PCSK9i) are a class of cholesterol-lowering medications that provide significant reductions in LDL by inhibiting the degradation of LDL receptors (LDLR). These inhibitors have also been found to reduce production and enhance clearance of lipoprotein A (Lp[a]), an LDL-like particle currently under study as a separate risk factor for atherosclerotic CVD. Here, we discuss the promise of personalized medicine in developing a more efficacious and individualized pharmacogenomics-based approach for the use of PCSK9i that considers genetic variation and targets different patient populations. This review explores the pharmacogenomics of PCSK9i in the context of PCSK9 allele variants related to drug-metabolizing enzymes and responses since more studies are demonstrating that some patients are hyporesponsive or non-responsive to PCSK9i.2 In summary, the pharmacogenomics of PCSK9 are a promising therapeutic target and genetic information from prospective randomized clinical trials is warranted to gain a full understanding of the efficacy and cost-effectiveness of such allele and/or gene-guided PCSK9i therapy.
Collapse
Affiliation(s)
- Chayakrit Krittanawong
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX.
| | - Muzamil Khawaja
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Robert S Rosenson
- Director, Cardiometabolics Unit, Mount Sinai Hospital, Mount Sinai Heart, NY, NY
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, TX
| | - Vijay Nambi
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA
| | - Salim S Virani
- The Michael E. DeBakey VA Medical Center, Houston, TX; Section of Cardiology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
59
|
Chakraborty A, Pang J, Chan DC, Ellis KL, Hooper AJ, Bell DA, Burnett JR, Moses EK, Watts GF. Cascade testing for elevated lipoprotein(a) in relatives of probands with familial hypercholesterolaemia and elevated lipoprotein(a). Atherosclerosis 2021; 349:219-226. [PMID: 34862044 DOI: 10.1016/j.atherosclerosis.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolaemia (FH) and elevated plasma lipoprotein(a) [Lp(a)] are inherited conditions independently associated with atherosclerotic cardiovascular disease. This study investigated the detection of new cases of elevated Lp(a) during cascade testing of relatives of probands with a definite diagnosis of FH and elevated Lp(a) (≥50 mg/dL). METHODS Relatives from 62 adult probands were tested for FH genetically and for elevated Lp(a) using an immunoassay. The prevalence and yield of new cases of FH with or without elevated Lp(a) among relatives and the association between the detection of elevated Lp(a) and the Lp(a) concentration of the probands were assessed. RESULTS Among 162 relatives tested (136 adults and 26 children), the prevalence of FH and elevated Lp(a) was 60.5% and 41.4%, respectively: FH alone was detected in 31.5%, elevated Lp(a) alone in 12.3%, FH with elevated Lp(a) in 29.0%, and neither disorder in 27.2% of the relatives. Cascade testing detected a new case of FH, elevated Lp(a) and FH with elevated Lp(a) for every 1.5, 2.1 and 3.0 relatives tested, respectively. The proportion of relatives detected with elevated Lp(a) was significantly higher when tested from probands with Lp(a) ≥100 mg/dL compared with those from probands with Lp(a) between 50 and 99 mg/dL (53% vs 34%, p = 0.018). The concordance between the detection of FH and elevated Lp(a) was 56.2% (kappa statistic 0.154), indicating a poor agreement. CONCLUSIONS A dual approach to cascade testing families for FH and high Lp(a) from appropriate probands can effectively identify not only new cases of FH, but also new cases of elevated Lp(a) with or without FH. The findings accord with the co-dominant and independent heritability of FH and Lp(a).
Collapse
Affiliation(s)
- Anindita Chakraborty
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Dick C Chan
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Katrina L Ellis
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda J Hooper
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
| | - Damon A Bell
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia; Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - John R Burnett
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia; Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Eric K Moses
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Western Australia, Australia; Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
60
|
Ying Q, Chan DC, Barrett PHR, Watts GF. Unravelling lipoprotein metabolism with stable isotopes: tracing the flow. Metabolism 2021; 124:154887. [PMID: 34508741 DOI: 10.1016/j.metabol.2021.154887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/13/2022]
Abstract
Dysregulated lipoprotein metabolism is a major cause of atherosclerotic cardiovascular disease (ASCVD). Use of stable isotope tracers and compartmental modelling have provided deeper understanding of the mechanisms underlying lipid disorders in patients at high risk of ASCVD, including familial hypercholesterolemia (FH), elevated lipoprotein(a) [Lp(a)] and metabolic syndrome (MetS). In patients with FH, deficiency in low-density lipoprotein (LDL) receptor activity not only impairs the catabolism of LDL, but also induces hepatic overproduction and decreases catabolism of triglyceride-rich lipoproteins (TRLs). Patients with elevated Lp(a) are characterized by increased hepatic secretion of Lp(a) particles. Atherogenic dyslipidemia in MetS patients relates to a combination of overproduction of very-low density lipoprotein-apolipoprotein (apo) B-100, decreased catabolism of apoB-100-containing particles, and increased catabolism of high-density lipoprotein-apoA-I particles, as well as to impaired clearance of TRLs in the postprandial state. Kinetic studies show that weight loss, fish oils, statins and fibrates have complementary modes of action that correct atherogenic dyslipidemia. Defining the kinetic mechanisms of action of proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 inhibitors on lipid and lipoprotein mechanism in dyslipidemic subjects will further our understanding of these therapies in decreasing the development of ASCVD. "Everything changes but change itself. Everything flows and nothing remains the same... You cannot step twice into the same river, for other waters and yet others go flowing ever on." Heraclitus (c.535- c. 475 BCE).
Collapse
Affiliation(s)
- Qidi Ying
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Dick C Chan
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| | - Gerald F Watts
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
61
|
Zhao X, Song L, Wang Y, Li J, Zhou J, Chen R, Liu C, Zhou P, Sheng Z, Chen Y, Zhao H, Yan H. Proprotein Convertase Subtilisin/Kexin Type 9 and Systemic Inflammatory Biomarker Pentraxin 3 for Risk Stratification Among STEMI Patients Undergoing Primary PCI. J Inflamm Res 2021; 14:5319-5335. [PMID: 34703271 PMCID: PMC8524062 DOI: 10.2147/jir.s334246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aim The aim of prospective study was to determine the prognostic value of combined measures of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9) and pentraxin 3 (PTX3) according to the culprit-plaque morphology (plaque rupture versus plaque erosion) in relation to the in patients with acute ST-elevated myocardial infarction (STEMI) who underwent primary percutaneous coronary intervention. Methods A total of 434 patients with STEMI aged ≥18 years who underwent pre-intervention OCT imaging of culprit lesions between March 2017 and March 2019 were enrolled. Finally, 235 patients who meet the inclusion criteria were enrolled and the cohort was divided into 3 groups according to PCSK9 and PTX3 levels: group A: PCSK9 < median and Pentraxin 3 (N = 72/30.6%); group B: PCSK9 ≥ median or Pentraxin 3≥ median (N = 91/38.7%); group C: PCSK9 ≥ median and Pentraxin 3≥ median (N = 72/30.6%). MACEs were defined as a composite of all-cause death, myocardial infarction (MI) recurrence, and ischemic stroke, revascularization and heart failure. Outcomes During a median follow-up of 2.01 years, 50 patients has occurred MACE. Two-year MACE was higher in group C (23/31.9%) than in group B (16/17.6%) and group A (11/15.3%) (p = 0.028). There was a correlation between PCSK9 and PTX3 (r = 0.302, p < 0.003). In multivariable analysis adjusted for age, gender, risk factors, and serum indexes, being in group C remained independently associated with an increased risk of MACE (hazard ratio [HR]: 2.90; p = 0.010), and group B tended to have higher MACE (HR: 1.76; p = 0.172) compared with group A. Among patients with plaque erosion by OCT, group C was independently associated with an increased risk of MACE (HR: 9.04; p = 0.048) after fully adjustment. However, the significant association was absence among patients with plaque rupture. Conclusion and Relevance This study demonstrated the usefulness of combined measures of PCSK9 and PTX3 to enhance risk stratification in patients with STEMI especially among patients with plaque erosion. Patients with elevation of both PCSK9 and PTX3 had a markedly increased risk of MACE.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Zhaoxue Sheng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, BeiJing, People's Republic of China
| | - Hongbing Yan
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, ShenZhen, People's Republic of China
| |
Collapse
|
62
|
Bensenor I, Padilha K, Lima IR, Santos RD, Lambert G, Ramin-Mangata S, Bittencourt MS, Goulart AC, Santos IS, Mill JG, Krieger JE, Lotufo PA, Pereira AC. Genome-Wide Association of Proprotein Convertase Subtilisin/Kexin Type 9 Plasma Levels in the ELSA-Brasil Study. Front Genet 2021; 12:728526. [PMID: 34659352 PMCID: PMC8514075 DOI: 10.3389/fgene.2021.728526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022] Open
Abstract
Pharmacological inhibition of PCSK9 (proprotein convertase subtilisin/kexin type 9) is an established therapeutic option to treat hypercholesterolemia, and plasma PCSK9 levels have been implicated in cardiovascular disease incidence. A number of genetic variants within the PCSK9 gene locus have been shown to modulate PCSK9 levels, but these only explain a very small percentage of the overall PCSK9 interindividual variation. Here we present data on the genetic association structure between PCSK9 levels and genom-wide genetic variation in a healthy sample from the general population. We performed a genome-wide association study of plasma PCSK9 levels in a sample of Brazilian individuals enrolled in the Estudo Longitudinal de Saude do Adulto cohort (n=810). Enrolled individuals were free from cardiovascular disease, diabetes and were not under lipid-lowering medication. Genome-wide genotyping was conducted using the Axiom_PMRA.r3 array, and imputation was performed using the TOPMED multi-ancestry sample panel as reference. Total PCSK9 plasma concentrations were determined using the Quantikine SPC900 ELISA kit. We observed two genome-wide significant loci and seven loci that reached the pre-defined value of p threshold of 1×10−6. Significant variants were near KCNA5 and KCNA1, and LINC00353. Genetic variation at the PCSK9 locus was able to explain approximately 4% of the overall interindividual variations in PCSK9 levels. Colocalization analysis using eQTL data suggested RWDD3, ATXN7L1, KCNA1, and FAM177A1 to be potential mediators of some of the observed associations. Our results suggest that PCSK9 levels may be modulated by trans genetic variation outside of the PCSK9 gene and this may have clinical implications. Understanding both environmental and genetic predictors of PCSK9 levels may help identify new targets for cardiovascular disease treatment and contribute to a better assessment of the benefits of long-term PCSK9 inhibition.
Collapse
Affiliation(s)
- Isabela Bensenor
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Isabella Ramos Lima
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Raul Dias Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Gilles Lambert
- Inserm UMR 1188 DéTROI, Université La Réunion, Sainte Clotilde, France
| | | | - Marcio S Bittencourt
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Alessandra C Goulart
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Itamar S Santos
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Jose G Mill
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Paulo A Lotufo
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| |
Collapse
|
63
|
Banerjee Y, Pantea Stoian A, Cicero AFG, Fogacci F, Nikolic D, Sachinidis A, Rizvi AA, Janez A, Rizzo M. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf 2021; 21:9-20. [PMID: 34596005 DOI: 10.1080/14740338.2022.1988568] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Inclisiran is a novel posttranscriptional gene silencing therapy that inhibits proprotein convertase subtilisin/kexin type 9 (PCSK9) synthesis by RNA interference and has a potent, dose-dependent, durable effect in lowering LDL-C, and therefore is an effective drug to treat dyslipidemia, reducing the risk for acute cardiovascular (CV) events. It is safe and well-tolerated. AREAS COVERED This paper aims to review the mechanism of action of inclisiran while evaluating its efficacy and safety in the treatment of dyslipidemia from data of the clinical trials in the ORION program. EXPERT OPINION Data from the clinical trials in the ORION program demonstrated efficacy and safety of inclisiran in patients with dyslipidemia. Adverse events were similar in the inclisiran and placebo groups in the clinical trials, although injection-site reactions were more frequent with inclisiran than with placebo. Although the combination of efficacy and safety makes inclisiran a good option for the treatment of dyslipidemia compared to other PCSK9 targeting therapeutic strategies, however, further studies should exclude the possibility that inclisiran, through lower-affinity interactions, may influence other mRNAs in the physiological milieu.
Collapse
Affiliation(s)
- Yajnavalka Banerjee
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates and Centre of Medical Education, University of Dundee, UK
| | - Anca Pantea Stoian
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Factors Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Italy
| | - Dragana Nikolic
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Alexandros Sachinidis
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy
| | - Ali A Rizvi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA.,Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Andrej Janez
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Ljubljana, Slovenia
| | - Manfredi Rizzo
- Department of Diabetes, Nutrition and Metabolic Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy.,Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
64
|
Seidah NG. The PCSK9 discovery, an inactive protease with varied functions in hypercholesterolemia, viral infections, and cancer. J Lipid Res 2021; 62:100130. [PMID: 34606887 PMCID: PMC8551645 DOI: 10.1016/j.jlr.2021.100130] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/06/2023] Open
Abstract
In 2003, the sequences of mammalian proprotein convertase subtilisin/kexin type 9 (PCSK9) were reported. Radiolabeling pulse-chase analyses demonstrated that PCSK9 was synthesized as a precursor (proPCSK9) that undergoes autocatalytic cleavage in the endoplasmic reticulum into PCSK9, which is then secreted as an inactive enzyme in complex with its inhibitory prodomain. Its high mRNA expression in liver hepatocytes and its gene localization on chromosome 1p32, a third locus associated with familial hypercholesterolemia, other than LDLR or APOB, led us to identify three patient families expressing the PCSK9 variants S127R or F216L. Although Pcsk9 and Ldlr were downregulated in mice that were fed a cholesterol-rich diet, PCSK9 overexpression led to the degradation of the LDLR. This led to the demonstration that gain-of-function and loss-of-function variations in PCSK9 modulate its bioactivity, whereby PCSK9 binds the LDLR in a nonenzymatic fashion to induce its degradation in endosomes/lysosomes. PCSK9 was also shown to play major roles in targeting other receptors for degradation, thereby regulating various processes, including hypercholesterolemia and associated atherosclerosis, vascular inflammation, viral infections, and immune checkpoint regulation in cancer. Injectable PCSK9 monoclonal antibody or siRNA is currently used in clinics worldwide to treat hypercholesterolemia and could be combined with current therapies in cancer/metastasis. In this review, we present the critical information that led to the discovery of PCSK9 and its implication in LDL-C metabolism. We further analyze the underlying functional mechanism(s) in the regulation of LDL-C, as well as the evolving novel roles of PCSK9 in both health and disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
65
|
Ginsberg HN, Packard CJ, Chapman MJ, Borén J, Aguilar-Salinas CA, Averna M, Ference BA, Gaudet D, Hegele RA, Kersten S, Lewis GF, Lichtenstein AH, Moulin P, Nordestgaard BG, Remaley AT, Staels B, Stroes ESG, Taskinen MR, Tokgözoğlu LS, Tybjaerg-Hansen A, Stock JK, Catapano AL. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42:4791-4806. [PMID: 34472586 PMCID: PMC8670783 DOI: 10.1093/eurheartj/ehab551] [Citation(s) in RCA: 459] [Impact Index Per Article: 114.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/21/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in human genetics, together with a large body of epidemiologic, preclinical, and clinical trial results, provide strong support for a causal association between triglycerides (TG), TG-rich lipoproteins (TRL), and TRL remnants, and increased risk of myocardial infarction, ischaemic stroke, and aortic valve stenosis. These data also indicate that TRL and their remnants may contribute significantly to residual cardiovascular risk in patients on optimized low-density lipoprotein (LDL)-lowering therapy. This statement critically appraises current understanding of the structure, function, and metabolism of TRL, and their pathophysiological role in atherosclerotic cardiovascular disease (ASCVD). Key points are (i) a working definition of normo- and hypertriglyceridaemic states and their relation to risk of ASCVD, (ii) a conceptual framework for the generation of remnants due to dysregulation of TRL production, lipolysis, and remodelling, as well as clearance of remnant lipoproteins from the circulation, (iii) the pleiotropic proatherogenic actions of TRL and remnants at the arterial wall, (iv) challenges in defining, quantitating, and assessing the atherogenic properties of remnant particles, and (v) exploration of the relative atherogenicity of TRL and remnants compared to LDL. Assessment of these issues provides a foundation for evaluating approaches to effectively reduce levels of TRL and remnants by targeting either production, lipolysis, or hepatic clearance, or a combination of these mechanisms. This consensus statement updates current understanding in an integrated manner, thereby providing a platform for new therapeutic paradigms targeting TRL and their remnants, with the aim of reducing the risk of ASCVD.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, PH-10-305, New York, NY 10032, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - M John Chapman
- Sorbonne University Endocrinology-Metabolism Division, Pitié-Salpetriere University Hospital, and National Institute for Health and Medical Research (INSERM), 47 Hôpital boulevard, Paris 75013, France
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Blå Stråket 5, Gothenburg 413 45, Sweden
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación en Enfermedades Metabólicas and Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto, Monterrey, Nuevo León 3000, Mexico
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Marina Square, 61, Palermo 90133, Italy
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE, Clinical and Translational Research Center, and Lipid Clinic, Chicoutimi Hospital, 305 Rue St Vallier, Chicoutimi, Québec G7H 5H6, Canada
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Sander Kersten
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine, Banting & Best Diabetes Centre, University of Toronto, Eaton Building, Room 12E248, 200 Elizabeth St, Toronto, Ontario M5G 2C4, Canada
| | - Alice H Lichtenstein
- Cardiovascular Nutrition, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington St Ste 9, Boston, MA 02111, USA
| | - Philippe Moulin
- Department of Endocrinology, GHE, Hospices Civils de Lyon, CarMeN Laboratory, Inserm UMR 1060, CENS-ELI B, Univ-Lyon1, Lyon 69003, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen DK-2200, Denmark
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Dr Ste 10-7C114, Bethesda, MD 20892, USA
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Erik S G Stroes
- Department of Vascular Medicine, Academic Medical Center, 1541 Kings Hwy, Amsterdam 71103, The Netherlands
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, 06100 Sıhhiye, Ankara, Turkey
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Blegdamsvej 9, Rigshospitalet, Copenhagen 2100, Denmark.,Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark.,Copenhagen City Heart Study, Frederiksberg Hospital, Nordre Fasanvej, Frederiksberg 57 2000, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej, Copenhagen 3B 2200, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, Gothenburg SE-412 51, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano and IRCCS MultiMedica, Via Festa del Perdono 7, Milan 20122, Italy
| |
Collapse
|
66
|
Mahmood T, Minnier J, Ito MK, Li QH, Koren A, Kam IW, Fazio S, Shapiro MD. Discordant responses of plasma low-density lipoprotein cholesterol and lipoprotein(a) to alirocumab: A pooled analysis from 10 ODYSSEY Phase 3 studies. Eur J Prev Cardiol 2021; 28:816-822. [PMID: 34298554 DOI: 10.1177/2047487320915803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors consistently reduce low-density lipoprotein cholesterol (LDL-C) by 50-60% and lipoprotein(a) (Lp(a)) by 20-30%, but the mechanism of Lp(a) lowering remains unclear. If Lp(a) is cleared by the LDL receptor, similar to LDL-C, then one would expect PCSK9 inhibition to induce a concordant LDL-C/Lp(a) response in an approximately 2:1 ratio. We aim to determine the prevalence of discordant plasma LDL-C/Lp(a) response to the PCSK9 inhibitor alirocumab. METHODS This is a post hoc, pooled analysis of 10 randomized controlled trials from the ODYSSEY Phase 3 clinical trial program for alirocumab. Patients enrolled in the trials were high cardiovascular risk and/or with heterozygous familial hypercholesterolemia. The primary end point was prevalence of discordant LDL-C/Lp(a) response to alirocumab at 24 weeks. Discordant response was defined as LDL-C reduction >35% and Lp(a) reduction ≤10%, or LDL-C reduction ≤35% and Lp(a) reduction >10%. RESULTS Of the 1709 patients in the pooled study cohort, 62.4% were male, and the mean age was 59.2 (SD: 11.0) years. Baseline mean LDL-C was 126.5 (SD: 46.3) mg/dL and baseline median Lp(a) was 46.9 (interquartile range: 21.8-89.0) mg/dL. Total prevalence of discordant LDL-C/Lp(a) response was 21.5% (12.6% with LDL-C >35% reduction and Lp(a) ≤10% reduction; 8.9% with LDL-C ≤35% reduction and Lp(a) >10% reduction). Baseline Lp(a) and familial hypercholesterolemia status did not affect discordance. CONCLUSION A high prevalence of discordant LDL-C/Lp(a) response was observed with alirocumab, further suggesting that PCSK9 inhibitor therapy with alirocumab reduces plasma Lp(a) through alternative pathways to LDL receptor clearance.
Collapse
Affiliation(s)
- Tahir Mahmood
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, USA
| | - Jessica Minnier
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, USA
- Oregon Health & Science University, OHSU-PSU School of Public Health, USA
| | | | | | | | | | - Sergio Fazio
- Oregon Health & Science University, Knight Cardiovascular Institute, Center for Preventive Cardiology, USA
| | - Michael D Shapiro
- Center for Preventive Cardiology, Wake Forest University Baptist Medical Center, Section on Cardiovascular Medicine, USA
| |
Collapse
|
67
|
Beyond Lipoprotein(a) plasma measurements: Lipoprotein(a) and inflammation. Pharmacol Res 2021; 169:105689. [PMID: 34033878 PMCID: PMC9247870 DOI: 10.1016/j.phrs.2021.105689] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022]
Abstract
Genome wide association, epidemiological, and clinical studies have established high lipoprotein(a) [Lp(a)] as a causal risk factor for atherosclerotic cardiovascular disease (ASCVD). Lp(a) is an apoB100 containing lipoprotein covalently bound to apolipoprotein(a) [apo(a)], a glycoprotein. Plasma Lp(a) levels are to a large extent determined by genetics. Its link to cardiovascular disease (CVD) may be driven by its pro-inflammatory effects, of which its association with oxidized phospholipids (oxPL) bound to Lp(a) is the most studied. Various inflammatory conditions, such as rheumatoid arthritis (RA), systemic lupus erythematosus, acquired immunodeficiency syndrome, and chronic renal failure are associated with high Lp(a) levels. In cases of RA, high Lp(a) levels are reversed by interleukin-6 receptor (IL-6R) blockade by tocilizumab, suggesting a potential role for IL-6 in regulating Lp(a) plasma levels. Elevated levels of IL-6 and IL-6R polymorphisms are associated with CVD. Therapies aimed at lowering apo(a) and thereby reducing plasma Lp(a) levels are in clinical trials. Their results will determine if reductions in apo(a) and Lp(a) decrease cardiovascular outcomes. As we enter this new arena of available treatments, there is a need to improve our understanding of mechanisms. This review will focus on the role of Lp(a) in inflammation and CVD.
Collapse
|
68
|
Inclisiran: A Novel Agent for Lowering Apolipoprotein B-Containing Lipoproteins. J Cardiovasc Pharmacol 2021; 78:e157-e174. [PMID: 33990512 DOI: 10.1097/fjc.0000000000001053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022]
Abstract
ABSTRACT Hypercholesterolemia is a leading cause of cardiovascular morbidity and mortality. Accordingly, efforts to lower apolipoprotein B-containing lipoproteins in plasma are the centerpiece of strategies for cardiovascular prevention and treatment in primary and secondary management. Despite the importance of this endeavor, many patients do not achieve appropriate low density lipoprotein cholesterol (LDL-C) and non-high density lipoprotein cholesterol (non-HDL-C) goals, even among those who have experienced atherosclerotic cardiovascular disease (ASCVD). The development of new LDL-C-lowering medications with alternative mechanisms of action will facilitate improved goal achievement in high risk patients. Inclisiran is a novel small interfering ribonucleic acid (siRNA)-based drug that is experimental in the US and approved for clinical use in the EU. It lowers LDL-C and other apolipoprotein B-containing lipoproteins by reducing production of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9), a protein that normally contributes to LDL-receptor (LDLR) degradation, thereby increasing LDLR density and recycling in hepatocytes. Although the lipid-lowering efficacy of inclisiran is comparable to results achieved with PCSK9-blocking monoclonal antibodies (PCSK9i) (alirocumab and evolocumab), there are several important differences between the two drug classes. First, inclisiran reduces levels of PCSK9 both intracellularly and extracellularly by blocking translation of and degrading PCSK9 messenger RNA. Second, the long biological half-life of inclisiran produces sustained LDL-C-lowering with twice yearly dosing. Third, although PCSK9i drugs are proven to reduce ASCVD events, clinical outcomes trials with inclisiran are still in progress. In this manuscript, we review the clinical development of inclisiran, its mechanism of action, lipid-lowering efficacy, safety and tolerability, and potential clinical role of this promising new agent.
Collapse
|
69
|
Karantas ID, Okur ME, Okur NÜ, Siafaka PI. Dyslipidemia Management in 2020: An Update on Diagnosis and Therapeutic Perspectives. Endocr Metab Immune Disord Drug Targets 2021; 21:815-834. [PMID: 32778041 DOI: 10.2174/1871530320666200810144004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases are the leading cause of death in the modern world and dyslipidemia is one of the major risk factors. The current therapeutic strategies for cardiovascular diseases involve the management of risk factors, especially dyslipidemia and hypertension. Recently, the updated guidelines of dyslipidemia management were presented, and the newest data were included in terms of diagnosis, imaging, and treatment. In this targeted literature review, the researchers presented the most recent evidence on dyslipidemia management by including the current therapeutic goals for it. In addition, the novel diagnostic tools based on theranostics are shown. Finally, the future perspectives on treatment based on novel drug delivery systems and their potential to be used in clinical trials were also analyzed. It should be noted that dyslipidemia management can be achieved by the strict lifestyle change, i.e., by adopting a healthy life, and choosing the most suitable medication. This review can help medical professionals as well as specialists of other sciences to update their knowledge on dyslipidemia management, which can lead to better therapeutic outcomes and newer drug developments.
Collapse
Affiliation(s)
| | - Mehmet E Okur
- University of Health Sciences, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey
| | - Neslihan Ü Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
70
|
Chen Z, Chen R, Chen S. Intelligent management information system of urban planning based on GIS. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-189440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
With the development of urbanization, the application of GIS technology is more and more extensive. This study mainly discusses the development of urban planning intelligent management information system based on GIS. To design and build a rule-detailed spatial data model, provide the physical model and the data model corresponding to the logical layer from top to bottom in all steps, based on the attribute information stored in the Geodatabase model. According to the parameters set, connect to the database through the Oracle Connection class. The defined query criteria are converted into SQL statements that are executed using the Oracle Command class. Multi-source data integration middleware integrates various data formats with a GIS software format conversion tool or direct reading tool and then uses the geometric encoding semantics of data dictionary to represent the integrated data of system data model after merging. Property queries use the interactive search function for properties and spatial information to query the land use index for a particular area of the chart. If there is a scene roaming request from the input device, the 3D scene needs to be adjusted according to the input. Display the scene effects of a 3D virtual demonstration on a computer monitor. Start the GIS management operation function to deal with the case, and realize the user’s management of the urban planning system function with the concept of stratification. Fuzzy recognition mode is applied to identify the degree of the environmental impact of eco-city planning. The impact of urban planning on the environment is H ≈ 0.11 (0.1 < H < 1), which meets the expected standard. The results show that the system demand evaluation designed in this study is good, and the overall operation of the system is relatively stable, which plays a promoting role in urban planning.
Collapse
Affiliation(s)
- Zhuo Chen
- School of Architecture and Urban Planning, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Ruoxi Chen
- School of Architecture and Urban Planning, Henan University of Urban Construction, Pingdingshan, Henan, China
| | - Songtao Chen
- School of Architecture and Urban Planning, Henan University of Urban Construction, Pingdingshan, Henan, China
| |
Collapse
|
71
|
Ragusa R, Basta G, Neglia D, De Caterina R, Del Turco S, Caselli C. PCSK9 and atherosclerosis: Looking beyond LDL regulation. Eur J Clin Invest 2021; 51:e13459. [PMID: 33236356 DOI: 10.1111/eci.13459] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) is involved in cholesterol homeostasis. After binding to the complex low-density lipoprotein (LDL)-receptor, PCSK9 induces its intracellular degradation, thus reducing serum LDL clearance. In addition to the well-known activity on the hepatic LDL receptor-mediated pathway, PCSK9 has been, however, associated with vascular inflammation in atherogenesis. Indeed, PCSK9 is expressed by various cell types that are involved in atherosclerosis (e.g. endothelial cells, smooth muscle cells and macrophages) and is detected inside human atherosclerotic plaques. We here analyse the biology of PCSK9 and its possible involvement in molecular processes involved in atherosclerosis, beyond the regulation of circulating LDL cholesterol levels.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | - Danilo Neglia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Raffaele De Caterina
- Fondazione Toscana G. Monasterio, Pisa, Italy.,Cardiovascular Division, Pisa University Hospital, University of Pisa, Pisa, Italy
| | | | - Chiara Caselli
- Institute of Clinical Physiology, CNR, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
72
|
Anastasia I, Ilacqua N, Raimondi A, Lemieux P, Ghandehari-Alavijeh R, Faure G, Mekhedov SL, Williams KJ, Caicci F, Valle G, Giacomello M, Quiroga AD, Lehner R, Miksis MJ, Toth K, de Aguiar Vallim TQ, Koonin EV, Scorrano L, Pellegrini L. Mitochondria-rough-ER contacts in the liver regulate systemic lipid homeostasis. Cell Rep 2021; 34:108873. [PMID: 33730569 DOI: 10.1016/j.celrep.2021.108873] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Contacts between organelles create microdomains that play major roles in regulating key intracellular activities and signaling pathways, but whether they also regulate systemic functions remains unknown. Here, we report the ultrastructural organization and dynamics of the inter-organellar contact established by sheets of curved rough endoplasmic reticulum closely wrapped around the mitochondria (wrappER). To elucidate the in vivo function of this contact, mouse liver fractions enriched in wrappER-associated mitochondria are analyzed by transcriptomics, proteomics, and lipidomics. The biochemical signature of the wrappER points to a role in the biogenesis of very-low-density lipoproteins (VLDL). Altering wrappER-mitochondria contacts curtails VLDL secretion and increases hepatic fatty acids, lipid droplets, and neutral lipid content. Conversely, acute liver-specific ablation of Mttp, the most upstream regulator of VLDL biogenesis, recapitulates this hepatic dyslipidemia phenotype and promotes remodeling of the wrappER-mitochondria contact. The discovery that liver wrappER-mitochondria contacts participate in VLDL biology suggests an involvement of inter-organelle contacts in systemic lipid homeostasis.
Collapse
Affiliation(s)
- Irene Anastasia
- Graduate Program in Neuroscience, Faculty of Medicine, Laval University, Quebec, QC, Canada; Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada
| | - Nicolò Ilacqua
- Graduate Program in Neuroscience, Faculty of Medicine, Laval University, Quebec, QC, Canada; Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada
| | - Andrea Raimondi
- Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Philippe Lemieux
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada
| | | | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | - Sergei L Mekhedov
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | - Kevin J Williams
- Department of Biological Chemistry, Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | - Giorgio Valle
- Department of Biology, University of Padua, Padua, Italy
| | | | - Ariel D Quiroga
- Instituto de Fisiología Experimental, CONICET, UNR, Rosario, Argentina; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Richard Lehner
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Michael J Miksis
- Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Katalin Toth
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, NIH, Bethesda, MD, USA
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
| | - Luca Pellegrini
- Mitochondria Biology Laboratory, Brain Research Center, Quebec, QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Quebec, QC, Canada.
| |
Collapse
|
73
|
Chemello K, García-Nafría J, Gallo A, Martín C, Lambert G, Blom D. Lipoprotein metabolism in familial hypercholesterolemia. J Lipid Res 2021; 62:100062. [PMID: 33675717 PMCID: PMC8050012 DOI: 10.1016/j.jlr.2021.100062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common genetic disorders in humans. It is an extremely atherogenic metabolic disorder characterized by lifelong elevations of circulating LDL-C levels often leading to premature cardiovascular events. In this review, we discuss the clinical phenotypes of heterozygous and homozygous FH, the genetic variants in four genes (LDLR/APOB/PCSK9/LDLRAP1) underpinning the FH phenotype as well as the most recent in vitro experimental approaches used to investigate molecular defects affecting the LDL receptor pathway. In addition, we review perturbations in the metabolism of lipoproteins other than LDL in FH, with a major focus on lipoprotein (a). Finally, we discuss the mode of action and efficacy of many of the currently approved hypocholesterolemic agents used to treat patients with FH, with a special emphasis on the treatment of phenotypically more severe forms of FH.
Collapse
Affiliation(s)
- Kévin Chemello
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint- Denis de La Réunion, France
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of complex systems (BIFI), University of Zaragoza, Zaragoza, Spain; Laboratorio de Microscopías Avanzadas, University of Zaragoza, Zaragoza, Spain
| | - Antonio Gallo
- Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital, Paris, France; Laboratoire d'imagerie Biomédicale, INSERM 1146, CNRS 7371, Sorbonne University, Paris, France
| | - Cesar Martín
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - Gilles Lambert
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint- Denis de La Réunion, France.
| | - Dirk Blom
- Hatter Institute for Cardiovascular Research in Africa and Division of Lipidology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
74
|
PCSK9 Levels and Metabolic Profiles in Elderly Subjects with Different Glucose Tolerance under Statin Therapy. J Clin Med 2021; 10:jcm10050994. [PMID: 33801208 PMCID: PMC7957894 DOI: 10.3390/jcm10050994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) degrades low-density lipoprotein cholesterol (LDL-C) receptors, and thus regulates the LDL-C levels in the circulation. Type 2 diabetics often have elevated LDL-C levels. However, the functions of PCSK9 in patients with alterations of glu-cose metabolism and statin therapy are still unclear. Method: we investigated a large cohort of 608 subjects, born in 1945 in Oulu, Finland (Oulu Cohort 1945). We studied the effects of PSCK9 lev-els with different glucose tolerances (normal glucose tolerance (NGT), prediabetes (PreDM) or type 2 diabetes (T2D)) with and without statin medication, and analyzed clinical data, NMR metabolomics and PCSK9 plasma levels. Results: PCSK9 plasma levels did not significantly differ between the three groups. Statin therapy significantly increased the PCSK9 levels in NGT, PreDM and T2D groups compared with subjects with no statins. In the NGT group, negative associations between PCSK9 and LDL-C, intermediate-density lipoprotein cholesterol (IDL-C), very low-density lipoprotein cholesterol (VLDL-C), total cholesterol and LDL and IDL triglycerides were observed under statin medication. In contrast, in the PreDM and T2D groups, these associa-tions were lost. Conclusions: our data suggest that in subjects with abnormal glucose metabolism and statin therapy, the significant PCSK9-mediated effects on the lipid metabolites are lost com-pared to NGT subjects, but statins reduced the LDL-C and VLDL-C levels.
Collapse
|
75
|
Cesaro A, Schiavo A, Moscarella E, Coletta S, Conte M, Gragnano F, Fimiani F, Monda E, Caiazza M, Limongelli G, D'Erasmo L, Riccio C, Arca M, Calabrò P. Lipoprotein(a): a genetic marker for cardiovascular disease and target for emerging therapies. J Cardiovasc Med (Hagerstown) 2021; 22:151-161. [PMID: 32858625 DOI: 10.2459/jcm.0000000000001077] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lipoprotein(a) [Lp(a)] is an established cardiovascular risk factor, and growing evidence indicates its causal association with atherosclerotic disease because of the proatherogenic low-density lipoprotein (LDL)-like properties and the prothrombotic plasminogen-like activity of apolipoprotein(a) [apo(a)]. As genetics significantly influences its plasma concentration, Lp(a) is considered an inherited risk factor of atherosclerotic cardiovascular disease (ASCVD), especially in young individuals. Moreover, it has been suggested that elevated Lp(a) may significantly contribute to residual cardiovascular risk in patients with coronary artery disease and optimal LDL-C levels. Nonetheless, the fascinating hypothesis that lowering Lp(a) could reduce the risk of cardiovascular events - in primary or secondary prevention - still needs to be demonstrated by randomized clinical trials. To date, no specific Lp(a)-lowering agent has been approved for reducing the lipoprotein levels, and current lipid-lowering drugs have limited effects. In the future, emerging therapies targeting Lp(a) may offer the possibility to further investigate the relation between Lp(a) levels and cardiovascular outcomes in randomized controlled trials, ultimately leading to a new era in cardiovascular prevention. In this review, we aim to provide an updated overview of current evidence on Lp(a) as well as currently investigated therapeutic strategies that specifically address the reduction of the lipoprotein.
Collapse
Affiliation(s)
- Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Alessandra Schiavo
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Silvio Coletta
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Matteo Conte
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Fabio Fimiani
- Division of Cardiology
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples
| | - Emanuele Monda
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
- Division of Cardiology
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Cardiology
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Monaldi Hospital, Naples
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Carmine Riccio
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Clinical Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| |
Collapse
|
76
|
Ying Q, Chan DC, Watts GF. New Insights Into the Regulation of Lipoprotein Metabolism by PCSK9: Lessons From Stable Isotope Tracer Studies in Human Subjects. Front Physiol 2021; 12:603910. [PMID: 33643062 PMCID: PMC7902499 DOI: 10.3389/fphys.2021.603910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/21/2021] [Indexed: 12/21/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a convertase enzyme mostly produced by the liver. It is a key regulator of LDL metabolism because of its ability to enhance degradation of the LDL receptor. PCSK9 also regulates the metabolism of lipoprotein(a) [Lp(a)] and triglyceride-rich lipoproteins (TRLs). Its key role in modulating atherosclerotic cardiovascular disease (ASCVD) is supported by genetic studies and clinical outcome trials. Kinetic studies provide mechanistic insight into the role of PCSK9 in regulating the physiology and pathophysiology of plasma lipids and lipoproteins. Kinetic data have demonstrated that plasma PCSK9 concentration is inversely associated with the clearance of LDL in men. Gain-of-function mutations of PCSK9 markedly increase plasma LDL-cholesterol concentrations due to impaired LDL-apoB catabolism. Conversely, PCSK9 deficiency results in low LDL-cholesterol associated with enhanced LDL-apoB clearance. Inhibition of PCSK9 with monoclonal antibodies (such as evolocumab or alirocumab) lowers plasma LDL-cholesterol and apoB levels chiefly by upregulating the catabolism of LDL particles in healthy individuals. As monotherapy, PCSK9 inhibitor reduced Lp(a) concentrations by decreasing the production rate. However, as combination therapy, it reduced the plasma concentration of Lp(a) by increasing the fractional catabolism of Lp(a) particles. In statin-treated patients with high Lp(a), PCSK9 inhibition lowers plasma Lp(a) concentrations by accelerating the catabolism of Lp(a) particles. The effect of PCSK9 inhibition on TRL metabolism has been studied in healthy individuals and in patients with type 2 diabetes. These findings suggest that PCSK9 appears to play a less important role in TRL than LDL metabolism. Kinetic studies of PCSK9 inhibition therapy on lipoprotein metabolism in diverse high risk patient populations (such as familial hypercholesterolemia) and new therapeutic combination also merit further investigation.
Collapse
Affiliation(s)
- Qidi Ying
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Dick C Chan
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia.,Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
77
|
Therapies for the Treatment of Cardiovascular Disease Associated with Type 2 Diabetes and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22020660. [PMID: 33440821 PMCID: PMC7826980 DOI: 10.3390/ijms22020660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.
Collapse
|
78
|
Sunil B, Foster C, Wilson DP, Ashraf AP. Novel therapeutic targets and agents for pediatric dyslipidemia. Ther Adv Endocrinol Metab 2021; 12:20420188211058323. [PMID: 34868544 PMCID: PMC8637781 DOI: 10.1177/20420188211058323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Landmark studies have convincingly demonstrated that atherosclerosis begins in youth. While generally asymptomatic, an increasing number of youth with disorders of lipid and lipoprotein metabolism, such as familial hypercholesterolemia, are being identified through selective and universal screening. While a heart healthy lifestyle is the foundation of treatment for all youth with dyslipidemia, lipid-lowering therapy may be required by some to prevent morbidity and premature mortality, especially when initiated at a young age. When appropriate, use of statins has become standard of care for reducing low-density lipoprotein cholesterol, while fibrates may be beneficial in helping to lower triglycerides. Many therapeutic options commonly used in adults are not yet approved for use in youth less than 18 years of age. Although currently available lipid-lowering therapy is well tolerated and safe when administered to youth, response to treatment may vary and some conditions lack an efficient therapeutic option. Thus, newer agents are needed to aid in management. Many are in development and clinical trials in youth are currently in progress but will require FDA approval before becoming commercially available. Many utilize novel approaches to favorably alter lipid and lipoprotein metabolism. In the absence of long-term outcome data of youth who were treated beginning at an early age, clinical registries may prove to be useful in monitoring safety and efficacy and help to inform clinical decision-making. In this manuscript, we review currently available and novel therapeutic agents in development for the treatment of elevated cholesterol and triglycerides.
Collapse
Affiliation(s)
- Bhuvana Sunil
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christy Foster
- Division of Pediatric Endocrinology &
Diabetes, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Don P. Wilson
- Cardiovascular Health and Risk Prevention,
Pediatric Endocrinology and Diabetes, Cook Children’s Medical Center, Fort
Worth, TX, USA
| | | |
Collapse
|
79
|
Taskinen MR, Björnson E, Kahri J, Söderlund S, Matikainen N, Porthan K, Ainola M, Hakkarainen A, Lundbom N, Fermanelli V, Fuchs J, Thorsell A, Kronenberg F, Andersson L, Adiels M, Packard CJ, Borén J. Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes. Arterioscler Thromb Vasc Biol 2020; 41:962-975. [PMID: 33356392 DOI: 10.1161/atvbaha.120.315446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations. CONCLUSIONS Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden
| | - Juhani Kahri
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland.,Department of Endocrinology, Abdominal Center (S.S., N.M.), Helsinki University Hospital, Finland
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland.,Department of Endocrinology, Abdominal Center (S.S., N.M.), Helsinki University Hospital, Finland
| | - Kimmo Porthan
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Mari Ainola
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital (A.H., N.L.), University of Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland (A.H.)
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital (A.H., N.L.), University of Helsinki, Finland
| | | | - Johannes Fuchs
- Proteomics Core Facility (J.F., A.T.), University of Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility (J.F., A.T.), University of Gothenburg, Sweden
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Austria (F.K.)
| | - Linda Andersson
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden.,Department of Biostatistics, School of Public Health and Community Medicine (M. Adiels), University of Gothenburg, Sweden
| | - Chris J Packard
- Isnstitute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.J.P.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden.,Department of Cardiology, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden (J.B.)
| |
Collapse
|
80
|
Hishikari K, Hikita H, Yoshikawa H, Abe F, Tsujihata S, Ito N, Kanno Y, IIya M, Murai T, Takahashi A, Yonetsu T, Sasano T. Usefulness of Lipoprotein (a) for Predicting Outcomes After Percutaneous Coronary Intervention for Stable Angina Pectoris in Patients on Hemodialysis. Am J Cardiol 2020; 136:32-37. [PMID: 32941820 DOI: 10.1016/j.amjcard.2020.08.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Serum lipoprotein (a) level is genetically determined and remains consistent during a person's life. Previous studies have reported that people with high lipoprotein (a) level are at a high risk of cardiac events. We investigated the association between lipoprotein (a) levels and clinical outcomes after percutaneous coronary intervention (PCI) for stable angina pectoris (SAP) in hemodialysis (HD) patients. Serum lipoprotein (a) levels were measured on admission in 410 consecutive HD patients who underwent successful PCI for SAP. Patients were divided into 2 groups: low and high group having lipoprotein (a) level <40 mg/dL (n = 297) and ≧40 mg/dL (n = 113) respectively. After PCI, the incidence of major adverse cardiac event (MACE) including cardiac death, nonfatal myocardial infarction, necessity of a new coronary revascularization procedure (coronary bypass surgery, repeat target lesion PCI, PCI for a new non-target lesion) was analyzed. At a median follow-up of 24 months (12 to 37 months), MACE occurred in 188 patients (45.6%). The rate of MACE rate was significantly higher in the high lipoprotein (a) group than in the low lipoprotein (a) group (59.2% vs 40.7%, long-rank test chi-square = 12.3; p < 0.001). Cox analysis showed that high lipoprotein (a) level (Hazard Ratio, 1.62; 95% Confidence Interval, 1.19 to 2.20; p = 0.002) was an independent predictor for MACE after PCI. In conclusion, high lipoprotein (a) level was associated with a higher incidence of MACE after PCI for SAP in HD patients.
Collapse
|
81
|
Stiekema LCA, Stroes ESG, Verweij SL, Kassahun H, Chen L, Wasserman SM, Sabatine MS, Mani V, Fayad ZA. Persistent arterial wall inflammation in patients with elevated lipoprotein(a) despite strong low-density lipoprotein cholesterol reduction by proprotein convertase subtilisin/kexin type 9 antibody treatment. Eur Heart J 2020; 40:2775-2781. [PMID: 30561610 DOI: 10.1093/eurheartj/ehy862] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/25/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
AIMS Subjects with lipoprotein(a) [Lp(a)] elevation have increased arterial wall inflammation and cardiovascular risk. In patients at increased cardiovascular risk, arterial wall inflammation is reduced following lipid-lowering therapy by statin treatment or lipoprotein apheresis. However, it is unknown whether lipid-lowering treatment in elevated Lp(a) subjects alters arterial wall inflammation. We evaluated whether evolocumab, which lowers both low-density lipoprotein cholesterol (LDL-C) and Lp(a), attenuates arterial wall inflammation in patients with elevated Lp(a). METHODS AND RESULTS In this multicentre, randomized, double-blind, placebo-controlled study, 129 patients {median [interquartile range (IQR)]: age 60.0 [54.0-67.0] years, Lp(a) 200.0 [155.5-301.5] nmol/L [80.0 (62.5-121.0) mg/dL]; mean [standard deviation (SD)] LDL-C 3.7 [1.0] mmol/L [144.0 (39.7) mg/dL]; National Cholesterol Education Program high risk, 25.6%} were randomized to monthly subcutaneous evolocumab 420 mg or placebo. Compared with placebo, evolocumab reduced LDL-C by 60.7% [95% confidence interval (CI) 65.8-55.5] and Lp(a) by 13.9% (95% CI 19.3-8.5). Among evolocumab-treated patients, the Week 16 mean (SD) LDL-C level was 1.6 (0.7) mmol/L [60.1 (28.1) mg/dL], and the median (IQR) Lp(a) level was 188.0 (140.0-268.0) nmol/L [75.2 (56.0-107.2) mg/dL]. Arterial wall inflammation [most diseased segment target-to-background ratio (MDS TBR)] in the index vessel (left carotid, right carotid, or thoracic aorta) was assessed by 18F-fluoro-deoxyglucose positron-emission tomography/computed tomography. Week 16 index vessel MDS TBR was not significantly altered with evolocumab (-8.3%) vs. placebo (-5.3%) [treatment difference -3.0% (95% CI -7.4% to 1.4%); P = 0.18]. CONCLUSION Evolocumab treatment in patients with median baseline Lp(a) 200.0 nmol/L led to a large reduction in LDL-C and a small reduction in Lp(a), resulting in persistent elevated Lp(a) levels. The latter may have contributed to the unaltered arterial wall inflammation.
Collapse
Affiliation(s)
- Lotte C A Stiekema
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Simone L Verweij
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, AZ Amsterdam, The Netherlands
| | - Helina Kassahun
- Department of Clinical Development, Amgen Inc., One Amgen Center Drive Thousand Oaks, CA, USA
| | - Lisa Chen
- Department of Biostatistics, Amgen Inc., One Amgen Center Drive Thousand Oaks, CA, USA
| | - Scott M Wasserman
- Department of Clinical Development, Amgen Inc., One Amgen Center Drive Thousand Oaks, CA, USA
| | - Marc S Sabatine
- Division of Cardiovascular Medicine, TIMI Study Group, Brigham and Women's Hospital and Harvard Medical School, Fenwood Road, Boston, MA, USA
| | - Venkatesh Mani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, New York, NY, USA
| |
Collapse
|
82
|
Sinning D, Landmesser U. Low-density Lipoprotein-Cholesterol Lowering Strategies for Prevention of Atherosclerotic Cardiovascular Disease: Focus on siRNA Treatment Targeting PCSK9 (Inclisiran). Curr Cardiol Rep 2020; 22:176. [PMID: 33089390 PMCID: PMC7578129 DOI: 10.1007/s11886-020-01427-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Purpose of Review The aim of low-density lipoprotein-cholesterol (LDL-C) lowering therapies is to safely achieve a consistent and long-term reduction in exposure of the vasculature to atherogenic lipoproteins in order to reduce the risk of atherosclerotic cardiovascular (CV) disease and the associated CV events, such as myocardial infarctions and ischemic strokes. This review summarizes the concept and clinical development of a novel molecular approach to efficiently lower LDL-C, a synthetic small interfering ribonucleic acid (siRNA)—inclisiran—directed against proprotein convertase subtilisin-kexin type 9 (PCSK9). Recent Findings The understanding of genes regulating atherogenic lipoproteins and their causal role in the development of atherosclerotic CV disease has substantially advanced over the past years. This has opened the possibility for development of molecular therapies targeting these atherogenic lipoproteins, in particular by RNA-targeted treatment approaches. The most advanced clinical development program is the siRNA-treatment targeting PCSK9 (inclisiran), involving more than 4000 patients in clinical studies. Phase 1 and 2 studies have identified the dose of 300 mg inclisiran for efficient LDL-C lowering. Most recently, three phase 3 studies demonstrated that a regimen of inclisiran every 6 months was feasible and reduced LDL-C by approximately 50% in patients at high or very high CV risk or with familial hypercholesterolemia. Adverse events were similar in the inclisiran and the placebo groups, except for more frequent transient injection site reactions with inclisiran than with placebo. Summary siRNA therapy targeting PCSK9 (inclisiran) applied twice a year efficiently reduced LDL-C by approximately 50% and was safe in recent phase 3 studies. The effects of this treatment on CV outcome are currently further assessed in a large ongoing CV outcome trial.
Collapse
Affiliation(s)
- David Sinning
- Department of Cardiology, Charité - University Medicine Berlin (Campus Benjamin Franklin), Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin (Campus Benjamin Franklin), Berlin, Germany. .,Berlin Institute of Health (BIH), Hindenburgdamm 30, 12203, Berlin, Germany. .,German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
83
|
Cho KH, Hong YJ. Proprotein convertase subtilisin/kexin type 9 inhibition in cardiovascular disease: current status and future perspectives. Korean J Intern Med 2020; 35:1045-1058. [PMID: 32921006 PMCID: PMC7487297 DOI: 10.3904/kjim.2020.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/20/2020] [Indexed: 01/14/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) targets the degradation of low-density lipoprotein (LDL) receptors; it has been proved that its inhibition improves cardiovascular outcomes in patients with established atherosclerotic cardiovascular disease (ASCVD). Herein, we review the current status of PCSK9 inhibitors in clinical practice and the future scope of PCSK9 inhibition. The results of two recent large clinical trials reveal that two PCSK9 monoclonal antibodies evolocumab and alirocumab reduce the risk of a cardiovascular event on top of background statin therapy in patients with stable ASCVD and those with recent acute coronary syndrome, respectively. However, there are several ongoing concerns regarding the efficacy in reducing mortality, cost-effectiveness, and long-term safety of extremely low LDL cholesterol levels with PCSK9 inhibition. The results of ongoing cardiovascular outcomes trials with PCSK9 monoclonal antibodies for primary prevention and with small interfering RNA to PCSK9 for secondary prevention may help to shape the use of this new therapeutic class.
Collapse
Affiliation(s)
- Kyung Hoon Cho
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
| | - Young Joon Hong
- Division of Cardiology, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Young Joon Hong, M.D. Division of Cardiology, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-5778 Fax: +82-62-223-3105 E-mail:
| |
Collapse
|
84
|
Kaddoura R, Orabi B, Salam AM. Efficacy and safety of PCSK9 monoclonal antibodies: an evidence-based review and update. J Drug Assess 2020; 9:129-144. [PMID: 32939318 PMCID: PMC7470150 DOI: 10.1080/21556660.2020.1801452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Treatment of dyslipidemia lowers cardiovascular (CV) risk. Although statin use is a cornerstone therapy, many patients are not achieving their risk-specific low-density lipoprotein cholesterol (LDL-C) goals. The proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies have been extensively studied as lipid-lowering therapy (LLT). Herein, we present an updated evidence-based review of the efficacy and safety of PCSK9 monoclonal antibodies in the treatment of familial and non-familial hypercholesterolemia. Methods PubMed database was searched to review Phase III studies on PCSK9 monoclonal antibodies. Then, the US National Institutes of Health Registry and the WHO International Clinical Trial Registry Platform were searched to identify and present the ongoing research. Results PCSK9 monoclonal antibodies were investigated for the treatment of dyslipidemia, as a single therapeutic agent or as an add-on therapy to the traditional LLT. They proved effective and safe in the treatment of familial and non-familial hypercholesterolemia, and in the prevention of adverse CV events. Conclusions The use of PCSK9 monoclonal antibodies in the treatment of dyslipidemia is currently recommended to achieve risk-specific LDL-C goal to reduce adverse CV events. Future results of the ongoing research might expand their clinical generalizability to broader patient populations.
Collapse
Affiliation(s)
- Rasha Kaddoura
- Hamad Medical Corporation, Heart Hospital Pharmacy, Doha, Ad Dawhah, Qatar
| | - Bassant Orabi
- Hamad Medical Corporation, Heart Hospital Pharmacy, Doha, Ad Dawhah, Qatar
| | - Amar M Salam
- Department of Cardiology, Hamad Medical Corporation, Al-khor Hospital, Doha, Ad Dawhah, Qatar
| |
Collapse
|
85
|
Garçon D, Moreau F, Ayer A, Dijk W, Prieur X, Arnaud L, Roubtsova A, Seidah N, Prat A, Cariou B, Le May C. Circulating Rather Than Intestinal PCSK9 (Proprotein Convertase Subtilisin Kexin Type 9) Regulates Postprandial Lipemia in Mice. Arterioscler Thromb Vasc Biol 2020; 40:2084-2094. [PMID: 32673528 DOI: 10.1161/atvbaha.120.314194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Increased postprandial lipemia (PPL) is an independent risk factor for atherosclerotic cardiovascular diseases. PCSK9 (Proprotein convertase subtilisin kexin type 9) is an endogenous inhibitor of the LDLR (low-density lipoprotein receptor) pathway. We previously showed that PCSK9 inhibition in mice reduces PPL. However, the relative contribution of intracellular intestinal PCSK9 or liver-derived circulating PCSK9 to this effect is still unclear. Approach and Results: To address this issue, we generated the first intestine-specific Pcsk9-deficient (i-Pcsk9-/-) mouse model. PPL was measured in i-Pcsk9-/- as well as in wild-type and streptozotocin-induced diabetic mice following treatment with a PCSK9 monoclonal antibody (alirocumab). Blocking the circulating form of PCSK9 with alirocumab significantly reduced PPL, while overexpressing human PCSK9 in the liver of full Pcsk9-/- mice had the opposite effect. Alirocumab regulated PPL in a LDLR-dependent manner as this effect was abolished in Ldlr-/- mice. In contrast, i-Pcsk9-/- mice did not exhibit alterations in plasma lipid parameters nor in PPL. Finally, PPL was highly exacerbated by streptozotocin-induced diabetes mellitus in Pcsk9+/+ but not in Pcsk9-/- mice, an effect that was mimicked by the use of alirocumab in streptozotocin-treated Pcsk9+/+ mice. CONCLUSIONS Taken together, our data demonstrate that PPL is significantly altered by full but not intestinal PCSK9 deficiency. Treatment with a PCSK9 monoclonal antibody mimics the effect of PCSK9 deficiency on PPL suggesting that circulating PCSK9 rather than intestinal PCSK9 is a critical regulator of PPL. These data validate the clinical relevance of PCSK9 inhibitors to reduce PPL, especially in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Damien Garçon
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.)
| | - François Moreau
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.)
| | - Audrey Ayer
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.)
| | - Wieneke Dijk
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.)
| | - Xavier Prieur
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.)
| | - Lucie Arnaud
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.)
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to the Université de Montréal, Canada (A.R., N.S., A.P.)
| | - Nabil Seidah
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to the Université de Montréal, Canada (A.R., N.S., A.P.)
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, affiliated to the Université de Montréal, Canada (A.R., N.S., A.P.)
| | - Bertrand Cariou
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.).,L'institut du thorax, Department of Endocrinology, CHU NANTES, France (B.C.)
| | - Cédric Le May
- From the L'institut du thorax, INSERM, CNRS, UNIV NANTES, France (D.G., F.M., A.A., W.D., X.P., L.A., B.C., C.L.)
| |
Collapse
|
86
|
Després AA, Piché ME, Auclair A, Biertho L, Marceau S, Hould FS, Biron S, Lebel S, Lescelleur O, Julien F, Martin J, Tchernof A, Mathieu P, Poirier P, Arsenault BJ. Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity. Obes Surg 2020; 30:3714-3720. [PMID: 32666413 DOI: 10.1007/s11695-020-04450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/26/2020] [Accepted: 02/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Elevated lipoprotein(a) (Lp(a)) level is an independent risk factor for cardiovascular diseases. Lifestyle intervention studies targeting weight loss revealed little to no significant changes in Lp(a) levels. The impact of interventions that induce substantial weight loss, such as bariatric surgery, on Lp(a) levels is currently unclear. OBJECTIVE To determine the acute and long-term impact of bariatric surgery on Lp(a) levels in patients with severe obesity. METHODS Sixty-nine patients with severe obesity underwent biliopancreatic diversion with duodenal switch (BPD-DS) surgery. The lipid profile was evaluated and Lp(a) levels were measured before surgery and at 6 and 12 months after BPD-DS surgery. RESULTS Median Lp(a) levels at baseline were 11.1 (4.1-41.6) nmol/L. Six months and 12 months after the BDP-DS surgery, we observed an improvement of lipid profile. At 6 months, we observed a 13% decrease in Lp(a) levels (9.7 (2.9-25.6) nmol/L, p < 0.0001) but this decrease was not sustained at 12 months (11.1 (3.9-32.8) nmol/L, p = 0.8). When the patients were separated into tertiles according to Lp(a) levels at baseline, we observed that the Lp(a) reduction at 12 months after BPD-DS surgery remained significant but modest in patients of the top Lp(a) tertile. CONCLUSION Our results suggest that BPD-DS surgery modestly reduces Lp(a) levels in the short term (6 months) in patients with severe obesity but this improvement is sustained over time only in patients with higher Lp(a) levels.
Collapse
Affiliation(s)
- Audrey-Anne Després
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Marie-Eve Piché
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada
| | - Audrey Auclair
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Laurent Biertho
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Simon Marceau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Frédéric-Simon Hould
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Simon Biron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Stéfane Lebel
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Odette Lescelleur
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - François Julien
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - Julie Martin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada
| | - André Tchernof
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada.,School of Nutrition, Université Laval, Québec, Canada
| | - Patrick Mathieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada
| | - Paul Poirier
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada.,Faculty of Pharmacy, Université Laval, Québec, Canada
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Y-3601, Pavillon Marguerite D'Youville, 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada. .,Department of Medicine, Faculty of Medicine, Université Laval, Québec, Canada.
| |
Collapse
|
87
|
Greco MF, Sirtori CR, Corsini A, Ezhov M, Sampietro T, Ruscica M. Lipoprotein(a) Lowering-From Lipoprotein Apheresis to Antisense Oligonucleotide Approach. J Clin Med 2020; 9:jcm9072103. [PMID: 32635396 PMCID: PMC7408876 DOI: 10.3390/jcm9072103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
It is well-known that elevated lipoprotein(a)—Lp(a)—levels are associated with a higher risk of cardiovascular (CV) mortality and all-cause mortality, although a standard pharmacotherapeutic approach is still undefined for patients with high CV risk dependent on hyperlipoproteinemia(a). Combined with high Lp(a) levels, familial hypercholesterolemia (FH) leads to a greater CVD risk. In suspected FH patients, the proportion of cases explained by a rise of Lp(a) levels ranges between 5% and 20%. In the absence of a specific pharmacological approach able to lower Lp(a) to the extent required to achieve CV benefits, the most effective strategy today is lipoprotein apheresis (LA). Although limited, a clear effect on Lp(a) is exerted by PCSK9 antagonists, with apparently different mechanisms when given with statins (raised catabolism) or as monotherapy (reduced production). In the era of RNA-based therapies, a new dawn is represented by the use of antisense oligonucleotides APO(a)Lrx, able to reduce Lp(a) from 35% to over 80%, with generally modest injection site reactions. The improved knowledge of Lp(a) atherogenicity and possible prevention will be of benefit for patients with residual CV risk remaining after the most effective available lipid-lowering agents.
Collapse
Affiliation(s)
- Maria Francesca Greco
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
| | - Cesare R. Sirtori
- Dyslipidemia Center, A.S.S.T. Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Alberto Corsini
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- IRCCS Multimedica, 20099 Milan, Italy
| | - Marat Ezhov
- National Medical Research Center of Cardiology of the Ministry of Health, Moscow, Russia;
| | - Tiziana Sampietro
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, 56126 Pisa, Italy;
| | - Massimiliano Ruscica
- Dipartimento di Science Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy; (M.F.G.); (A.C.)
- Correspondence: ; Tel.: +39-0250318220
| |
Collapse
|
88
|
Enkhmaa B, Kim K, Zhang W, Prakash N, Truax K, Anuurad E, Berglund L. PCSK9 in African Americans and Caucasians in Relation to Lp(a) Level, Apo(a) Size and Heritability. J Endocr Soc 2020; 4:bvaa073. [PMID: 32685870 PMCID: PMC7358566 DOI: 10.1210/jendso/bvaa073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Context Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) reduces lipoprotein(a) [Lp(a)] levels, but the association of PCSK9 with Lp(a) level and its major determinant, apolipoprotein(a) [apo(a)] size, is not fully understood. Objective To assess the relationship between PCSK9, Lp(a) level, apo(a) size, age, and ethnicity/race. Design Cross-sectional Setting General population Participants Healthy African Americans and Caucasians (n = 267); age range: 6 to 74 years. Interventions None. Main outcome measure(s) PCSK9 levels, apo(a) isoform and LPA allele sizes, and isoform-specific Lp(a) levels. Results Plasma PCSK9 levels were significantly higher in African Americans vs Caucasians, in females vs males, and in adults vs children. PCSK9 levels were not associated with total plasma Lp(a) levels either in all participants or in ethnicity-specific analyses. However, PCSK9 levels were significantly positively associated with isoform-specific Lp(a) levels carried by the larger apo(a) size in all participants (r = 0.139, P = 0.0361). In ethnicity/race analyses, a significant association was seen for African Americans (r = 0.268, P = 0.0199), but not for Caucasians. In contrast, there were no significant associations of PCSK9 with isoform-specific Lp(a) levels for the smaller apo(a) sizes in all participants nor in ethnic-specific analyses. Furthermore, heritability (h2) analyses revealed a significant heritability for PCSK9 level in both ethnic groups, with a higher estimate in Caucasians than in African Americans (47% vs 22%, respectively). Conclusions Among African Americans, but not Caucasians, PCSK9 levels were associated with isoform-specific Lp(a) levels carried on larger, but not smaller, apo(a) sizes. The findings illustrate a diverging relationship of PCSK9 with isoform-specific Lp(a) levels across ethnicity.
Collapse
Affiliation(s)
- Byambaa Enkhmaa
- Departments of Internal Medicine, University of California, Davis, CA, USA
| | - Kyoungmi Kim
- Public Health Sciences, University of California, Davis, CA, USA
| | - Wei Zhang
- Departments of Internal Medicine, University of California, Davis, CA, USA
| | - Nishant Prakash
- Departments of Internal Medicine, University of California, Davis, CA, USA
| | - Kevin Truax
- Departments of Internal Medicine, University of California, Davis, CA, USA
| | - Erdembileg Anuurad
- Departments of Internal Medicine, University of California, Davis, CA, USA
| | - Lars Berglund
- Departments of Internal Medicine, University of California, Davis, CA, USA
| |
Collapse
|
89
|
Watts GF, Chan DC, Pang J, Ma L, Ying Q, Aggarwal S, Marcovina SM, Barrett PHR. PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a). Metabolism 2020; 107:154221. [PMID: 32240727 DOI: 10.1016/j.metabol.2020.154221] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) particle containing apolipoprotein(a) (apo(a)) covalently linked to apolipoprotein B-100 (apoB). Statin-treated patients with elevated Lp(a) have an increased risk of atherosclerotic cardiovascular disease (ASCVD). Recent trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition decreases Lp(a) and cardiovascular events, particularly in high risk patients with elevated Lp(a). We investigated the kinetic mechanism whereby alirocumab, a PCSK9 inhibitor, lowers Lp(a) in statin-treated patients with high Lp(a) and ASCVD. METHODS The effects of 12-week alirocumab treatment (150 mg every 2 weeks) on apo(a) kinetics were studied in 21 patients with elevated Lp(a) concentration (>0.5 g/L). Apo(a) fractional catabolic rate (FCR) and production rate (PR) were determined using intravenous D3-leucine administration, mass spectrometry and compartmental modelling. All patients were on long-term statin treatment. RESULTS Alirocumab significantly decreased plasma concentrations of total cholesterol (-39%), LDL-cholesterol (-67%), apoB (-56%), apo(a) (-25%) and Lp(a) (-22%) (P< 0.001 for all). Alirocumab also significantly lowered plasma apo(a) pool size (-26%, P <0.001) and increased the FCR of apo(a) (+28%, P< 0.001), but did not alter apo(a) PR, which remained significantly higher relative to a reference group of patients on statins with normal Lp(a) (P< 0.001). CONCLUSIONS In statin-treated patients, alirocumab lowers elevated plasma Lp(a) concentrations by accelerating the catabolism of Lp(a) particles. This may be consequent on marked upregulation of hepatic receptors (principally for LDL) and/or reduced competition between Lp(a) and LDL particles for these receptors; the mechanism could contribute to the benefit of PCSK9 inhibition with alirocumab on cardiovascular outcomes.
Collapse
Affiliation(s)
- Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia; School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.
| | - Dick C Chan
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Louis Ma
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Qidi Ying
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | | | - Santica M Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Seattle, USA; Department of Medicine, University of Washington, Seattle, USA
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| |
Collapse
|
90
|
Liberopoulos E. Lipoprotein(a) reduction with proprotein convertase subtilisin/kexin type 9 inhibitors: An unsolved mystery. Eur J Prev Cardiol 2020; 28:813-815. [PMID: 33611488 DOI: 10.1177/2047487320926777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
91
|
Zhang X, Stiekema LCA, Stroes ESG, Groen AK. Metabolic effects of PCSK9 inhibition with Evolocumab in subjects with elevated Lp(a). Lipids Health Dis 2020; 19:91. [PMID: 32393252 PMCID: PMC7216641 DOI: 10.1186/s12944-020-01280-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022] Open
Abstract
Background Epidemiological studies substantiated that subjects with elevated lipoprotein(a) [Lp(a)] have a markedly increased cardiovascular risk. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) lowers both LDL cholesterol (LDL-C) as well as Lp(a), albeit modestly. Effects of PCSK9 inhibition on circulating metabolites such as lipoprotein subclasses, amino acids and fatty acids remain to be characterized. Methods We performed nuclear magnetic resonance (NMR) metabolomics on plasma samples derived from 30 individuals with elevated Lp(a) (> 150 mg/dL). The 30 participants were randomly assigned into two groups, placebo (N = 14) and evolocumab (N = 16). We assessed the effect of 16 weeks of evolocumab 420 mg Q4W treatment on circulating metabolites by running lognormal regression analyses, and compared this to placebo. Subsequently, we assessed the interrelationship between Lp(a) and 14 lipoprotein subclasses in response to treatment with evolocumab, by running multilevel multivariate regression analyses. Results On average, evolocumab treatment for 16 weeks resulted in a 17% (95% credible interval: 8 to 26%, P < 0.001) reduction of circulating Lp(a), coupled with substantial reduction of VLDL, IDL and LDL particles as well as their lipid contents. Interestingly, increasing concentrations of baseline Lp(a) were associated with larger reduction in triglyceride-rich VLDL particles after evolocumab treatment. Conclusions Inhibition of PCSK9 with evolocumab markedly reduced VLDL particle concentrations in addition to lowering LDL-C. The extent of reduction in VLDL particles depended on the baseline level of Lp(a). Our findings suggest a marked effect of evolocumab on VLDL metabolism in subjects with elevated Lp(a). Trial registration Clinical trial registration information is registered at ClinicalTrials.gov on April 14, 2016 with the registration number NCT02729025.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Human and Animal Physiology, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| | - Lotte C A Stiekema
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Albert K Groen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
92
|
Chemello K, Beeské S, Trang Tran TT, Blanchard V, Villard EF, Poirier B, Le Bail JC, Dargazanli G, Ho-Van-Guimbal S, Boulay D, Bergis O, Pruniaux MP, Croyal M, Janiak P, Guillot E, Lambert G. Lipoprotein(a) Cellular Uptake Ex Vivo and Hepatic Capture In Vivo Is Insensitive to PCSK9 Inhibition With Alirocumab. JACC Basic Transl Sci 2020; 5:549-557. [PMID: 32613143 PMCID: PMC7315184 DOI: 10.1016/j.jacbts.2020.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Modulating LDL receptor expression genetically (in familial hypercholesterolemia) or pharmacologically (using statins or the PCSK9 inhibitor alirocumab) does not alter the cellular uptake of Lp(a) in primary human lymphocytes. Lp(a) hepatic capture is not modulated by PCSK9 inhibition with alirocumab in liver-humanized mice. LDLR does not appear to play a significant role in mediating Lp(a) plasma clearance in vivo.
Lipoprotein(a) (Lp[a]) is the most common genetically inherited risk factor for cardiovascular disease. Many aspects of Lp(a) metabolism remain unknown. We assessed the uptake of fluorescent Lp(a) in primary human lymphocytes as well as Lp(a) hepatic capture in a mouse model in which endogenous hepatocytes have been ablated and replaced with human ones. Modulation of LDLR expression with the PCSK9 inhibitor alirocumab did not alter the cellular or the hepatic uptake of Lp(a), demonstrating that the LDL receptor is not a major route for Lp(a) plasma clearance. These results have clinical implications because they underpin why statins are not efficient at reducing Lp(a).
Collapse
Key Words
- 3D, 3-dimensional
- AU, arbitrary unit
- BSA, bovine serum albumin
- ELISA, enzyme-linked immunosorbent assay
- FCR, fractional catabolic rate
- FRG, Fah(−/−)Rag2(−/−)Il2rg(−/−)
- HoFH, homozygous familial hypercholesterolemia
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- LDL, low-density lipoprotein
- LDL-C, low-density lipoprotein cholesterol
- LDLR, low-density lipoprotein receptor
- Lp(a), lipoprotein(a)
- MFI, mean fluorescence intensity
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate-buffered saline
- PCSK9, proprotein convertase subtilisin/kexin type 9
- apoB100, apolipoprotein B100
- bodipy, boron dipyrromethene
- lipoprotein(a)
- liver-humanized mice
- low-density lipoprotein receptor
- proprotein convertase subtilisin/kexin type 9
- rPCSK9, recombinant proprotein convertase subtilisin/kexin type 9
Collapse
Affiliation(s)
- Kévin Chemello
- Laboratoire Inserm UMR 1188 DéTROI, Université de La Réunion, Sainte Clotilde, France
| | | | | | - Valentin Blanchard
- Laboratoire Inserm UMR 1188 DéTROI, Université de La Réunion, Sainte Clotilde, France
| | | | | | | | | | | | | | | | | | - Mikaël Croyal
- Université de Nantes, CRNH Ouest, Inra UMR 1280 PhAN, Nantes, France
| | | | | | - Gilles Lambert
- Laboratoire Inserm UMR 1188 DéTROI, Université de La Réunion, Sainte Clotilde, France
| |
Collapse
|
93
|
Burggraaf B, Pouw NMC, Arroyo SF, van Vark-van der Zee LC, van de Geijn GJM, Birnie E, Huisbrink J, van der Zwan EM, Mulder MT, Rensen PCN, de Herder WW, Cabezas MC. A placebo-controlled proof-of-concept study of alirocumab on postprandial lipids and vascular elasticity in insulin-treated patients with type 2 diabetes mellitus. Diabetes Obes Metab 2020; 22:807-816. [PMID: 31912632 DOI: 10.1111/dom.13960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
AIM Type 2 diabetes mellitus (T2DM) is associated with an increased risk of cardiovascular disease (CVD) linked to atherogenic dyslipidaemia and postprandial hyperlipidaemia. Alirocumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, improves CVD risk by reducing the concentration of low-density lipoprotein-cholesterol (LDL-C). However, effects of PCK9 inhibitors on other aspects of diabetic dyslipidaemia, particularly in the postprandial situation, are less clear. MATERIAL AND METHODS Twelve male patients with T2DM on an intensive insulin regimen completed a 6-week randomized, double-blind, placebo-controlled, proof-of-concept study. Participants received three biweekly dosages of subcutaneous alirocumab (150 mg) or placebo. Before and after the intervention, fasting and postprandial triglyceride (TG) plasma levels, apolipoprotein (apo) B48, lipoprotein composition isolated by ultracentrifugation, vascular function and markers of inflammation were evaluated. RESULTS Alirocumab treatment reduced fasting plasma TG levels (between group median change -24.7%; P = 0.018) and fasting apoB48 serum levels (-35.9%; P = 0.039) compared with placebo. Alirocumab reduced the plasma TG area under the curve (AUC) (-26.4%; P = 0.006) and apoB48 AUC (-55.7%; P = 0.046), as well as plasma TG incremental AUC (-21.4%; P = 0.04) and apoB48 incremental AUC (-26.8%; P = 0.02). In addition, alirocumab reduced fasting and postprandial TG levels in very low-density lipoprotein (VLDL) and LDL. Alirocumab improved fasting pulse wave velocity, but no changes in postprandial markers of inflammation were observed. CONCLUSIONS In addition to the well-known LDL-C-reducing effects, 6 weeks of alirocumab treatment lowered both fasting and postprandial plasma TG levels by reducing the TG levels in VLDL and LDL and the concentration of intestinal remnants.
Collapse
Affiliation(s)
- Benjamin Burggraaf
- Department of Internal Medicine, Center for Diabetes and Vascular Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Nadine M C Pouw
- Department of Clinical Chemistry, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Salvador Fernández Arroyo
- Departament de Medicina i Cirurgia, Unitat de Recerca Biomèdica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Leonie C van Vark-van der Zee
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gert-Jan M van de Geijn
- Department of Clinical Chemistry, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Erwin Birnie
- Department of Statistics and Education, Franciscus Academy, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeannine Huisbrink
- Department of Pharmacy, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Ellen M van der Zwan
- Department of Clinical Chemistry, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| | - Monique T Mulder
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Section of Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Center for Diabetes and Vascular Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, the Netherlands
| |
Collapse
|
94
|
Tang Y, Li SL, Hu JH, Sun KJ, Liu LL, Xu DY. Research progress on alternative non-classical mechanisms of PCSK9 in atherosclerosis in patients with and without diabetes. Cardiovasc Diabetol 2020; 19:33. [PMID: 32169071 PMCID: PMC7071562 DOI: 10.1186/s12933-020-01009-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) acts via a canonical pathway to regulate circulating low-density lipoprotein-cholesterol (LDL-C) via degradation of the LDL receptor (LDLR) on the liver cell surface. Published research has shown that PCSK9 is involved in atherosclerosis via a variety of non-classical mechanisms that involve lysosomal, inflammatory, apoptotic, mitochondrial, and immune pathways. In this review paper, we summarized these additional mechanisms and described how anti-PCSK9 therapy exerts effects through these mechanisms. These additional pathways further illustrate the regulatory role of PCSK9 in atherosclerosis and offer an in-depth interpretation of how the PCSK9 inhibitor exerts effects on the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ying Tang
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Sheng-Lan Li
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Jia-Hui Hu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Kai-Jun Sun
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Lei-Ling Liu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Dan-Yan Xu
- Department of Internal Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
95
|
Croyal M, Blanchard V, Ouguerram K, Chétiveaux M, Cabioch L, Moyon T, Billon-Crossouard S, Aguesse A, Bernardeau K, Le May C, Flet L, Lambert G, Hadjadj S, Cariou B, Krempf M, Nobécourt-Dupuy E. VLDL (Very-Low-Density Lipoprotein)-Apo E (Apolipoprotein E) May Influence Lp(a) (Lipoprotein [a]) Synthesis or Assembly. Arterioscler Thromb Vasc Biol 2020; 40:819-829. [DOI: 10.1161/atvbaha.119.313877] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective:
To clarify the association between PCSK9 (proprotein convertase subtilisin/kexin type 9) and Lp(a) (lipoprotein [a]), we studied Lp(a) kinetics in patients with loss-of-function and gain-of-function
PCSK9
mutations and in patients in whom extended-release niacin reduced Lp(a) and PCSK9 concentrations.
Approach and Results:
Six healthy controls, 9 heterozygous patients with familial hypercholesterolemia (5 with low-density lipoprotein receptor [
LDLR
] mutations and 4 with
PCSK9
gain-of-function mutations) and 3 patients with heterozygous dominant-negative
PCSK9
loss-of-function mutations were included in the preliminary study. Eight patients were enrolled in a second study assessing the effects of 2 g/day extended-release niacin. Apolipoprotein kinetics in VLDL (very-low-density lipoprotein), LDL (low-density lipoprotein), and Lp(a) were studied using stable isotope techniques. Plasma Lp(a) concentrations were increased in
PCSK9
-gain-of-function and familial hypercholesterolemia-
LDLR
groups compared with controls and
PCSK9
-loss-of-function groups (14±12 versus 5±4 mg/dL;
P
=0.04), but no change was observed in Lp(a) fractional catabolic rate. Subjects with
PCSK9
-loss-of-function mutations displayed reduced apoE (apolipoprotein E) concentrations associated with a VLDL-apoE absolute production rate reduction. Lp(a) and VLDL-apoE absolute production rates were correlated (
r
=0.50;
P
<0.05). ApoE-to-apolipoprotein (a) molar ratios in Lp(a) increased with plasma Lp(a) (
r
=0.96;
P
<0.001) but not with PCSK9 levels. Extended-release niacin-induced reductions in Lp(a) and VLDL-apoE absolute production rate were correlated (
r
=0.83;
P
=0.015). In contrast, PCSK9 reduction (−35%;
P
=0.008) was only correlated with that of VLDL-apoE absolute production rate (
r
=0.79;
P
=0.028).
Conclusions:
VLDL-apoE production could determine Lp(a) production and/or assembly. As PCSK9 inhibitors reduce plasma apoE and Lp(a) concentrations, apoE could be the link between PCSK9 and Lp(a).
Collapse
Affiliation(s)
- Mikaël Croyal
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Valentin Blanchard
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France (V.B., G.L.)
| | - Khadija Ouguerram
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Maud Chétiveaux
- L’institut du thorax, INSERM, CNRS, University of Nantes, France (M. Chétiveaux, C.L.M.)
| | - Léa Cabioch
- Biogenouest-Corsaire platform, Saint Gilles, France (L.C.)
| | - Thomas Moyon
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Stéphanie Billon-Crossouard
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Audrey Aguesse
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
| | - Karine Bernardeau
- P2R «Production de protéines recombinantes», CRCINA, SFR-Santé, INSERM, CNRS, UNIV Nantes, CHU Nantes, France (K.B.)
| | - Cédric Le May
- L’institut du thorax, INSERM, CNRS, University of Nantes, France (M. Chétiveaux, C.L.M.)
| | - Laurent Flet
- Pharmacy Department, Nantes University Hospital, France (L.F.)
| | - Gilles Lambert
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Réunion Océan Indien (DéTROI), Plateforme CYROI, Saint-Denis de La Réunion, France (V.B., G.L.)
| | - Samy Hadjadj
- L’institut du thorax, INSERM, CNRS, University of Nantes, CHU Nantes, France (S.H., B.C.)
| | - Bertrand Cariou
- L’institut du thorax, INSERM, CNRS, University of Nantes, CHU Nantes, France (S.H., B.C.)
| | - Michel Krempf
- From the NUN, INRA, CHU Nantes, UMR 1280, PhAN, IMAD, CRNH-O, France (M. Croyal, K.O., S.B.-C., A.A., M.K.)
- CRNH-O Mass Spectrometry Core Facility, F-44000 Nantes, France (M. Croyal, K.O., T.M., S.B.-C., A.A., M.K.)
- ELSAN, clinique Bretéché, Nantes, France (M.K.)
| | | |
Collapse
|
96
|
Hurt-Camejo E. ANGPTL3, PCSK9, and statin therapy drive remarkable reductions in hyperlipidemia and atherosclerosis in a mouse model. J Lipid Res 2020; 61:272-274. [PMID: 31980481 DOI: 10.1194/jlr.c120000650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Eva Hurt-Camejo
- Translational Science & Experimental Medicine Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83 Sweden; and Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, BioClinicum, 171 64 Solna, Sweden
| |
Collapse
|
97
|
Packard CJ, Boren J, Taskinen MR. Causes and Consequences of Hypertriglyceridemia. Front Endocrinol (Lausanne) 2020; 11:252. [PMID: 32477261 PMCID: PMC7239992 DOI: 10.3389/fendo.2020.00252] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Elevations in plasma triglyceride are the result of overproduction and impaired clearance of triglyceride-rich lipoproteins-very low-density lipoproteins (VLDL) and chylomicrons. Hypertriglyceridemia is characterized by an accumulation in the circulation of large VLDL-VLDL1-and its lipolytic products, and throughout the VLDL-LDL delipidation cascade perturbations occur that give rise to increased concentrations of remnant lipoproteins and small, dense low-density lipoprotein (LDL). The elevated risk of atherosclerotic cardiovascular disease in hypertriglyceridemia is believed to result from the exposure of the artery wall to these aberrant lipoprotein species. Key regulators of the metabolism of triglyceride-rich lipoproteins have been identified and a number of these are targets for pharmacological intervention. However, a clear picture is yet to emerge as to how to relate triglyceride lowering to reduced risk of atherosclerosis.
Collapse
Affiliation(s)
- Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, Glasgow University, Glasgow, United Kingdom
- *Correspondence: Chris J. Packard
| | - Jan Boren
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marja-Riitta Taskinen
- Research Programs Unit, Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
98
|
Stahel P, Xiao C, Nahmias A, Lewis GF. Role of the Gut in Diabetic Dyslipidemia. Front Endocrinol (Lausanne) 2020; 11:116. [PMID: 32231641 PMCID: PMC7083132 DOI: 10.3389/fendo.2020.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with increased risk of cardiovascular disease (CVD). In insulin resistant states such as the metabolic syndrome, overproduction and impaired clearance of liver-derived very-low-density lipoproteins and gut-derived chylomicrons (CMs) contribute to hypertriglyceridemia and elevated atherogenic remnant lipoproteins. Although ingested fat is the major stimulus of CM secretion, intestinal lipid handling and ultimately CM secretory rate is determined by numerous additional regulatory inputs including nutrients, hormones and neural signals that fine tune CM secretion during fasted and fed states. Insulin resistance and T2D represent perturbed metabolic states in which intestinal sensitivity to key regulatory hormones such as insulin, leptin and glucagon-like peptide-1 (GLP-1) may be altered, contributing to increased CM secretion. In this review, we describe the evidence from human and animal models demonstrating increased CM secretion in insulin resistance and T2D and discuss the molecular mechanisms underlying these effects. Several novel compounds are in various stages of preclinical and clinical investigation to modulate intestinal CM synthesis and secretion. Their efficacy, safety and therapeutic utility are discussed. Similarly, the effects of currently approved lipid modulating therapies such as statins, ezetimibe, fibrates, and PCSK9 inhibitors on intestinal CM production are discussed. The intricacies of intestinal CM production are an active area of research that may yield novel therapies to prevent atherosclerotic CVD in insulin resistance and T2D.
Collapse
|
99
|
Vuorio A, Watts GF, Schneider WJ, Tsimikas S, Kovanen PT. Familial hypercholesterolemia and elevated lipoprotein(a): double heritable risk and new therapeutic opportunities. J Intern Med 2020; 287:2-18. [PMID: 31858669 DOI: 10.1111/joim.12981] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022]
Abstract
There is compelling evidence that the elevated plasma lipoprotein(a) [Lp(a)] levels increase the risk of atherosclerotic cardiovascular disease (ASCVD) in the general population. Like low-density lipoprotein (LDL) particles, Lp(a) particles contain cholesterol and promote atherosclerosis. In addition, Lp(a) particles contain strongly proinflammatory oxidized phospholipids and a unique apoprotein, apo(a), which promotes the growth of an arterial thrombus. At least one in 250 individuals worldwide suffer from the heterozygous form of familial hypercholesterolemia (HeFH), a condition in which LDL-cholesterol (LDL-C) is significantly elevated since birth. FH-causing mutations in the LDL receptor gene demonstrate a clear gene-dosage effect on Lp(a) plasma concentrations and elevated Lp(a) levels are present in 30-50% of patients with HeFH. The cumulative burden of two genetically determined pro-atherogenic lipoproteins, LDL and Lp(a), is a potent driver of ASCVD in HeFH patients. Statins are the cornerstone of treatment of HeFH, but they do not lower the plasma concentrations of Lp(a). Emerging therapies effectively lower Lp(a) by as much as 90% using RNA-based approaches that target the transcriptional product of the LPA gene. We are now approaching the dawn of an era, in which permanent and significant lowering of the high cholesterol burden of HeFH patients can be achieved. If outcome trials of novel Lp(a)-lowering therapies prove to be safe and cost-effective, they will provide additional risk reduction needed to effectively treat HeFH and potentially lower the CVD risk in these high-risk patients even more than currently achieved with LDL-C lowering alone.
Collapse
Affiliation(s)
- A Vuorio
- From the, Mehiläinen Airport Health Centre, Vantaa, Finland.,Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - G F Watts
- School of Medicine, Faculty of Medicine and Health Sciences, University of Western Australia, Perth, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| | - W J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - S Tsimikas
- Vascular Medicine Program, Sulpizio Cardiovascular Center, Division of Cardiovascular Medicine, University of California, San Diego, CA, USA
| | - P T Kovanen
- Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
100
|
Impact of proprotein convertase subtilisin/kexin type 9 inhibition with evolocumab on the postprandial responses of triglyceride-rich lipoproteins in type II diabetic subjects. J Clin Lipidol 2019; 14:77-87. [PMID: 31917184 DOI: 10.1016/j.jacl.2019.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9 (PCSK9) significantly lower the levels of low-density lipoprotein and very-low-density lipoproteins (VLDL), but their effect on postprandial lipoprotein metabolism in dyslipidemic subjects is unclear. OBJECTIVE This study aimed to investigate the effects of evolocumab on postprandial lipid responses, ectopic fat depots, whole-body cholesterol synthesis, hepatic lipogenesis, and fat oxidation in patients with type II diabetes. METHODS The trial was a single-phase, nonrandomized study of 12-week treatment with evolocumab 140 mg subcutaneously every 2 weeks in 15 patients with type II diabetes on background statin therapy. Cardiometabolic responses to a high-fat mixed meal were assessed before and at the end of the intervention period. RESULTS Evolocumab treatment reduced significantly postprandial rises in plasma total triglyceride (by 21%; P < .0001) and VLDL1 triglyceride (by 15%; P = .018), but the increase in chylomicron triglyceride after the meal was not significantly perturbed (P = .053). There were reduced postprandial responses in plasma total apolipoprotein C-III (by 14%; P < .0001) and apolipoprotein B-48 concentration (by 17%; P = .0046) and in "remnant-like particles" cholesterol (by 29%; P < .0001) on the PCSK9 inhibitor. Treatment reduced the steady-state (ie, fasting and postprandial) concentrations of VLDL2 cholesterol by 50% (P < .0001) and VLDL2 triglyceride by 29% (P < .0001), in addition to the 78% reduction of low-density lipoprotein cholesterol (P < .001). The changes in apolipoprotein C-III associated significantly with reduction in postprandial responses of remnant-like particles cholesterol and triglyceride-rich lipoprotein cholesterol. Evolocumab therapy did not influence liver fat accumulation, hepatic de novo lipogenesis, or fasting β-hydroxybutyrate but did increase total body cholesterol synthesis (P < .01). CONCLUSION Evolocumab treatment improved postprandial responses of triglyceride-rich lipoproteins and measures of cholesterol-enriched remnant particles in type II diabetic subjects. These results indicate that postprandial phenomena need to be taken into account in assessing the full range of actions of PCSK9 inhibitors in dyslipidemic individuals.
Collapse
|