51
|
NOX4-Derived ROS Promotes Collagen I Deposition in Bronchial Smooth Muscle Cells by Activating Noncanonical p38MAPK/Akt-Mediated TGF- β Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6668971. [PMID: 33824697 PMCID: PMC8007363 DOI: 10.1155/2021/6668971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
Background Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD). NADPH oxidase 4- (NOX4-) mediated reactive oxygen species (ROS) production plays a crucial role in cell differentiation and extracellular matrix (ECM) synthesis in ASM remodeling. However, the precise mechanisms underpinning its pathogenic roles remain elusive. Methods The expression of NOX4 and TGF-β1 in the airway of the lung was measured in COPD patients and the control group. Cigarette smoke- (CS-) induced emphysema mice were generated, and the alteration of α-SMA, NOX4, TGF-β1, and collagen I was accessed. The changes of the expression of ECM markers, NOX4, components of TGF-β/Smad, and MAPK/Akt signaling in human bronchial smooth muscle cells (HBSMCs) were ascertained for delineating mechanisms of NOX4-mediated ROS production on cell differentiation and remodeling in human ASM cells. Results An increased abundance of NOX4 and TGF-β1 proteins in the epithelial cells and ASM of lung was observed in COPD patients compared with the control group. Additionally, an increased abundance expression of NOX4 and α-SMA was observed in the lungs of the CS-induced emphysema mouse model. TGF-β1 displayed abilities to increase the oxidative burden and collagen I production, along with enhanced phosphorylation of ERK, p38MAPK, and p-Akt473 in HBSMCs. These effects of TGF-β1 could be inhibited by the ROS scavenger N-acetylcysteine (NAC), siRNA-mediated knockdown of Smad3 and NOX4, and pharmacological inhibitors SB203580 (p38MAPK inhibitor) and LY294002 (Akt inhibitor). Conclusions NOX4-mediated ROS production alters TGF-β1-induced cell differentiation and collagen I protein synthesis in HBSMCs in part through the p38MAPK/Akt signaling pathway in a Smad-dependent manner.
Collapse
|
52
|
Gillenwater LA, Kechris KJ, Pratte KA, Reisdorph N, Petrache I, Labaki WW, O’Neal W, Krishnan JA, Ortega VE, DeMeo DL, Bowler RP. Metabolomic Profiling Reveals Sex Specific Associations with Chronic Obstructive Pulmonary Disease and Emphysema. Metabolites 2021; 11:161. [PMID: 33799786 PMCID: PMC7999201 DOI: 10.3390/metabo11030161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Susceptibility and progression of lung disease, as well as response to treatment, often differ by sex, yet the metabolic mechanisms driving these sex-specific differences are still poorly understood. Women with chronic obstructive pulmonary disease (COPD) have less emphysema and more small airway disease on average than men, though these differences become less pronounced with more severe airflow limitation. While small studies of targeted metabolites have identified compounds differing by sex and COPD status, the sex-specific effect of COPD on systemic metabolism has yet to be interrogated. Significant sex differences were observed in 9 of the 11 modules identified in COPDGene. Sex-specific associations by COPD status and emphysema were observed in 3 modules for each phenotype. Sex stratified individual metabolite associations with COPD demonstrated male-specific associations in sphingomyelins and female-specific associations in acyl carnitines and phosphatidylethanolamines. There was high preservation of module assignments in SPIROMICS (SubPopulations and InteRmediate Outcome Measures In COPD Study) and similar female-specific shift in acyl carnitines. Several COPD associated metabolites differed by sex. Acyl carnitines and sphingomyelins demonstrate sex-specific abundances and may represent important metabolic signatures of sex differences in COPD. Accurately characterizing the sex-specific molecular differences in COPD is vital for personalized diagnostics and therapeutics.
Collapse
Affiliation(s)
- Lucas A. Gillenwater
- Computational Bioscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katerina J. Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Katherine A. Pratte
- Division of Medicine, National Jewish Health, Denver, CO 80206, USA; (K.A.P.); (I.P.); (R.P.B.)
| | - Nichole Reisdorph
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Irina Petrache
- Division of Medicine, National Jewish Health, Denver, CO 80206, USA; (K.A.P.); (I.P.); (R.P.B.)
- School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Wanda O’Neal
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jerry A. Krishnan
- Breathe Chicago Center, University of Illinois at Chicago, Chicago, IL 60608, USA;
| | - Victor E. Ortega
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Dawn L. DeMeo
- Channing Division of Network Medicine, and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Russell P. Bowler
- Division of Medicine, National Jewish Health, Denver, CO 80206, USA; (K.A.P.); (I.P.); (R.P.B.)
- School of Medicine, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
53
|
Buttery SC, Zysman M, Vikjord SAA, Hopkinson NS, Jenkins C, Vanfleteren LEGW. Contemporary perspectives in COPD: Patient burden, the role of gender and trajectories of multimorbidity. Respirology 2021; 26:419-441. [PMID: 33751727 DOI: 10.1111/resp.14032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 12/13/2022]
Abstract
An individual's experience of COPD is determined by many factors in addition to the pathological features of chronic bronchitis and emphysema and the symptoms that derive directly from them. Multimorbidity is the norm rather than the exception, so most people with COPD are living with a range of other medical problems which can decrease overall quality of life. COPD is caused by the inhalation of noxious particles or gases, in particular tobacco smoke, but also by early life disadvantage impairing lung development and by occupations where inhaled exposures are common (e.g. industrial, farming and cleaning work). Wealthy people are therefore relatively protected from developing COPD and people who do develop the condition may have reduced resources to cope. COPD is also no longer a condition that predominantly affects men. The prevalence of COPD among women has equalled that of men since 2008 in many high-income countries, due to increased exposure to tobacco, and in low-income countries due to biomass fuels. COPD is one of the leading causes of death in women in the USA, and death rates attributed to COPD in women in some countries are predicted to overtake those of men in the next decade. Many factors contribute to this phenomenon, but in addition to socioeconomic and occupational factors, there is increasing evidence of a higher susceptibility of females to smoking and pollutants. Quality of life is also more significantly impaired in women. Although most medications (bronchodilators and inhaled corticosteroids) used to treat COPD demonstrate similar trends for exacerbation prevention and lung function improvement in men and women, this is an understudied area and clinical trials frequently have a preponderance of males. A better understanding of gender-based predictors of efficacy of all therapeutic interventions is crucial for comprehensive patient care. There is an urgent need to recognize the increasing burden of COPD in women and to facilitate global improvements in disease prevention and management in this specific population. Many individuals with COPD follow a trajectory of both lung function decline and also multimorbidity. Unfavourable lung function trajectories throughout life have implications for later development of other chronic diseases. An enhanced understanding of the temporal associations underlying the development of coexisting diseases is a crucial first step in unravelling potential common disease pathways. Lessons can be learned from exploring disease trajectories of other NCD as well as multimorbidity development. Further research will be essential to explain how early life risk factors commonly influence trajectories of COPD and other diseases, how different diseases develop in relation to each other in a temporal way and how this ultimately leads to different multimorbidity patterns in COPD. This review integrates new knowledge and ideas pertaining to three broad themes (i) the overall burden of disease in COPD, (ii) an unappreciated high burden in women and (iii) the contrast of COPD trajectories and different multimorbidity patterns with trajectories of other NCD. The underlying pathology of COPD is largely irreversible, but many factors noted in the review are potentially amenable to intervention. Health and social care systems need to ensure that effective treatment is accessible to all people with the condition. Preventive strategies and treatments that alter the course of disease are crucial, particularly for patients with COPD as one of many problems.
Collapse
Affiliation(s)
- Sara C Buttery
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Maéva Zysman
- Centre de Recherche cardio-thoracique de Bordeaux, Univ-Bordeaux, Pessac, France.,Service des Maladies Respiratoires, CHU Bordeaux, Pessac, France
| | - Sigrid A A Vikjord
- Department of Medicine and Rehabilitation, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway.,HUNT Research Centre, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Levanger, Norway
| | | | - Christine Jenkins
- Respiratory Group, The George Institute for Global Health, Sydney, NSW, Australia
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
54
|
Foer D, Rubins D, Almazan A, Wickner PG, Bates DW, Hamnvik OPR. Gender Reference Use in Spirometry for Transgender Patients. Ann Am Thorac Soc 2021; 18:537-540. [PMID: 33058733 PMCID: PMC7919147 DOI: 10.1513/annalsats.202002-103rl] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Dinah Foer
- Brigham and Women’s HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | | | | | - Paige G. Wickner
- Brigham and Women’s HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| | - David W. Bates
- Brigham and Women’s HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
- Harvard Chan School of Public HealthBoston, Massachusetts
| | - Ole-Petter R. Hamnvik
- Brigham and Women’s HospitalBoston, Massachusetts
- Harvard Medical SchoolBoston, Massachusetts
| |
Collapse
|
55
|
Wang Y, Li Z, Li FS. Development and Assessment of Prediction Models for the Development of COPD in a Typical Rural Area in Northwest China. Int J Chron Obstruct Pulmon Dis 2021; 16:477-486. [PMID: 33664570 PMCID: PMC7924122 DOI: 10.2147/copd.s297380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/07/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to construct and evaluate a clinical predictive model for the development of COPD in northwest China's rural areas. Methods A cross-sectional study of a natural population was performed in rural northwest China. After assessing demographic and disease characteristics, a clinical prediction model was developed. First, we used the least absolute shrinkage and selection operator regression model to screen possible factors influencing COPD. Then construct a logistic regression model and draw a nomogram. The discriminability of the model was further evaluated by the calibration diagram, C-index and ROC curve system. Clinical benefit was analyzed using the decision curve. Finally, the 1000 bootstrap resamples and Harrell's C-index was used for internal verification of the nomogram. Results Among 3249 patients in the local rural natural population, 394 (12.13%) were diagnosed with COPD. The LASSO regression model was used to find the optimal combination of parameters, and the screened influencing factors included age, gender, barbeque, smoking, passive smoking, energy type, ventilation system and Post-Bronchodilator FEV1. These predictors are used to construct a nomogram. C index is 0.81 (95% confidence interval:0.79-0.83). The combination of the calibration curve and ROC curve indicates that the model has high discriminability. The decision curve shows benefits in clinical practice when the threshold probability is >6% and <58%, respectively. The internal verification results using Harrell's C-Index were 0.80 (95% confidence interval: 0.78-0.83). Conclusion Combining information such as age, sex, barbeque, smoking, passive smoking, type of energy, ventilation systems, and Post-Bronchodilator FEV1 can be easily used to predict the risk of COPD in local rural areas.
Collapse
Affiliation(s)
- Yide Wang
- Department of Integrated Pulmonology, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China
| | - Zheng Li
- Department of Integrated Pulmonology, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.,Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Feng-Sen Li
- Department of Integrated Pulmonology, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, People's Republic of China.,Xinjiang National Clinical Research Base of Traditional Chinese Medicine, Xinjiang Medical University, Ürümqi, People's Republic of China
| |
Collapse
|
56
|
Knockdown of Alpha-1 Antitrypsin with antisense oligonucleotide does not exacerbate smoke induced lung injury. PLoS One 2021; 16:e0246040. [PMID: 33539438 PMCID: PMC7861354 DOI: 10.1371/journal.pone.0246040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
Alpha-1 Antitrypsin (AAT) is a serum protease inhibitor that regulates increased lung protease production induced by cigarette smoking. Mutations in the Serpina1 gene cause AAT to form hepatoxic polymers, which can lead to reduced availability for the protein’s primary function and severe liver disease. An AAT antisense oligonucleotide (ASO) was previously identified to be beneficial for the AATD liver disease by blocking the mutated AAT transcripts. Here we hypothesized that knockdown of AAT aggravates murine lung injury during smoke exposure and acute exacerbations of chronic obstructive pulmonary disease (COPD). C57BL/6J mice were randomly divided into 4 groups each for the smoking and smoke-flu injury models. The ASO and control (No-ASO) were injected subcutaneously starting with smoking or four days prior to influenza infection and then injected weekly at 50 mg/kg body weight. ASO treatment during a 3-month smoke exposure significantly decreased the serum and lung AAT expression, resulting in increased Cela1 expression and elastase activity. However, despite the decrease in AAT, neither the inflammatory cell counts in the bronchoalveolar lavage fluid (BALF) nor the lung structural changes were significantly worsened by ASO treatment. We observed significant differences in inflammation and emphysema due to smoke exposure, but did not observe an ASO treatment effect. Similarly, with the smoke-flu model, differences were only observed between smoke-flu and room air controls, but not as a result of ASO treatment. Off-target effects or compensatory mechanisms may account for this finding. Alternatively, the reduction of AAT with ASO treatment, while sufficient to protect from liver injury, may not be robust enough to lead to lung injury. The results also suggest that previously described AAT ASO treatment for AAT mutation related liver disease may attenuate hepatic injury without being detrimental to the lungs. These potential mechanisms need to be further investigated in order to fully understand the impact of AAT inhibition on protease-antiprotease imbalance in the murine smoke exposure model.
Collapse
|
57
|
Karhadkar TR, Pilling D, Gomer RH. Serum Amyloid P inhibits single stranded RNA-induced lung inflammation, lung damage, and cytokine storm in mice. PLoS One 2021; 16:e0245924. [PMID: 33481950 PMCID: PMC7822324 DOI: 10.1371/journal.pone.0245924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is a single stranded RNA (ssRNA) virus and contains GU-rich sequences distributed abundantly in the genome. In COVID-19, the infection and immune hyperactivation causes accumulation of inflammatory immune cells, blood clots, and protein aggregates in lung fluid, increased lung alveolar wall thickness, and upregulation of serum cytokine levels. A serum protein called serum amyloid P (SAP) has a calming effect on the innate immune system and shows efficacy as a therapeutic for fibrosis in animal models and clinical trials. Here we show that aspiration of the GU-rich ssRNA oligonucleotide ORN06 into mouse lungs induces all of the above COVID-19-like symptoms. Men tend to have more severe COVID-19 symptoms than women, and in the aspirated ORN06 model, male mice tended to have more severe symptoms than female mice. Intraperitoneal injections of SAP starting from day 1 post ORN06 aspiration attenuated the ORN06-induced increase in the number of inflammatory cells and formation of clot-like aggregates in the mouse lung fluid, reduced ORN06-increased alveolar wall thickness and accumulation of exudates in the alveolar airspace, and attenuated an ORN06-induced upregulation of the inflammatory cytokines IL-1β, IL-6, IL-12p70, IL-23, and IL-27 in serum. SAP also reduced D-dimer levels in the lung fluid. In human peripheral blood mononuclear cells, SAP attenuated ORN06-induced extracellular accumulation of IL-6. Together, these results suggest that aspiration of ORN06 is a simple model for both COVID-19 as well as cytokine storm in general, and that SAP is a potential therapeutic for diseases with COVID-19-like symptoms and/or a cytokine storm.
Collapse
Affiliation(s)
- Tejas R. Karhadkar
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
58
|
Caliri AW, Tommasi S, Besaratinia A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 787:108365. [PMID: 34083039 PMCID: PMC8287787 DOI: 10.1016/j.mrrev.2021.108365] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for a variety of diseases, including cancer and immune-mediated inflammatory diseases. Tobacco smoke contains a mixture of chemicals, including a host of reactive oxygen- and nitrogen species (ROS and RNS), among others, that can damage cellular and sub-cellular targets, such as lipids, proteins, and nucleic acids. A growing body of evidence supports a key role for smoking-induced ROS and the resulting oxidative stress in inflammation and carcinogenesis. This comprehensive and up-to-date review covers four interrelated topics, including 'smoking', 'oxidative stress', 'inflammation', and 'cancer'. The review discusses each of the four topics, while exploring the intersections among the topics by highlighting the macromolecular damage attributable to ROS. Specifically, oxidative damage to macromolecular targets, such as lipid peroxidation, post-translational modification of proteins, and DNA adduction, as well as enzymatic and non-enzymatic antioxidant defense mechanisms, and the multi-faceted repair pathways of oxidized lesions are described. Also discussed are the biological consequences of oxidative damage to macromolecules if they evade the defense mechanisms and/or are not repaired properly or in time. Emphasis is placed on the genetic- and epigenetic alterations that may lead to transcriptional deregulation of functionally-important genes and disruption of regulatory elements. Smoking-associated oxidative stress also activates the inflammatory response pathway, which triggers a cascade of events of which ROS production is an initial yet indispensable step. The release of ROS at the site of damage and inflammation helps combat foreign pathogens and restores the injured tissue, while simultaneously increasing the burden of oxidative stress. This creates a vicious cycle in which smoking-related oxidative stress causes inflammation, which in turn, results in further generation of ROS, and potentially increased oxidative damage to macromolecular targets that may lead to cancer initiation and/or progression.
Collapse
Affiliation(s)
- Andrew W Caliri
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
59
|
Ma H, Lu L, Xia H, Xiang Q, Sun J, Xue J, Xiao T, Cheng C, Liu Q, Shi A. Circ0061052 regulation of FoxC1/Snail pathway via miR-515-5p is involved in the epithelial-mesenchymal transition of epithelial cells during cigarette smoke-induced airway remodeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141181. [PMID: 32768781 DOI: 10.1016/j.scitotenv.2020.141181] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Circular RNA (circRNA) has been shown to be widely involved in a variety of lung diseases. Cigarette smoke (CS) may induce epithelial-mesenchymal transition (EMT) of airway remodeling in chronic obstructive pulmonary disease (COPD), however, in which the roles and mechanisms of circRNA have not been elucidated. In this study, we aimed to determine whether circ0061052 is involved in the EMT of human bronchial epithelial (HBE) cells and its potential mechanism for playing a biological role. Cigarette smoke extract (CSE) caused elevated EMT indicators and the increases of circ0061052 in HBE cells. Circ0061052 has a ring structure and is mainly present in the cytoplasm of HBE cells. We analyzed the regulatory relationship between circ0061052 and miR-515-5p using bioinformatics, a luciferase reporter gene, and qRT-PCR. We found that circ0061052 is mainly distributed in the cytoplasm and competitively binds to miR-515-5p, acting as a sponge for miR-515-5p. The luciferase reporter gene showed that miR-515-5p binds to the 3'UTR region of FoxC1 mRNA to inhibit its transcription. For HBE cells, overexpression of miR-515-5p antagonized the CSE-induced EMT. In addition, circ0061052 acts by binding miR-515-5p competitively to regulate the expression of FoxC1/Snail. When circ0061052 siRNA and miR-515-5p inhibitor were co-transfected into HBE cells, the inhibitor reversed the effect of circ0061052 siRNA on reducing EMT. Chronic exposure of mice to CS induced increases of circ0061052 levels, decreases of miR-515-5p levels, and the EMT in lung tissue, which caused dysfunction and airway obstruction. Overall, the results show that, by regulating miR-515-5p through a FoxC1/Snail regulatory axis, circ0061052 is involved in the CS-induced EMT and airway remodeling in COPD.
Collapse
Affiliation(s)
- Huimin Ma
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jing Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Aimin Shi
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
60
|
Cho J, Lee CH, Kim DK, Hwang HG, Kim YI, Choi HS, Park JW, Yoo KH, Jung KS, Lee SD. Impact of gender on chronic obstructive pulmonary disease outcomes: a propensity score-matched analysis of a prospective cohort study. Korean J Intern Med 2020; 35:1154-1163. [PMID: 32098456 PMCID: PMC7487291 DOI: 10.3904/kjim.2019.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/01/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS Despite increasing awareness of the burden of chronic obstructive pulmonary disease (COPD) in women, knowledge regarding gender differences in COPD outcomes is limited. Therefore, we aimed to evaluate whether COPD outcomes, including exacerbations, lung function, and symptoms differ by gender. METHODS We recruited patients with COPD from two Korean multicenter prospective cohorts. After propensity score matching, the main outcome, the incidence of moderate or severe exacerbations was analyzed using a negative binomial regression model. We also assessed changes in lung function and symptom scores including the St. George's respiratory questionnaire for COPD (SGRQ-C), COPD assessment test (CAT), and the modified Medical Research Council (mMRC) dyspnea score. RESULTS After propensity score matching, 74 women and 74 men with COPD were included. The incidence rates of exacerbations in women and men were not significantly different (incidence rate ratio, 1.49; 95% confidence interval [CI], 0.88 to 2.54). There was no significant difference in the incidence rates adjusted for medication possession ratios of long-acting muscarinic antagonists, long-acting β-agonists, and inhaled corticosteroids during the follow-up period (incidence rate ratio, 1.47; 95% CI, 0.86 to 2.52). Rates of decline in post-bronchodilator forced expiratory volume in 1 second and forced vital capacity did not differ between women and men during 48 months of follow-up. The changes in scores on the SGRQ-C, CAT, and mMRC Questionnaire in women were also similar to those in men. CONCLUSION We observed no gender differences in the rate of exacerbations of COPD in a prospective longitudinal study. Further studies are needed to confirm these findings in the general COPD population.
Collapse
Affiliation(s)
- Jaeyoung Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Correspondence to Chang-Hoon Lee, M.D. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea Tel: +82-2-2072-4743, Fax: +82-2-762-9662, E-mail:
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Hun-Gyu Hwang
- Division of Respiratory, Department of Internal Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Yu-Il Kim
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Hye Sook Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Seoul, Korea
| | - Jeong-Woong Park
- Division of Pulmonology, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Ki-Suck Jung
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sang-Do Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
61
|
Karhadkar TR, Pilling D, Gomer RH. Serum Amyloid P inhibits single stranded RNA-induced lung inflammation, lung damage, and cytokine storm in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32869032 DOI: 10.1101/2020.08.26.269183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is a single stranded RNA (ssRNA) virus and contains GU-rich sequences distributed abundantly in the genome. In COVID-19, the infection and immune hyperactivation causes accumulation of inflammatory immune cells, blood clots, and protein aggregates in lung fluid, increased lung alveolar wall thickness, and upregulation of serum cytokine levels. A serum protein called serum amyloid P (SAP) has a calming effect on the innate immune system and shows efficacy as a therapeutic for fibrosis in animal models and clinical trials. In this report, we show that aspiration of the GU-rich ssRNA oligonucleotide ORN06 into mouse lungs induces all of the above COVID-19-like symptoms. Men tend to have more severe COVID-19 symptoms than women, and in the aspirated ORN06 model, male mice tended to have more severe symptoms than female mice. Intraperitoneal injections of SAP starting from day 1 post ORN06 aspiration attenuated the ORN06-induced increase in the number of inflammatory cells and formation of clot-like aggregates in the mouse lung fluid, reduced ORN06-increased alveolar wall thickness and accumulation of exudates in the alveolar airspace, and attenuated an ORN06-induced upregulation of the inflammatory cytokines IL-1β, IL-6, IL-12p70, IL-23, and IL-27 in serum. Together, these results suggest that aspiration of ORN06 is a simple model for both COVID-19 as well as cytokine storm in general, and that SAP is a potential therapeutic for diseases with COVID-19-like symptoms as well as diseases that generate a cytokine storm.
Collapse
|
62
|
Thorenoor N, S. Phelps D, Kala P, Ravi R, Floros Phelps A, M. Umstead T, Zhang X, Floros J. Impact of Surfactant Protein-A Variants on Survival in Aged Mice in Response to Klebsiella pneumoniae Infection and Ozone: Serendipity in Action. Microorganisms 2020; 8:microorganisms8091276. [PMID: 32825654 PMCID: PMC7570056 DOI: 10.3390/microorganisms8091276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Innate immune molecules, SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A3), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with Klebsiella pneumoniae or exposed to filtered air (FA) or ozone (O3) prior to infection, and their survival monitored over 14 days. In response to infection alone, no gene- or sex-specific (except for 6A2) differences were observed; variant-specific survival was observed (1A0 > 6A4). In response to O3, gene-, sex-, and variant-specific survival was observed with SP-A2 variants showing better survival in males than females, and 1A0 females > 1A3 females. A serendipitous, and perhaps clinically important observation was made; mice exposed to FA prior to infection exhibited significantly better survival than infected alone mice. 1A0 provided an overall better survival in males and/or females indicating a differential role for SP-A genetics. Improved ventilation, as provided by FA, resulted in a survival of significant magnitude in aged mice and perhaps to a lesser extent in young mice. This may have clinical application especially within the context of the current pandemic.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Padma Kala
- Independent Consultant, Upper Saddle River, NJ 07458, USA;
| | - Radhika Ravi
- Division of Anesthesia, Department of Surgery, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA;
| | | | - Todd M. Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| |
Collapse
|
63
|
Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol 2020; 11:1698. [PMID: 32849595 PMCID: PMC7426504 DOI: 10.3389/fimmu.2020.01698] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Androgens, the predominant male sex hormones, drive the development and maintenance of male characteristics by binding to androgen receptor (AR). As androgens are systemically distributed throughout the whole organism, they affect many tissues and cell types in addition to those in male sexual organs. It is now clear that the immune system is a target of androgen action. In the lungs, many immune cells express ARs and are responsive to androgens. In this review, we describe the effects of androgens and ARs on lung myeloid immune cells-monocytes and macrophages-as they relate to health and disease. In particular, we highlight the effect of androgens on lung diseases, such as asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the therapeutic use of androgens and how circulating androgens correlate with lung disease. In addition to human studies, we also discuss how mouse models have helped to uncover the effect of androgens on monocytes and macrophages in lung disease. Although the role of estrogen and other female hormones has been broadly analyzed in the literature, we focus on the new perspectives of androgens as modulators of the immune system that target myeloid cells during lung inflammation.
Collapse
Affiliation(s)
| | | | - Nicola Heller
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
64
|
Haghani A, Arpawong TE, Kim JK, Lewinger JP, Finch CE, Crimmins E. Female vulnerability to the effects of smoking on health outcomes in older people. PLoS One 2020; 15:e0234015. [PMID: 32497122 PMCID: PMC7272024 DOI: 10.1371/journal.pone.0234015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking is among the leading risk factors for mortality and morbidity. While men have a higher smoking prevalence, mechanistic experiments suggest that women are at higher risk for health problems due to smoking. Moreover, the comparison of smoking effects on multiple conditions and mortality for men and women has not yet been done in a population-based group with race/ethnic diversity. We used proportional hazards models and restricted mean survival time to assess differences in smoking effects by sex for multiple health outcomes using data from the U.S. Health and Retirement Study (HRS), a population-representative cohort of individuals aged 50+ (n = 22,708, 1992-2014). Men had experienced more smoking pack-years than women (22.0 vs 15.6 average pack-years). Age of death, onset of lung disorders, heart disease, stroke, and cancer showed dose-dependent effects of smoking for both sexes. Among heavy smokers (>28 pack-years) women had higher risk of earlier age of death (HR = 1.3, 95%CI:1.03-1.65) and stroke (HR = 1.37, 95%CI:1.02-1.83). Risk of cancer and heart disease did not differ by sex for smokers. Women had earlier age of onset for lung disorders (HR = 2.83, 95%CI:1.74-4.6), but men risk due to smoking were higher (Smoking-Sex interaction P<0.02) than women. Passive smoke exposure increased risk of earlier heart disease (HR = 1.33, 95%CI:1.07-1.65) and stroke (HR:1.54, 95%CI:1.07-2.22) for non-smokers, mainly in men. Smoking cessation after 15 years partially attenuated the deleterious smoking effects for all health outcomes. In sum, our results suggest that women are more vulnerable to ever smoking for earlier death and risk of stroke, but less vulnerable for lung disorders. From an epidemiological perspective, sex differences in smoking effects are important considerations that could underlie sex differences in health outcomes. These findings also encourage future mechanistic experiments to resolve potential mechanisms of sex-specific cigarette smoke toxicity.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Jung Ki Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Juan Pablo Lewinger
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Eileen Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
65
|
De Cunto G, Cavarra E, Bartalesi B, Lucattelli M, Lungarella G. Innate Immunity and Cell Surface Receptors in the Pathogenesis of COPD: Insights from Mouse Smoking Models. Int J Chron Obstruct Pulmon Dis 2020; 15:1143-1154. [PMID: 32547002 PMCID: PMC7246326 DOI: 10.2147/copd.s246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/03/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly associated with smoking habit. Inflammation is the major initiating process whereby neutrophils and monocytes are attracted into the lung microenvironment by external stimuli present in tobacco leaves and in cigarette smoke, which promote chemotaxis, adhesion, phagocytosis, release of superoxide anions and enzyme granule contents. A minority of smokers develops COPD and different molecular factors, which contribute to the onset of the disease, have been put forward. After many years of research, the pathogenesis of COPD is still an object of debate. In vivo models of cigarette smoke-induced COPD may help to unravel cellular and molecular mechanisms underlying the pathogenesis of COPD. The mouse represents the most favored animal choice with regard to the study of immune mechanisms due to its genetic and physiological similarities to humans, the availability of a large variability of inbred strains, the presence in the species of several genetic disorders analogous to those in man, and finally on the possibility to create models “made-to-measure” by genetic manipulation. The review outlines the different response of mouse strains to cigarette smoke used in COPD studies while retaining a strong focus on their relatability to human patients. These studies reveal the importance of innate immunity and cell surface receptors in the pathogenesis of pulmonary injury induced by cigarette smoking. They further advance the way in which we use wild type or genetically manipulated strains to improve our overall understanding of a multifaceted disease such as COPD. The structural and functional features, which have been found in the different strains of mice after chronic exposure to cigarette smoke, can be used in preclinical studies to develop effective new therapeutic agents for the different phenotypes in human COPD.
Collapse
Affiliation(s)
- Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Eleonora Cavarra
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Barbara Bartalesi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Monica Lucattelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Lungarella
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
66
|
Pandit P, Perez RL, Roman J. Sex-Based Differences in Interstitial Lung Disease. Am J Med Sci 2020; 360:467-473. [PMID: 32487327 DOI: 10.1016/j.amjms.2020.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
Interstitial lung diseases comprise a family of progressive pulmonary disorders that are often idiopathic or associated with various systemic diseases and that is characterized by bilateral lung involvement with inflammation and tissue remodeling or fibrosis. The impact of sex, including the anatomic and physiologic traits that one is born with, on the development and progression of interstitial lung diseases is not entirely clear. Variances between men and women are driven by differences in male and female biology and sex hormones, among other differences, but their role remains uncertain. In this review, we summarize sex-related differences in the epidemiology and progression of certain interstitial lung diseases with a focus on the connective tissue related interstitial lung diseases, idiopathic pulmonary fibrosis, and sarcoidosis. We also discuss cellular and pre-clinical studies that might shed light on the potential mechanisms responsible for these differences in the hope of unveiling potential targets for intervention and stimulating research in this needed field of investigation.
Collapse
Affiliation(s)
- Pooja Pandit
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine; Jane & Leonard Korman Respiratory Institute, Jefferson Health, Thomas Jefferson University, 834 Walnut St, Philadelphia, PA 19107 USA
| | - Rafael L Perez
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine; Jane & Leonard Korman Respiratory Institute, Jefferson Health, Thomas Jefferson University, 834 Walnut St, Philadelphia, PA 19107 USA
| | - Jesse Roman
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Sidney Kimmel College of Medicine; Jane & Leonard Korman Respiratory Institute, Jefferson Health, Thomas Jefferson University, 834 Walnut St, Philadelphia, PA 19107 USA.
| |
Collapse
|
67
|
Guan X, Yuan Y, Wang G, Zheng R, Zhang J, Dong B, Ran N, Hsu ACY, Wang C, Wang F. Ginsenoside Rg3 ameliorates acute exacerbation of COPD by suppressing neutrophil migration. Int Immunopharmacol 2020; 83:106449. [PMID: 32278128 DOI: 10.1016/j.intimp.2020.106449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD) is an irreversible inflammatory airways disease responsible for global health burden, involved with a complex condition of immunological change. Exacerbation-mediated neutrophilia is an important factor in the pathogenesis of cigarette smoke-induced AECOPD. Ginsenoside Rg3, a red-ginseng-derived compound, has multiple pharmacological properties such as anti-inflammatory and antitumor activities. Here, we investigated a protective role of Rg3 against AECOPD, focusing on neutrophilia. 14-week-cigarette smoke (CS) exposure and non-typeable Haemophilus inflenzae (NTHi) infection were used to establish the AECOPD murine model. Rg3 (10, 20, 40 mg/kg) was administered intragastrically from the 12th week of CS exposure before infection, and this led to improved lung function and lung morphology, and reduced neutrophilic inflammation, indicating a suppressive effect on neutrophil infiltration by Rg3. Further investigations on the mechanism of Rg3 on neutrophils were carried out using bronchial epithelial cell (BEAS-2B) and neutrophil co-culture and transepithelial migration model. Pre-treatment of neutrophils with Rg3 reduced neutrophil migration, which seemed to be the result of inhibition of phosphatidylinositol (PtdIns) 3-kinases (PI3K) activation within neutrophils. Thus, Rg3 could inhibit exacerbation-induced neutrophilia in COPD by negatively regulating PI3K activities in neutrophils. This study provides a potential natural drug against AECOPD neutrophil inflammation.
Collapse
Affiliation(s)
- Xuewa Guan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yuze Yuan
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ruipeng Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Invasive Technology, First Hospital of Jilin University, Changchun 130021, China
| | - Jing Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Intensive Care Unit, First Hospital of Jilin University, Changchun 130021, China
| | - Bing Dong
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Nan Ran
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute and the University of Newcastle, NSW, Australia
| | - Cuizhu Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Key laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
68
|
Tam A, Filho FSL, Ra SW, Yang J, Leung JM, Churg A, Wright JL, Sin DD. Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome. PLoS One 2020; 15:e0230932. [PMID: 32251484 PMCID: PMC7135149 DOI: 10.1371/journal.pone.0230932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Chronic smoke exposure is associated with weight loss in patients with Chronic Obstructive Pulmonary Disease (COPD). However, the biological contribution of chronic smoking and sex on the cecal microbiome has not been previously investigated. METHODS Adult male, female and ovariectomized mice were exposed to air (control group) or smoke for six months using a standard nose-only smoke exposure system. DNA was extracted from the cecal content using the QIAGEN QIAamp® DNA Mini Kit. Droplet digital PCR was used to generate total 16S bacterial counts, followed by Illumina MiSeq® analysis to determine microbial community composition. The sequencing data were resolved into Amplicon Sequence Variants and analyzed with the use of QIIME2®. Alpha diversity measures (Richness, Shannon Index, Evenness and Faith's Phylogenetic Diversity) and beta diversity (based on Bray-Curtis distances) were assessed and compared according to smoke exposure and sex. RESULTS The microbial community was different between male and female mice, while ovariectomy made the cecal microbiome similar to that of male mice. Chronic smoke exposure led to significant changes in the cecal microbial community in both male and female mice. The organism, Alistipes, was the most consistent bacteria identified at the genus level in the cecal content that was reduced with chronic cigarette exposure and its expression was positively related to the whole-body weight of these mice. CONCLUSION Chronic smoke exposure is associated with changes in the cecal content microbiome; these changes may play a role in the weight changes that are observed in cigarette smokers.
Collapse
Affiliation(s)
- Anthony Tam
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Fernando Sergio Leitao Filho
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Seung Won Ra
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Julia Yang
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Janice M Leung
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Andrew Churg
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne L Wright
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
69
|
Brandsma C, Van den Berge M, Hackett T, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. [PMID: 31691283 PMCID: PMC7216938 DOI: 10.1002/path.5364] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Corry‐Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Maarten Van den Berge
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary DiseasesGroningenThe Netherlands
| | - Tillie‐Louise Hackett
- Centre for Heart Lung InnovationUnive rsity of British ColumbiaVancouverCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Guy Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Epidemiology and Respiratory MedicineErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
70
|
Tam A, Tanabe N, Churg A, Wright JL, Hogg JC, Sin DD. Sex differences in lymphoid follicles in COPD airways. Respir Res 2020; 21:46. [PMID: 32033623 PMCID: PMC7006095 DOI: 10.1186/s12931-020-1311-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/30/2020] [Indexed: 01/20/2023] Open
Abstract
Background Female smokers have increased risk for chronic obstructive pulmonary disease (COPD) compared with male smokers who have a similar history of cigarette smoke exposure. Tertiary lymphoid follicles are often found in the lungs of patients with severe COPD but sex-related differences have not been previously investigated. We determined the impact of female sex hormones on chronic cigarette smoke-induced expression of lymphoid aggregates in mice with COPD-like pathologies. Methods Lymphoid aggregate counts, total aggregate cross-sectional area and foamy macrophage counts were determined morphometrically in male, female, and ovariectomized mice exposed to air or cigarette smoke for 6 months. B-cell activating factor (BAFF) protein expression and markers of oxidative stress were evaluated in mouse lung tissues by immunofluorescence staining and gene expression analyses. Quantitative histology was performed on lung tissue sections of human COPD lungs to evaluate follicle formation. Results Lymphoid follicle and foamy macrophage counts as well as the total follicle cross-sectional area were differentially increased in lung tissues of female mice compared to male mice, and these differences were abolished by ovariectomy. These lymphoid aggregates were positive for CD45, CD20, CD21 and BAFF expression. Differential increases in Mmp12 and Cxcl2 gene expression correlated with an increase in foamy macrophages in parenchymal tissues of female but not male mice after smoke exposure. Parenchymal tissues from female mice failed to induce antioxidant-related genes in response to smoke exposure, and this effect was restored by ovariectomy. 3-nitrotyrosine, a stable marker of oxidative stress, positively correlated with Mmp12 and Cxcl2 gene expression. Hydrogen peroxide induced BAFF protein in mouse macrophage cell line. In human lung tissues, female smokers with severe COPD demonstrated increased numbers of lymphoid follicles compared with males. Conclusions Chronic smoke exposure increases the risk of lymphoid aggregate formation in female mice compared with male mice, which is mediated female sex hormones and BAFF expression in an oxidative environment.
Collapse
Affiliation(s)
- Anthony Tam
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada
| | - Naoya Tanabe
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Andrew Churg
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne L Wright
- Department of Pathology, University of British Columbia, Vancouver, British Columbia, Canada
| | - James C Hogg
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, & Department of Medicine, Vancouver, British Columbia, Canada.
| |
Collapse
|
71
|
Widespread Sexual Dimorphism in the Transcriptome of Human Airway Epithelium in Response to Smoking. Sci Rep 2019; 9:17600. [PMID: 31772224 PMCID: PMC6879662 DOI: 10.1038/s41598-019-54051-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 11/01/2019] [Indexed: 11/09/2022] Open
Abstract
Epidemiological studies have shown that female smokers are at higher risk of chronic obstructive pulmonary disease (COPD). Female patients have worse symptoms and health status and increased risk of exacerbations. We determined the differences in the transcriptome of the airway epithelium between males and females, as well the sex-by-smoking interaction. We processed public gene expression data of human airway epithelium into a discovery cohort of 211 subjects (never smokers n = 68; current smokers n = 143) and two replication cohorts of 104 subjects (21 never, 52 current, and 31 former smokers) and 238 subjects (99 current and 139 former smokers. We analyzed gene differential expression with smoking status, sex, and smoking-by-sex interaction and used network approaches for modules’ level analyses. We identified and replicated two differentially expressed modules between the sexes in response to smoking with genes located throughout the autosomes and not restricted to sex chromosomes. The two modules were enriched in autophagy (up-regulated in female smokers) and response to virus and type 1 interferon signaling pathways which were down-regulated in female smokers compared to males. The results offer insights into the molecular mechanisms of the sexually dimorphic effect of smoking, potentially enabling a precision medicine approach to smoking related lung diseases.
Collapse
|
72
|
Tanabe N, Shima H, Sato S, Oguma T, Kubo T, Kozawa S, Koizumi K, Sato A, Togashi K, Hirai T. Direct evaluation of peripheral airways using ultra-high-resolution CT in chronic obstructive pulmonary disease. Eur J Radiol 2019; 120:108687. [DOI: 10.1016/j.ejrad.2019.108687] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
|
73
|
Naz S, Bhat M, Ståhl S, Forsslund H, Sköld CM, Wheelock ÅM, Wheelock CE. Dysregulation of the Tryptophan Pathway Evidences Gender Differences in COPD. Metabolites 2019; 9:metabo9100212. [PMID: 31581603 PMCID: PMC6835831 DOI: 10.3390/metabo9100212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Increased activity of indoleamine 2,3-dioxygenase (IDO) and tryptophan hydroxylase (TPH) have been reported in individuals with chronic obstructive pulmonary disease (COPD). We therefore investigated the effect of gender stratification upon the observed levels of tryptophan metabolites in COPD. Tryptophan, serotonin, kynurenine, and kynurenic acid were quantified in serum of never-smokers (n = 39), smokers (n = 40), COPD smokers (n = 27), and COPD ex-smokers (n = 11) by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The individual metabolite associations with lung function, blood, and bronchoalveolar lavage (BAL) immune-cell composition, as well as chemokine and cytokine levels, were investigated. Stratification by gender and smoking status revealed that the observed alterations in kynurenine and kynurenic acid, and to a lesser extent serotonin, were prominent in males, irrespective of COPD status (kynurenine p = 0.005, kynurenic acid p = 0.009, and serotonin p = 0.02). Inferred serum IDO activity and kynurenine levels decreased in smokers relative to never-smokers (p = 0.005 and p = 0.004, respectively). In contrast, inferred tryptophan hydroxylase (TPH) activity and serotonin levels showed an increase with smoking that reached significance with COPD (p = 0.01 and p = 0.01, respectively). Serum IDO activity correlated with blood CXC chemokine ligand 9 (CXCL9, p = 0.0009, r = 0.93) and chemokine (C-C motif) ligand 4 (CCL4.(p = 0.04, r = 0.73) in female COPD smokers. Conversely, serum serotonin levels correlated with BAL CD4+ T-cells (%) (p = 0.001, r = 0.92) and CD8+ T-cells (%) (p = 0.002, r = -0.90) in female COPD smokers, but not in male COPD smokers (p = 0.1, r = 0.46 and p = 0.1, r = -0.50, respectively). IDO- and TPH-mediated tryptophan metabolites showed gender-based associations in COPD, which were primarily driven by smoking status.
Collapse
Affiliation(s)
- Shama Naz
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden;
| | - Maria Bhat
- Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, SE 171 65 Solna, Sweden; (M.B.); (S.S.)
- Department of Clinical Neuroscience, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Sara Ståhl
- Research and Development, Innovative Medicines, Personalised Healthcare and Biomarkers, Translational Science Centre, Science for Life Laboratory, AstraZeneca, SE 171 65 Solna, Sweden; (M.B.); (S.S.)
- Department of Clinical Neuroscience, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
| | - C. Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
| | - Åsa M. Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, SE 171 77 Stockholm, Sweden; (H.F.); (C.M.S.)
- Correspondence: (Å.M.W.); (C.E.W.); Tel.: +46-70-2200308 (Å.M.W.); +46-8-524-87630 (C.E.W.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden;
- Correspondence: (Å.M.W.); (C.E.W.); Tel.: +46-70-2200308 (Å.M.W.); +46-8-524-87630 (C.E.W.)
| |
Collapse
|
74
|
Ke Q, Yang L, Cui Q, Diao W, Zhang Y, Xu M, He B. Ciprofibrate attenuates airway remodeling in cigarette smoke-exposed rats. Respir Physiol Neurobiol 2019; 271:103290. [PMID: 31525465 DOI: 10.1016/j.resp.2019.103290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Airway remodeling is a key pathological lesion in chronic obstructive pulmonary disease (COPD), and it leads to poorly reversible airway obstruction. Current pharmacological interventions are ineffective at controlling airway remodeling. To address this issue, we queried the Connectivity Map (cMap) database to screen for drug candidates that had the potential to dilate the bronchus and inhibit airway smooth muscle (ASM) proliferation. We identified ciprofibrate as a drug candidate. Ciprofibrate inhibited cigarette smoke extract-induced rat ASM cell contraction and proliferation in vitro. We exposed Sprague-Dawley (SD) rats to clean air or cigarette smoke (CS) and treated the rats with ciprofibrate. Ciprofibrate improved pulmonary function, inhibited airway hypercontraction, and ameliorated morphological small airway remodeling, including airway smooth muscle proliferation, in CS-exposed rats. Ciprofibrate also significantly reduced IL-1β, IL-12p70, IL-17A and IL-18 expression, which are related to airway remodeling, in the sera of CS-exposed rats. These findings indicate that ciprofibrate could attenuate airway remodeling in CS-exposed rats.
Collapse
Affiliation(s)
- Qian Ke
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China.
| | - Lin Yang
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China.
| | - Qinghua Cui
- Department of Biomedical Informatics, Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Wenqi Diao
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China.
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research. Beijing, China.
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Cardiovascular Receptors Research. Beijing, China; Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Bei He
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
75
|
Han MK, Arteaga-Solis E, Blenis J, Bourjeily G, Clegg DJ, DeMeo D, Duffy J, Gaston B, Heller NM, Hemnes A, Henske EP, Jain R, Lahm T, Lancaster LH, Lee J, Legato MJ, McKee S, Mehra R, Morris A, Prakash YS, Stampfli MR, Gopal-Srivastava R, Laposky AD, Punturieri A, Reineck L, Tigno X, Clayton J. Female Sex and Gender in Lung/Sleep Health and Disease. Increased Understanding of Basic Biological, Pathophysiological, and Behavioral Mechanisms Leading to Better Health for Female Patients with Lung Disease. Am J Respir Crit Care Med 2019; 198:850-858. [PMID: 29746147 DOI: 10.1164/rccm.201801-0168ws] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Female sex/gender is an undercharacterized variable in studies related to lung development and disease. Notwithstanding, many aspects of lung and sleep biology and pathobiology are impacted by female sex and female reproductive transitions. These may manifest as differential gene expression or peculiar organ development. Some conditions are more prevalent in women, such as asthma and insomnia, or, in the case of lymphangioleiomyomatosis, are seen almost exclusively in women. In other diseases, presentation differs, such as the higher frequency of exacerbations experienced by women with chronic obstructive pulmonary disease or greater cardiac morbidity among women with sleep-disordered breathing. Recent advances in -omics and behavioral science provide an opportunity to specifically address sex-based differences and explore research needs and opportunities that will elucidate biochemical pathways, thus enabling more targeted/personalized therapies. To explore the status of and opportunities for research in this area, the NHLBI, in partnership with the NIH Office of Research on Women's Health and the Office of Rare Diseases Research, convened a workshop of investigators in Bethesda, Maryland on September 18 and 19, 2017. At the workshop, the participants reviewed the current understanding of the biological, behavioral, and clinical implications of female sex and gender on lung and sleep health and disease, and formulated recommendations that address research gaps, with a view to achieving better health outcomes through more precise management of female patients with nonneoplastic lung disease. This report summarizes those discussions.
Collapse
Affiliation(s)
- MeiLan K Han
- 1 Division of Pulmonary and Critical Care, University of Michigan, Ann Arbor, Michigan
| | - Emilio Arteaga-Solis
- 2 Division of Pediatric Pulmonology, Columbia University Medical Center, New York, New York
| | - John Blenis
- 3 Pharmacology Ph.D. Program, Sandra and Edward Meyer Cancer Center, New York, New York
| | - Ghada Bourjeily
- 4 Department of Medicine, Brown University, Providence, Rhode Island
| | - Deborah J Clegg
- 5 Department of Medicine, University of California Los Angeles, Los Angeles, California
| | - Dawn DeMeo
- 6 Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jeanne Duffy
- 7 Department of Medicine and.,8 Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ben Gaston
- 9 Pediatric Pulmonology, Case Western Reserve University, Cleveland, Ohio
| | - Nicola M Heller
- 10 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Anna Hemnes
- 11 Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Petri Henske
- 12 Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, Massachusetts
| | - Raksha Jain
- 13 Division of Pulmonary and Critical Care, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tim Lahm
- 14 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa H Lancaster
- 15 Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joyce Lee
- 16 Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, Colorado
| | | | - Sherry McKee
- 18 Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Reena Mehra
- 19 Neurologic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alison Morris
- 20 Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y S Prakash
- 21 Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Martin R Stampfli
- 22 Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rashmi Gopal-Srivastava
- 23 Office of Rare Diseases Research, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Aaron D Laposky
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | | | - Lora Reineck
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | - Xenia Tigno
- 24 Division of Lung Diseases, NHLBI/NIH, Bethesda, Maryland; and
| | - Janine Clayton
- 25 Office of Research on Women's Health, NIH-Office of the Director, Bethesda, Maryland
| |
Collapse
|
76
|
North CM, MacNaughton P, Lai PS, Vallarino J, Okello S, Kakuhikire B, Tsai AC, Castro MC, Siedner MJ, Allen JG, Christiani DC. Personal carbon monoxide exposure, respiratory symptoms, and the potentially modifying roles of sex and HIV infection in rural Uganda: a cohort study. Environ Health 2019; 18:73. [PMID: 31429759 PMCID: PMC6701123 DOI: 10.1186/s12940-019-0517-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 08/12/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Most of the global burden of pollution-related morbidity and mortality is believed to occur in resource-limited settings, where HIV serostatus and sex may influence the relationship between air pollution exposure and respiratory morbidity. The lack of air quality monitoring networks in these settings limits progress in measuring global disparities in pollution-related health. Personal carbon monoxide monitoring may identify sub-populations at heightened risk for air pollution-associated respiratory morbidity in regions of the world where the financial cost of air quality monitoring networks is prohibitive. METHODS From September 2015 through May 2017, we measured 48-h ambulatory carbon monoxide (CO) exposure in a longitudinal cohort of HIV-infected and uninfected adults in rural southwestern Uganda. We fit generalized mixed effects models to identify correlates of CO exposure exceeding international air quality thresholds, quantify the relationship between CO exposure and respiratory symptoms, and explore potential effect modification by sex and HIV serostatus. RESULTS Two hundred and sixty study participants completed 419 sampling periods. Personal CO exposure exceeded international thresholds for 50 (19%) participants. In covariate-adjusted models, living in a home where charcoal was the main cooking fuel was associated with CO exposure exceeding international thresholds (adjusted odds ratio [AOR] 11.3, 95% confidence interval [95%CI] 4.7-27.4). In sex-stratified models, higher CO exposure was associated with increased odds of respiratory symptoms among women (AOR 3.3, 95%CI 1.1-10.0) but not men (AOR 1.3, 95%CI 0.4-4.4). In HIV-stratified models, higher CO exposure was associated with increased odds of respiratory symptoms among HIV-infected (AOR 2.5, 95%CI 1.01-6.0) but not HIV-uninfected (AOR 1.4, 95%CI 0.1-14.4) participants. CONCLUSIONS In a cohort in rural Uganda, personal CO exposure frequently exceeded international thresholds, correlated with biomass exposure, and was associated with respiratory symptoms among women and people living with HIV. Our results provide support for the use of ambulatory CO monitoring as a low-cost, feasible method to identify subgroups with heightened vulnerability to pollution-related respiratory morbidity in resource-limited settings and identify subgroups that may have increased susceptibility to pollution-associated respiratory morbidity.
Collapse
Affiliation(s)
- Crystal M. North
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, BUL-148, Boston, MA 02118 USA
- Harvard T.H. Chan School of Public Health, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | | | - Peggy S. Lai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, BUL-148, Boston, MA 02118 USA
- Harvard T.H. Chan School of Public Health, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - Jose Vallarino
- Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Samson Okello
- Harvard T.H. Chan School of Public Health, Boston, MA USA
- Mbarara University of Science and Technology, Mbarara, Uganda
- University of Virginia Health System, Charlottesville, USA
| | | | - Alexander C. Tsai
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, BUL-148, Boston, MA 02118 USA
- Harvard Medical School, Boston, MA USA
- Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Mark J. Siedner
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, BUL-148, Boston, MA 02118 USA
- Harvard Medical School, Boston, MA USA
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joseph G. Allen
- Harvard T.H. Chan School of Public Health, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| | - David C. Christiani
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, 55 Fruit Street, BUL-148, Boston, MA 02118 USA
- Harvard T.H. Chan School of Public Health, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| |
Collapse
|
77
|
Thorenoor N, Kawasawa YI, Gandhi CK, Zhang X, Floros J. Differential Impact of Co-expressed SP-A1/SP-A2 Protein on AM miRNome; Sex Differences. Front Immunol 2019; 10:1960. [PMID: 31475015 PMCID: PMC6707024 DOI: 10.3389/fimmu.2019.01960] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/02/2019] [Indexed: 12/04/2022] Open
Abstract
In humans there are two surfactant protein A (SP-A) functional genes SFTPA1 and SFTPA2 encoding innate immune molecules, SP-A1 and SP-A2, respectively, with numerous genetic variants each. SP-A interacts and regulates many of the functions of alveolar macrophages (AM). It is shown that SP-A variants differ in their ability to regulate the AM miRNome in response to oxidative stress (OxS). Because humans have both SP-A gene products, we were interested to determine the combined effect of co-expressed SP-A1/SP-A2 (co-ex) in response to ozone (O3) induced OxS on AM miRNome. Human transgenic (hTG) mice, carrying both SP-A1/SP-A2 (6A2/1A0, co-ex) and SP-A- KO were utilized. The hTG and KO mice were exposed to filtered air (FA) or O3 and miRNA levels were measured after AM isolation with or without normalization to KO. We found: (i) The AM miRNome of co-ex males and females in response to OxS to be largely downregulated after normalization to KO, but after Bonferroni multiple comparison analysis only in females the AM miRNome remained significantly different compared to control (FA); (ii) The targets of the significantly changed miRNAs were downregulated in females and upregulated in males; (iii) Several of the validated mRNA targets were involved in pro-inflammatory response, anti-apoptosis, cell cycle, cellular growth and proliferation; (iv) The AM of SP-A2 male, shown, previously to have major effect on the male AM miRNome in response to OxS, shared similarities with the co-ex, namely in pathways involved in the pro-inflammatory response and anti-apoptosis but also exhibited differences with the cell-cycle, growth, and proliferation pathway being involved in co-ex and ROS homeostasis in SP-A2 male. We speculate that the presence of both gene products vs. single gene products differentially impact the AM responses in males and females in response to OxS.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Chintan K Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xuesheng Zhang
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease Research, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
78
|
Ma J, Tian K, Wang L, Wang K, Du J, Li D, Wu Z, Zhang J. High Expression of TGF-β1 Predicting Tumor Progression in Skull Base Chordomas. World Neurosurg 2019; 131:e265-e270. [PMID: 31349076 DOI: 10.1016/j.wneu.2019.07.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the expression characteristics and prognostic value of transforming growth factor β1 (TGF-β1) in primary skull base chordomas (SBCs). METHODS The mRNA expression levels of TGF-β1 were measured in 57 frozen samples from patients with primary SBCs. Clinical data collection, follow-up, correlations, and survival analyses were performed. RESULTS In the series of 57 patients (29 men and 28 women) with primary SBCs, the mean value of TGF-β1 mRNA was 1.713 with a median of 0.904. Twenty-four SBCs were soft type and 33 were hard type. The Mann-Whitney U test revealed that the expression level of TGF-β1 mRNA in hard type SBCs was significantly higher than the expression level found in the soft type (P = 0.03). The independent-samples median test suggested that the expression level of TGF-β1 mRNA in female patients' SBCs was significantly higher than that in male patients' SBCs (P = 0.01). Expression differences of TGF-β1 were not seen among different pathological subtypes, tumor blood supply, or degree of resection. The Spearman rank correlation coefficient clarified that TGF-β1 mRNA levels were not correlated with tumor diameter, preoperative Karnofsky Performance Status (KPS), postoperative KPS, follow-up KPS, age, or intraoperative blood loss. The multivariate Cox analysis revealed that pathological subtype (P = 0.008), expression level of TGF-β1 mRNA (P = 0.01), and tumor texture (P = 0.03) were all independent prognostic factors for tumor progression. CONCLUSIONS SBCs in female patients and SBCs with hard texture were prone to have high TGF-β1 mRNA expression. High expression of TGF-β1, hard tumor texture, and conventional subtype were all independent risk factors for tumor progression.
Collapse
Affiliation(s)
- Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Kaibing Tian
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Jiang Du
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Brian Tumor, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Beijing Key Laboratory of Brian Tumor, Beijing, China.
| |
Collapse
|
79
|
Dupin I, Thumerel M, Maurat E, Coste F, Eyraud E, Begueret H, Trian T, Montaudon M, Marthan R, Girodet PO, Berger P. Fibrocyte accumulation in the airway walls of COPD patients. Eur Respir J 2019; 54:13993003.02173-2018. [DOI: 10.1183/13993003.02173-2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Abstract
The remodelling mechanism and cellular players causing persistent airflow limitation in COPD remain largely elusive. We have recently demonstrated that circulating fibrocytes, a rare population of fibroblast-like cells produced by the bone marrow stroma, are increased in COPD patients during an exacerbation. We aimed to quantify fibrocyte density in situ in bronchial specimens from both control subjects and COPD patients, to define associations with relevant clinical, functional and computed tomography (CT) parameters, and to investigate the effect of the epithelial microenvironment on fibrocyte survival in vitro (“Fibrochir” study).A total of 17 COPD patients and 25 control subjects, all requiring thoracic surgery, were recruited. Using co-immunostaining and image analysis, we identified CD45+ FSP1+ cells as tissue fibrocytes, and quantified their density in distal and proximal bronchial specimens. Fibrocytes, cultured from the blood samples of six COPD patients, were exposed to primary bronchial epithelial cell secretions from control subjects or COPD patients.We demonstrate that fibrocytes are increased in both distal and proximal tissue specimens of COPD patients. The density of fibrocytes is negatively correlated with lung function parameters and positively correlated with bronchial wall thickness as assessed by CT scan. A high density of distal bronchial fibrocytes predicts the presence of COPD with a sensitivity of 83% and a specificity of 70%. Exposure of fibrocytes to COPD epithelial cell supernatant favours cell survival.Our results thus demonstrate an increased density of fibrocytes within the bronchi of COPD patients, which may be promoted by epithelial-derived survival-mediating factors.
Collapse
|
80
|
Joshi R, Ojha M, Lewis J, Fan Q, Monia B, Guo S, Varisco BM. Sex-specific differences in emphysema using a murine antisense oligonucleotide model of α-1 antitrypsin deficiency. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1165-L1173. [PMID: 31017014 DOI: 10.1152/ajplung.00502.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
α-1 Antitrypsin (AAT) deficiency is the leading genetic cause of emphysema; however, until recently, no genuine animal models of AAT deficiency existed, hampering the development of new therapies. This shortcoming is now addressed by both AAT-null and antisense oligonucleotide mouse models. The goal of this study was to more fully characterize the antisense oligonucleotide model. Both liver AAT mRNA and serum AAT levels were lower in anti-AAT versus control oligonucleotide-treated mice after 6, 12, and 24 wk. Six and twelve weeks of anti-AAT oligonucleotide therapy induced emphysema that was worse in female than male mice: mean linear intercept 73.4 versus 62.5 μm (P = 0.000003). However, at 24 wk of treatment, control oligonucleotide-treated mice also developed emphysema. After 6 wk of therapy, anti-AAT male and female mice demonstrated a similar reduction serum AAT levels, and there were no sex or treatment-specific alterations in inflammatory, serine protease, or matrix metalloproteinase mRNAs, with the exception of chymotrypsin-like elastase 1 (Cela1), which was 7- and 9-fold higher in anti-AAT versus control male and female lungs, respectively, and 1.6-fold higher in female versus male anti-AAT-treated lungs (P = 0.04). While lung AAT protein levels were reduced in anti-AAT-treated mice, lung AAT mRNA levels were unaffected. These findings are consistent with increased emphysema susceptibility of female patients with AAT-deficiency. The anti-AAT oligonucleotide model of AAT deficiency is useful for compartment-specific, in vivo molecular biology, and sex-specific studies of AAT-deficient emphysema, but it should be used with caution in studies longer than 12-wk duration.
Collapse
Affiliation(s)
- Rashika Joshi
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Mohit Ojha
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jana Lewis
- Department of Biology, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas
| | - Qiang Fan
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Brett Monia
- Antisense Discovery, Ionis Pharmaceuticals, Carlsbad, California
| | - Shuling Guo
- Antisense Discovery, Ionis Pharmaceuticals, Carlsbad, California
| | - Brian M Varisco
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,College of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
81
|
Phillips B, Szostak J, Titz B, Schlage WK, Guedj E, Leroy P, Vuillaume G, Martin F, Buettner A, Elamin A, Sewer A, Sierro N, Choukrallah MA, Schneider T, Ivanov NV, Teng C, Tung CK, Lim WT, Yeo YS, Vanscheeuwijck P, Peitsch MC, Hoeng J. A six-month systems toxicology inhalation/cessation study in ApoE -/- mice to investigate cardiovascular and respiratory exposure effects of modified risk tobacco products, CHTP 1.2 and THS 2.2, compared with conventional cigarettes. Food Chem Toxicol 2019; 126:113-141. [PMID: 30763686 DOI: 10.1016/j.fct.2019.02.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Smoking is one of the major modifiable risk factors in the development and progression of chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD). Modified-risk tobacco products (MRTP) are being developed to provide substitute products for smokers who are unable or unwilling to quit, to lessen the smoking-related health risks. In this study, the ApoE-/- mouse model was used to investigate the impact of cigarette smoke (CS) from the reference cigarette 3R4F, or aerosol from two potential MRTPs based on the heat-not-burn principle, carbon heated tobacco product 1.2 (CHTP1.2) and tobacco heating system 2.2 (THS 2.2), on the cardiorespiratory system over a 6-month period. In addition, cessation or switching to CHTP1.2 after 3 months of CS exposure was assessed. A systems toxicology approach combining physiology, histology and molecular measurements was used to evaluate the impact of MRTP aerosols in comparison to CS. CHTP1.2 and THS2.2 aerosols, compared with CS, demonstrated lower impact on the cardiorespiratory system, including low to absent lung inflammation and emphysematous changes, and reduced atherosclerotic plaque formation. Molecular analyses confirmed the lower engagement of pathological mechanisms by MRTP aerosols than CS. Both cessation and switching to CHTP1.2 reduced the observed CS effects to almost sham exposure levels.
Collapse
Affiliation(s)
- Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | | | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Charles Teng
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ching Keong Tung
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Wei Ting Lim
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Ying Shan Yeo
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore.
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
82
|
Tam A, Hughes M, McNagny KM, Obeidat M, Hackett TL, Leung JM, Shaipanich T, Dorscheid DR, Singhera GK, Yang CWT, Paré PD, Hogg JC, Nickle D, Sin DD. Hedgehog signaling in the airway epithelium of patients with chronic obstructive pulmonary disease. Sci Rep 2019; 9:3353. [PMID: 30833624 PMCID: PMC6399332 DOI: 10.1038/s41598-019-40045-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/21/2019] [Indexed: 01/21/2023] Open
Abstract
Genome-wide association studies have linked gene variants of the receptor patched homolog 1 (PTCH1) with chronic obstructive pulmonary disease (COPD). However, its biological role in the disease is unclear. Our objective was to determine the expression pattern and biological role of PTCH1 in the lungs of patients with COPD. Airway epithelial-specific PTCH1 protein expression and epithelial morphology were assessed in lung tissues of control and COPD patients. PTCH1 mRNA expression was measured in bronchial epithelial cells obtained from individuals with and without COPD. The effects of PTCH1 siRNA knockdown on epithelial repair and mucous expression were evaluated using human epithelial cell lines. Ptch1+/− mice were used to assess the effect of decreased PTCH1 on mucous expression and airway epithelial phenotypes. Airway epithelial-specific PTCH1 protein expression was significantly increased in subjects with COPD compared to controls, and its expression was associated with total airway epithelial cell count and thickness. PTCH1 knockdown attenuated wound closure and mucous expression in airway epithelial cell lines. Ptch1+/− mice had reduced mucous expression compared to wildtype mice following mucous induction. PTCH1 protein is up-regulated in COPD airway epithelium and may upregulate mucous expression. PTCH1 provides a novel target to reduce chronic bronchitis in COPD patients.
Collapse
Affiliation(s)
- A Tam
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - M Hughes
- Biomedical Research Centre (BRC), University of British Columbia, Vancouver, British Columbia, Canada
| | - K M McNagny
- Biomedical Research Centre (BRC), University of British Columbia, Vancouver, British Columbia, Canada
| | - M Obeidat
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - T L Hackett
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.,Department of Anaesthesiology, Pharmacology, & Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - J M Leung
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - T Shaipanich
- Division of Respiratory Medicine, Department of Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - D R Dorscheid
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - G K Singhera
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - C W T Yang
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - P D Paré
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - J C Hogg
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - D Nickle
- Merck & Co. Inc., Rahway, New Jersey, United States of America
| | - D D Sin
- Center for Heart Lung Innovation, St. Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
83
|
Engle ML, Monk JN, Jania CM, Martin JR, Gomez JC, Dang H, Parker JS, Doerschuk CM. Dynamic changes in lung responses after single and repeated exposures to cigarette smoke in mice. PLoS One 2019; 14:e0212866. [PMID: 30818335 PMCID: PMC6395068 DOI: 10.1371/journal.pone.0212866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoke is well recognized to cause injury to the airways and the alveolar walls over time. This injury usually requires many years of exposure, suggesting that the lungs may rapidly develop responses that initially protect it from this repetitive injury. Our studies tested the hypotheses that smoke induces an inflammatory response and changes in mRNA profiles that are dependent on sex and the health status of the lung, and that the response of the lungs to smoke differs after 1 day compared to 5 days of exposure. Male and female wildtype (WT) and Scnn1b-transgenic (βENaC) mice, which have chronic bronchitis and emphysematous changes due to dehydrated mucus, were exposed to cigarette smoke or sham air conditions for 1 or 5 days. The inflammatory response and gene expression profiles were analyzed in lung tissue. Overall, the inflammatory response to cigarette smoke was mild, and changes in mediators were more numerous after 1 than 5 days. βENaC mice had more airspace leukocytes than WT mice, and smoke exposure resulted in additional significant alterations. Many genes and gene sets responded similarly at 1 and 5 days: genes involved in oxidative stress responses were upregulated while immune response genes were downregulated. However, certain genes and biological processes were regulated differently after 1 compared to 5 days. Extracellular matrix biology genes and gene sets were upregulated after 1 day but downregulated by 5 days of smoke compared to sham exposure. There was no difference in the transcriptional response to smoke between WT and βENaC mice or between male and female mice at either 1 or 5 days. Taken together, these studies suggest that the lungs rapidly alter gene expression after only one exposure to cigarette smoke, with few additional changes after four additional days of repeated exposure. These changes may contribute to preventing lung damage.
Collapse
Affiliation(s)
- Michelle L. Engle
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Justine N. Monk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Pathobiology and Translational Science Graduate Program, University of North Carolina, Chapel Hill, NC, United States of America
| | - Corey M. Jania
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jessica R. Martin
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - John C. Gomez
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Joel S. Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claire M. Doerschuk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
84
|
Nelson AJ, Roy SK, Warren K, Janike K, Thiele GM, Mikuls TR, Romberger DJ, Wang D, Swanson B, Poole JA. Sex differences impact the lung-bone inflammatory response to repetitive inhalant lipopolysaccharide exposures in mice. J Immunotoxicol 2018; 15:73-81. [PMID: 29648480 PMCID: PMC6122601 DOI: 10.1080/1547691x.2018.1460425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022] Open
Abstract
Skeletal health consequences associated with inflammatory diseases of the airways significantly contribute to morbidity. Sex differences have been described independently for lung and bone diseases. Repetitive inhalant exposure to lipopolysaccharide (LPS) induces bone loss and deterioration in male mice, but comparison effects in females are unknown. Using an intranasal inhalation exposure model, 8-week-old C57BL/6 male and female mice were treated daily with LPS (100 ng) or saline for 3 weeks. Bronchoalveolar lavage fluids, lung tissues, tibias, bone marrow cells, and blood were collected. LPS-induced airway neutrophil influx, interleukin (IL)-6 and neutrophil chemoattractant levels, and bronchiolar inflammation were exaggerated in male animals as compared to female mice. Trabecular bone micro-CT imaging and analysis of the proximal tibia were conducted. Inhalant LPS exposures lead to deterioration of bone quality only in male mice (not females) marked by decreased bone mineral density, bone volume/tissue volume ratio, trabecular thickness and number, and increased bone surface-to-bone volume ratio. Serum pentraxin-2 levels were modulated by sex differences and LPS exposure. In proof-of-concept studies, ovarectomized female mice demonstrated LPS-induced bone deterioration, and estradiol supplementation of ovarectomized female mice and control male mice protected against LPS-induced bone deterioration findings. Collectively, sex-specific differences exist in LPS-induced airway inflammatory consequences with significant differences found in bone quantity and quality parameters. Male mice demonstrated susceptibility to bone loss and female animals were protected, which was modulated by estrogen. Therefore, sex differences influence the biologic response in the lung-bone inflammatory axis in response to inhalant LPS exposures.
Collapse
Affiliation(s)
- Amy J. Nelson
- Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center
| | - Shyamal K. Roy
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center
| | - Kristi Warren
- Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center
| | - Katherine Janike
- Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center
- Department of Internal Medicine, Rheumatology Division, University of Nebraska Medical Center
| | - Geoffrey M. Thiele
- Veterans Affairs Nebraska-Western Iowa Health Care System
- Department of Internal Medicine, Rheumatology Division, University of Nebraska Medical Center
| | - Ted R. Mikuls
- Veterans Affairs Nebraska-Western Iowa Health Care System
- Department of Internal Medicine, Rheumatology Division, University of Nebraska Medical Center
| | - Debra J. Romberger
- Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center
- Veterans Affairs Nebraska-Western Iowa Health Care System
| | - Dong Wang
- Department of Internal Medicine, Pharmaceutical Sciences, University of Nebraska Medical Center
| | - Benjamin Swanson
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Jill A. Poole
- Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center
| |
Collapse
|
85
|
Molgat-Seon Y, Peters CM, Sheel AW. Sex-differences in the human respiratory system and their impact on resting pulmonary function and the integrative response to exercise. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
86
|
Nicolini A, Barbagelata E, Tagliabue E, Colombo D, Monacelli F, Braido F. Gender differences in chronic obstructive pulmonary diseases: a narrative review. Panminerva Med 2018; 60:192-199. [DOI: 10.23736/s0031-0808.18.03463-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
87
|
Dominelli PB, Ripoll JG, Cross TJ, Baker SE, Wiggins CC, Welch BT, Joyner MJ. Sex differences in large conducting airway anatomy. J Appl Physiol (1985) 2018; 125:960-965. [PMID: 30024341 DOI: 10.1152/japplphysiol.00440.2018] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway luminal area is the major determinant of resistance to airflow in the tracheobronchial tree. Women may have smaller central conducting airways than men; however, previous evidence is confounded by an indirect assessment of airway geometry and by subjects with prior smoking history. The purpose of this study was to examine the effect of sex on airway size in healthy nonsmokers. Using low-dose high-resolution computed tomography, we retrospectively assessed airway luminal area in healthy men ( n = 51) and women ( n = 73) of varying ages (19-86 yr). Subjects with a positive smoking history, cardiopulmonary disease, or a body mass index > 40 kg/m2 were excluded. Luminal areas of the trachea, right and left main bronchus, bronchus intermediate, left and right upper lobes, and the left lower lobe were analyzed at three discrete points. The luminal areas of the conducting airways were ~26%-35% smaller in women. The trachea had the largest differences in luminal area between men and women (298 ± 47 vs. 195 ± 28 mm2 or 35% smaller for men and women, respectively), whereas the left lower lobe had the smallest differences (57 ± 15 vs. 42 ± 9 mm2 or 26% smaller for men and women, respectively). When a subset of subjects was matched for height, the sex differences in airway luminal area persisted, with women being ~20%-30% smaller. With all subjects, there were modest relationships between height and airway luminal area ( r = 0.73-0.53, P < 0.05). Although there was considerable overlap between sexes, the luminal areas of the large conducting airways were smaller in healthy women than in men. NEW & NOTEWORTHY Previous evidence for sex differences in airway size has been confounded by indirect measures and/or cohorts with significant smoking histories or pathologies. We found that central airways in healthy women were significantly smaller (~26%-35%) than men. The significant sex-difference in airway size was attenuated (20%-30% smaller) but preserved in a subset of subjects matched for height. Over a range of ages, healthy women have smaller central airways than men.
Collapse
Affiliation(s)
| | - Juan G Ripoll
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Troy J Cross
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, Minnesota.,Menzies Health Institute Queensland, Griffith University, Brisbane, QLD, Australia
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Chad C Wiggins
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Brian T Welch
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
88
|
Rashid K, Sundar IK, Gerloff J, Li D, Rahman I. Lung cellular senescence is independent of aging in a mouse model of COPD/emphysema. Sci Rep 2018; 8:9023. [PMID: 29899396 PMCID: PMC5998122 DOI: 10.1038/s41598-018-27209-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoke (CS) induces lung cellular senescence that plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). How aging influences cellular senescence and other molecular hallmarks, and increases the risk of CS-induced damage remains unknown. We hypothesized that aging-associated changes in lungs worsen the COPD/emphysema by CS exposure. Younger and older groups of C57BL/6J mice were exposed to chronic CS for 6 months with respective age-matched air-exposed controls. CS caused a decline in lung function and affected the lung structure of both groups of mice. No alterations were observed in the induction of inflammatory mediators between the air-exposed younger and older controls, but aging increased the severity of CS-induced lung inflammation. Aging per se increased lung cellular senescence and significant changes in damage-associated molecular patterns marker S100A8. Gene transcript analysis using the nanoString nCounter showed a significant upregulation of key pro-senescence targets by CS (Mmp12, Ccl2, Cdkn2a, Tert, Wrn, and Bub1b). Aging independently influenced lung function and structure, as well as increased susceptibility to CS-induced inflammation in emphysema, but had a negligible effect on cellular senescence. Thus, aging solely does not contribute to the induction of cellular senescence by CS in a mouse model of COPD/emphysema.
Collapse
Affiliation(s)
- Kahkashan Rashid
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Janice Gerloff
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
89
|
Hogmalm A, Bry M, Bry K. Pulmonary IL-1β expression in early life causes permanent changes in lung structure and function in adulthood. Am J Physiol Lung Cell Mol Physiol 2018; 314:L936-L945. [DOI: 10.1152/ajplung.00256.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chorioamnionitis, mechanical ventilation, oxygen therapy, and postnatal infection promote inflammation in the newborn lung. The long-term consequences of pulmonary inflammation during infancy have not been well characterized. The aim of this study was to examine the impact of inflammation during the late saccular to alveolar stages of lung development on lung structure and function in adulthood. To induce IL-1β expression in the pulmonary epithelium of mice with a tetracycline-inducible human IL-1β transgene, doxycycline was administered via intraperitoneal injections to bitransgenic pups and their littermate controls on postnatal days (PN) 0, 0.5, and 1. Lung structure, inflammation, and airway reactivity were studied in adulthood. IL-1β production in early life resulted in increased numbers of macrophages and neutrophils on PN21, but inflammation subsided by PN42. Permanent changes in alveolar structure, i.e., larger alveoli and thicker alveolar walls, were present from PN21 to PN84. Lack of alveolar septation thus persisted after IL-1β production and inflammation had ceased. Early IL-1β production caused goblet cell hyperplasia, enhanced calcium-activated chloride channel 3 (CLCA3) protein expression, and increased airway reactivity in response to methacholine on PN42. Lymphoid follicles were present adjacent to small airways in the lungs of adult bitransgenic mice, and levels of the B cell chemoattractant CXC-motif ligand (CXCL) 13 were elevated in the lungs of bitransgenic mice compared with controls. In conclusion, IL-1β-induced pulmonary inflammation in early life causes a chronic lung disease in adulthood.
Collapse
Affiliation(s)
- Anna Hogmalm
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maija Bry
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Kristina Bry
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| |
Collapse
|
90
|
Bonniaud P, Fabre A, Frossard N, Guignabert C, Inman M, Kuebler WM, Maes T, Shi W, Stampfli M, Uhlig S, White E, Witzenrath M, Bellaye PS, Crestani B, Eickelberg O, Fehrenbach H, Guenther A, Jenkins G, Joos G, Magnan A, Maitre B, Maus UA, Reinhold P, Vernooy JHJ, Richeldi L, Kolb M. Optimising experimental research in respiratory diseases: an ERS statement. Eur Respir J 2018; 51:13993003.02133-2017. [PMID: 29773606 DOI: 10.1183/13993003.02133-2017] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/02/2018] [Indexed: 12/15/2022]
Abstract
Experimental models are critical for the understanding of lung health and disease and are indispensable for drug development. However, the pathogenetic and clinical relevance of the models is often unclear. Further, the use of animals in biomedical research is controversial from an ethical perspective.The objective of this task force was to issue a statement with research recommendations about lung disease models by facilitating in-depth discussions between respiratory scientists, and to provide an overview of the literature on the available models. Focus was put on their specific benefits and limitations. This will result in more efficient use of resources and greater reduction in the numbers of animals employed, thereby enhancing the ethical standards and translational capacity of experimental research.The task force statement addresses general issues of experimental research (ethics, species, sex, age, ex vivo and in vitro models, gene editing). The statement also includes research recommendations on modelling asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, lung infections, acute lung injury and pulmonary hypertension.The task force stressed the importance of using multiple models to strengthen validity of results, the need to increase the availability of human tissues and the importance of standard operating procedures and data quality.
Collapse
Affiliation(s)
- Philippe Bonniaud
- Service de Pneumologie et Soins Intensifs Respiratoires, Centre Hospitalo-Universitaire de Bourgogne, Dijon, France.,Faculté de Médecine et Pharmacie, Université de Bourgogne-Franche Comté, Dijon, France.,INSERM U866, Dijon, France
| | - Aurélie Fabre
- Dept of Histopathology, St Vincent's University Hospital, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Strasbourg, France.,CNRS UMR 7200, Faculté de Pharmacie, Illkirch, France.,Labex MEDALIS, Université de Strasbourg, Strasbourg, France
| | - Christophe Guignabert
- INSERM UMR_S 999, Le Plessis-Robinson, France.,Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mark Inman
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tania Maes
- Dept of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, USA.,Dept of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Martin Stampfli
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada.,Dept of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Eric White
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Witzenrath
- Dept of Infectious Diseases and Respiratory Medicine And Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pierre-Simon Bellaye
- Département de Médecine nucléaire, Plateforme d'imagerie préclinique, Centre George-François Leclerc (CGFL), Dijon, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, DHU FIRE, Service de Pneumologie A, Paris, France.,INSERM UMR 1152, Paris, France.,Université Paris Diderot, Paris, France
| | - Oliver Eickelberg
- Division of Pulmonary Sciences and Critical Care Medicine, Dept of Medicine, University of Colorado, Aurora, CO, USA
| | - Heinz Fehrenbach
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Member of the Leibniz Research Alliance Health Technologies
| | - Andreas Guenther
- Justus-Liebig-University Giessen, Universitary Hospital Giessen, Agaplesion Lung Clinic Waldhof-Elgershausen, German Center for Lung Research, Giessen, Germany
| | - Gisli Jenkins
- Nottingham Biomedical Research Centre, Respiratory Research Unit, City Campus, University of Nottingham, Nottingham, UK
| | - Guy Joos
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Antoine Magnan
- Institut du thorax, CHU de Nantes, Université de Nantes, Nantes, France
| | - Bernard Maitre
- Hôpital H Mondor, AP-HP, Centre Hospitalier Intercommunal de Créteil, Service de Pneumologie et de Pathologie Professionnelle, DHU A-TVB, Université Paris Est - Créteil, Créteil, France
| | - Ulrich A Maus
- Hannover School of Medicine, Division of Experimental Pneumology, Hannover, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis at the 'Friedrich-Loeffler-Institut' (Federal Research Institute for Animal Health), Jena, Germany
| | - Juanita H J Vernooy
- Dept of Respiratory Medicine, Maastricht University Medical Center+ (MUMC+), AZ Maastricht, The Netherlands
| | - Luca Richeldi
- UOC Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", Rome, Italy
| | - Martin Kolb
- Dept of Medicine, Firestone Institute for Respiratory Health at St Joseph's Health Care MDCL 4011, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
91
|
Yang M, Kohler M, Heyder T, Forsslund H, Garberg HK, Karimi R, Grunewald J, Berven FS, Nyrén S, Magnus Sköld C, Wheelock ÅM. Proteomic profiling of lung immune cells reveals dysregulation of phagocytotic pathways in female-dominated molecular COPD phenotype. Respir Res 2018. [PMID: 29514663 PMCID: PMC5842633 DOI: 10.1186/s12931-017-0699-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Smoking is the main risk factor for chronic obstructive pulmonary disease (COPD). Women with COPD who smoke experienced a higher risk of hospitalization and worse decline of lung function. Yet the mechanisms of these gender-related differences in clinical presentations in COPD remain unknown. The aim of our study is to identify proteins and molecular pathways associated with COPD pathogenesis, with emphasis on elucidating molecular gender difference. Method We employed shotgun isobaric tags for relative and absolute quantitation (iTRAQ) proteome analyses of bronchoalveolar lavage (BAL) cells from smokers with normal lung function (n = 25) and early stage COPD patients (n = 18). Multivariate modeling, pathway enrichment analysis, and correlation with clinical characteristics were performed to identify specific proteins and pathways of interest. Results More pronounced alterations both at the protein- and pathway- levels were observed in female COPD patients, involving dysregulation of the FcγR-mediated phagocytosis-lysosomal axis and increase in oxidative stress. Alterations in pathways of the phagocytosis-lysosomal axis associated with a female-dominated COPD phenotype correlated well with specific clinical features: FcγR-mediated phagocytosis correlated with FEV1/FVC, the lysosomal pathway correlated with CT < −950 Hounsfield Units (HU), and regulation of actin cytoskeleton correlated with FEV1 and FEV1/FVC in female COPD patients. Alterations observed in the corresponding male cohort were minor. Conclusion The identified molecular pathways suggest dysregulation of several phagocytosis-related pathways in BAL cells in female COPD patients, with correlation to both the level of obstruction (FEV1/FVC) and disease severity (FEV1) as well as emphysema (CT < −950 HU) in women. Trial registration No.: NCT02627872, retrospectively registered on December 9, 2015. Electronic supplementary material The online version of this article (10.1186/s12931-017-0699-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingxing Yang
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden.
| | - Maxie Kohler
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Tina Heyder
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Helena Forsslund
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Hilde K Garberg
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Reza Karimi
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Frode S Berven
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Division of Radiology, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - C Magnus Sköld
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Department of Medicine Solna & Center for Molecular Medicine, Karolinska Institutet, Lung Research Lab L4:01, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
92
|
Rahman I, De Cunto G, Sundar IK, Lungarella G. Vulnerability and Genetic Susceptibility to Cigarette Smoke-Induced Emphysema in Mice. Am J Respir Cell Mol Biol 2018; 57:270-271. [PMID: 28862508 DOI: 10.1165/rcmb.2017-0175ed] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Irfan Rahman
- 1 Department of Environmental Medicine University of Rochester Medical Center Rochester, New York and
| | - Giovanna De Cunto
- 2 Department of Molecular and Developmental Medicine University of Siena Siena, Italy
| | - Isaac K Sundar
- 1 Department of Environmental Medicine University of Rochester Medical Center Rochester, New York and
| | - Giuseppe Lungarella
- 2 Department of Molecular and Developmental Medicine University of Siena Siena, Italy
| |
Collapse
|
93
|
Affiliation(s)
- Avrum Spira
- 1 Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Balazs Halmos
- 2 Department of Oncology, Albert Einstein College of Medicine, Bronx, New York; and
| | - Charles A Powell
- 3 Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
94
|
Noutsios GT, Thorenoor N, Zhang X, Phelps DS, Umstead TM, Durrani F, Floros J. SP-A2 contributes to miRNA-mediated sex differences in response to oxidative stress: pro-inflammatory, anti-apoptotic, and anti-oxidant pathways are involved. Biol Sex Differ 2017; 8:37. [PMID: 29202868 PMCID: PMC5716385 DOI: 10.1186/s13293-017-0158-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Human innate host defense molecules, surfactant protein A1 (SP-A1), and SP-A2 differentially affect the function and proteome of the alveolar macrophage (AM). We hypothesized that SP-A genes differentially regulate the AM miRNome. METHODS Humanized transgenic mice expressing SP-A1 and SP-A2 were subjected to O3-induced oxidative stress (OxS) or filtered air (FA), AMs were isolated, and miRNA levels were measured. RESULTS In SP-A2 males, we found significant changes in miRNome in terms of sex and sex-OxS effects, with 11 miRNAs differentially expressed under OxS. Their mRNA targets included BCL2, CAT, FOXO1, IL6, NF-kB, SOD2, and STAT3. We followed the expression of these transcripts as well as key cytokines, and we found that (a) the STAT3 mRNA significantly increased at 4 h post OxS and returned to baseline at 18 h post OxS. (b) The anti-oxidant protein SOD2 level significantly increased, but the CAT level did not change after 4 h post OxS compared to control. (c) The anti-apoptotic BCL2 mRNA increased significantly (18 h post OxS), but the levels of the other transcripts were decreased. The presence of the SP-A2 gene had a protective role in apoptosis of AMs under OxS compared to mice lacking SP-A (knockout, KO). (d) Pro-inflammatory cytokine IL-6 protein levels were significantly increased in SP-A2 mice compared to KO (4 and 18 h post OxS), which signifies the role of SP-A2 in pro-inflammatory protein expression. (e) SOD2 and CAT mRNAs changed significantly in OxS indicating a plausible role of SP-A2 in the homeostasis of reactive oxygen species. (f) Gonadectomy of transgenic mice showed that sex hormones contribute to significant changes of the miRNome expression. CONCLUSIONS We conclude that SP-A2 influences the miRNA-mediated sex-specific differences in response to OxS. In males, these differences pertain to inflammatory, anti-apoptotic, and anti-oxidant pathways.
Collapse
Affiliation(s)
- George T Noutsios
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - David S Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Todd M Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Faryal Durrani
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA.
- Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033-0850, USA.
| |
Collapse
|
95
|
Yang Y, Mao J, Ye Z, Li J, Zhao H, Liu Y. Risk factors of chronic obstructive pulmonary disease among adults in Chinese mainland: A systematic review and meta-analysis. Respir Med 2017; 131:158-165. [DOI: 10.1016/j.rmed.2017.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
|
96
|
Kemény Á, Csekő K, Szitter I, Varga ZV, Bencsik P, Kiss K, Halmosi R, Deres L, Erős K, Perkecz A, Kereskai L, László T, Kiss T, Ferdinandy P, Helyes Z. Integrative characterization of chronic cigarette smoke-induced cardiopulmonary comorbidities in a mouse model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:746-759. [PMID: 28648837 DOI: 10.1016/j.envpol.2017.04.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/24/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2023]
Abstract
Cigarette smoke-triggered inflammatory cascades and consequent tissue damage are the main causes of chronic obstructive pulmonary disease (COPD). There is no effective therapy and the key mediators of COPD are not identified due to the lack of translational animal models with complex characterization. This integrative chronic study investigated cardiopulmonary pathophysiological alterations and mechanisms with functional, morphological and biochemical techniques in a 6-month-long cigarette smoke exposure mouse model. Some respiratory alterations characteristic of emphysema (decreased airway resistance: Rl; end-expiratory work and pause: EEW, EEP; expiration time: Te; increased tidal mid-expiratory flow: EF50) were detected in anaesthetized C57BL/6 mice, unrestrained plethysmography did not show changes. Typical histopathological signs were peribronchial/perivascular (PB/PV) edema at month 1, neutrophil/macrophage infiltration at month 2, interstitial leukocyte accumulation at months 3-4, and emphysema/atelectasis at months 5-6 quantified by mean linear intercept measurement. Emphysema was proven by micro-CT quantification. Leukocyte number in the bronchoalveolar lavage at month 2 and lung matrix metalloproteinases-2 and 9 (MMP-2/MMP-9) activities in months 5-6 significantly increased. Smoking triggered complex cytokine profile change in the lung with one characteristic inflammatory peak of C5a, interleukin-1α and its receptor antagonist (IL-1α, IL-1ra), monokine induced by gamma interferon (MIG), macrophage colony-stimulating factor (M-CSF), tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) at months 2-3, and another peak of interferon-γ (IFN-γ), IL-4, 7, 13, 17, 27 related to tissue destruction. Transient systolic and diastolic ventricular dysfunction developed after 1-2 months shown by significantly decreased ejection fraction (EF%) and deceleration time, respectively. These parameters together with the tricuspid annular plane systolic excursion (TAPSE) decreased again after 5-6 months. Soluble intercellular adhesion molecule-1 (sICAM-1) significantly increased in the heart homogenates at month 6, while other inflammatory cytokines were undetectable. This is the first study demonstrating smoking duration-dependent, complex cardiopulmonary alterations characteristic to COPD, in which inflammatory cytokine cascades and MMP-2/9 might be responsible for pulmonary destruction and sICAM-1 for heart dysfunction.
Collapse
Affiliation(s)
- Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary; Department of Medical Biology, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary; Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Kata Csekő
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary; Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - István Szitter
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary; Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Zoltán V Varga
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Faculty of Medicine, H-1089 Budapest, Nagyvárad tér 4., Hungary.
| | - Péter Bencsik
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Faculty of Medicine, H-6720 Szeged, Dóm tér 9., Hungary; Pharmahungary Group, H-6722 Szeged, Hajnóczy u. 6., Hungary.
| | - Krisztina Kiss
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Faculty of Medicine, H-6720 Szeged, Dóm tér 9., Hungary.
| | - Róbert Halmosi
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary; I(st) Department of Internal Medicine, University of Pécs, Faculty of Medicine, H-7624 Pécs, Ifjúság útja 13., Hungary.
| | - László Deres
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary; I(st) Department of Internal Medicine, University of Pécs, Faculty of Medicine, H-7624 Pécs, Ifjúság útja 13., Hungary.
| | - Krisztián Erős
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary; I(st) Department of Internal Medicine, University of Pécs, Faculty of Medicine, H-7624 Pécs, Ifjúság útja 13., Hungary; Department of Biochemistry and Medical Chemistry, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary.
| | - Anikó Perkecz
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary.
| | - László Kereskai
- Department of Pathology, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary.
| | - Terézia László
- Department of Pathology, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary.
| | - Tamás Kiss
- Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary.
| | - Péter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Faculty of Medicine, H-1089 Budapest, Nagyvárad tér 4., Hungary; Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Faculty of Medicine, H-6720 Szeged, Dóm tér 9., Hungary; Pharmahungary Group, H-6722 Szeged, Hajnóczy u. 6., Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary; Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Ifjúság útja 20., Hungary; MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Faculty of Medicine, H-7624 Pécs, Szigeti út 12., Hungary; PharmInVivo Ltd, H-7629 Pécs, Szondi György út 10., Hungary.
| |
Collapse
|
97
|
Black C, Gerriets JE, Fontaine JH, Harper RW, Kenyon NJ, Tablin F, Schelegle ES, Miller LA. Early Life Wildfire Smoke Exposure Is Associated with Immune Dysregulation and Lung Function Decrements in Adolescence. Am J Respir Cell Mol Biol 2017; 56:657-666. [PMID: 28208028 DOI: 10.1165/rcmb.2016-0380oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The long-term health effects of wildfire smoke exposure in pediatric populations are not known. The objectives of this study were to determine if early life exposure to wildfire smoke can affect parameters of immunity and airway physiology that are detectable with maturity. We studied a mixed-sex cohort of rhesus macaque monkeys that were exposed as infants to ambient wood smoke from a series of Northern California wildfires in the summer of 2008. Peripheral blood mononuclear cells (PBMCs) and pulmonary function measures were obtained when animals were approximately 3 years of age. PBMCs were cultured with either LPS or flagellin, followed by measurement of secreted IL-8 and IL-6 protein. PBMCs from a subset of female animals were also evaluated by Toll-like receptor (TLR) pathway mRNA analysis. Induction of IL-8 protein synthesis with either LPS or flagellin was significantly reduced in PBMC cultures from wildfire smoke-exposed female monkeys. In contrast, LPS- or flagellin-induced IL-6 protein synthesis was significantly reduced in PBMC cultures from wildfire smoke-exposed male monkeys. Baseline and TLR ligand-induced expression of the transcription factor, RelB, was globally modulated in PBMCs from wildfire smoke-exposed monkeys, with additional TLR pathway genes affected in a ligand-dependent manner. Wildfire smoke-exposed monkeys displayed significantly reduced inspiratory capacity, residual volume, vital capacity, functional residual capacity, and total lung capacity per unit of body weight relative to control animals. Our findings suggest that ambient wildfire smoke exposure during infancy results in sex-dependent attenuation of systemic TLR responses and reduced lung volume in adolescence.
Collapse
Affiliation(s)
| | | | | | - Richart W Harper
- 2 Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Nicholas J Kenyon
- 2 Division of Pulmonary and Critical Care Medicine, School of Medicine, and
| | - Fern Tablin
- 3 Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Edward S Schelegle
- 3 Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| | - Lisa A Miller
- 1 California National Primate Research Center.,3 Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California
| |
Collapse
|
98
|
Amaral AFS, Strachan DP, Burney PGJ, Jarvis DL. Female Smokers Are at Greater Risk of Airflow Obstruction Than Male Smokers. UK Biobank. Am J Respir Crit Care Med 2017; 195:1226-1235. [PMID: 28075609 DOI: 10.1164/rccm.201608-1545oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE The prevalence of chronic obstructive pulmonary disease (COPD) is increasing faster among women than among men. OBJECTIVES To examine sex differences in the risk of airflow obstruction (a COPD hallmark) in relation to smoking history. METHODS We analyzed 149,075 women and 100,252 men taking part in the UK Biobank who had provided spirometry measurements and information on smoking. The association of airflow obstruction with smoking characteristics was assessed by sex using regression analysis. The shape of this relationship was examined using restricted cubic splines. MEASUREMENTS AND MAIN RESULTS The association of airflow obstruction with smoking status was stronger in women (odds ratio for ex-smokers [ORex], 1.44; ORcurrent, 3.45) than in men (ORex, 1.25; ORcurrent, 3.06) (P for interaction = 5.6 × 10-4). In both sexes, the association of airflow obstruction with cigarettes per day, smoking duration, and pack-years did not follow a linear pattern, with the increase in risk at lower doses being steeper among women. For equal doses of exposure, sex differences were present in both ex-smokers and current smokers for cigarettes per day (P for interactionex = 6.0 × 10-8; P for interactioncurrent = 1.1 × 10-5), smoking duration (P for interactionex = 7.9 × 10-4; P for interactioncurrent = 0.004), and pack-years (P for interactionex = 6.6 × 10-18; P for interactioncurrent = 1.3 × 10-6). Overall, those who started smoking before age 18 years were more likely to have airflow obstruction, but a sex difference in this association was not clear. For equal time since quitting, the reduction in risk among women seemed less marked than among men. CONCLUSIONS Exposed to the same dose of smoking, women showed a higher risk of airflow obstruction than men. This could partly explain the increasingly smaller sex difference in the prevalence of COPD, especially in countries where smoking patterns have become similar between women and men.
Collapse
Affiliation(s)
- André F S Amaral
- 1 Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,2 Medical Research Council and Public Health England Centre for Environment and Health, London, United Kingdom; and
| | - David P Strachan
- 3 Population Health Research Institute, St. George's University of London, London, United Kingdom
| | - Peter G J Burney
- 1 Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,2 Medical Research Council and Public Health England Centre for Environment and Health, London, United Kingdom; and
| | - Deborah L Jarvis
- 1 Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,2 Medical Research Council and Public Health England Centre for Environment and Health, London, United Kingdom; and
| |
Collapse
|
99
|
Lewis BW, Sultana R, Sharma R, Noël A, Langohr I, Patial S, Penn AL, Saini Y. Early Postnatal Secondhand Smoke Exposure Disrupts Bacterial Clearance and Abolishes Immune Responses in Muco-Obstructive Lung Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:1170-1183. [PMID: 28667160 DOI: 10.4049/jimmunol.1700144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/05/2017] [Indexed: 01/15/2023]
Abstract
Secondhand smoke (SHS) exposure has been linked to the worsening of ongoing lung diseases. However, whether SHS exposure affects the manifestation and natural history of imminent pediatric muco-obstructive airway diseases such as cystic fibrosis remains unclear. To address these questions, we exposed Scnn1b transgenic (Scnn1b-Tg+) mice to SHS from postnatal day (PND) 3-21 and lung phenotypes were examined at PND22. Although a majority of filtered air (FA)-exposed Scnn1b-Tg+ (FA-Tg+) mice successfully cleared spontaneous bacterial infections by PND22, the SHS-exposed Scnn1b-Tg+ (SHS-Tg+) mice failed to resolve these infections. This defect was associated with suppressed antibacterial defenses, i.e., phagocyte recruitment, IgA secretion, and Muc5b expression. Whereas the FA-Tg+ mice exhibited marked mucus obstruction and Th2 responses, SHS-Tg+ mice displayed a dramatic suppression of these responses. Mechanistically, downregulated expression of IL-33, a stimulator of type II innate lymphoid cells, in lung epithelial cells was associated with suppression of neutrophil recruitment, IgA secretions, Th2 responses, and delayed bacterial clearance in SHS-Tg+ mice. Cessation of SHS exposure for 21 d restored previously suppressed responses, including phagocyte recruitment, IgA secretion, and mucous cell metaplasia. However, in contrast with FA-Tg+ mice, the SHS-Tg+ mice had pronounced epithelial necrosis, alveolar space consolidation, and lymphoid hyperplasia; indicating lagged unfavorable effects of early postnatal SHS exposure in later life. Collectively, our data show that early postnatal SHS exposure reversibly suppresses IL-33 levels in airspaces which, in turn, results in reduced neutrophil recruitment and diminished Th2 response. Our data indicate that household smoking may predispose neonates with muco-obstructive lung disease to bacterial exacerbations.
Collapse
Affiliation(s)
- Brandon W Lewis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Razia Sultana
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Rahul Sharma
- National Hansen's Disease Program, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803; and
| | - Alexandra Noël
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Arthur L Penn
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803;
| |
Collapse
|
100
|
Naz S, Kolmert J, Yang M, Reinke SN, Kamleh MA, Snowden S, Heyder T, Levänen B, Erle DJ, Sköld CM, Wheelock ÅM, Wheelock CE. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J 2017. [PMID: 28642310 PMCID: PMC5898938 DOI: 10.1183/13993003.02322-2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease and a leading cause of mortality and morbidity worldwide. The aim of this study was to investigate the sex dependency of circulating metabolic profiles in COPD. Serum from healthy never-smokers (healthy), smokers with normal lung function (smokers), and smokers with COPD (COPD; Global Initiative for Chronic Obstructive Lung Disease stages I–II/A–B) from the Karolinska COSMIC cohort (n=116) was analysed using our nontargeted liquid chromatography–high resolution mass spectrometry metabolomics platform. Pathway analyses revealed that several altered metabolites are involved in oxidative stress. Supervised multivariate modelling showed significant classification of smokers from COPD (p=2.8×10−7). Sex stratification indicated that the separation was driven by females (p=2.4×10−7) relative to males (p=4.0×10−4). Significantly altered metabolites were confirmed quantitatively using targeted metabolomics. Multivariate modelling of targeted metabolomics data confirmed enhanced metabolic dysregulation in females with COPD (p=3.0×10−3) relative to males (p=0.10). The autotaxin products lysoPA (16:0) and lysoPA (18:2) correlated with lung function (forced expiratory volume in 1 s) in males with COPD (r=0.86; p<0.0001), but not females (r=0.44; p=0.15), potentially related to observed dysregulation of the miR-29 family in the lung. These findings highlight the role of oxidative stress in COPD, and suggest that sex-enhanced dysregulation in oxidative stress, and potentially the autotaxin–lysoPA axis, are associated with disease mechanisms and/or prevalence. Oxidative stress and the autotaxin–lysoPA axis evidence sex-associated metabotypes in the serum of COPD patientshttp://ow.ly/kAeE309MpdI
Collapse
Affiliation(s)
- Shama Naz
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Kolmert
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Division of Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Instituet, Stockholm, Sweden
| | - Mingxing Yang
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stacey N Reinke
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Muhammad Anas Kamleh
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stuart Snowden
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tina Heyder
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bettina Levänen
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David J Erle
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine and Lung Biology Center, University of California San Francisco, San Francisco, CA, USA
| | - C Magnus Sköld
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Åsa M Wheelock
- Respiratory Medicine Unit, Dept of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Both authors contributed equally
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden .,Both authors contributed equally
| |
Collapse
|