51
|
Lee-Ferris RE, Okuda K, Galiger JR, Schworer SA, Rogers TD, Dang H, Gilmore R, Edwards C, Nakano S, Cawley AM, Pickles RJ, Gallant SC, Crisci E, Rivier L, Hagood JS, O'Neal WK, Baric RS, Grubb BR, Boucher RC, Randell SH. Prolonged airway explant culture enables study of health, disease, and viral pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578756. [PMID: 38370820 PMCID: PMC10871200 DOI: 10.1101/2024.02.03.578756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
In vitro models play a major role in studying airway physiology and disease. However, the native lung's complex tissue architecture and non-epithelial cell lineages are not preserved in these models. Ex vivo tissue models could overcome in vitro limitations, but methods for long-term maintenance of ex vivo tissue has not been established. We describe methods to culture human large airway explants, small airway explants, and precision-cut lung slices for at least 14 days. Human airway explants recapitulate genotype-specific electrophysiology, characteristic epithelial, endothelial, stromal and immune cell populations, and model viral infection after 14 days in culture. These methods also maintain mouse, rabbit, and pig tracheal explants. Notably, intact airway tissue can be cryopreserved, thawed, and used to generate explants with recovery of function 14 days post-thaw. These studies highlight the broad applications of airway tissue explants and their use as translational intermediates between in vitro and in vivo studies.
Collapse
|
52
|
Abrami M, Biasin A, Tescione F, Tierno D, Dapas B, Carbone A, Grassi G, Conese M, Di Gioia S, Larobina D, Grassi M. Mucus Structure, Viscoelastic Properties, and Composition in Chronic Respiratory Diseases. Int J Mol Sci 2024; 25:1933. [PMID: 38339210 PMCID: PMC10856136 DOI: 10.3390/ijms25031933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.
Collapse
Affiliation(s)
- Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Alice Biasin
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| | - Fabiana Tescione
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Domenico Tierno
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Gabriele Grassi
- Clinical Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, I-71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Domenico Larobina
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, P.le E. Fermi 1, I-80055 Portici, Italy; (F.T.); (D.L.)
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I-34127 Trieste, Italy; (M.A.); (A.B.); (M.G.)
| |
Collapse
|
53
|
Hou T, Zhu L, Wang Y, Peng L. Oxidative stress is the pivot for PM2.5-induced lung injury. Food Chem Toxicol 2024; 184:114362. [PMID: 38101601 DOI: 10.1016/j.fct.2023.114362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Fine particulate matter (PM2.5) is a primary air pollutant recognized worldwide as a serious threat to public health. PM2.5, which has a diameter of less than 2.5 μm, is known to cause various diseases, including cardiovascular, respiratory, metabolic, and neurological diseases. Studies have shown that the respiratory system is particularly susceptible to PM2.5 as it is the first line of defense against external pollutants. PM2.5 can cause oxidative stress, which is triggered by the catalyzation of biochemical reactions, the activation of oxidases and metabolic enzymes, and mitochondrial dysfunction, all of which can lead to lung injury and aggravate various respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis, and cancer. Oxidative stress plays a crucial role in the harmful effects and mechanisms of PM2.5 on the respiratory system by activating several detrimental pathways related to inflammation and cellular damage. However, experimental studies have shown that antioxidative therapy methods can effectively cure PM2.5-induced lung injury. This review aims to clarify how PM2.5 induces oxidative stress and the mechanisms by which it is involved in the aggravation of various lung diseases. Additionally, we have listed antioxidant treatments to protect against PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Tianhua Hou
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China
| | - Yusheng Wang
- Department of Otolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130001, China.
| |
Collapse
|
54
|
Leo F, Lood R, Thomsson KA, Nilsson J, Svensäter G, Wickström C. Characterization of MdpS: an in-depth analysis of a MUC5B-degrading protease from Streptococcus oralis. Front Microbiol 2024; 15:1340109. [PMID: 38304711 PMCID: PMC10830703 DOI: 10.3389/fmicb.2024.1340109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Oral biofilms, comprising hundreds of bacteria and other microorganisms on oral mucosal and dental surfaces, play a central role in oral health and disease dynamics. Streptococcus oralis, a key constituent of these biofilms, contributes significantly to the formation of which, serving as an early colonizer and microcolony scaffold. The interaction between S. oralis and the orally predominant mucin, MUC5B, is pivotal in biofilm development, yet the mechanism underlying MUC5B degradation remains poorly understood. This study introduces MdpS (Mucin Degrading Protease from Streptococcus oralis), a protease that extensively hydrolyses MUC5B and offers an insight into its evolutionary conservation, physicochemical properties, and substrate- and amino acid specificity. MdpS exhibits high sequence conservation within the species and also explicitly among early biofilm colonizing streptococci. It is a calcium or magnesium dependent serine protease with strict physicochemical preferences, including narrow pH and temperature tolerance, and high sensitivity to increasing concentrations of sodium chloride and reducing agents. Furthermore, MdpS primarily hydrolyzes proteins with O-glycans, but also shows activity toward immunoglobulins IgA1/2 and IgM, suggesting potential immunomodulatory effects. Significantly, MdpS extensively degrades MUC5B in the N- and C-terminal domains, emphasizing its role in mucin degradation, with implications for carbon and nitrogen sequestration for S. oralis or oral biofilm cross-feeding. Moreover, depending on substrate glycosylation, the amino acids serine, threonine or cysteine triggers the enzymatic action. Understanding the interplay between S. oralis and MUC5B, facilitated by MdpS, has significant implications for the management of a healthy eubiotic oral microenvironment, offering potential targets for interventions aimed at modulating oral biofilm composition and succession. Additionally, since MdpS does not rely on O-glycan removal prior to extensive peptide backbone hydrolysis, the MdpS data challenges the current model of MUC5B degradation. These findings emphasize the necessity for further research in this field.
Collapse
Affiliation(s)
- Fredrik Leo
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
- Genovis AB, Kävlinge, Sweden
| | - Rolf Lood
- Genovis AB, Kävlinge, Sweden
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Kristina A. Thomsson
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Gunnel Svensäter
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Claes Wickström
- Department of Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
55
|
Otelea MR, Oancea C, Reisz D, Vaida MA, Maftei A, Popescu FG. Club Cells-A Guardian against Occupational Hazards. Biomedicines 2023; 12:78. [PMID: 38255185 PMCID: PMC10813369 DOI: 10.3390/biomedicines12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Club cells have a distinct role in the epithelial repair and defense mechanisms of the lung. After exposure to environmental pollutants, during chronic exposure, the secretion of club cells secretory protein (CCSP) decreases. Exposure to occupational hazards certainly has a role in a large number of interstitial lung diseases. According to the American Thoracic Society and the European Respiratory Society, around 40% of the all interstitial lung disease is attributed to occupational hazards. Some of them are very well characterized (pneumoconiosis, hypersensitivity pneumonitis), whereas others are consequences of acute exposure (e.g., paraquat) or persistent exposure (e.g., isocyanate). The category of vapors, gases, dusts, and fumes (VGDF) has been proven to produce subclinical modifications. The inflammation and altered repair process resulting from the exposure to occupational respiratory hazards create vicious loops of cooperation between epithelial cells, mesenchymal cells, innate defense mechanisms, and immune cells. The secretions of club cells modulate the communication between macrophages, epithelial cells, and fibroblasts mitigating the inflammation and/or reducing the fibrotic process. In this review, we describe the mechanisms by which club cells contribute to the development of interstitial lung diseases and the potential role for club cells as biomarkers for occupational-related fibrosis.
Collapse
Affiliation(s)
- Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Corina Oancea
- Department of Physical Medicine and Rehabilitation, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Reisz
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Monica Adriana Vaida
- Department of Anatomy and Embryology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Andreea Maftei
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Florina Georgeta Popescu
- Department of Occupational Health, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| |
Collapse
|
56
|
Sponchiado M, Bonilla AL, Mata L, Jasso-Johnson K, Liao YSJ, Fagan A, Moncada V, Reznikov LR. Club cell CREB regulates the goblet cell transcriptional network and pro-mucin effects of IL-1B. Front Physiol 2023; 14:1323865. [PMID: 38173934 PMCID: PMC10761479 DOI: 10.3389/fphys.2023.1323865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction: Club cells are precursors for mucus-producing goblet cells. Interleukin 1β (IL-1B) is an inflammatory mediator with pro-mucin activities that increases the number of mucus-producing goblet cells. IL-1B-mediated mucin production in alveolar adenocarcinoma cells requires activation of the cAMP response element-binding protein (CREB). Whether the pro-mucin activities of IL-1B require club cell CREB is unknown. Methods: We challenged male mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-1B or vehicle. Secondarily, we studied human "club cell-like" H322 cells. Results: IL-1B increased whole lung mRNA of secreted (Mucin 5ac, Mucin 5b) and tethered (Mucin 1, Mucin 4) mucins independent of genotype. However, loss of club cell Creb1 increased whole lung mRNA of member RAS oncogene family (Rab3D), decreased mRNA of the muscarinic receptor 3 (M3R) and prevented IL-1B mediated increases in purinergic receptor P2Y, (P2ry2) mRNA. IL-1B increased the density of goblet cells containing neutral mucins in wildtype mice but not in mice with loss of club cell Creb1. These findings suggested that club cell Creb1 regulated mucin secretion. Loss of club cell Creb1 also prevented IL-1B-mediated impairments in airway mechanics. Four days of pharmacologic CREB inhibition in H322 cells increased mRNA abundance of forkhead box A2 (FOXA2), a repressor of goblet cell expansion, and decreased mRNA expression of SAM pointed domain containing ETS transcription factor (SPDEF), a driver of goblet cell expansion. Chromatin immunoprecipitation demonstrated that CREB directly bound to the promoter region of FOXA2, but not to the promoter region of SPDEF. Treatment of H322 cells with IL-1B increased cAMP levels, providing a direct link between IL-1B and CREB signaling. Conclusion: Our findings suggest that club cell Creb1 regulates the pro-mucin properties of IL-1B through pathways likely involving FOXA2.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
57
|
Thorne AM, Wolters JC, Lascaris B, Bodewes SB, Lantinga VA, van Leeuwen OB, de Jong IEM, Ustyantsev K, Berezikov E, Lisman T, Kuipers F, Porte RJ, de Meijer VE. Bile proteome reveals biliary regeneration during normothermic preservation of human donor livers. Nat Commun 2023; 14:7880. [PMID: 38036513 PMCID: PMC10689461 DOI: 10.1038/s41467-023-43368-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Normothermic machine perfusion (NMP) after static cold storage is increasingly used for preservation and assessment of human donor livers prior to transplantation. Biliary viability assessment during NMP reduces the risk of post-transplant biliary complications. However, understanding of molecular changes in the biliary system during NMP remains incomplete. We performed an in-depth, unbiased proteomics analysis of bile collected during sequential hypothermic machine perfusion, rewarming and NMP of 55 human donor livers. Longitudinal analysis during NMP reveals proteins reflective of cellular damage at early stages, followed by upregulation of secretory and immune response processes. Livers with bile chemistry acceptable for transplantation reveal protein patterns implicated in regenerative processes, including cellular proliferation, compared to livers with inadequate bile chemistry. These findings are reinforced by detection of regenerative gene transcripts in liver tissue before machine perfusion. Our comprehensive bile proteomics and liver transcriptomics data sets provide the potential to further evaluate molecular mechanisms during NMP and refine viability assessment criteria.
Collapse
Affiliation(s)
- Adam M Thorne
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Silke B Bodewes
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Veerle A Lantinga
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Otto B van Leeuwen
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Iris E M de Jong
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent E de Meijer
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands.
| |
Collapse
|
58
|
Fragkou PC, Dimopoulou D, De Angelis G, Menchinelli G, Chemaly RF, Skevaki C. Editorial: Immune response to respiratory viruses and respiratory viral infections in susceptible populations. Front Med (Lausanne) 2023; 10:1330265. [PMID: 38046413 PMCID: PMC10693325 DOI: 10.3389/fmed.2023.1330265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Affiliation(s)
- Paraskevi C. Fragkou
- 1st Department of Critical Care Medicine and Pulmonary Services, Evaggelismos General Hospital, Athens, Greece
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Dimitra Dimopoulou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- 2nd University Department of Pediatrics, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Giulia De Angelis
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Menchinelli
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roy F. Chemaly
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chrysanthi Skevaki
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center, Marburg, Germany
| |
Collapse
|
59
|
Frey A, Lunding LP, Wegmann M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023; 12:2208. [PMID: 37759430 PMCID: PMC10526792 DOI: 10.3390/cells12182208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic airway inflammation is the cornerstone on which bronchial asthma arises, and in turn, chronic inflammation arises from a complex interplay between environmental factors such as allergens and pathogens and immune cells as well as structural cells constituting the airway mucosa. Airway epithelial cells (AECs) are at the center of these processes. On the one hand, they represent the borderline separating the body from its environment in order to keep inner homeostasis. The airway epithelium forms a multi-tiered, self-cleaning barrier that involves an unstirred, discontinuous mucous layer, the dense and rigid mesh of the glycocalyx, and the cellular layer itself, consisting of multiple, densely interconnected cell types. On the other hand, the airway epithelium represents an immunologically highly active tissue once its barrier has been penetrated: AECs play a pivotal role in releasing protective immunoglobulin A. They express a broad spectrum of pattern recognition receptors, enabling them to react to environmental stressors that overcome the mucosal barrier. By releasing alarmins-proinflammatory and regulatory cytokines-AECs play an active role in the formation, strategic orientation, and control of the subsequent defense reaction. Consequently, the airway epithelium is of vital importance to chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
| | - Lars P. Lunding
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| |
Collapse
|
60
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
61
|
Jo S, Na HG, Choi YS, Bae CH, Song SY, Kim YD. C-C Motif Chemokine Receptor 3-Mediated Extracellular Signal-Regulated Kinase 1/2 and p38 Mitogen-Activated Protein Kinase Signaling: Promising Targets for Human Airway Epithelial Mucin 5AC Induction by Eotaxin-2 and Eotaxin-3. Int Arch Allergy Immunol 2023; 184:893-902. [PMID: 37552963 DOI: 10.1159/000531911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/09/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Eotaxin-2 and -3 of the C-C chemokine subfamily function as potent chemoattractant factors for eosinophil recruitment and various immune responses in allergic and inflammatory airway diseases. Mucin 5AC (MUC5AC), a major gel-forming secretory mucin, is overexpressed in airway inflammation. However, the association between mucin secretion and eotaxin-2/3 expression in the upper and lower airway epithelial cells has not been fully elucidated. Therefore, in this study, we investigated the effects of eotaxin-2/3 on MUC5AC expression and its potential signaling mediators. METHODS We analyzed the effects of eotaxin-2 and -3 on NCI-H292 human airway epithelial cells and primary human nasal epithelial cells (HNEpCs) via reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting. Along with immunoblot analyses with specific inhibitors and small interfering RNA (siRNA), we explored the signaling pathway involved in MUC5AC expression following eotaxin-2/3 treatment. RESULTS In HCI-H292 cells, eotaxin-2/3 activated the mRNA expression and protein production of MUC5AC. A specific inhibitor of C-C motif chemokine receptor 3 (CCR3), SB328437, suppressed eotaxin-2/3-induced MUC5AC expression at both the mRNA and protein levels. Eotaxin-2/3 induced the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and p38, whereas pretreatment with a CCR3 inhibitor significantly attenuated this effect. Induction of MUC5AC expression with eotaxin-2/3 was decreased by U0126 and SB203580, specific inhibitors of ERK1/2 and p38 mitogen-activated protein kinase (MAPK), respectively. In addition, cell transfection with ERK1/2 and p38 siRNAs inhibited eotaxin-2/3-induced MUC5AC expression. Moreover, specific inhibitors (SB328437, U0126, and SB203580) attenuated eotaxin-2/3-induced MUC5AC expression in HNEpCs. CONCLUSION Our results imply that CCR3-mediated ERK1/2 and p38 MAPK are involved in the signal transduction of eotaxin-2/3-induced MUC5AC overexpression.
Collapse
Affiliation(s)
- Sooyeon Jo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea,
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
62
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. Respiratory Syncytial Virus Infection Does Not Induce Epithelial-Mesenchymal Transition. J Virol 2023; 97:e0039423. [PMID: 37338373 PMCID: PMC10373540 DOI: 10.1128/jvi.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor β1 (TGF-β1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
63
|
Shah BK, Singh B, Wang Y, Xie S, Wang C. Mucus Hypersecretion in Chronic Obstructive Pulmonary Disease and Its Treatment. Mediators Inflamm 2023; 2023:8840594. [PMID: 37457746 PMCID: PMC10344637 DOI: 10.1155/2023/8840594] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Most patients diagnosed with chronic obstructive pulmonary disease (COPD) present with hallmark features of airway mucus hypersecretion, including cough and expectoration. Airway mucus function as a native immune system of the lung that severs to trap particulate matter and pathogens and allows them to clear from the lung via cough and ciliary transport. Chronic mucus hypersecretion (CMH) is the main factor contributing to the increased risk of morbidity and mortality in specific subsets of COPD patients. It is, therefore, primarily important to develop medications that suppress mucus hypersecretions in these patients. Although there have been some advances in COPD treatment, more work remains to be done to better understand the mechanism underlying airway mucus hypersecretion and seek more effective treatments. This review article discusses the structure and significance of mucus in the lungs focusing on gel-forming mucins and the impacts of CMH in the lungs. Furthermore, we summarize the article with pharmacological and nonpharmacological treatments as well as novel and interventional procedures to control CMH in COPD patients.
Collapse
Affiliation(s)
- Binay Kumar Shah
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Tongji University School of Medicine, Shanghai 200092, China
| | - Bivek Singh
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yukun Wang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shuanshuan Xie
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Changhui Wang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
64
|
Lee RE, Reidel B, Nelson MR, Macdonald JK, Kesimer M, Randell SH. Air-Liquid interface cultures to model drug delivery through the mucociliary epithelial barrier. Adv Drug Deliv Rev 2023; 198:114866. [PMID: 37196698 PMCID: PMC10336980 DOI: 10.1016/j.addr.2023.114866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/23/2023] [Accepted: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Epithelial cells from mucociliary portions of the airways can be readily grown and expanded in vitro. When grown on a porous membrane at an air-liquid interface (ALI) the cells form a confluent, electrically resistive barrier separating the apical and basolateral compartments. ALI cultures replicate key morphological, molecular and functional features of the in vivo epithelium, including mucus secretion and mucociliary transport. Apical secretions contain secreted gel-forming mucins, shed cell-associated tethered mucins, and hundreds of additional molecules involved in host defense and homeostasis. The respiratory epithelial cell ALI model is a time-proven workhorse that has been employed in various studies elucidating the structure and function of the mucociliary apparatus and disease pathogenesis. It serves as a critical milestone test for small molecule and genetic therapies targeting airway diseases. To fully exploit the potential of this important tool, numerous technical variables must be thoughtfully considered and carefully executed.
Collapse
Affiliation(s)
- Rhianna E Lee
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States
| | - Boris Reidel
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark R Nelson
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Jade K Macdonald
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States
| | - Mehmet Kesimer
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Scott H Randell
- Marsico Lung Institute and Cystic Fibrosis Research Center, United States; Department of Cell Biology and Physiology, United States.
| |
Collapse
|
65
|
Yuan M, Lin X, Wang D, Dai J. Proteins: Neglected active ingredients in edible bird's nest. CHINESE HERBAL MEDICINES 2023; 15:383-390. [PMID: 37538855 PMCID: PMC10394320 DOI: 10.1016/j.chmed.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/15/2023] [Accepted: 02/21/2023] [Indexed: 08/05/2023] Open
Abstract
Edible bird's nest (EBN) is a kind of natural invigorant with a long history of consumption in Asia, especially in China. EBN is formed by mixing the saliva of swiftlets (Aerodramus) with feathers and other components during the breeding season. Proteins are the most important nutrient in EBN. By studying proteins in EBN, we can not only elucidate their components at the molecular level, but also study their bioactivities. Therefore, it is of great significance to study the proteins in EBN. Previous research on the proteins in EBN was preliminary and cursory, and no one has summarized and analyzed the proteins in EBN and correlated the bioactivities of these proteins with the biological functions of EBN. This article focused on the proteins in EBN, listed the proteins identified in different proteomic studies, and introduced the sources, structures and bioactivities of the most frequently identified proteins, including acidic mammalian chitinase, lysyl oxidase homolog 3, mucin-5AC, ovoinhibitor, nucleobindin-2, calcium-binding protein (MW: 4.5 × 104) and glucose-regulated protein (MW: 7.8 × 104). The properties of these proteins are closely related to the bioactivities of EBN. Therefore, this article can provide inspiration for further research on the efficacy of EBN.
Collapse
Affiliation(s)
- Man Yuan
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Langfang 065700, China
| | - Xiaoxian Lin
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Langfang 065700, China
| | - Dongliang Wang
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Langfang 065700, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jianye Dai
- Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Langfang 065700, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
66
|
Meyerholz DK, Leidinger MR, Adam Goeken J, Businga TR, Vizuett S, Akers A, Evans I, Zhang Y, Engelhardt JF. Immunohistochemical detection of MUC5AC and MUC5B mucins in ferrets. BMC Res Notes 2023; 16:111. [PMID: 37349833 PMCID: PMC10286488 DOI: 10.1186/s13104-023-06388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Cystic fibrosis (CF) is a genetic condition that causes abnormal mucus secretions in affected organs. MUC5AC and MUC5B are gel-forming mucins and frequent targets for investigations in CF tissues. Our objective was to qualify MUC5AC and MUC5B immunohistochemical techniques to provide a useful tool to identify, localize and interpret mucin expression in ferret tissues. RESULTS MUC5AC and MUC5B mucins were detected most commonly in large airways and least in small airways, consistent with reported goblet cell density in airway surface epithelia. We evaluated whether staining method affected the detection of goblet cell mucins in serial sections of bronchial surface epithelia. Significant differences between stains were not observed suggesting common co-expression MUC5AC and MUC5B proteins in goblet cells of airway surface epithelia. Gallbladder and stomach tissues are reported to have differential mucin enrichment, so we tested these tissues in wildtype ferrets. Stomach tissues were enriched in MUC5AC and gallbladder tissues enriched in MUC5B, mucin enrichment similar to human tissues. Mucin immunostaining techniques were further qualified for specificity using lung tissue from recently generated MUC5AC-/- and MUC5B-/- ferrets. Qualified techniques for MUC5AC and MUC5B immunohistochemistry will be useful tools for mucin tissue studies in CF and other ferret models.
Collapse
Affiliation(s)
- David K. Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Mariah R. Leidinger
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - J. Adam Goeken
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Thomas R. Businga
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Sebastian Vizuett
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Allison Akers
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Idil Evans
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - Yan Zhang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
67
|
Gandhi NN, Inzana TJ, Rajagopalan P. Bovine Airway Models: Approaches for Investigating Bovine Respiratory Disease. ACS Infect Dis 2023; 9:1168-1179. [PMID: 37257116 DOI: 10.1021/acsinfecdis.2c00618] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bovine respiratory disease (BRD) is a multifactorial condition where different genera of bacteria, such as Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis, and viruses, like bovine respiratory syncytial virus, bovine viral diarrhea virus, and bovine herpes virus-1, infect the lower respiratory tract of cattle. These pathogens can co-infect cells in the respiratory system, thereby making specific treatment very difficult. Currently, the most common models for studying BRD include a submerged tissue culture (STC), where monolayers of epithelial cells are typically covered either in cellular or spent biofilm culture medium. Another model is an air-liquid interface (ALI), where epithelial cells are exposed on their apical side and allowed to differentiate. However, limited work has been reported on the study of three-dimensional (3D) bovine models that incorporate multiple cell types to represent the architecture of the respiratory tract. The roles of different defense mechanisms in an infected bovine respiratory system, such as mucin production, tight junction barriers, and the production of antimicrobial peptides in in vitro cultures require further investigation in order to provide a comprehensive understanding of the disease pathogenesis. In this report, we describe the different aspects of BRD, including the most implicated pathogens and the respiratory tract, which are important to incorporate in disease models assembled in vitro. Although current advancements of bovine respiratory cultures have led to knowledge of the disease, 3D multicellular organoids that better recapitulate the in vivo environment exhibit potential for future investigations.
Collapse
Affiliation(s)
- Neeti N Gandhi
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Thomas J Inzana
- College of Veterinary Medicine, Long Island University, Brookville, New York 11548, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
68
|
Mikami Y, Grubb BR, Rogers TD, Dang H, Asakura T, Kota P, Gilmore RC, Okuda K, Morton LC, Sun L, Chen G, Wykoff JA, Ehre C, Vilar J, van Heusden C, Livraghi-Butrico A, Gentzsch M, Button B, Stutts MJ, Randell SH, O’Neal WK, Boucher RC. Chronic airway epithelial hypoxia exacerbates injury in muco-obstructive lung disease through mucus hyperconcentration. Sci Transl Med 2023; 15:eabo7728. [PMID: 37285404 PMCID: PMC10664029 DOI: 10.1126/scitranslmed.abo7728] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Unlike solid organs, human airway epithelia derive their oxygen from inspired air rather than the vasculature. Many pulmonary diseases are associated with intraluminal airway obstruction caused by aspirated foreign bodies, virus infection, tumors, or mucus plugs intrinsic to airway disease, including cystic fibrosis (CF). Consistent with requirements for luminal O2, airway epithelia surrounding mucus plugs in chronic obstructive pulmonary disease (COPD) lungs are hypoxic. Despite these observations, the effects of chronic hypoxia (CH) on airway epithelial host defense functions relevant to pulmonary disease have not been investigated. Molecular characterization of resected human lungs from individuals with a spectrum of muco-obstructive lung diseases (MOLDs) or COVID-19 identified molecular features of chronic hypoxia, including increased EGLN3 expression, in epithelia lining mucus-obstructed airways. In vitro experiments using cultured chronically hypoxic airway epithelia revealed conversion to a glycolytic metabolic state with maintenance of cellular architecture. Chronically hypoxic airway epithelia unexpectedly exhibited increased MUC5B mucin production and increased transepithelial Na+ and fluid absorption mediated by HIF1α/HIF2α-dependent up-regulation of β and γENaC (epithelial Na+ channel) subunit expression. The combination of increased Na+ absorption and MUC5B production generated hyperconcentrated mucus predicted to perpetuate obstruction. Single-cell and bulk RNA sequencing analyses of chronically hypoxic cultured airway epithelia revealed transcriptional changes involved in airway wall remodeling, destruction, and angiogenesis. These results were confirmed by RNA-in situ hybridization studies of lungs from individuals with MOLD. Our data suggest that chronic airway epithelial hypoxia may be central to the pathogenesis of persistent mucus accumulation in MOLDs and associated airway wall damage.
Collapse
Affiliation(s)
- Yu Mikami
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barbara R. Grubb
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Troy D. Rogers
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pradeep Kota
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lisa C. Morton
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ling Sun
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Chen
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason A. Wykoff
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Juan Vilar
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Catharina van Heusden
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Martina Gentzsch
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - M. Jackson Stutts
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Scott H. Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
69
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
70
|
Rustam S, Hu Y, Mahjour SB, Rendeiro AF, Ravichandran H, Urso A, D’Ovidio F, Martinez FJ, Altorki NK, Richmond B, Polosukhin V, Kropski JA, Blackwell TS, Randell SH, Elemento O, Shaykhiev R. A Unique Cellular Organization of Human Distal Airways and Its Disarray in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:1171-1182. [PMID: 36796082 PMCID: PMC10161760 DOI: 10.1164/rccm.202207-1384oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Rationale: Remodeling and loss of distal conducting airways, including preterminal and terminal bronchioles (pre-TBs/TBs), underlie progressive airflow limitation in chronic obstructive pulmonary disease (COPD). The cellular basis of these structural changes remains unknown. Objectives: To identify biological changes in pre-TBs/TBs in COPD at single-cell resolution and determine their cellular origin. Methods: We established a novel method of distal airway dissection and performed single-cell transcriptomic profiling of 111,412 cells isolated from different airway regions of 12 healthy lung donors and pre-TBs of 5 patients with COPD. Imaging CyTOF and immunofluorescence analysis of pre-TBs/TBs from 24 healthy lung donors and 11 subjects with COPD were performed to characterize cellular phenotypes at a tissue level. Region-specific differentiation of basal cells isolated from proximal and distal airways was studied using an air-liquid interface model. Measurements and Main Results: The atlas of cellular heterogeneity along the proximal-distal axis of the human lung was assembled and identified region-specific cellular states, including SCGB3A2+ SFTPB+ terminal airway-enriched secretory cells (TASCs) unique to distal airways. TASCs were lost in COPD pre-TBs/TBs, paralleled by loss of region-specific endothelial capillary cells, increased frequency of CD8+ T cells normally enriched in proximal airways, and augmented IFN-γ signaling. Basal cells residing in pre-TBs/TBs were identified as a cellular origin of TASCs. Regeneration of TASCs by these progenitors was suppressed by IFN-γ. Conclusions: Altered maintenance of the unique cellular organization of pre-TBs/TBs, including loss of the region-specific epithelial differentiation in these bronchioles, represents the cellular manifestation and likely the cellular basis of distal airway remodeling in COPD.
Collapse
Affiliation(s)
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | | - Andre F. Rendeiro
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Andreacarola Urso
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | - Frank D’Ovidio
- Department of Surgery, Columbia University Irving Medical Center, New York, New York
| | | | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, New York
| | - Bradley Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | | | - Jonathan A. Kropski
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Department of Medicine, Vanderbilt University, Nashville, Tennessee; and
| | - Scott H. Randell
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
71
|
Blackburn JB, Li NF, Bartlett NW, Richmond BW. An update in club cell biology and its potential relevance to chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2023; 324:L652-L665. [PMID: 36942863 PMCID: PMC10110710 DOI: 10.1152/ajplung.00192.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Club cells are found in human small airways where they play an important role in immune defense, xenobiotic metabolism, and repair after injury. Over the past few years, data from single-cell RNA sequencing (scRNA-seq) studies has generated new insights into club cell heterogeneity and function. In this review, we integrate findings from scRNA-seq experiments with earlier in vitro, in vivo, and microscopy studies and highlight the many ways club cells contribute to airway homeostasis. We then discuss evidence for loss of club cells or club cell products in the airways of patients with chronic obstructive pulmonary disease (COPD) and discuss potential mechanisms through which this might occur.
Collapse
Affiliation(s)
- Jessica B Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Ngan Fung Li
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States
| | - Nathan W Bartlett
- Viral Immunology and Respiratory Disease Group, University of Newcastle, Callaghan, New South Wales, Australia
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, United States
| |
Collapse
|
72
|
Hamza FN, Daher S, Fakhoury HMA, Grant WB, Kvietys PR, Al-Kattan K. Immunomodulatory Properties of Vitamin D in the Intestinal and Respiratory Systems. Nutrients 2023; 15:nu15071696. [PMID: 37049536 PMCID: PMC10097244 DOI: 10.3390/nu15071696] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Vitamin D plays a crucial role in modulating the innate immune response by interacting with its intracellular receptor, VDR. In this review, we address vitamin D/VDR signaling and how it contributes to the regulation of intestinal and respiratory microbiota. We additionally review some components of the innate immune system, such as the barrier function of the pulmonary and intestinal epithelial membranes and secretion of mucus, with their respective modulation by vitamin D. We also explore the mechanisms by which this vitamin D/VDR signaling mounts an antimicrobial response through the transduction of microbial signals and the production of antimicrobial peptides that constitute one of the body’s first lines of defense against pathogens. Additionally, we highlight the role of vitamin D in clinical diseases, namely inflammatory bowel disease and acute respiratory distress syndrome, where excessive inflammatory responses and dysbiosis are hallmarks. Increasing evidence suggests that vitamin D supplementation may have potentially beneficial effects on those diseases.
Collapse
Affiliation(s)
- Fatheia N. Hamza
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Sarah Daher
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Hana M. A. Fakhoury
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Correspondence:
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| | - Peter R. Kvietys
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
73
|
Rodriguez-Piñeiro AM, Jaudas F, Klymiuk N, Bähr A, Hansson GC, Ermund A. Proteome of airway surface liquid and mucus in newborn wildtype and cystic fibrosis piglets. Respir Res 2023; 24:83. [PMID: 36927357 PMCID: PMC10022022 DOI: 10.1186/s12931-023-02381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The respiratory tract is protected from inhaled particles and microbes by mucociliary clearance, mediated by the mucus and the cilia creating a flow to move the mucus cephalad. Submucosal glands secrete linear MUC5B mucin polymers and because they pass through the gland duct before reaching the airway surface, bundled strands of 1000-5000 parallel molecules exit the glands. In contrast, the surface goblet cells secrete both MUC5AC and MUC5B. METHODS We used mass-spectrometry based proteomic analysis of unstimulated and carbachol stimulated newborn wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) null (CF) piglet airways to study proteins in the airway surface liquid and mucus, to investigate if levels of MUC5AC and MUC5B were affected by carbachol stimulation and whether the proteins clustered according to function. RESULTS Proteins in the first four extracted fractions clustered together and the fifth fraction contained the mucus cluster, mucins and other proteins known to associate with mucins, whereas the traditional airway surface liquid proteins clustered to fraction 1-4 and were absent from the mucus fraction. Carbachol stimulation resulted in increased MUC5AC and MUC5B. CONCLUSIONS These results indicate a distinct separation between proteins in the washable surface liquid and the mucus fraction. In fractions 1-4 from newborn CF piglets an additional cluster containing acute phase proteins was observed, suggesting an early inflammatory response in CF piglets. Alternatively, increased levels of these proteins could indicate altered lung development in the CF piglets. This observation suggests that CF airway disease is present at birth and thus, treatment should commence directly after diagnosis.
Collapse
Affiliation(s)
- Ana M Rodriguez-Piñeiro
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Florian Jaudas
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
74
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. RSV infection does not induce EMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532506. [PMID: 36993657 PMCID: PMC10055011 DOI: 10.1101/2023.03.13.532506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections in our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, TGF-β1-driven cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
75
|
Markovetz MR, Hibbard JE, Plott LM, Bacudio LG, Kissner WJ, Ghio A, Kumar PA, Arora H, Hill DB. Normalizing salt content by mixing native human airway mucus samples normalizes sample rheology. Front Physiol 2023; 14:1111647. [PMID: 36969580 PMCID: PMC10036356 DOI: 10.3389/fphys.2023.1111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Across the globe, millions of people are affected by muco-obstructive pulmonary diseases like cystic fibrosis, asthma, and chronic obstructive pulmonary disease. In MOPDs, the airway mucus becomes hyperconcentrated, increasing viscoelasticity and impairing mucus clearance. Research focused on treatment of MOPDs requires relevant sources of airway mucus both as a control sample type and as a basis for manipulation to study the effects of additional hyperconcentration, inflammatory milieu, and biofilm growth on the biochemical and biophysical properties of mucus. Endotracheal tube mucus has been identified as a prospective source of native airway mucus given its several advantages over sputum and airway cell culture mucus such as ease of access and in vivo production that includes surface airway and submucosal gland secretions. Still, many ETT samples suffer from altered tonicity and composition from either dehydration, salivary dilution, or other contamination. Herein, the biochemical compositions of ETT mucus from healthy human subjects were determined. Samples were characterized in terms of tonicity, pooled, and restored to normal tonicity. Salt-normalized ETT mucus exhibited similar concentration-dependent rheologic properties as originally isotonic mucus. This rheology agreed across spatial scales and with previous reports of the biophysics of ETT mucus. This work affirms previous reports of the importance of salt concentration on mucus rheology and presents methodology to increase yield native airway mucus samples for laboratory use and manipulation.
Collapse
Affiliation(s)
- Matthew R. Markovetz
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacob E. Hibbard
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas M. Plott
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lawrence G. Bacudio
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William J. Kissner
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew Ghio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, NC, United States
| | - Priya A. Kumar
- Department of Anesthesiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Outcomes Research Consortium, Cleveland, OH, United States
| | - Harendra Arora
- Department of Anesthesiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Outcomes Research Consortium, Cleveland, OH, United States
| | - David B. Hill
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: David B. Hill,
| |
Collapse
|
76
|
Tang L, Zhang X, Xu Y, Liu L, Sun X, Wang B, Yu K, Zhang H, Zhao X, Wang X. BMAL1 regulates MUC1 overexpression in ovalbumin-induced asthma. Mol Immunol 2023; 156:77-84. [PMID: 36906987 DOI: 10.1016/j.molimm.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Asthma often presents with a daily rhythm; however, the underlying mechanisms remain unclear. Circadian rhythm genes have been proposed to regulate inflammation and mucin expression. Here, ovalbumin (OVA)-induced mice and serum shock human bronchial epidermal cells (16HBE) were used in in vivo and in vitro models, respectively. We constructed a brain and muscle ARNT-like 1 (BMAL1) knockdown 16HBE cell line to analyze the effects of rhythmic fluctuations on mucin expression. Serum immunoglobulin E (IgE) and circadian rhythm genes in asthmatic mice showed rhythmic fluctuation amplitude. Mucin (MUC) 1 and MUC5AC expression was increased in the lung tissue of the asthmatic mice. MUC1 expression was negatively correlated with that of the circadian rhythm genes, particularly BMAL1 (r = -0.546, P = 0.006). There was also a negative correlation between BMAL1 and MUC1 expression (r = -0.507, P = 0.002) in the serum shock 16HBE cells. BMAL1 knockdown negated the rhythmic fluctuation amplitude of MUC1 expression and upregulated MUC1 expression in the 16HBE cells. These results indicate that the key circadian rhythm gene, BMAL1, causes periodic changes in airway MUC1 expression in OVA-induced asthmatic mice. Targeting BMAL1 to regulate periodic changes in MUC1 expression may, therefore, improve asthma treatments.
Collapse
Affiliation(s)
- Lingling Tang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Xiaona Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Yanqiu Xu
- Nanjing Jiangning Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 211100, China
| | - Li Liu
- Department of Central Lab, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Xianhong Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Bohan Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Keyao Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210004, China
| | - Hui Zhang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, China
| | - Xia Zhao
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
77
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
78
|
Ehre C, Hansson GC, Thornton DJ, Ostedgaard LS. Mucus aberrant properties in CF: Insights from cells and animal models. J Cyst Fibros 2023; 22 Suppl 1:S23-S26. [PMID: 36117114 PMCID: PMC10018425 DOI: 10.1016/j.jcf.2022.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, is characterized by mucus accumulation in the lungs, the intestinal tract, and the pancreatic ducts. Mucins are high-molecular-weight glycoproteins that govern the biochemical and biophysical properties of mucus. In the CF lung, increased mucus viscoelasticity is associated with decreased mucociliary clearance and defects in host defense mechanisms. The link between defective ion channel and abnormal mucus properties has been investigated in studies involving cell and animal models. In this review article, we discuss recent progress toward understanding the different regions and cells that express CFTR in the airways and how mucus is produced and cleared from the lungs. In addition, we reflect on animal models that provided insights into the organization and the role of the mucin network and how mucus and antimicrobial activities act in concert to protect the lungs from invading pathogens.
Collapse
Affiliation(s)
- Camille Ehre
- University of North Carolina at Chapel Hill, Department of Pediatrics, Marsico Lung Institute, Chapel Hill, NC, USA
| | - Gunnar C Hansson
- Department Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - David J Thornton
- The Wellcome Trust Centre for Cell-Matrix Research, and The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lynda S Ostedgaard
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
79
|
Wu D, Xiang Y. Role of mucociliary clearance system in respiratory diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:275-284. [PMID: 36999475 PMCID: PMC10930340 DOI: 10.11817/j.issn.1672-7347.2023.220372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 04/01/2023]
Abstract
Mucociliary clearance system is the primary innate defense mechanism of the lung. It plays a vital role in protecting airways from microbes and irritants infection. Mucociliary clearance system, which is mediated by the actions of airway and submucosal gland epithelial cells, plays a critical role in a multilayered defense system via secreting fluids, electrolytes, antimicrobial and anti-inflammatory proteins, and mucus onto airway surfaces. Changes in environment, drugs or diseases can lead to mucus overproduction and cilia dysfunction, which in turn decrease the rate of mucociliary clearance and enhance mucus gathering. The dysfunction of mucociliary clearance system often occurs in several respiratory diseases, such as primary ciliary dysfunction, cystic fibrosis, asthma and chronic obstructive pulmonary disease, which are characterized by goblet cell metaplasia, submucosal gland cell hypertrophy, mucus hypersecretion, cilia adhesion, lodging and loss, and airway obstruction.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| |
Collapse
|
80
|
Wang Z, Lin D, Zhao Y, Liu H, Yang T, Li A. MiR-214 Expression Is Elevated in Chronic Rhinosinusitis Mucosa and Regulates Lipopolysaccharide-Mediated Responses in Undifferentiated Human Nasal Epithelial Cell Culture. Am J Rhinol Allergy 2023:19458924231152683. [PMID: 36797977 DOI: 10.1177/19458924231152683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an inflammatory disorder of the upper airways. MicroRNAs (miRs) are reported to regulate several diverse physiological and pathological processes. OBJECTIVE This study aimed to evaluate the impact of miR-214 on lipopolysaccharide (LPS)-mediated inflammation, and mucin 5AC (MUC5AC) expression in human nasal epithelial cells. METHODS The expression of miR-214 was detected in CRS with polyps (CRSwNP) and CRS without polyps (CRSsNP) tissues. Cells were treated with LPS and a miR-214 inhibitor. The level of miR-214 was detected by quantitative real-time reverse transcriptase-PCR (qRT-PCR). The inflammatory cytokines (IL-6, IL-8, TNF, and IL-1β) and MUC5AC production were determined by qRT-PCR and ELISA. MUC5AC protein level was detected using western blot. Similarly, we determined the relationship between miR-214 and Sirtuin 1 (SIRT1) using the Dual luciferase activity assay. RESULTS miR-214 was increased in CRSwNP and CRSsNP tissues. LPS triggered the expression of miR-214, while miR-214 inhibition diminished the level of miR-214. MiR-214 inhibition prevented LPS-mediated the production of inflammatory cytokines. LPS treatment augmented MUC5AC mRNA, protein levels, and secretion, whereas miR-214 loss inhibited MUC5AC production in the presence of LPS. SIRT1 is a direct target of miR-214. Impairing SIRT1 by siRNA (siSIRT1) or EX527 (a selective SIRT1 inhibitor) reversed the effects of miR-214 inhibitor on inflammation and MUC5AC expression. Furthermore, miR-214 depression inhibited the STAT3/GDF15 pathway via targeting SIRT1. Upregulation of STAT3 or GDF15 partly abolished the anti-inflammatory roles of miR-214 inhibitor. CONCLUSION Taken together, miR-214 regulates LPS-mediated inflammation and MUC5AC expression via targeting SIRT1, and STAT3/GDF15 may involve in the regulation of miR-214 inhibitor on inflammation and MUC5AC expression.
Collapse
Affiliation(s)
- Zhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Dong Lin
- Department of Quality Control, Shaanxi Geological and Mineral Hospital, Xi'an, People's Republic of China
| | - Yuxiang Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Hui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Ting Yang
- Xi'an Medical University, Xi'an, People's Republic of China
| | - An Li
- Department of Otolaryngology-Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| |
Collapse
|
81
|
Rathnayake SNH, Ditz B, van Nijnatten J, Sadaf T, Hansbro PM, Brandsma CA, Timens W, van Schadewijk A, Hiemstra PS, ten Hacken NHT, Oliver B, Kerstjens HAM, van den Berge M, Faiz A. Smoking induces shifts in cellular composition and transcriptome within the bronchial mucus barrier. Respirology 2023; 28:132-142. [PMID: 36414410 PMCID: PMC10947540 DOI: 10.1111/resp.14401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Smoking disturbs the bronchial-mucus-barrier. This study assesses the cellular composition and gene expression shifts of the bronchial-mucus-barrier with smoking to understand the mechanism of mucosal damage by cigarette smoke exposure. We explore whether single-cell-RNA-sequencing (scRNA-seq) based cellular deconvolution (CD) can predict cell-type composition in RNA-seq data. METHODS RNA-seq data of bronchial biopsies from three cohorts were analysed using CD. The cohorts included 56 participants with chronic obstructive pulmonary disease [COPD] (38 smokers; 18 ex-smokers), 77 participants without COPD (40 never-smokers; 37 smokers) and 16 participants who stopped smoking for 1 year (11 COPD and 5 non-COPD-smokers). Differential gene expression was used to investigate gene expression shifts. The CD-derived goblet cell ratios were validated by correlating with staining-derived goblet cell ratios from the COPD cohort. Statistics were done in the R software (false discovery rate p-value < 0.05). RESULTS Both CD methods indicate a shift in bronchial-mucus-barrier cell composition towards goblet cells in COPD and non-COPD-smokers compared to ex- and never-smokers. It shows that the effect was reversible within a year of smoking cessation. A reduction of ciliated and basal cells was observed with current smoking, which resolved following smoking cessation. The expression of mucin and sodium channel (ENaC) genes, but not chloride channel genes, were altered in COPD and current smokers compared to never smokers or ex-smokers. The goblet cell-derived staining scores correlate with CD-derived goblet cell ratios. CONCLUSION Smoking alters bronchial-mucus-barrier cell composition, transcriptome and increases mucus production. This effect is partly reversible within a year of smoking cessation. CD methodology can predict goblet-cell percentages from RNA-seq.
Collapse
Affiliation(s)
- Senani N. H. Rathnayake
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Benedikt Ditz
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Jos van Nijnatten
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Tayyaba Sadaf
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- Centre for InflammationCentenary Institute, and the University of Technology Sydney, Faculty of ScienceSydneyNew South WalesAustralia
| | - Philip M. Hansbro
- Centre for InflammationCentenary Institute, and the University of Technology Sydney, Faculty of ScienceSydneyNew South WalesAustralia
| | - Corry A. Brandsma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
- Department of Pathology & Medical BiologyUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| | | | - Peter S. Hiemstra
- Department of PulmonologyLeiden University Medical CenterLeidenthe Netherlands
| | - Nick H. T. ten Hacken
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Brian Oliver
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
| | - Huib A. M. Kerstjens
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Maarten van den Berge
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPDGroningenthe Netherlands
| | - Alen Faiz
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life SciencesSydneyNew South WalesAustralia
- The University of Sydney, Respiratory Cellular and Molecular Biology (RCMB), Woolcock Institute of Medical ResearchSydneyNew South WalesAustralia
- Department of Pulmonary DiseasesUniversity of Groningen, University Medical Center GroningenGroningenthe Netherlands
| |
Collapse
|
82
|
Hsieh A, Assadinia N, Hackett TL. Airway remodeling heterogeneity in asthma and its relationship to disease outcomes. Front Physiol 2023; 14:1113100. [PMID: 36744026 PMCID: PMC9892557 DOI: 10.3389/fphys.2023.1113100] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Asthma affects an estimated 262 million people worldwide and caused over 461,000 deaths in 2019. The disease is characterized by chronic airway inflammation, reversible bronchoconstriction, and airway remodeling. Longitudinal studies have shown that current treatments for asthma (inhaled bronchodilators and corticosteroids) can reduce the frequency of exacerbations, but do not modify disease outcomes over time. Further, longitudinal studies in children to adulthood have shown that these treatments do not improve asthma severity or fixed airflow obstruction over time. In asthma, fixed airflow obstruction is caused by remodeling of the airway wall, but such airway remodeling also significantly contributes to airway closure during bronchoconstriction in acute asthmatic episodes. The goal of the current review is to understand what is known about the heterogeneity of airway remodeling in asthma and how this contributes to the disease process. We provide an overview of the existing knowledge on airway remodeling features observed in asthma, including loss of epithelial integrity, mucous cell metaplasia, extracellular matrix remodeling in both the airways and vessels, angiogenesis, and increased smooth muscle mass. While such studies have provided extensive knowledge on different aspects of airway remodeling, they have relied on biopsy sampling or pathological assessment of lungs from fatal asthma patients, which have limitations for understanding airway heterogeneity and the entire asthma syndrome. To further understand the heterogeneity of airway remodeling in asthma, we highlight the potential of in vivo imaging tools such as computed tomography and magnetic resonance imaging. Such volumetric imaging tools provide the opportunity to assess the heterogeneity of airway remodeling within the whole lung and have led to the novel identification of heterogenous gas trapping and mucus plugging as important predictors of patient outcomes. Lastly, we summarize the current knowledge of modification of airway remodeling with available asthma therapeutics to highlight the need for future studies that use in vivo imaging tools to assess airway remodeling outcomes.
Collapse
Affiliation(s)
- Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Najmeh Assadinia
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada,*Correspondence: Tillie-Louise Hackett,
| |
Collapse
|
83
|
Jang D, Lee MJ, Kim KS, Kim CE, Jung JH, Cho M, Hong BH, Park SJ, Kang KS. Network Pharmacological Analysis on the Herbal Combinations for Mitigating Inflammation in Respiratory Tracts and Experimental Evaluation. Healthcare (Basel) 2023; 11:healthcare11010143. [PMID: 36611603 PMCID: PMC9819683 DOI: 10.3390/healthcare11010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
The regulation of inflammatory mediators, such as TNF-α, IL-6, IL-1β, and leukotriene B4, could play a crucial role in suppressing inflammatory diseases such as COVID-19. In this study, we investigated the potential mechanisms of drug combinations comprising Ephedrae Herba, Schisandra Fructus, Platycodonis Radix, and Ginseng Radix; validated the anti-inflammatory effects of these drugs; and determined the optimal dose of the drug combinations. By constructing a herb-compound-target network, associations were identified between the herbs and tissues (such as bronchial epithelial cells and lung) and pathways (such as the TNF, NF-κB, and calcium signaling pathways). The drug combinations exerted anti-inflammatory effects in the RAW264.7 cell line treated with lipopolysaccharide by inhibiting the production of nitric oxide and inflammatory mediators, including TNF-α, IL-6, IL-1β, and leukotriene B4. Notably, the drug combinations inhibited PMA-induced MUC5AC mRNA expression in NCI-H292 cells. A design space analysis was carried out to determine the optimal herbal medicine combinations using the design of experiments and synergy score calculation. Consequently, a combination study of the herbal preparations confirmed their mitigating effect on inflammation in COVID-19.
Collapse
Affiliation(s)
- Dongyeop Jang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Myong Jin Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Kang Sub Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Jong Ho Jung
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
| | - Minkwan Cho
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
| | - Bo-Hee Hong
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
| | - Shin Jung Park
- Chong Kun Dang (CKD) Pharm Research Institute, Yongin 16995, Republic of Korea
- Correspondence: (S.J.P.); (K.S.K.); Tel.: +82-32-749-4514 (S.J.P.); +82-31-750-5402 (K.S.K.)
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (S.J.P.); (K.S.K.); Tel.: +82-32-749-4514 (S.J.P.); +82-31-750-5402 (K.S.K.)
| |
Collapse
|
84
|
Dobrinskikh E, Hennessy CE, Kurche JS, Kim E, Estrella AM, Cardwell J, Yang IV, Schwartz DA. Epithelial Endoplasmic Reticulum Stress Enhances the Risk of Muc5b-associated Lung Fibrosis. Am J Respir Cell Mol Biol 2023; 68:62-74. [PMID: 36108173 PMCID: PMC9817917 DOI: 10.1165/rcmb.2022-0252oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
The gain-of-function minor allele of the MUC5B (mucin 5B, oligomeric mucus/gel-forming) promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis after bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 (activating transcription factor 4) and ATF6 coexpress with MUC5B in epithelia of the distal IPF airway and honeycomb cyst and that this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single-cell RNA sequencing in bleomycin-exposed mice, we found that pathologic ER stress-associated transcripts Atf4 and Ddit3 (DNA damage inducible transcript 3) were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild-type (WT) mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α (eukaryotic translation initiation factor 2 alpha), which prevents guanine exchange by Eif2B and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB) facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice after bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B and Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.
Collapse
Affiliation(s)
| | | | - Jonathan S. Kurche
- Department of Medicine
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | | | - Alani M. Estrella
- Roy and Diana Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York; and
| | | | - Ivana V. Yang
- Department of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - David A. Schwartz
- Department of Medicine
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
85
|
Xu M, Hu J, Yang L, Gen G, Fu Z, Luo Z, Zou W. Knockdown of Brg1 reduced mucus secretion in HDM stimulated airway inflammation. Mol Immunol 2023; 153:42-50. [PMID: 36427449 DOI: 10.1016/j.molimm.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Brg1 (Brahma-related gene 1) is an important chromatin remodeling factor protein. The Brg1 protein can promote the transcriptional activation or inhibit target genes through regulating ATP hydrolysis which rearranges the nucleosomes position and the histone DNA interaction. In this study, we explored the role of Brg1 in house dust mite (HDM) stimulated airway inflammation. METHODS The wild-type C57BL/6 mice (wild-type, WT) and alveolar epithelial cells specifically knockout Brg1 mice (Brg1fl/fl) were selected as the experimental subjects. HDM was used to stimulate human bronchial epithelial cells (16HBE) to construct an model of airway inflammation in vitro. The asthma group was established with HDM, and the control group was treated with normal saline. Wright's staining for the detection of differential counts of inflammatory cells in bronchoalveolar lavage fluid (BALF). Invasive lung function was used to assess the airway compliance. Hematoxylin and eosin (HE) staining and periodic acid-schiff (PAS) staining were used to detect mucus secretion. Immunohistochemistry was used to measure mucin glycoprotein 5AC (MUC5AC) protein expression in airway epithelium. Western blotting was used to detect the MUC5AC and JAK1/2-STAT6 proteins in mouse lung tissues and 16HBE cells. Co-immunoprecipitation (Co-IP) and Chromatin Immunoprecipitation (CHIP) were used to detect whether Brg1 could regulate the JAK1/2-STAT6 signaling pathway. RESULTS The airway inflammation, pulmonary ventilation resistance, airway mucus secretion, MUC5AC and IL-13 in BALF and MUC5AC protein expression in lung tissue of Brg1 knockout mice stimulated by HDM were lower than those of wild-type mice. The expression of MUC5AC protein in HDM stimulated Brg1 knockdown 16HBE cells was significantly lower than that in the control group. In vivo and in vitro, it was found that the activation of JAK1/2-STAT6 signal pathway in mouse lung tissue or 16HBE cells was inhibited after knockdown of Brg1 gene. The Co-IP and CHIP results showed that Brg1 could bind to the JAK1/2 promoter region and regulate the expression of JAK1/2 gene. CONCLUSION The Brg1 may promote the secretion of airway mucus stimulated by HDM through regulating the JAK1/2-STAT6 pathway. Knockdown of Brg1 reduced mucus secretion in HDM stimulated airway inflammation.
Collapse
Affiliation(s)
- Maozhu Xu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Jie Hu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Lili Yang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Gang Gen
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Zhou Fu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| | - Wenjing Zou
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China; Chongqing Key Laboratory of Pediatrics, China.
| |
Collapse
|
86
|
Effective Component Compatibility of Bufei Yishen Formula III Which Regulates the Mucus Hypersecretion of COPD Rats via the miR-146a-5p/EGFR/MEK/ERK Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9423435. [PMID: 36619199 PMCID: PMC9812609 DOI: 10.1155/2022/9423435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Background The effective-component compatibility of Bufei Yishen formula III (ECC-BYF III) with 5 ingredients (ginsenoside Rh1, astragaloside, icariin, nobiletin, and paeonol) has been shown to protect against chronic obstructive pulmonary disease (COPD). The present study aimed to observe the effects of ECC-BYF III in a COPD rat model and dissect its potential mechanisms in regulating mucus hypersecretion via the miR-146a-5p/epidermal growth factor receptor (EGFR)/MEK/ERK pathway. Methods COPD model rats were treated with normal saline, ECC-BYF III, or N-acetylcysteine (NAC). Pulmonary function, lung tissue histology with H & E and AB-PAS staining, expression levels of interleukin (IL)-4, IL-6, IL-1β, MUC5AC, MUC5B, and FOXA2 in lung tissues and the mRNA and proteins involved in the miR-146a-5p/EGFR/MEK/ERK pathway were evaluated. Results The COPD rats showed a significant decrease in the pulmonary function and serious pathological damage to the lung tissue. ECC-BYF III and NAC significantly improved the ventilation function and small airway pathological damage in the COPD rats. The goblet cells and the expression levels of IL-1β, IL-6, MUC5AC, and MUC5B were increased in the COPD rats and were significantly decreased after ECC-BYF III or NAC intervention. The expression levels of IL-4 and FOXA2 in the COPD rats were markedly decreased and were improved in the ECC-BYF III and NAC groups. ECC-BYF III appeared to have a potent effect in restoring the reduced expression of miR-146a-5p. The increased phosphorylation levels of EGFR, MEK, and ERK1/2 and the protein expression levels of SPDEF in the lungs of COPD rats could be significantly reduced by ECC-BYF III. Conclusions ECC-BYF III has a significant effect in improving the airway mucus hypersecretion in COPD model rats, as well as a protective effect against limited pulmonary function and injured lung histopathology. The protective effect of ECC-BYF III in reducing airway mucus hypersecretion in COPD may involve the miR-146a-5p/EGFR/MEK/ERK pathway.
Collapse
|
87
|
Cocconcelli E, Bernardinello N, Giraudo C, Castelli G, Greco C, Polverosi R, Saetta M, Spagnolo P, Balestro E. Radiological Assessment in Idiopathic Pulmonary Fibrosis (IPF) Patients According to MUC5B Polymorphism. Int J Mol Sci 2022; 23:ijms232415890. [PMID: 36555528 PMCID: PMC9784960 DOI: 10.3390/ijms232415890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The MUC5B rs35705950 mutant T allele is the strongest genetic risk factor for familial and sporadic IPF. We sought to determine whether MUC5B genotype influences radiological patterns of IPF at diagnosis, as well as their change over time, in patients on antifibrotic therapy. Among eighty-eight IPF patients, previously genotyped for MUC5B rs35705950, we considered seventy-eight patients who were evaluated for radiological quantification of the following features both at treatment initiation (HRCT1) and after 1 year (HRCT2): ground glass opacities (AS), reticulations (IS) and honeycombing (HC). Of the evaluated patients, 69% carried at least one copy of the T allele (TT/TG). Carriers of the T allele displayed similar FVC loss in the first year of treatment as GG carriers, but overall survival at the end of follow-up was longer in the TT/TG group, compared to the GG group. In the GG group, both the AS and HC increased significantly, whereas in the TT/TG group only HC increased over the first year of treatment. MUC5B rs35705950 GG carriers are associated with increased ground glass and honeycombing extent over time and worse survival than T allele carriers. Longitudinal HRCT may help define the prognostic role of the MUC5B rs35705950 genotype.
Collapse
Affiliation(s)
- Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac Thoracic Vascular Sciences, Public Health University of Padova, 35128 Padova, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac Thoracic Vascular Sciences, Public Health University of Padova, 35128 Padova, Italy
| | - Chiara Giraudo
- Department of Medicine-DIMED, Padova University Hospital, 35128 Padova, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac Thoracic Vascular Sciences, Public Health University of Padova, 35128 Padova, Italy
| | | | | | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac Thoracic Vascular Sciences, Public Health University of Padova, 35128 Padova, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic Vascular Sciences, Public Health University of Padova, 35128 Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac Thoracic Vascular Sciences, Public Health University of Padova, 35128 Padova, Italy
- Correspondence:
| |
Collapse
|
88
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
89
|
Kato T, Asakura T, Edwards CE, Dang H, Mikami Y, Okuda K, Chen G, Sun L, Gilmore RC, Hawkins P, De la Cruz G, Cooley MR, Bailey AB, Hewitt SM, Chertow DS, Borczuk AC, Salvatore S, Martinez FJ, Thorne LB, Askin FB, Ehre C, Randell SH, O’Neal WK, Baric RS, Boucher RC. Prevalence and Mechanisms of Mucus Accumulation in COVID-19 Lung Disease. Am J Respir Crit Care Med 2022; 206:1336-1352. [PMID: 35816430 PMCID: PMC9746856 DOI: 10.1164/rccm.202111-2606oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: The incidence and sites of mucus accumulation and molecular regulation of mucin gene expression in coronavirus (COVID-19) lung disease have not been reported. Objectives: To characterize the incidence of mucus accumulation and the mechanisms mediating mucin hypersecretion in COVID-19 lung disease. Methods: Airway mucus and mucins were evaluated in COVID-19 autopsy lungs by Alcian blue and periodic acid-Schiff staining, immunohistochemical staining, RNA in situ hybridization, and spatial transcriptional profiling. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected human bronchial epithelial (HBE) cultures were used to investigate mechanisms of SARS-CoV-2-induced mucin expression and synthesis and test candidate countermeasures. Measurements and Main Results: MUC5B and variably MUC5AC RNA concentrations were increased throughout all airway regions of COVID-19 autopsy lungs, notably in the subacute/chronic disease phase after SARS-CoV-2 clearance. In the distal lung, MUC5B-dominated mucus plugging was observed in 90% of subjects with COVID-19 in both morphologically identified bronchioles and microcysts, and MUC5B accumulated in damaged alveolar spaces. SARS-CoV-2-infected HBE cultures exhibited peak titers 3 days after inoculation, whereas induction of MUC5B/MUC5AC peaked 7-14 days after inoculation. SARS-CoV-2 infection of HBE cultures induced expression of epidermal growth factor receptor (EGFR) ligands and inflammatory cytokines (e.g., IL-1α/β) associated with mucin gene regulation. Inhibiting EGFR/IL-1R pathways or administration of dexamethasone reduced SARS-CoV-2-induced mucin expression. Conclusions: SARS-CoV-2 infection is associated with a high prevalence of distal airspace mucus accumulation and increased MUC5B expression in COVID-19 autopsy lungs. HBE culture studies identified roles for EGFR and IL-1R signaling in mucin gene regulation after SARS-CoV-2 infection. These data suggest that time-sensitive mucolytic agents, specific pathway inhibitors, or corticosteroid administration may be therapeutic for COVID-19 lung disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Stephen M. Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel S. Chertow
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland; and
| | | | | | | | - Leigh B. Thorne
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Frederic B. Askin
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
90
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [PMID: 36279664 DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
91
|
Ueda Y, Mogami H, Kawamura Y, Takakura M, Inohaya A, Yasuda E, Matsuzaka Y, Chigusa Y, Ito S, Mandai M, Kondoh E. Cervical MUC5B and MUC5AC are Barriers to Ascending Pathogens During Pregnancy. J Clin Endocrinol Metab 2022; 107:3010-3021. [PMID: 36112402 DOI: 10.1210/clinem/dgac545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 12/15/2022]
Abstract
CONTEXT Cervical excision is a risk factor for preterm birth. This suggests that the cervix plays an essential role in the maintenance of pregnancy. OBJECTIVE We investigated the role of the cervix through proteomic analysis of cervicovaginal fluid (CVF) from pregnant women after trachelectomy surgery, the natural model of a lack of cervix. METHODS The proteome compositions of CVF in pregnant women after trachelectomy were compared with those in control pregnant women by liquid chromatography-tandem mass spectrometry and label-free relative quantification. MUC5B/AC expression in the human and murine cervices was analyzed by immunohistochemistry. Regulation of MUC5B/AC expression by sex steroids was assessed in primary human cervical epithelial cells. In a pregnant mouse model of ascending infection, Escherichia coli or phosphate-buffered saline was inoculated into the vagina at 16.5 dpc, and the cervices were collected at 17.5 dpc. RESULTS The expression of MUC5B/5AC in cervicovaginal fluid was decreased in pregnant women after trachelectomy concomitant with the anatomical loss of cervical glands. Post-trachelectomy women delivered at term when MUC5B/AC abundance was greater than the mean normalized abundance of the control. MUC5B levels in the cervix were increased during pregnancy in both humans and mice. MUC5B mRNA was increased by addition of estradiol in human cervical epithelial cells, whereas MUC5AC was not. In a pregnant mouse model of ascending infection, E. coli was trapped in the MUC5B/AC-expressing mucin of the cervix, and neutrophils were colocalized there. CONCLUSION Endocervical MUC5B and MUC5AC may be barriers to ascending pathogens during pregnancy.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Haruta Mogami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yosuke Kawamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahito Takakura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Asako Inohaya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eriko Yasuda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yu Matsuzaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoshitsugu Chigusa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
92
|
Borie R, Cardwell J, Konigsberg IR, Moore CM, Zhang W, Sasse SK, Gally F, Dobrinskikh E, Walts A, Powers J, Brancato J, Rojas M, Wolters PJ, Brown KK, Blackwell TS, Nakanishi T, Richards JB, Gerber AN, Fingerlin TE, Sachs N, Pulit SL, Zappala Z, Schwartz DA, Yang IV. Colocalization of Gene Expression and DNA Methylation with Genetic Risk Variants Supports Functional Roles of MUC5B and DSP in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2022; 206:1259-1270. [PMID: 35816432 PMCID: PMC9746850 DOI: 10.1164/rccm.202110-2308oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.
Collapse
Affiliation(s)
| | | | | | - Camille M. Moore
- Department of Biostatistics and Bioinformatics and
- Center for Genes, Environment, and Health
| | | | | | - Fabienne Gally
- Department of Medicine
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | | | | | | | | | - Mauricio Rojas
- Department of Internal Medicine, Ohio State College of Medicine, The Ohio State University, Columbus, Ohio
| | - Paul J. Wolters
- Department of Medicine, University of California, San Francisco, California
| | | | - Timothy S. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tomoko Nakanishi
- Department of Human Genetics, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - J. Brent Richards
- Department of Human Genetics, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Canada
| | - Anthony N. Gerber
- Department of Medicine
- Department of Medicine, and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Tasha E. Fingerlin
- Department of Biostatistics and Bioinformatics and
- Center for Genes, Environment, and Health
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado
| | - Norman Sachs
- Cell Biology, Vertex Pharmaceuticals, San Diego, California; and
| | - Sara L. Pulit
- Computational Genomics, Vertex Pharmaceuticals, Boston, Massachusetts
| | - Zachary Zappala
- Computational Genomics, Vertex Pharmaceuticals, Boston, Massachusetts
| | - David A. Schwartz
- Department of Medicine
- Department of Microbiology and Immunology, University of Colorado Anschutz Medical Campus; Aurora, Colorado
| | - Ivana V. Yang
- Department of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| |
Collapse
|
93
|
Hoang ON, Ermund A, Jaramillo AM, Fakih D, French CB, Flores JR, Karmouty-Quintana H, Magnusson JM, Fois G, Fauler M, Frick M, Braubach P, Hales JB, Kurten RC, Panettieri R, Vergara L, Ehre C, Adachi R, Tuvim MJ, Hansson GC, Dickey BF. Mucins MUC5AC and MUC5B Are Variably Packaged in the Same and in Separate Secretory Granules. Am J Respir Crit Care Med 2022; 206:1081-1095. [PMID: 35776514 PMCID: PMC9704839 DOI: 10.1164/rccm.202202-0309oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/01/2022] [Indexed: 01/27/2023] Open
Abstract
Rationale: MUC5AC (mucin 5AC, oligomeric gel-forming) and MUC5B (mucin 5B, oligomeric gel-forming) are the predominant secreted polymeric mucins in mammalian airways. They contribute differently to the pathogenesis of various muco-obstructive and interstitial lung diseases, and their genes are separately regulated, but whether they are packaged together or in separate secretory granules is not known. Objectives: To determine the packaging of MUC5AC and MUC5B within individual secretory granules in mouse and human airways under varying conditions of inflammation and along the proximal-distal axis. Methods: Lung tissue was obtained from mice stimulated to upregulate mucin production by the cytokines IL-1β and IL-13 or by porcine pancreatic elastase. Human lung tissue was obtained from donated normal lungs, biopsy samples of transplanted lungs, and explanted lungs from subjects with chronic obstructive pulmonary disease. MUC5AC and MUC5B were labeled with antibodies from different animal species or, in mice only, by transgenic chimeric mucin-fluorescent proteins and imaged using widefield deconvolution or Airyscan fluorescence microscopy. Measurements and Main Results: In both mouse and human airways, most secretory granules contained both mucins interdigitating within the granules. Smaller numbers of granules contained MUC5B alone, and even fewer contained MUC5AC alone. Conclusions: MUC5AC and MUC5B are variably stored both in the same and in separate secretory granules of both mice and humans. The high fraction of granules containing both mucins under a variety of conditions makes it unlikely that their secretion can be differentially controlled as a therapeutic strategy. This work also advances knowledge of the packaging of mucins within secretory granules to understand mechanisms of epithelial stress in the pathogenesis of chronic lung diseases.
Collapse
Affiliation(s)
- Oanh N. Hoang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ana M. Jaramillo
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dalia Fakih
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Cory B. French
- Washington University School of Medicine, St. Louis, Missouri
| | - Jose R. Flores
- Washington University School of Medicine, St. Louis, Missouri
| | - Harry Karmouty-Quintana
- Division of Critical Care, Pulmonary, and Sleep Medicine, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesper M. Magnusson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Joshua B. Hales
- Washington University School of Medicine, St. Louis, Missouri
| | | | | | - Leoncio Vergara
- Institute of Biosciences and Technology, Texas A&M School of Medicine, Houston, Texas; and
| | - Camille Ehre
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gunnar C. Hansson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
94
|
Kesimer M. Mucins MUC5AC and MUC5B in the Airways: MUCing around Together. Am J Respir Crit Care Med 2022; 206:1055-1057. [PMID: 35938865 PMCID: PMC9704829 DOI: 10.1164/rccm.202208-1459ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mehmet Kesimer
- Marsico Lung Institute and Department of Pathology and Laboratory Medicine The University of North Carolina at Chapel Hill Chapel Hill, North Carolina
| |
Collapse
|
95
|
Abstract
Lung epithelium, the lining that covers the inner surface of the respiratory tract, is directly exposed to the environment and thus susceptible to airborne toxins, irritants, and pathogen-induced damages. In adult mammalian lungs, epithelial cells are generally quiescent but can respond rapidly to repair of damaged tissues. Evidence from experimental injury models in rodents and human clinical samples has led to the identification of these regenerative cells, as well as pathological metaplastic states specifically associated with different forms of damages. Here, we provide a compendium of cells and cell states that exist during homeostasis in normal lungs and the lineage relationships between them. Additionally, we discuss various experimental injury models currently being used to probe the cellular sources-both resident and recruited-that contribute to repair, regeneration, and remodeling following acute and chronic injuries. Finally, we discuss certain maladaptive regeneration-associated cell states and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Arvind Konkimalla
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Medical Scientist Training Program, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Purushothama Rao Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27710, USA
- Duke Regeneration Center, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
96
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
97
|
Dinnon KH, Leist SR, Okuda K, Dang H, Fritch EJ, Gully KL, De la Cruz G, Evangelista MD, Asakura T, Gilmore RC, Hawkins P, Nakano S, West A, Schäfer A, Gralinski LE, Everman JL, Sajuthi SP, Zweigart MR, Dong S, McBride J, Cooley MR, Hines JB, Love MK, Groshong SD, VanSchoiack A, Phelan SJ, Liang Y, Hether T, Leon M, Zumwalt RE, Barton LM, Duval EJ, Mukhopadhyay S, Stroberg E, Borczuk A, Thorne LB, Sakthivel MK, Lee YZ, Hagood JS, Mock JR, Seibold MA, O’Neal WK, Montgomery SA, Boucher RC, Baric RS. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med 2022; 14:eabo5070. [PMID: 35857635 PMCID: PMC9273046 DOI: 10.1126/scitranslmed.abo5070] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023]
Abstract
A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.
Collapse
Affiliation(s)
- Kenneth H. Dinnon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah R. Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kenichi Okuda
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ethan J. Fritch
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mia D. Evangelista
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Takanori Asakura
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Rodney C. Gilmore
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Padraig Hawkins
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Satoko Nakano
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lisa E. Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Satria P. Sajuthi
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jennifer McBride
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michelle R. Cooley
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jesse B. Hines
- Golden Point Scientific Laboratories, Hoover, Alabama 35216, USA
| | - Miriya K. Love
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Steve D. Groshong
- Division of Pathology, Department of Medicine, National Jewish Health, Denver, Colorado 80206, USA
| | | | | | - Yan Liang
- NanoString Technologies, Seattle, Washington 98109, USA
| | - Tyler Hether
- NanoString Technologies, Seattle, Washington 98109, USA
| | - Michael Leon
- NanoString Technologies, Seattle, Washington 98109, USA
| | - Ross E. Zumwalt
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Lisa M. Barton
- Office of the Chief Medical Examiner, Oklahoma City, Oklahoma 73105, USA
| | - Eric J. Duval
- Office of the Chief Medical Examiner, Oklahoma City, Oklahoma 73105, USA
| | | | - Edana Stroberg
- Office of the Chief Medical Examiner, Oklahoma City, Oklahoma 73105, USA
| | - Alain Borczuk
- Weill Cornell Medicine, New York, New York 10065, USA
| | - Leigh B. Thorne
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Muthu K. Sakthivel
- Department of Radiology, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | - Yueh Z. Lee
- Department of Radiology, University of North Carolina at Chapel Hill, North Carolina 27599, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - James S. Hagood
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pediatrics, Pulmonology Division and Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jason R. Mock
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Max A. Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Wanda K. O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephanie A. Montgomery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ralph S. Baric
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
98
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
99
|
Okuda K, Shaffer KM, Ehre C. Mucins and CFTR: Their Close Relationship. Int J Mol Sci 2022; 23:10232. [PMID: 36142171 PMCID: PMC9499620 DOI: 10.3390/ijms231810232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kendall M. Shaffer
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
100
|
Ash JJ, Hilkin BM, Gansemer ND, Hoffman EA, Zabner J, Stoltz DA, Abou Alaiwa MH. Tromethamine improves mucociliary clearance in cystic fibrosis pigs. Physiol Rep 2022; 10:e15340. [PMID: 36073059 PMCID: PMC9453173 DOI: 10.14814/phy2.15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023] Open
Abstract
In cystic fibrosis (CF), the loss of cystic fibrosis transmembrane conductance regulator (CFTR) mediated Cl- and HCO3 - secretion across the epithelium acidifies the airway surface liquid (ASL). Acidic ASL alters two key host defense mechanisms: Rapid ASL bacterial killing and mucociliary transport (MCT). Aerosolized tromethamine (Tham) increases ASL pH and restores the ability of ASL to rapidly kill bacteria in CF pigs. In CF pigs, clearance of insufflated microdisks is interrupted due to abnormal mucus causing microdisks to abruptly recoil. Aerosolizing a reducing agent to break disulfide bonds that link mucins improves MCT. Here, we are interested in restoring MCT in CF by aerosolizing Tham, a buffer with a pH of 8.4. Because Tham is hypertonic to serum, we use an acidified formulation as a control. We measure MCT by tracking the caudal movement of individual tantalum microdisks with serial chest computed tomography scans. Alkaline Tham improves microdisk clearance to within the range of that seen in non-CF pigs. It also partially reverses MCT defects, including reduced microdisk recoil and elapse time until they start moving after methacholine stimulation in CF pig airways. The effect is not due to hypertonicity, as it is not seen with acidified Tham or hypertonic saline. This finding indicates acidic ASL impairs CF MCT and suggests that alkalinization of ASL pH with inhaled Tham may improve CF airway disease.
Collapse
Affiliation(s)
- Jamison J. Ash
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Brieanna M. Hilkin
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Nicholas D. Gansemer
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Eric A. Hoffman
- Department of RadiologyRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Joseph Zabner
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - David A. Stoltz
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Molecular Physiology and BiophysicsRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Mahmoud H. Abou Alaiwa
- Department of Internal MedicinePappajohn Biomedical InstituteRoy J and Lucille A Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Roy J Carver, Department of Biomedical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|