51
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
52
|
Mogensen TH. Genetic susceptibility to viral disease in humans. Clin Microbiol Infect 2022; 28:1411-1416. [PMID: 35218976 DOI: 10.1016/j.cmi.2022.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/16/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND During the past decades studies on patients with severe viral infections have revealed rare inborn errors of immunity (IEI) underlying these diseases. This has led to important new insights into the molecular genetics and immunological mechanisms underlying susceptibility to viral infection in humans. OBJECTIVES Here the current knowledge on major IEI predisposing to severe or chronic viral infection are described and discussed, and the clinical implications of these findings for individualized prophylaxis and treatment are outlined. SOURCES The review is based on a broad literature search including relevant studies primarily based studies in patients, supported by experimental molecular models in vitro or in mice to characterize pathophysiological mechanism governing these disease conditions. CONTENT Current concepts and principles of genetic predisposition to viral infections in humans are described with a major focus on defects related to innate immune responses and new concepts of constitutive immune mechanisms. The topic therefore spans from seminal studies on the human genetics of herpesvirus infections in the central nervous system, severe influenza, and disease following vaccination with live attenuated viral vaccines, and finally mentioning genetic resistance to viral infection. IMPLICATIONS Past and present studies in patients with IEI conferring vulnerability to viral infections have taught us important lessons on protective innate and adaptive antiviral immunity in humans. Such knowledge also has important clinical implications allowing development of prophylactic and therapeutic solutions to prevent or dampen the clinical consequences of insufficient or dysregulated antiviral immunity in patients. Collectively, such measures are likely to improve patient management at an individualized level and also help societies reduce disease burden from viral infections.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
53
|
Abolhassani H, Landegren N, Bastard P, Materna M, Modaresi M, Du L, Aranda-Guillén M, Sardh F, Zuo F, Zhang P, Marcotte H, Marr N, Khan T, Ata M, Al-Ali F, Pescarmona R, Belot A, Béziat V, Zhang Q, Casanova JL, Kämpe O, Zhang SY, Hammarström L, Pan-Hammarström Q. Inherited IFNAR1 Deficiency in a Child with Both Critical COVID-19 Pneumonia and Multisystem Inflammatory Syndrome. J Clin Immunol 2022; 42:471-483. [PMID: 35091979 PMCID: PMC8798309 DOI: 10.1007/s10875-022-01215-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/16/2022] [Indexed: 02/08/2023]
Abstract
Background Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. Objectives To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. Methods Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. Results We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. Conclusions Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-022-01215-7.
Collapse
|
54
|
Lindahl H, Bryceson YT. Neuroinflammation Associated With Inborn Errors of Immunity. Front Immunol 2022; 12:827815. [PMID: 35126383 PMCID: PMC8807658 DOI: 10.3389/fimmu.2021.827815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 01/16/2023] Open
Abstract
The advent of high-throughput sequencing has facilitated genotype-phenotype correlations in congenital diseases. This has provided molecular diagnosis and benefited patient management but has also revealed substantial phenotypic heterogeneity. Although distinct neuroinflammatory diseases are scarce among the several thousands of established congenital diseases, elements of neuroinflammation are increasingly recognized in a substantial proportion of inborn errors of immunity, where it may even dominate the clinical picture at initial presentation. Although each disease entity is rare, they collectively can constitute a significant proportion of neuropediatric patients in tertiary care and may occasionally also explain adult neurology patients. We focus this review on the signs and symptoms of neuroinflammation that have been reported in association with established pathogenic variants in immune genes and suggest the following subdivision based on proposed underlying mechanisms: autoinflammatory disorders, tolerance defects, and immunodeficiency disorders. The large group of autoinflammatory disorders is further subdivided into IL-1β-mediated disorders, NF-κB dysregulation, type I interferonopathies, and hemophagocytic syndromes. We delineate emerging pathogenic themes underlying neuroinflammation in monogenic diseases and describe the breadth of the clinical spectrum to support decisions to screen for a genetic diagnosis and encourage further research on a neglected phenomenon.
Collapse
Affiliation(s)
- Hannes Lindahl
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T. Bryceson
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Brogelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
55
|
Mogensen TH. Unexplored Roles of Type I Interferon in Antiviral Immunity and Regulation of Inflammation Revealed by Studying Patients With Inborn Errors of Immunity. Clin Infect Dis 2022; 74:140-143. [PMID: 33257938 DOI: 10.1093/cid/ciaa1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| |
Collapse
|
56
|
Daza-Cajigal V, Albuquerque AS, Young DF, Ciancanelli MJ, Moulding D, Angulo I, Jeanne-Julien V, Rosain J, Minskaia E, Casanova JL, Boisson-Dupuis S, Bustamante J, Randall RE, McHugh TD, Thrasher AJ, Burns SO. Partial human Janus kinase 1 deficiency predominantly impairs responses to interferon gamma and intracellular control of mycobacteria. Front Immunol 2022; 13:888427. [PMID: 36159783 PMCID: PMC9501714 DOI: 10.3389/fimmu.2022.888427] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Janus kinase-1 (JAK1) tyrosine kinase mediates signaling from multiple cytokine receptors, including interferon alpha/beta and gamma (IFN-α/β and IFN-γ), which are important for viral and mycobacterial protection respectively. We previously reported autosomal recessive (AR) hypomorphic JAK1 mutations in a patient with recurrent atypical mycobacterial infections and relatively minor viral infections. This study tests the impact of partial JAK1 deficiency on cellular responses to IFNs and pathogen control. Methods We investigated the role of partial JAK1 deficiency using patient cells and cell models generated with lentiviral vectors expressing shRNA. Results Partial JAK1 deficiency impairs IFN-γ-dependent responses in multiple cell types including THP-1 macrophages, Epstein-Barr Virus (EBV)-transformed B cells and primary dermal fibroblasts. In THP-1 myeloid cells, partial JAK1 deficiency reduced phagosome acidification and apoptosis and resulted in defective control of mycobacterial infection with enhanced intracellular survival. Although both EBV-B cells and primary dermal fibroblasts with partial JAK1 deficiency demonstrate reduced IFN-α responses, control of viral infection was impaired only in patient EBV-B cells and surprisingly intact in patient primary dermal fibroblasts. Conclusion Our data suggests that partial JAK1 deficiency predominantly affects susceptibility to mycobacterial infection through impact on the IFN-γ responsive pathway in myeloid cells. Susceptibility to viral infections as a result of reduced IFN-α responses is variable depending on cell type. Description of additional patients with inherited JAK1 deficiency will further clarify the spectrum of bacterial and viral susceptibility in this condition. Our results have broader relevance for anticipating infectious complications from the increasing use of selective JAK1 inhibitors.
Collapse
Affiliation(s)
- Vanessa Daza-Cajigal
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom.,School of Medicine, Universidad Complutense, Madrid, Spain.,Department of Immunology, Hospital Universitario Son Espases, Palma, Spain.,Research Unit, Institut d'Investigació Sanitària de les Illes Balears (IdISBa), Palma, Spain
| | - Adriana S Albuquerque
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Dan F Young
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States
| | - Dale Moulding
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom
| | - Ivan Angulo
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Valentine Jeanne-Julien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Ekaterina Minskaia
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY, United States
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, United States.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, National Institute of Health and Medical Research (INSERM) U1163, Paris, France.,Paris Cité University, Imagine Institute, Paris, France.,Study Center of Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Richard E Randall
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Timothy D McHugh
- Research Department of Infection, University College London Centre for Clinical Microbiology, London, United Kingdom
| | - Adrian J Thrasher
- Molecular and Cellular Immunology Section, University College London Institute of Child Health, London, United Kingdom.,Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Immunology, Royal Free London National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
57
|
Mielcarska MB, Skowrońska K, Wyżewski Z, Toka FN. Disrupting Neurons and Glial Cells Oneness in the Brain-The Possible Causal Role of Herpes Simplex Virus Type 1 (HSV-1) in Alzheimer's Disease. Int J Mol Sci 2021; 23:ijms23010242. [PMID: 35008671 PMCID: PMC8745046 DOI: 10.3390/ijms23010242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Current data strongly suggest herpes simplex virus type 1 (HSV-1) infection in the brain as a contributing factor to Alzheimer's disease (AD). The consequences of HSV-1 brain infection are multilateral, not only are neurons and glial cells damaged, but modifications also occur in their environment, preventing the transmission of signals and fulfillment of homeostatic and immune functions, which can greatly contribute to the development of disease. In this review, we discuss the pathological alterations in the central nervous system (CNS) cells that occur, following HSV-1 infection. We describe the changes in neurons, astrocytes, microglia, and oligodendrocytes related to the production of inflammatory factors, transition of glial cells into a reactive state, oxidative damage, Aβ secretion, tau hyperphosphorylation, apoptosis, and autophagy. Further, HSV-1 infection can affect processes observed during brain aging, and advanced age favors HSV-1 reactivation as well as the entry of the virus into the brain. The host activates pattern recognition receptors (PRRs) for an effective antiviral response during HSV-1 brain infection, which primarily engages type I interferons (IFNs). Future studies regarding the influence of innate immune deficits on AD development, as well as supporting the neuroprotective properties of glial cells, would reveal valuable information on how to harness cytotoxic inflammatory milieu to counter AD initiation and progression.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-59-36063
| | - Katarzyna Skowrońska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Felix Ngosa Toka
- Department of Preclinical Sciences, Institute of Veterinary Sciences, Warsaw University of Life Sciences–SGGW, Jana Ciszewskiego 8, 02-786 Warsaw, Poland;
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 42123, Saint Kitts and Nevis
| |
Collapse
|
58
|
Chen J, Jing H, Martin-Nalda A, Bastard P, Rivière JG, Liu Z, Colobran R, Lee D, Tung W, Manry J, Hasek M, Boucherit S, Lorenzo L, Rozenberg F, Aubart M, Abel L, Su HC, Soler Palacin P, Casanova JL, Zhang SY. Inborn errors of TLR3- or MDA5-dependent type I IFN immunity in children with enterovirus rhombencephalitis. J Exp Med 2021; 218:212742. [PMID: 34726731 PMCID: PMC8570298 DOI: 10.1084/jem.20211349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Enterovirus (EV) infection rarely results in life-threatening infection of the central nervous system. We report two unrelated children with EV30 and EV71 rhombencephalitis. One patient carries compound heterozygous TLR3 variants (loss-of-function F322fs2* and hypomorphic D280N), and the other is homozygous for an IFIH1 variant (loss-of-function c.1641+1G>C). Their fibroblasts respond poorly to extracellular (TLR3) or intracellular (MDA5) poly(I:C) stimulation. The baseline (TLR3) and EV-responsive (MDA5) levels of IFN-β in the patients’ fibroblasts are low. EV growth is enhanced at early and late time points of infection in TLR3- and MDA5-deficient fibroblasts, respectively. Treatment with exogenous IFN-α2b before infection renders both cell lines resistant to EV30 and EV71, whereas post-infection treatment with IFN-α2b rescues viral susceptibility fully only in MDA5-deficient fibroblasts. Finally, the poly(I:C) and viral phenotypes of fibroblasts are rescued by the expression of WT TLR3 or MDA5. Human TLR3 and MDA5 are critical for cell-intrinsic immunity to EV, via the control of baseline and virus-induced type I IFN production, respectively.
Collapse
Affiliation(s)
- Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Department of Infectious Diseases, Shanghai Sixth Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huie Jing
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Andrea Martin-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jacques G Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain.,Diagnostic Immunology Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Immunology Division, Genetics Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Danyel Lee
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Wesley Tung
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Soraya Boucherit
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris, France
| | - Mélodie Aubart
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Pediatric Neurology Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, Intramural Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Pere Soler Palacin
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d'Hebron Research Institute, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
59
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
60
|
Walker FC, Sridhar PR, Baldridge MT. Differential roles of interferons in innate responses to mucosal viral infections. Trends Immunol 2021; 42:1009-1023. [PMID: 34629295 PMCID: PMC8496891 DOI: 10.1016/j.it.2021.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 01/04/2023]
Abstract
Interferons (IFNs) are among the first vertebrate immune pathways activated upon viral infection and are crucial for control of viral replication and dissemination, especially at mucosal surfaces as key locations for host exposure to pathogens. Inhibition of viral establishment and spread at and from these mucosal sites is paramount for preventing severe disease, while concomitantly limiting putative detrimental effects of inflammation. Here, we compare the roles of type I, II, and III IFNs in regulating three archetypal viruses - norovirus, herpes simplex virus, and severe acute respiratory virus coronavirus 2 (SARS-CoV-2) - which infect distinct mammalian mucosal tissues. Emerging paradigms include highly specific roles for IFNs in limiting local versus systemic infection, synergistic activities, and a spectrum of protective versus detrimental effects of IFNs during the infection response.
Collapse
Affiliation(s)
- Forrest C Walker
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pratyush R Sridhar
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
61
|
Ferré EMN, Schmitt MM, Lionakis MS. Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy. Front Pediatr 2021; 9:723532. [PMID: 34790633 PMCID: PMC8591095 DOI: 10.3389/fped.2021.723532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome type-1 (APS-1), is a rare monogenic autoimmune disease caused by loss-of-function mutations in the autoimmune regulator (AIRE) gene. AIRE deficiency impairs immune tolerance in the thymus and results in the peripheral escape of self-reactive T lymphocytes and the generation of several cytokine- and tissue antigen-targeted autoantibodies. APECED features a classic triad of characteristic clinical manifestations consisting of chronic mucocutaneous candidiasis (CMC), hypoparathyroidism, and primary adrenal insufficiency (Addison's disease). In addition, APECED patients develop several non-endocrine autoimmune manifestations with variable frequencies, whose recognition by pediatricians should facilitate an earlier diagnosis and allow for the prompt implementation of targeted screening, preventive, and therapeutic strategies. This review summarizes our current understanding of the genetic, immunological, clinical, diagnostic, and treatment features of APECED.
Collapse
Affiliation(s)
| | | | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
62
|
Khanmohammadi S, Rezaei N, Khazaei M, Shirkani A. A Case of Autosomal Recessive Interferon Alpha/Beta Receptor Alpha Chain (IFNAR1) Deficiency with Severe COVID-19. J Clin Immunol 2021; 42:19-24. [PMID: 34713375 PMCID: PMC8553400 DOI: 10.1007/s10875-021-01166-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/23/2021] [Indexed: 12/02/2022]
Abstract
Background Interferons (IFNs) play a crucial role in antiviral immunity. Genetic defects in interferon receptors, IFNs, and auto-antibodies against IFNs can lead to the development of life-threatening forms of infectious diseases like a severe form of COVID-19. Case Presentation A 13-year-old boy with a previously reported homozygous loss-of-function mutation in interferon alpha/beta receptor subunit 1 (IFNAR1) (c.674-2A > G) was diagnosed with severe COVID-19. He had cold symptoms and a high-grade fever at the time of admission. He was admitted to the pediatric intensive care unit after showing no response to favipiravir and being hypoxemic. High-resolution computed tomography (HRCT) scanning revealed lung involvement of 70% with extensive areas of consolidation in both lungs. Antibiotics, interferon gamma (IFN-γ), remdesivir, methylprednisolone pulse, and other medications were started in the patient. However, remdesivir and methylprednisolone pulse were discontinued because of their adverse side effects in the patient. His general condition improved, and a few days later was discharged from the hospital. Conclusion We reported a patient with severe COVID-19 who had a mutation in IFNAR1. Our finding suggests that patients with IFNAR1 deficiency are prone to severe forms of COVID-19. Besides, IFN-γ therapy may be a potential drug to treat patients with defects in IFN-α/β signaling pathways which needs further investigations.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khazaei
- Radiology Department, School of Medicine, Bushehr University of Medical Science, Bushehr, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, School of Medicine, Bushehr University of Medical Science, Moallem St., Bushehr, Iran.
| |
Collapse
|
63
|
The c-Rel transcription factor limits early interferon and neuroinflammatory responses to prevent herpes simplex encephalitis onset in mice. Sci Rep 2021; 11:21171. [PMID: 34707143 PMCID: PMC8551191 DOI: 10.1038/s41598-021-00391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is the predominant cause of herpes simplex encephalitis (HSE), a condition characterized by acute inflammation and viral replication in the brain. Host genetics contribute to HSE onset, including monogenic defects in type I interferon signaling in cases of childhood HSE. Mouse models suggest a further contribution of immune cell-mediated inflammation to HSE pathogenesis. We have previously described a truncating mutation in the c-Rel transcription factor (RelC307X) that drives lethal HSE in 60% of HSV-1-infected RelC307X mice. In this study, we combined dual host-virus RNA sequencing with flow cytometry to explore cell populations and mechanisms involved in RelC307X-driven HSE. At day 5 postinfection, prior to HSE clinical symptom onset, elevated HSV-1 transcription was detected together with augmented host interferon-stimulated and inflammatory gene expression in the brainstems of high-responding RelC307X mice, predictive of HSE development. This early induction of host gene expression preceded pathological infiltration of myeloid and T cells in RelC307X mice at HSE onset by day 7. Thus, we establish c-Rel as an early regulator of viral and host responses during mouse HSE. These data further highlight the importance of achieving a balanced immune response and avoiding excess interferon-driven inflammation to promote HSE resistance.
Collapse
|
64
|
Chung H, Green PHR, Wang TC, Kong XF. Interferon-Driven Immune Dysregulation in Down Syndrome: A Review of the Evidence. J Inflamm Res 2021; 14:5187-5200. [PMID: 34675597 PMCID: PMC8504936 DOI: 10.2147/jir.s280953] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
Down syndrome (DS) is a unique genetic disease caused by the presence of an extra copy of chromosome 21, which carries four of the six interferon receptor (IFN-R) genes on its long arm. Recent studies reporting higher levels of interferon-stimulated gene (ISG) expression in primary immune cells studied ex vivo have suggested that the additional copies of the IFN-R genes in DS result in mild interferonopathy. In this review, we analyze the potential clinical and immunological impacts of this interferonopathy in DS. We performed a literature review to explore the epidemiology and risks of celiac disease, type 1 diabetes, thyroid dysfunction, mucocutaneous manifestations, infectious diseases (including COVID-19), and Alzheimer’s disease in individuals with DS relative to the general population with or without iatrogenic exposure to interferons. We analyzed immunophenotyping data and the current experimental evidence concerning IFN-R expression, constitutive JAK-STAT activation, and ISG overexpression in DS. Despite the lack of direct evidence that implicating this mild interferonopathy directly in illnesses in individuals with DS, we highlight the challenges ahead and directions that could be taken to determine more clearly the biological impact of interferonopathy on various immune-related conditions in DS.
Collapse
Affiliation(s)
- Howard Chung
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/Queens (Queens Hospital Center), Jamaica, NY, 11432, USA
| | - Peter H R Green
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Celiac Disease Center, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Xiao-Fei Kong
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Celiac Disease Center, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA
| |
Collapse
|
65
|
Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, Kalinke U. Toll-like Receptors in Viral Encephalitis. Viruses 2021; 13:v13102065. [PMID: 34696494 PMCID: PMC8540543 DOI: 10.3390/v13102065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Viral encephalitis is a rare but serious syndrome. In addition to DNA-encoded herpes viruses, such as herpes simplex virus and varicella zoster virus, RNA-encoded viruses from the families of Flaviviridae, Rhabdoviridae and Paramyxoviridae are important neurotropic viruses. Whereas in the periphery, the role of Toll-like receptors (TLR) during immune stimulation is well understood, TLR functions within the CNS are less clear. On one hand, TLRs can affect the physiology of neurons during neuronal progenitor cell differentiation and neurite outgrowth, whereas under conditions of infection, the complex interplay between TLR stimulated neurons, astrocytes and microglia is just on the verge of being understood. In this review, we summarize the current knowledge about which TLRs are expressed by cell subsets of the CNS. Furthermore, we specifically highlight functional implications of TLR stimulation in neurons, astrocytes and microglia. After briefly illuminating some examples of viral evasion strategies from TLR signaling, we report on the current knowledge of primary immunodeficiencies in TLR signaling and their consequences for viral encephalitis. Finally, we provide an outlook with examples of TLR agonist mediated intervention strategies and potentiation of vaccine responses against neurotropic virus infections.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Imke Steffen
- Department of Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Martin Stangel
- Translational Medicine, Novartis Institute for Biomedical Research (NIBR), 4056 Basel, Switzerland;
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
66
|
Lopez J, Mommert M, Mouton W, Pizzorno A, Brengel-Pesce K, Mezidi M, Villard M, Lina B, Richard JC, Fassier JB, Cheynet V, Padey B, Duliere V, Julien T, Paul S, Bastard P, Belot A, Bal A, Casanova JL, Rosa-Calatrava M, Morfin F, Walzer T, Trouillet-Assant S. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J Exp Med 2021; 218:e20211211. [PMID: 34357402 PMCID: PMC8352718 DOI: 10.1084/jem.20211211] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
IFN-I and IFN-III immunity in the nasal mucosa is poorly characterized during SARS-CoV-2 infection. We analyze the nasal IFN-I/III signature, namely the expression of ISGF-3-dependent IFN-stimulated genes, in mildly symptomatic COVID-19 patients and show its correlation with serum IFN-α2 levels, which peak at symptom onset and return to baseline from day 10 onward. Moreover, the nasal IFN-I/III signature correlates with the nasopharyngeal viral load and is associated with the presence of infectious viruses. By contrast, we observe low nasal IFN-I/III scores despite high nasal viral loads in a subset of critically ill COVID-19 patients, which correlates with the presence of autoantibodies (auto-Abs) against IFN-I in both blood and nasopharyngeal mucosa. In addition, functional assays in a reconstituted human airway epithelium model of SARS-CoV-2 infection confirm the role of such auto-Abs in abrogating the antiviral effects of IFN-I, but not those of IFN-III. Thus, IFN-I auto-Abs may compromise not only systemic but also local antiviral IFN-I immunity at the early stages of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jonathan Lopez
- Molecular biology core facility, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Marine Mommert
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Open Innovation & Partnerships, bioMérieux S.A., Marcy l’Etoile, France
| | - William Mouton
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Andrés Pizzorno
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Karen Brengel-Pesce
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Mehdi Mezidi
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
| | - Marine Villard
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Bruno Lina
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- Virology laboratory, Institute of Infectious Agents, Laboratory associated with the National Reference Centre for Respiratory Viruses, Civils Hospices of Lyon, Lyon, France
| | - Jean-Christophe Richard
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
| | - Jean-Baptiste Fassier
- Occupational Health and Medicine Department, Hospices Civils de Lyon, Lyon, France
- Université Claude Bernard Lyon 1, Institut français des sciences et technologies des transports, de l'aménagement et des reseaux, Unité Mixte de Recherche Epidémiologique et de Surveillance Transport Travail Environnement, UMR T_9405, Lyon University, Lyon, France
| | - Valérie Cheynet
- Joint Research Unit Civils Hospices of Lyon-bioMérieux, Civils Hospices of Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Blandine Padey
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- Signia Therapeutics SAS, Lyon, France
| | - Victoria Duliere
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Thomas Julien
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Stéphane Paul
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Alexandre Belot
- Open Innovation & Partnerships, bioMérieux S.A., Marcy l’Etoile, France
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Antonin Bal
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
- Virology laboratory, Institute of Infectious Agents, Laboratory associated with the National Reference Centre for Respiratory Viruses, Civils Hospices of Lyon, Lyon, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Manuel Rosa-Calatrava
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Florence Morfin
- Intensive Care Medicine, Croix-Rousse hospital, Claude Bernard Lyon 1 University, Lyon, France
- Virology laboratory, Institute of Infectious Agents, Laboratory associated with the National Reference Centre for Respiratory Viruses, Civils Hospices of Lyon, Lyon, France
| | - Thierry Walzer
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| | - Sophie Trouillet-Assant
- International Center of Research in Infectiology, Institut National de la Santé et de la Recherche Médicale U1111, Centre National de la Recherche Scientifique UMR5308, École normale supérieure Lyon, Claude Bernard Lyon 1 University, Lyon, Rhône, France
| |
Collapse
|
67
|
Zhang SY, Harschnitz O, Studer L, Casanova JL. Neuron-intrinsic immunity to viruses in mice and humans. Curr Opin Immunol 2021; 72:309-317. [PMID: 34425410 PMCID: PMC8578315 DOI: 10.1016/j.coi.2021.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Viral encephalitis is a major neglected medical problem. Host defense mechanisms against viral infection of the central nervous system (CNS) have long remained unclear. The few previous studies of CNS-specific immunity to viruses in mice in vivo and humans in vitro have focused on the contributions of circulating leukocytes, resident microglial cells and astrocytes, with neurons long considered passive victims of viral infection requiring protection from extrinsic antiviral mechanisms. The last decade has witnessed the gradual emergence of the notion that neurons also combat viruses through cell-intrinsic mechanisms. Forward genetic approaches in humans have shown that monogenic inborn errors of TLR3, IFN-α/β, or snoRNA31 immunity confer susceptibility to herpes simplex virus 1 (HSV-1) infection of the forebrain, whereas inborn errors of DBR1 underlie brainstem infections due to various viruses, including HSV-1. The study of human pluripotent stem cell (hPSC)-derived CNS-resident cells has unraveled known (i.e. TLR3-dependent IFN-α/β immunity) and new (i.e. snoRNA31-dependent or DBR1-dependent immunity) cell-intrinsic antiviral mechanisms operating in neurons. Reverse genetic approaches in mice have confirmed that some known antiviral mechanisms also operate in mouse neurons (e.g. TLR3 and IFN-α/β immunity). The search for human inborn errors of immunity (IEIs) underlying various forms of viral encephalitis, coupled with mouse models in vivo, and hPSC-based culture models of CNS and peripheral nervous system cells and organoids in vitro, should shed further light on the cell-specific and tissue-specific mechanisms of host defense against viruses in the human brain.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris, Imagine Institute, Paris, France.
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
68
|
Oikonomou V, Break TJ, Gaffen SL, Moutsopoulos NM, Lionakis MS. Infections in the monogenic autoimmune syndrome APECED. Curr Opin Immunol 2021; 72:286-297. [PMID: 34418591 PMCID: PMC8578378 DOI: 10.1016/j.coi.2021.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by mutations in the Autoimmune Regulator (AIRE) gene, which impair the thymic negative selection of self-reactive T-cells and underlie the development of autoimmunity that targets multiple endocrine and non-endocrine tissues. Beyond autoimmunity, APECED features heightened susceptibility to certain specific infections, which is mediated by anti-cytokine autoantibodies and/or T-cell driven autoimmune tissue injury. These include the 'signature' APECED infection chronic mucocutaneous candidiasis (CMC), but also life-threatening coronavirus disease 2019 (COVID-19) pneumonia, bronchiectasis-associated bacterial pneumonia, and sepsis by encapsulated bacteria. Here we discuss the expanding understanding of the immunological mechanisms that contribute to infection susceptibility in this prototypic syndrome of impaired central tolerance, which provide the foundation for devising improved diagnostic and therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Vasileios Oikonomou
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Timothy J Break
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Sarah L Gaffen
- University of Pittsburgh, Division of Rheumatology and Clinical Immunology, Pittsburgh PA, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Inflammation Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
69
|
Hetemäki I, Laakso S, Välimaa H, Kleino I, Kekäläinen E, Mäkitie O, Arstila TP. Patients with autoimmune polyendocrine syndrome type 1 have an increased susceptibility to severe herpesvirus infections. Clin Immunol 2021; 231:108851. [PMID: 34508889 PMCID: PMC8425955 DOI: 10.1016/j.clim.2021.108851] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Almost all patients with autoimmune polyendocrine syndrome type 1 (APS-1) have neutralizing antibodies against type 1 interferons (IFN), important mediators of antiviral defense. Recently, neutralizing anti-IFN antibodies were shown to be a risk factor of severe COVID-19. Here we show in a cohort of 44 patients with APS-1 that higher titers of neutralizing anti-IFNα4 antibodies are associated with a higher and earlier incidence of VZV reactivation (herpes zoster). The patients also present with uncommonly severe clinical sequelae of herpetic infections. APS-1 patients had decreased humoral immune responses to varicella zoster virus, but cellular responses were comparable to healthy controls. These results suggest that blocking the type I interferon pathway in patients with APS-1 patients leads to a clinically significant immune deficiency, and susceptibility to herpesviruses should be taken into account when treating patients with APS-1.
Collapse
Affiliation(s)
- Iivo Hetemäki
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Saila Laakso
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannamari Välimaa
- Department of Virology, University of Helsinki, Helsinki, Finland; Department of Oral and Maxillofacial Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iivari Kleino
- Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Eliisa Kekäläinen
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics, Helsinki, Finland; Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Molecular Medicine, Karolinska Institutet, Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - T Petteri Arstila
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
70
|
Gao D, Ciancanelli MJ, Zhang P, Harschnitz O, Bondet V, Hasek M, Chen J, Mu X, Itan Y, Cobat A, Sancho-Shimizu V, Bigio B, Lorenzo L, Ciceri G, McAlpine J, Anguiano E, Jouanguy E, Chaussabel D, Meyts I, Diamond MS, Abel L, Hur S, Smith GA, Notarangelo L, Duffy D, Studer L, Casanova JL, Zhang SY. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J Clin Invest 2021; 131:134529. [PMID: 33393505 DOI: 10.1172/jci134529] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/β induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-β protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3-/- mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-β secretion and ISG mRNA in induced pluripotent stem cell-derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-β immunity.
Collapse
Affiliation(s)
- Daxing Gao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Department of General Surgery, The First Affiliated Hospital of USTC, and.,Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Michael J Ciancanelli
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Turnstone Biologics, New York, New York, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Vincent Bondet
- Translational Immunology Laboratory, Pasteur Institute, Paris, France
| | - Mary Hasek
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Jie Chen
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Xin Mu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuval Itan
- The Charles Bronfman Institute for Personalized Medicine, and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Vanessa Sancho-Shimizu
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Gabriele Ciceri
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Jessica McAlpine
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Esperanza Anguiano
- Baylor Institute for Immunology Research/ANRS Center for Human Vaccines, INSERM U899, Dallas, Texas, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Damien Chaussabel
- Baylor Institute for Immunology Research/ANRS Center for Human Vaccines, INSERM U899, Dallas, Texas, USA.,Benaroya Research Institute, Seattle, Washington, USA.,Sidra Medicine, Doha, Qatar
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.,Precision Immunology Institute and Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luigi Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Darragh Duffy
- Translational Immunology Laboratory, Pasteur Institute, Paris, France
| | - Lorenz Studer
- The Center for Stem Cell Biology, and.,Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| |
Collapse
|
71
|
Bastard P, Orlova E, Sozaeva L, Lévy R, James A, Schmitt MM, Ochoa S, Kareva M, Rodina Y, Gervais A, Le Voyer T, Rosain J, Philippot Q, Neehus AL, Shaw E, Migaud M, Bizien L, Ekwall O, Berg S, Beccuti G, Ghizzoni L, Thiriez G, Pavot A, Goujard C, Frémond ML, Carter E, Rothenbuhler A, Linglart A, Mignot B, Comte A, Cheikh N, Hermine O, Breivik L, Husebye ES, Humbert S, Rohrlich P, Coaquette A, Vuoto F, Faure K, Mahlaoui N, Kotnik P, Battelino T, Trebušak Podkrajšek K, Kisand K, Ferré EM, DiMaggio T, Rosen LB, Burbelo PD, McIntyre M, Kann NY, Shcherbina A, Pavlova M, Kolodkina A, Holland SM, Zhang SY, Crow YJ, Notarangelo LD, Su HC, Abel L, Anderson MS, Jouanguy E, Neven B, Puel A, Casanova JL, Lionakis MS. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J Exp Med 2021; 218:e20210554. [PMID: 33890986 PMCID: PMC8077172 DOI: 10.1084/jem.20210554] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti-IFN-β and another anti-IFN-ε, but none had anti-IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | | | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alyssa James
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Monica M. Schmitt
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sebastian Ochoa
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Elana Shaw
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Stefan Berg
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | - Lucia Ghizzoni
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gérard Thiriez
- Intensive Care Unit, Besançon Hospital, Besançon, France
| | - Arthur Pavot
- Intensive Care Unit, Kremlin-Bicêtre Hospital, Kremlin-Bicêtre, France
| | - Cécile Goujard
- Internal Medicine Department, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Paris Saclay University, Institut National de la Santé et de la Recherche Médicale U1018, Le Kremlin-Bicêtre, France
| | - Marie-Louise Frémond
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris, Paris, France
- Laboratory of Neurogenetics and Neuroinflammation, Université de Paris, Imagine Institute, Paris, France
| | - Edwin Carter
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Anya Rothenbuhler
- Pediatric Endocrinology Department, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Agnès Linglart
- Pediatric Endocrinology Department, Bicêtre Hospital, Assistance Publique Hôpitaux de Paris, Paris Saclay University, Le Kremlin-Bicêtre, France
| | - Brigite Mignot
- Pediatric Medicine Unit, University Hospital of Besançon, Besançon, France
| | - Aurélie Comte
- Pediatric Medicine Unit, University Hospital of Besançon, Besançon, France
| | - Nathalie Cheikh
- Pediatric Hematology Unit, University Hospital of Besançon, Besançon, France
| | - Olivier Hermine
- University of Paris, Imagine Institute, Paris, France
- Hematology department, University of Paris, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Lars Breivik
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Eystein S. Husebye
- Department of Clinical Science and K.G. Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | | | - Pierre Rohrlich
- Pediatric Hematology and Oncology unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | | | - Fanny Vuoto
- Infectious Disease Unit, Lille Hospital, Lille, France
| | - Karine Faure
- Infectious Disease Unit, Lille Hospital, Lille, France
| | - Nizar Mahlaoui
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris, Paris, France
- Centre de Référence Déficits Immunitaires Héréditaires, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Primož Kotnik
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Medical Centre Ljubljana, University Children's Hospital, Ljubljana, Slovenia
| | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Medical Centre Ljubljana, University Children's Hospital, Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Medical Centre Ljubljana, University Children's Hospital, Ljubljana, Slovenia
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Elise M.N. Ferré
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Thomas DiMaggio
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lindsey B. Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Peter D. Burbelo
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | | | - Nelli Y. Kann
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Pavlova
- Department of Endocrinology N°1, Sechenov University, Moscow, Russia
| | | | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Yanick J. Crow
- Laboratory of Neurogenetics and Neuroinflammation, Université de Paris, Imagine Institute, Paris, France
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, Edinburgh, UK
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Bénédicte Neven
- University of Paris, Imagine Institute, Paris, France
- Pediatric Immunology, Hematology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
| | - Michail S. Lionakis
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
72
|
Le Voyer T, Sakata S, Tsumura M, Khan T, Esteve-Sole A, Al-Saud BK, Gungor HE, Taur P, Jeanne-Julien V, Christiansen M, Köhler LM, ElGhazali GE, Rosain J, Nishimura S, Sakura F, Bouaziz M, Oleaga-Quintas C, Nieto-Patlán A, Deyà-Martinez À, Altuner Torun Y, Neehus AL, Roynard M, Bozdemir SE, Al Kaabi N, Al Hassani M, Mersiyanova I, Rozenberg F, Speckmann C, Hainmann I, Hauck F, Alzahrani MH, Alhajjar SH, Al-Muhsen S, Cole T, Fuleihan R, Arkwright PD, Badolato R, Alsina L, Abel L, Desai M, Al-Mousa H, Shcherbina A, Marr N, Boisson-Dupuis S, Casanova JL, Okada S, Bustamante J. Genetic, Immunological, and Clinical Features of 32 Patients with Autosomal Recessive STAT1 Deficiency. THE JOURNAL OF IMMUNOLOGY 2021; 207:133-152. [PMID: 34183371 DOI: 10.4049/jimmunol.2001451] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Autosomal recessive (AR) STAT1 deficiency is a severe inborn error of immunity disrupting cellular responses to type I, II, and III IFNs, and IL-27, and conferring a predisposition to both viral and mycobacterial infections. We report the genetic, immunological, and clinical features of an international cohort of 32 patients from 20 kindreds: 24 patients with complete deficiency, and 8 patients with partial deficiency. Twenty-four patients suffered from mycobacterial disease (bacillus Calmette-Guérin = 13, environmental mycobacteria = 10, or both in 1 patient). Fifty-four severe viral episodes occurred in sixteen patients, mainly caused by Herpesviridae viruses. Attenuated live measles, mumps, and rubella and/or varicella zoster virus vaccines triggered severe reactions in the five patients with complete deficiency who were vaccinated. Seven patients developed features of hemophagocytic syndrome. Twenty-one patients died, and death was almost twice as likely in patients with complete STAT1 deficiency than in those with partial STAT1 deficiency. All but one of the eight survivors with AR complete deficiency underwent hematopoietic stem cell transplantation. Overall survival after hematopoietic stem cell transplantation was 64%. A diagnosis of AR STAT1 deficiency should be considered in children with mycobacterial and/or viral infectious diseases. It is important to distinguish between complete and partial forms of AR STAT1 deficiency, as their clinical outcome and management differ significantly.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France; .,University of Paris, Imagine Institute, Paris, France
| | - Sonoko Sakata
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taushif Khan
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Ana Esteve-Sole
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, and Functional Unit of Immunology, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Bandar K Al-Saud
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hatice Eke Gungor
- Department of Pediatrics, Pediatric Allergy and Immunology Unit, Kayseri Education and Research Hospital, Erkilet, Kayseri, Turkey
| | - Prasad Taur
- Department of Pediatric Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Valentine Jeanne-Julien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus N, Denmark
| | - Lisa-Maria Köhler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gehad Eltayeb ElGhazali
- Sheikh Khalifa Medical City-Union71, Abu Dhabi and Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Shiho Nishimura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Matthieu Bouaziz
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Alejandro Nieto-Patlán
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Research and Development in Bioprocess Unit, National School of Biological Sciences, National Polytechnic Institute, Mexico City, Mexico
| | - Àngela Deyà-Martinez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, and Functional Unit of Immunology, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Yasemin Altuner Torun
- Pediatric Hematology and Oncology Unit, Istinye University, School of Medicine, İstanbul, Turkey
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Manon Roynard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Sefika Elmas Bozdemir
- Pediatric İnfectious Disease Unit, Department of Pediatrics, Kayseri Education and Research Hospital, Erkilet, Kayseri, Turkey
| | - Nawal Al Kaabi
- Sheikh Khalifa Medical City-Union71, Abu Dhabi and Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Moza Al Hassani
- Sheikh Khalifa Medical City-Union71, Abu Dhabi and Department of Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Irina Mersiyanova
- Molecular Biology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Flore Rozenberg
- Department of Virology, Cochin Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Carsten Speckmann
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ina Hainmann
- Department of Pediatric Hematology and Oncology, University Hospital Bonn, Bonn, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Sami Hussain Alhajjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saleh Al-Muhsen
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Immunology Research Laboratory, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Theresa Cole
- Department of Immunology, The Royal Children's Hospital, Melbourne, Australia
| | - Ramsay Fuleihan
- Division of Allergy & Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Peter D Arkwright
- Department of Paediatric Allergy and Immunology, Lydia Becker Institute of Immunology and Inflammation, Royal Manchester Children's Hospital, University of Manchester, Manchester, United Kingdom
| | - Raffaele Badolato
- Institute of Molecular Medicine Angelo Nocivelli, University of Brescia, Civil Hospital of Brescia, Brescia, Italy
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, and Functional Unit of Immunology, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Mukesh Desai
- Department of Pediatric Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Hamoud Al-Mousa
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anna Shcherbina
- Department of Clinical Immunology and Allergy, Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Nico Marr
- Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY; and
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France; .,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Study Center for Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
73
|
Bastard P, Zhang Q, Cobat A, Jouanguy E, Zhang SY, Abel L, Casanova JL. Insufficient type I IFN immunity underlies life-threatening COVID-19 pneumonia. C R Biol 2021; 344:19-25. [PMID: 34213846 DOI: 10.5802/crbiol.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We established the COVID Human Genetic Effort (www.covidhge.com) to discover the human genetic and immunological bases of the vast interindividual clinical variability between humans infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found that about 3% of patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia were ill because of inborn errors of genes controlling type I interferon (IFN)-dependent immunity (which controls influenza virus), and at least 10% of patients with life-threatening COVID-19 pneumonia had neutralizing auto-Abs against some of the 17 individual type I IFNs. These findings indicate that impaired type I IFN immunity underlies life-threatening COVID-19 pneumonia in at least 13% of patients. These discoveries pave the way for further research into unexplained severe cases, and provide a rationale for preventing and treating the disease in individuals at risk, with recombinant type I IFNs.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,University of Paris, Imagine Institute, Paris, France
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,University of Paris, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,University of Paris, Imagine Institute, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,University of Paris, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- Howard Hughes Medical Institute, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
74
|
Monogenic susceptibility to live viral vaccines. Curr Opin Immunol 2021; 72:167-175. [PMID: 34107321 PMCID: PMC9586878 DOI: 10.1016/j.coi.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Live attenuated viral vaccines (LAV) have saved millions of lives globally through their capacity to elicit strong, cross-reactive and enduring adaptive immune responses. However, LAV can also act as a Trojan horse to reveal inborn errors of immunity, thereby highlighting important protective elements of the healthy antiviral immune response. In the following article, we draw out these lessons by reviewing the spectrum of LAV-associated disease reported in a variety of inborn errors of immunity. We note the contrast between adaptive disorders, which predispose to both LAV and their wild type counterparts, and defects of innate immunity in which parenterally delivered LAV behave in a particularly threatening manner. Recognition of the underlying pathomechanisms can inform our approach to disease management and vaccination in a wider group of individuals, including those receiving immunomodulators that impact the relevant pathways.
Collapse
|
75
|
Bigio B, Seeleuthner Y, Kerner G, Migaud M, Rosain J, Boisson B, Nasca C, Puel A, Bustamante J, Casanova JL, Abel L, Cobat A. Detection of homozygous and hemizygous complete or partial exon deletions by whole-exome sequencing. NAR Genom Bioinform 2021; 3:lqab037. [PMID: 34046589 PMCID: PMC8140739 DOI: 10.1093/nargab/lqab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
The detection of copy number variations (CNVs) in whole-exome sequencing (WES) data is important, as CNVs may underlie a number of human genetic disorders. The recently developed HMZDelFinder algorithm can detect rare homozygous and hemizygous (HMZ) deletions in WES data more effectively than other widely used tools. Here, we present HMZDelFinder_opt, an approach that outperforms HMZDelFinder for the detection of HMZ deletions, including partial exon deletions in particular, in WES data from laboratory patient collections that were generated over time in different experimental conditions. We show that using an optimized reference control set of WES data, based on a PCA-derived Euclidean distance for coverage, strongly improves the detection of HMZ complete exon deletions both in real patients carrying validated disease-causing deletions and in simulated data. Furthermore, we develop a sliding window approach enabling HMZDelFinder_opt to identify HMZ partial deletions of exons that are undiscovered by HMZDelFinder. HMZDelFinder_opt is a timely and powerful approach for detecting HMZ deletions, particularly partial exon deletions, in WES data from inherently heterogeneous laboratory patient collections.
Collapse
Affiliation(s)
- Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Gaspard Kerner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Carla Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Aurelie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
| |
Collapse
|
76
|
Meyts I, Casanova JL. Viral infections in humans and mice with genetic deficiencies of the type I IFN response pathway. Eur J Immunol 2021; 51:1039-1061. [PMID: 33729549 PMCID: PMC8900014 DOI: 10.1002/eji.202048793] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 01/31/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022]
Abstract
Type I IFNs are so-named because they interfere with viral infection in vertebrate cells. The study of cellular responses to type I IFNs led to the discovery of the JAK-STAT signaling pathway, which also governs the response to other cytokine families. We review here the outcome of viral infections in mice and humans with engineered and inborn deficiencies, respectively, of (i) IFNAR1 or IFNAR2, selectively disrupting responses to type I IFNs, (ii) STAT1, STAT2, and IRF9, also impairing cellular responses to type II (for STAT1) and/or III (for STAT1, STAT2, IRF9) IFNs, and (iii) JAK1 and TYK2, also impairing cellular responses to cytokines other than IFNs. A picture is emerging of greater redundancy of human type I IFNs for protective immunity to viruses in natural conditions than was initially anticipated. Mouse type I IFNs are essential for protection against a broad range of viruses in experimental conditions. These findings suggest that various type I IFN-independent mechanisms of human cell-intrinsic immunity to viruses have yet to be discovered.
Collapse
Affiliation(s)
- Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium, EU
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium, EU
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France, EU
- University of Paris, Imagine Institute, 75015 Paris, France, EU
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
77
|
Rispoli F, Valencic E, Girardelli M, Pin A, Tesser A, Piscianz E, Boz V, Faletra F, Severini GM, Taddio A, Tommasini A. Immunity and Genetics at the Revolving Doors of Diagnostics in Primary Immunodeficiencies. Diagnostics (Basel) 2021; 11:532. [PMID: 33809703 PMCID: PMC8002250 DOI: 10.3390/diagnostics11030532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Primary immunodeficiencies (PIDs) are a large and growing group of disorders commonly associated with recurrent infections. However, nowadays, we know that PIDs often carry with them consequences related to organ or hematologic autoimmunity, autoinflammation, and lymphoproliferation in addition to simple susceptibility to pathogens. Alongside this conceptual development, there has been technical advancement, given by the new but already established diagnostic possibilities offered by new genetic testing (e.g., next-generation sequencing). Nevertheless, there is also the need to understand the large number of gene variants detected with these powerful methods. That means advancing beyond genetic results and resorting to the clinical phenotype and to immunological or alternative molecular tests that allow us to prove the causative role of a genetic variant of uncertain significance and/or better define the underlying pathophysiological mechanism. Furthermore, because of the rapid availability of results, laboratory immunoassays are still critical to diagnosing many PIDs, even in screening settings. Fundamental is the integration between different specialties and the development of multidisciplinary and flexible diagnostic workflows. This paper aims to tell these evolving aspects of immunodeficiencies, which are summarized in five key messages, through introducing and exemplifying five clinical cases, focusing on diseases that could benefit targeted therapy.
Collapse
Affiliation(s)
- Francesco Rispoli
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Martina Girardelli
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Elisa Piscianz
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Valentina Boz
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
| | - Flavio Faletra
- Department of Diagnostics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Giovanni Maria Severini
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Andrea Taddio
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| | - Alberto Tommasini
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.R.); (V.B.); (A.T.); (A.T.)
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (M.G.); (A.P.); (A.T.); (E.P.); (G.M.S.)
| |
Collapse
|
78
|
Freij BJ, Hanrath AT, Chen R, Hambleton S, Duncan CJA. Life-Threatening Influenza, Hemophagocytic Lymphohistiocytosis and Probable Vaccine-Strain Varicella in a Novel Case of Homozygous STAT2 Deficiency. Front Immunol 2021; 11:624415. [PMID: 33679716 PMCID: PMC7930908 DOI: 10.3389/fimmu.2020.624415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 01/15/2023] Open
Abstract
STAT2 is a transcription factor that plays an essential role in antiviral immunity by mediating the activity of type I and III interferons (IFN-I and IFN-III). It also has a recently established function in the negative regulation of IFN-I signaling. Homozygous STAT2 deficiency is an ultra-rare inborn error of immunity which provides unique insight into the pathologic consequence of STAT2 dysfunction. We report here a novel genetic cause of homozygous STAT2 deficiency with several notable clinical features. The proband presented aged 12 months with hemophagocytic lymphohistiocytosis (HLH) closely followed by clinical varicella, both occurring within three weeks of measles, mumps, and rubella (MMR) and varicella vaccinations. There was a history of life-threatening influenza A virus (IAV) disease 2 months previously. Genetic investigation uncovered homozygosity for a novel nonsense variant in STAT2 (c. 1999C>T, p. Arg667Ter) that abrogated STAT2 protein expression. Compatible with STAT2 deficiency, dermal fibroblasts from the child demonstrated a defect of interferon-stimulated gene expression and a failure to mount an antiviral state in response to treatment with IFN-I, a phenotype that was rescued by lentiviral complementation by wild type STAT2. This case significantly expands the phenotypic spectrum of STAT2 deficiency. The occurrence of life-threatening influenza, which has not previously been reported in this condition, adds STAT2 to the list of monogenetic causes of this phenotype and underscores the critical importance of IFN-I and IFN-III to influenza immunity. The development of probable vaccine-strain varicella is also a novel occurrence in STAT2 deficiency, implying a role for IFN-I/III immunity in control of attenuated varicella zoster virus in vivo and reinforcing the susceptibility to pathologic effects of live-attenuated viral vaccines in disorders of IFN-I immunity. Finally, the occurrence of HLH in this case reinforces emerging links to hyperinflammation in patients with STAT2 deficiency and other related defects of IFN-I signaling-highlighting an important avenue for further scientific enquiry.
Collapse
Affiliation(s)
- Bishara J. Freij
- Pediatric Department, Beaumont Children's Hospital, Royal Oak, MI, United States
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Aidan T. Hanrath
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Rui Chen
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Sophie Hambleton
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Christopher J. A. Duncan
- Immunity and Inflammation Theme, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
- Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
79
|
Bastard P, Michailidis E, Hoffmann HH, Chbihi M, Le Voyer T, Rosain J, Philippot Q, Seeleuthner Y, Gervais A, Materna M, de Oliveira PMN, Maia MDLS, Dinis Ano Bom AP, Azamor T, Araújo da Conceição D, Goudouris E, Homma A, Slesak G, Schäfer J, Pulendran B, Miller JD, Huits R, Yang R, Rosen LB, Bizien L, Lorenzo L, Chrabieh M, Erazo LV, Rozenberg F, Jeljeli MM, Béziat V, Holland SM, Cobat A, Notarangelo LD, Su HC, Ahmed R, Puel A, Zhang SY, Abel L, Seligman SJ, Zhang Q, MacDonald MR, Jouanguy E, Rice CM, Casanova JL. Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J Exp Med 2021; 218:211761. [PMID: 33544838 PMCID: PMC7871457 DOI: 10.1084/jem.20202486] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine–associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | | | | | - Marwa Chbihi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | | | | | - Ana Paula Dinis Ano Bom
- Laboratory of Immunological Techniques, Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Tamiris Azamor
- Laboratory of Immunological Techniques, Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | | | | | - Akira Homma
- Bio-Manguinhos, Fiocruz, Ministry of Health, Rio de Janeiro, Brazil
| | - Günther Slesak
- Tropical Medicine Department, Tropenklinik Paul-Lechler-Krankenhaus, Tübingen, Germany
| | - Johannes Schäfer
- Tropical Medicine Department, Tropenklinik Paul-Lechler-Krankenhaus, Tübingen, Germany
| | - Bali Pulendran
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA.,Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Joseph D Miller
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA.,Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Scientific Resources, Atlanta, GA
| | - Ralph Huits
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| | - Lucia V Erazo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France
| | - Flore Rozenberg
- Laboratory of Virology, University of Paris, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mohamed Maxime Jeljeli
- Laboratory of Immunology, University of Paris, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Helen C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rafi Ahmed
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Stephen J Seligman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,New York Medical College, Valhalla, NY
| | - Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY.,Howard Hughes Medical Institute, New York, NY
| |
Collapse
|