51
|
Denny CA, Heinecke KA, Kim YP, Baek RC, Loh KS, Butters TD, Bronson RT, Platt FM, Seyfried TN. Restricted ketogenic diet enhances the therapeutic action of N-butyldeoxynojirimycin towards brain GM2 accumulation in adult Sandhoff disease mice. J Neurochem 2010; 113:1525-35. [PMID: 20374428 DOI: 10.1111/j.1471-4159.2010.06733.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sandhoff disease is an autosomal recessive, neurodegenerative disease involving the storage of brain ganglioside GM2 and asialo-GM2. Previous studies showed that caloric restriction, which augments longevity, and N-butyldeoxynojirimycin (NB-DNJ, Miglustat), an imino sugar that hinders the glucosyltransferase catalyzing the first step in glycosphingolipid biosynthesis, both increase longevity and improve motor behavior in the beta-hexosaminidase (Hexb) knockout (-/-) murine model of Sandhoff disease. In this study, we used a restricted ketogenic diet (KD-R) and NB-DNJ to combat ganglioside accumulation. Adult Hexb-/- mice were placed into one of the following groups: (i) a standard diet (SD), (ii) a SD with NB-DNJ (SD + NB-DNJ), (iii) a KD-R, and (iv) a KD-R with NB-DNJ (KD-R + NB-DNJ). Forebrain GM2 content (mug sialic acid/100 mg dry wt) in the four groups was 375 +/- 15, 312 +/- 8, 340 +/- 28, and 279 +/- 26, respectively, indicating an additive interaction between NB-DNJ and the KD-R. Most interestingly, brain NB-DNJ content was 3.5-fold greater in the KD-R + NB-DNJ mice than in the SD + NB-DNJ mice. These data suggest that the KD-R and NB-DNJ may be a potential combinatorial therapy for Sandhoff disease by enhancing NB-DNJ delivery to the brain and may allow lower dosing to achieve the same degree of efficacy as high dose monotherapy.
Collapse
Affiliation(s)
- Christine A Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Mazzoncini R, Zoli M, Tosato S, Lasalvia A, Ruggeri M. Can the role of genetic factors in schizophrenia be enlightened by studies of candidate gene mutant mice behaviour? World J Biol Psychiatry 2010; 10:778-97. [PMID: 19396727 DOI: 10.1080/15622970902875152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Schizophrenia is one of the most severe psychiatric disorders. Despite the knowledge accumulated over years, aetiology and pathophysiology remain uncertain. Research on families and twins suggests that genetic factors are largely responsible for the disease and implies specific genes as risk factors. Genetic epidemiology indicates a complex transmission mode, compatible with a multi-locus model, with single genes accounting for specific traits rather than for the entire phenotype. To better understand every single gene contribution to schizophrenia, the use of intermediate endophenotypes has been proposed. A straight communication between preclinical and clinical researchers could facilitate research on the association between genes and endophenotypes. Many behavioural tasks are available for humans and animals to measure endophenotypes. Here, firstly, we reviewed the most promising mouse behavioural tests modelling human behavioural tasks altered in schizophrenia. Secondly, we systematically reviewed animal models availability for a selection of candidate genes, derived from linkage and association studies. Thirdly, we systematically reviewed the studies which tested mutant mice in the above behavioural tasks. Results indicate a large mutant mice availability for schizophrenia candidate genes but they have been insufficiently tested in behavioural tasks. On the other hand, multivariate and translational approach should be implemented in several behavioural domains.
Collapse
Affiliation(s)
- Rodolfo Mazzoncini
- Department of Medicine and Public Health, Section of Psychiatry and Clinical Psychology, University of Verona, Verona, Italy.
| | | | | | | | | |
Collapse
|
53
|
Miglustat in late-onset Tay-Sachs disease: a 12-month, randomized, controlled clinical study with 24 months of extended treatment. Genet Med 2009; 11:425-33. [PMID: 19346952 DOI: 10.1097/gim.0b013e3181a1b5c5] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To evaluate the safety and efficacy of miglustat in patients with GM2 gangliosidosis. METHODS A randomized, multicenter, open-label, 12-month study involving patients aged 18 years or older, randomized 2:1 to miglustat (200 mg TID) or "no miglustat treatment." This study was followed by 24 months of extended treatment during which all patients received miglustat. Primary efficacy endpoints were change in eight measures of isometric muscle strength in the limbs and isometric grip strength, evaluated at baseline, and months 12 and 36. Secondary efficacy endpoints included gait, balance, disability, and other neurological assessments. Safety evaluations included adverse event reporting. RESULTS Thirty patients (67% male, age range 18-56 years) with late-onset Tay-Sachs disease were enrolled; 20 were randomized to miglustat and 10 to "no miglustat treatment." Muscle and grip strength generally decreased over the study period. No differences were observed between the two groups in any efficacy measure, either during the 12-month randomized phase or the full 36 months. The most common treatment-related adverse events were decrease in weight and diarrhea. CONCLUSION Miglustat treatment was not shown to lead to measurable benefits in this cohort of patients with late-onset Tay-Sachs disease. The observed safety profile was consistent with that of the approved dose (100 mg TID) in type 1 Gaucher disease.
Collapse
|
54
|
Kyrkanides S, Miller AW, Miller JNH, Tallents RH, Brouxhon SM, Olschowka ME, O'Banion MK, Olschowka JA. Peripheral blood mononuclear cell infiltration and neuroinflammation in the HexB-/- mouse model of neurodegeneration. J Neuroimmunol 2009; 203:50-7. [PMID: 18657867 DOI: 10.1016/j.jneuroim.2008.06.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/28/2008] [Accepted: 06/17/2008] [Indexed: 11/16/2022]
Abstract
Myeloid-derived immune cells, including microglia, macrophages and monocytes, have been previously implicated in neurodegeneration. We investigated the role of infiltrating peripheral blood mononuclear cells (PBMC) in neuroinflammation and neurodegeneration in the HexB-/- mouse model of Sandhoff disease. Ablation of the chemokine receptor CCR2 in the HexB-/- mouse resulted in significant inhibition of PBMC infiltration into the brain, decrease in TNFalpha and MHC-II mRNA abundance and retardation in clinical disease development. There was no change in the level of GM2 storage and pro-apoptotic activity or astrocyte activation in HexB-/-; Ccr2-/- double knockout mice, which eventually succumbed secondary to GM2 gangliosidosis.
Collapse
Affiliation(s)
- Stephanos Kyrkanides
- Department of Neurobiology & Anatomy, School of Medicine & Dentistry, University of Rochester Rochester NY 14642, USA.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Baek RC, Martin DR, Cox NR, Seyfried TN. Comparative analysis of brain lipids in mice, cats, and humans with Sandhoff disease. Lipids 2008; 44:197-205. [PMID: 19034545 DOI: 10.1007/s11745-008-3268-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 10/29/2008] [Indexed: 11/29/2022]
Abstract
Sandhoff disease (SD) is a glycosphingolipid (GSL) storage disease that arises from an autosomal recessive mutation in the gene for the beta-subunit of beta-Hexosaminidase A (Hexb gene), which catabolizes ganglioside GM2 within lysosomes. Accumulation of GM2 and asialo-GM2 (GA2) occurs primarily in the CNS, leading to neurodegeneration and brain dysfunction. We analyzed the total lipids in the brains of SD mice, cats, and humans. GM2 and GA2 were mostly undetectable in the normal mouse, cat, and human brain. The lipid abnormalities in the SD cat brain were generally intermediate to those observed in the SD mouse and the SD human brains. GM2 comprised 38, 67, and 87% of the total brain ganglioside distribution in the SD mice, cats, and humans, respectively. The ratio of GA2-GM2 was 0.93, 0.13, and 0.27 in the SD mice, cats, and humans, respectively, suggesting that the relative storage of GA2 is greater in the SD mouse than in the SD cat or human. Finally, the myelin-enriched lipids, cerebrosides and sulfatides, were significantly lower in the SD brains than in the control brains. This study is the first comparative analysis of brain lipids in mice, cats, and humans with SD and will be important for designing therapies for Sandhoff disease patients.
Collapse
Affiliation(s)
- Rena C Baek
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
56
|
Zeng BJ, Torres PA, Viner TC, Wang ZH, Raghavan SS, Alroy J, Pastores GM, Kolodny EH. Spontaneous appearance of Tay-Sachs disease in an animal model. Mol Genet Metab 2008; 95:59-65. [PMID: 18693054 DOI: 10.1016/j.ymgme.2008.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
Abstract
Tay-Sachs disease (TSD) is a progressive neurodegenerative disorder due to an autosomal recessively inherited deficiency of beta-hexosaminidase A (Hex A). Deficiency of Hex A in TSD is caused by a defect of the alpha-subunit resulting from mutations of the HEXA gene. To date, there is no effective treatment for TSD. Animal models of genetic diseases, similar to those known to exist in humans, are valuable and essential research tools for the study of potentially effective therapies. However, there is no ideal animal model of TSD available for use in therapeutic trials. In the present study, we report an animal model (American flamingo; Phoenicopterus ruber) of TSD with Hex A deficiency occurring spontaneously in nature, with accumulation of G(M2)-ganglioside, deficiency of Hex A enzymatic activity, and a homozygous P469L mutation in exon 12 of the hexa gene. In addition, we have isolated the full-length cDNA sequence of the flamingo, which consists of 1581 nucleotides encoding a protein of 527 amino acids. Its coding sequence indicates approximately 71% identity at the nucleotide level and about 72.5% identity at the amino acid level with the encoding region of the human HEXA gene. This animal model, with many of the same features as TSD in humans, could represent a valuable resource for investigating therapy of TSD.
Collapse
Affiliation(s)
- B J Zeng
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Glycosphingolipids, comprising a ceramide lipid backbone linked to one/more saccharides, are particularly abundant on the outer leaflet of the eukaryotic plasma membrane and play a role in a wide variety of essential cellular processes. Biosynthesis and subsequently degradation of these lipids is tightly regulated via the involvement of numerous enzymes, and failure of an enzyme to participate in the metabolism results in storage of the enzyme's substrate, giving rise to a lysosomal storage disease. The characteristics, severity and onset of the disease are dependent on the enzyme deficient and the residual activity. Most lysosomal storage disorders found thus far are caused by a defect in the catabolic activity of a hydrolase, causing progressive accumulation of its substrate, predominantly in the lysosome. Storage of gangliosides, sialic acid containing glycosphingolipids, mostly found in the central nervous system, is a hallmark of neuronopathic forms of the disease, that include GM1 and GM2 gangliosidoses, Gaucher type II and III and Niemann-Pick C. Models for these diseases have provided valuable insight into the disease pathology and potential treatment methods.Treatment of these rare but severe disorders proves challenging due to restricted access of therapeutics through the blood-brain barrier. However, recent advances in enzyme replacement, bone marrow transplantation, gene transfer, substrate reduction and chaperon-mediated therapy provide great potential in treating these devastating disorders.
Collapse
Affiliation(s)
- Stephanie D Boomkamp
- Glycobiology Institute, Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | | |
Collapse
|
58
|
Early deficits in motor coordination and cognitive dysfunction in a mouse model of the neurodegenerative lysosomal storage disorder, Sandhoff disease. Behav Brain Res 2008; 193:315-9. [PMID: 18611415 DOI: 10.1016/j.bbr.2008.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 06/06/2008] [Accepted: 06/09/2008] [Indexed: 11/24/2022]
Abstract
Mouse models of lysosomal storage diseases, including Sandhoff disease, are frequently employed to test therapies directed at the central nervous system. We backbred such mice and conducted a behavioral test battery which included sensorimotor and cognitive assessments. This is the first report of short-term memory deficits in a murine model of Sandhoff disease. We also document early onset of motor deficits using the balance beam test.
Collapse
|
59
|
Immune system irregularities in lysosomal storage disorders. Acta Neuropathol 2008; 115:159-74. [PMID: 17924126 DOI: 10.1007/s00401-007-0296-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 02/07/2023]
Abstract
Lysosomal storage disorders (LSDs) are genetically inherited diseases characterized by the accumulation of disease-specific biological materials such as proteolipids or metabolic intermediates within the lysosome. The lysosomal compartment's central importance to normal cellular function can be appreciated by examining the various pathologies that arise in LSDs. These disorders are invariably fatal, and many display profound neurological impairment that begins in childhood. However, recent studies have revealed that several LSDs also have irregularities in the function of the immune system. Gaucher disease, mucopolysaccharidosis VII, and alpha-mannosidosis are examples of a subset of LSD patients that are predisposed towards immune suppression. In contrast, GM2 gangliosidosis, globoid cell leukodystrophy, Niemann-Pick disease type C1 and juvenile neuronal ceroid lipofuscinosis are LSDs that are predisposed towards immune system hyperactivity. Antigen presentation and processing by dedicated antigen presenting cells (APCs), secretion of pore-forming perforins by cytotoxic-T lymphocytes, and release of pro-inflammatory mediators by mast cells are among the many crucial immune system functions in which the lysosome plays a central role. Although the relationship between the modification of the lysosomal compartment in LSDs and modulation of the immune system remains unknown, there is emerging evidence for early neuroimmune responses in a variety of LSDs. In this review we bridge biochemical studies on the lysosomal compartment's role in the immune system with clinical data on immune system irregularities in a subset of LSDs.
Collapse
|
60
|
Akeboshi H, Chiba Y, Kasahara Y, Takashiba M, Takaoka Y, Ohsawa M, Tajima Y, Kawashima I, Tsuji D, Itoh K, Sakuraba H, Jigami Y. Production of recombinant beta-hexosaminidase A, a potential enzyme for replacement therapy for Tay-Sachs and Sandhoff diseases, in the methylotrophic yeast Ogataea minuta. Appl Environ Microbiol 2007; 73:4805-12. [PMID: 17557860 PMCID: PMC1951009 DOI: 10.1128/aem.00463-07] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/24/2007] [Indexed: 01/28/2023] Open
Abstract
Human beta-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of alpha- and beta-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using alpha-1,6-mannosyltransferase-deficient (och1Delta) yeast as the host. Genes encoding the alpha- and beta-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (alphaalpha) and HexB (betabeta). A total of 57 mg of beta-hexosaminidase isozymes, of which 13 mg was HexA (alphabeta), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the beta-subunit. The purified HexA was treated with alpha-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 +/- 0.1 and 1.7 +/- 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the beta-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.
Collapse
Affiliation(s)
- Hiromi Akeboshi
- Research Center for Glycoscience, AIST Tsukuba Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
McNally MA, Baek RC, Avila RL, Seyfried TN, Strichartz GR, Kirschner DA. Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis. J Negat Results Biomed 2007; 6:8. [PMID: 17623103 PMCID: PMC1976615 DOI: 10.1186/1477-5751-6-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 07/10/2007] [Indexed: 01/25/2023] Open
Abstract
Background Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (Hexb gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (Hexb-/-), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system. Results We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the Hexb+/- and Hexb-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of Hexb+/- and Hexb-/- mice showed normal myelin periods; however, Hexb-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of Hexb-/- mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the Hexb-/- mice (undetectable in Hexb+/-). Conclusion Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.
Collapse
Affiliation(s)
- Melanie A McNally
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Rena C Baek
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Robin L Avila
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Thomas N Seyfried
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Gary R Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Daniel A Kirschner
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| |
Collapse
|
62
|
Intraperitoneal inoculation of Sandhoff mouse neonates with an HIV-1 based lentiviral vector exacerbates the attendant neuroinflammation and disease phenotype. J Neuroimmunol 2007; 188:39-47. [PMID: 17572511 DOI: 10.1016/j.jneuroim.2007.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 04/24/2007] [Accepted: 05/07/2007] [Indexed: 12/23/2022]
Abstract
We aimed to evaluate the efficacy of VSV-G pseudotyped, defective HIV-1 based lentiviral vectors for the neonatal transfer of therapeutic genes following systemic administration in Sandhoff mouse pups. Despite transgene expression in mouse brains, these animals presented with significant exacerbation and acceleration of the disease neurological phenotype. We observed an increase and acceleration in the presence of MHC-II and CD45+ cells in their brains, along with neuroinflammation, but not in control heterozygous or wild type littermates that also received the same treatment.
Collapse
|
63
|
Glezer I, Chernomoretz A, David S, Plante MM, Rivest S. Genes involved in the balance between neuronal survival and death during inflammation. PLoS One 2007; 2:e310. [PMID: 17375196 PMCID: PMC1819560 DOI: 10.1371/journal.pone.0000310] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/26/2007] [Indexed: 12/22/2022] Open
Abstract
Glucocorticoids are potent regulators of the innate immune response, and alteration in this inhibitory feedback has detrimental consequences for the neural tissue. This study profiled and investigated functionally candidate genes mediating this switch between cell survival and death during an acute inflammatory reaction subsequent to the absence of glucocorticoid signaling. Oligonucleotide microarray analysis revealed that following lipopolysaccharide (LPS) intracerebral administration at striatum level, more modulated genes presented transcription impairment than exacerbation upon glucocorticoid receptor blockage. Among impaired genes we identified ceruloplasmin (Cp), which plays a key role in iron metabolism and is implicated in a neurodegenative disease. Microglial and endothelial induction of Cp is a natural neuroprotective mechanism during inflammation, because Cp-deficient mice exhibited increased iron accumulation and demyelination when exposed to LPS and neurovascular reactivity to pneumococcal meningitis. This study has identified genes that can play a critical role in programming the innate immune response, helping to clarify the mechanisms leading to protection or damage during inflammatory conditions in the CNS.
Collapse
Affiliation(s)
- Isaias Glezer
- Laboratory of Molecular Endocrinology, Centre Hospitalier de l'Université Laval (CHUL) Research Center and Department of Anatomy and Physiology, Laval University, Laurier, Québec, Canada
| | - Ariel Chernomoretz
- Laboratory of Molecular Endocrinology, Centre Hospitalier de l'Université Laval (CHUL) Research Center and Department of Anatomy and Physiology, Laval University, Laurier, Québec, Canada
- Physics Department, FCEyN, University of Buenos Aires, Buenos Aires, Argentina
| | - Samuel David
- Center for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal General Hospital Research Institute, Montreal, Quebec, Canada
| | - Marie-Michèle Plante
- Laboratory of Molecular Endocrinology, Centre Hospitalier de l'Université Laval (CHUL) Research Center and Department of Anatomy and Physiology, Laval University, Laurier, Québec, Canada
| | - Serge Rivest
- Laboratory of Molecular Endocrinology, Centre Hospitalier de l'Université Laval (CHUL) Research Center and Department of Anatomy and Physiology, Laval University, Laurier, Québec, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
64
|
Tsuji D, Higashine Y, Matsuoka K, Sakuraba H, Itoh K. Therapeutic evaluation of GM2 gangliosidoses by ELISA using anti-GM2 ganglioside antibodies. Clin Chim Acta 2007; 378:38-41. [PMID: 17196574 DOI: 10.1016/j.cca.2006.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 10/11/2006] [Accepted: 10/13/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND GM2 gangliosidoses, including Tay-Sachs disease, Sandhoff disease and the AB variant, comprise deficiencies of beta-hexosaminidase isozymes and GM2 ganglioside activator protein associated with accumulation of GM2 ganglioside (GM2) in lysosomes and neurosomatic clinical manifestations. A simple assay system for intracellular quantification of GM2 is required to evaluate the therapeutic effects on GM2-gangliosidoses. METHODS We newly established a cell-ELISA system involving anti-GM2 monoclonal antibodies for measuring GM2 storage in fibroblasts from Tay-Sachs and Sandhoff disease patients. RESULTS We succeeded in detecting the corrective effect of enzyme replacement on elimination of GM2 in the cells with this ELISA system. CONCLUSIONS This simple and sensitive system should be useful as additional diagnosis tool as well as therapeutic evaluation of GM2 gangliosidoses.
Collapse
Affiliation(s)
- Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute for Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
65
|
Kolter T, Sandhoff K. Sphingolipid metabolism diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:2057-79. [PMID: 16854371 DOI: 10.1016/j.bbamem.2006.05.027] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/26/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022]
Abstract
Human diseases caused by alterations in the metabolism of sphingolipids or glycosphingolipids are mainly disorders of the degradation of these compounds. The sphingolipidoses are a group of monogenic inherited diseases caused by defects in the system of lysosomal sphingolipid degradation, with subsequent accumulation of non-degradable storage material in one or more organs. Most sphingolipidoses are associated with high mortality. Both, the ratio of substrate influx into the lysosomes and the reduced degradative capacity can be addressed by therapeutic approaches. In addition to symptomatic treatments, the current strategies for restoration of the reduced substrate degradation within the lysosome are enzyme replacement therapy (ERT), cell-mediated therapy (CMT) including bone marrow transplantation (BMT) and cell-mediated "cross correction", gene therapy, and enzyme-enhancement therapy with chemical chaperones. The reduction of substrate influx into the lysosomes can be achieved by substrate reduction therapy. Patients suffering from the attenuated form (type 1) of Gaucher disease and from Fabry disease have been successfully treated with ERT.
Collapse
Affiliation(s)
- Thomas Kolter
- Kekulé-Institut für Organische Chemie und Biochemie der Universität, Gerhard-Domagk-Str. 1, D-53121 Bonn, Germany.
| | | |
Collapse
|
66
|
Hobert JA, Dawson G. Neuronal ceroid lipofuscinoses therapeutic strategies: Past, present and future. Biochim Biophys Acta Mol Basis Dis 2006; 1762:945-53. [PMID: 17049436 DOI: 10.1016/j.bbadis.2006.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 08/02/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Historically, many different therapies have been assessed for their ability to alter disease progression of the Neuronal Ceroid Lipofuscinoses (NCLs). While some treatments have lead to minor improvements, none have been able to arrest disease progression or improve the quality or duration of life. Presently, many new therapeutic strategies, such as chaperone therapy, enzyme replacement therapy, gene therapy, and stem cell therapy, are being investigated for their ability to alter the disease course of the NCLs. This review summarizes previous studied therapies, discusses those currently being evaluated and examines possibilities for future therapies for the treatment of patients with NCL.
Collapse
Affiliation(s)
- Judith A Hobert
- Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
67
|
Cachón-González MB, Wang SZ, Lynch A, Ziegler R, Cheng SH, Cox TM. Effective gene therapy in an authentic model of Tay-Sachs-related diseases. Proc Natl Acad Sci U S A 2006; 103:10373-10378. [PMID: 16801539 PMCID: PMC1482797 DOI: 10.1073/pnas.0603765103] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of beta-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the beta-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human beta-hexosaminidase alpha and beta subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of beta-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases.
Collapse
Affiliation(s)
- M Begoña Cachón-González
- *Department of Medicine, University of Cambridge, Level 5, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Susan Z Wang
- *Department of Medicine, University of Cambridge, Level 5, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom
| | - Andrew Lynch
- Centre for Applied Medical Statistics, Department of Public Health and Primary Care, University Forvie Site, Robinson Way, Cambridge CB2 2SR, United Kingdom; and
| | - Robin Ziegler
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322
| | - Seng H Cheng
- Genzyme Corporation, 31 New York Avenue, Framingham, MA 01701-9322
| | - Timothy M Cox
- *Department of Medicine, University of Cambridge, Level 5, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, United Kingdom;
| |
Collapse
|
68
|
Sands MS, Davidson BL. Gene therapy for lysosomal storage diseases. Mol Ther 2006; 13:839-49. [PMID: 16545619 DOI: 10.1016/j.ymthe.2006.01.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 01/28/2006] [Accepted: 01/28/2006] [Indexed: 02/04/2023] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a diverse group of monogenetic disorders with complex clinical phenotypes that include both systemic and central nervous system pathologies. In recent years, the identification or development of mouse models recapitulating the clinical course of the LSDs has been instrumental in evaluating therapeutic strategies. Here, we review the various gene replacement strategies for target organs affected in many LSDs and describe briefly the various vector systems employed to test how best to accomplish long-lasting therapies for these fatal disorders.
Collapse
Affiliation(s)
- Mark S Sands
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
69
|
Karolewski BA, Wolfe JH. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther 2006; 14:14-24. [PMID: 16624622 DOI: 10.1016/j.ymthe.2006.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/16/2006] [Accepted: 02/18/2006] [Indexed: 10/24/2022] Open
Abstract
Neurogenetic diseases typically have globally distributed lesions, and pathology usually develops early in life, requiring early diagnosis and treatment. We investigated the effects of transferring a corrective gene into the fetal brain before the onset of pathology in the mucopolysaccharidosis (MPS) type VII mouse, a model of a lysosomal storage disease. A single adeno-associated virus serotype 1 vector injection into the ventricle at 15.5 days of gestation resulted in widespread distribution and lifelong expression of the normal gene in the brain and spinal cord. The normal enzyme was distributed to neighboring cells (as expected) and completely prevented the development of storage lesions throughout the central nervous system (CNS). No vector transfer was found outside the CNS, including the gonads, but a small amount of enzyme was present in visceral tissues, consistent with transfer from cerebrospinal fluid to venous circulation. The enzyme was present peripherally in such low amounts that it did not result in the severe skeletal dysmorphology that occurs readily when systemic treatment is used in neonates. However, the survival probability of the treated animals was significantly increased. The results suggest that the nervous system disease may contribute to the overall physiologic health of the animal in this type of disease.
Collapse
Affiliation(s)
- Brian A Karolewski
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Pennsylvania, USA; Stokes Research Institute, Children's Hospital of Philadelphia, Philadelphia, Pennsylania 19104, USA
| | | |
Collapse
|
70
|
Arfi A, Zisling R, Richard E, Batista L, Poenaru L, Futerman AH, Caillaud C. Reversion of the biochemical defects in murine embryonic Sandhoff neurons using a bicistronic lentiviral vector encoding hexosaminidase alpha and beta. J Neurochem 2006; 96:1572-9. [PMID: 16441513 DOI: 10.1111/j.1471-4159.2006.03665.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sandhoff disease, a neurodegenerative disorder characterized by the intracellular accumulation of GM2 ganglioside, is caused by mutations in the hexosaminidase beta-chain gene resulting in a hexosaminidase A (alphabeta) and B (betabeta) deficiency. A bicistronic lentiviral vector encoding both the hexosaminidase alpha and beta chains (SIV.ASB) has previously been shown to correct the beta-hexosaminidase deficiency and to reduce GM2 levels both in transduced and cross-corrected human Sandhoff fibroblasts. Recent advances in determining the neuropathophysiological mechanisms in Sandhoff disease have shown a mechanistic link between GM2 accumulation, neuronal cell death, reduction of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) activity, and axonal outgrowth. To examine the ability of the SIV.ASB vector to reverse these pathophysiological events, hippocampal neurons from embryonic Sandhoff mice were transduced with the lentivector. Normal axonal growth rates were restored, as was the rate of Ca(2+) uptake via the SERCA and the sensitivity of the neurons to thapsigargin-induced cell death, concomitant with a decrease in GM2 and GA2 levels. Thus, we have demonstrated that the bicistronic vector can reverse the biochemical defects and down-stream consequences in Sandhoff neurons, reinforcing its potential for Sandhoff disease in vivo gene therapy.
Collapse
Affiliation(s)
- Audrey Arfi
- Université Paris-Descartes, Faculté de Médecine, INSERM, Centre National de la Recherche Scientifique, Institut Cochin, U567-UMR 8104, Paris, France
| | | | | | | | | | | | | |
Collapse
|
71
|
Denny CA, Kasperzyk JL, Gorham KN, Bronson RT, Seyfried TN. Influence of caloric restriction on motor behavior, longevity, and brain lipid composition in Sandhoff disease mice. J Neurosci Res 2006; 83:1028-38. [PMID: 16521125 DOI: 10.1002/jnr.20798] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Caloric restriction (CR), which improves health and increases longevity, was studied as a therapy in a hexosaminidase beta knockout mouse model of Sandhoff disease (SD), an incurable neurodegenerative disease involving accumulation of brain ganglioside GM2 and asialo-GM2 (GA2). Adult mice were fed a rodent chow diet either ad libitum (AL) or restricted to reduce body weight by 15-18% (CR). Although GM2 and GA2 were elevated, no significant differences were seen between the Hexb-/- and the Hexb+/- mice for most brain phospholipids and cholesterol. Cerebrosides and sulfatides were reduced in the Hexb-/- mice. In addition, rotorod performance was significantly worse in the Hexb-/- mice than in the Hexb+/- mice. CR, which decreased circulating glucose and elevated ketone bodies, significantly improved rotorod performance and extended longevity in the Hexb-/- mice but had no significant effect on brain lipid composition or on cytoplasmic neuronal vacuoles. The expression of CD68 and F4/80 was significantly less in the CR-fed than in the AL-fed Hexb-/- mice. We suggest that the CR delays disease progression in SD and possibly in other ganglioside storage diseases through anti-inflammatory mechanisms.
Collapse
MESH Headings
- 3-Hydroxybutyric Acid/blood
- Age Factors
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Behavior, Animal/physiology
- Blood Glucose
- Blotting, Western/methods
- Body Weight/physiology
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Caloric Restriction
- Cell Count/methods
- Chromatography, High Pressure Liquid/methods
- Disease Models, Animal
- Hexosaminidase B
- Immunohistochemistry/methods
- Lipids
- Mice
- Mice, Knockout
- Motor Activity/physiology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Rotarod Performance Test/methods
- Sandhoff Disease/genetics
- Sandhoff Disease/metabolism
- Sandhoff Disease/physiopathology
- beta-N-Acetylhexosaminidases/deficiency
Collapse
Affiliation(s)
- Christine A Denny
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
72
|
Jeyakumar M, Dwek RA, Butters TD, Platt FM. Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 2005; 6:713-25. [PMID: 16049428 DOI: 10.1038/nrn1725] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many neurodegenerative diseases are characterized by the accumulation of undegradable molecules in cells or at extracellular sites in the brain. One such family of diseases is the lysosomal storage disorders, which result from defects in various aspects of lysosomal function. Until recently, there was little prospect of treating storage diseases involving the CNS. However, recent progress has been made in understanding these conditions and in translating the findings into experimental therapies. We review the developments in this field and discuss the similarities in pathological features between these diseases and some more common neurodegenerative disorders.
Collapse
|
73
|
Martino S, Marconi P, Tancini B, Dolcetta D, De Angelis MGC, Montanucci P, Bregola G, Sandhoff K, Bordignon C, Emiliani C, Manservigi R, Orlacchio A. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay-Sachs disease. Hum Mol Genet 2005; 14:2113-23. [PMID: 15961412 DOI: 10.1093/hmg/ddi216] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Therapy for neurodegenerative lysosomal Tay-Sachs (TS) disease requires active hexosaminidase (Hex) A production in the central nervous system and an efficient therapeutic approach that can act faster than human disease progression. We combined the efficacy of a non-replicating Herpes simplex vector encoding for the Hex A alpha-subunit (HSV-T0alphaHex) and the anatomic structure of the brain internal capsule to distribute the missing enzyme optimally. With this gene transfer strategy, for the first time, we re-established the Hex A activity and totally removed the GM2 ganglioside storage in both injected and controlateral hemispheres, in the cerebellum and spinal cord of TS animal model in the span of one month's treatment. In our studies, no adverse effects were observed due to the viral vector, injection site or gene expression and on the basis of these results, we feel confident that the same approach could be applied to similar diseases involving an enzyme defect.
Collapse
Affiliation(s)
- S Martino
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biochimica e Biologia Molecolare University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Arfi A, Bourgoin C, Basso L, Emiliani C, Tancini B, Chigorno V, Li YT, Orlacchio A, Poenaru L, Sonnino S, Caillaud C. Bicistronic lentiviral vector corrects beta-hexosaminidase deficiency in transduced and cross-corrected human Sandhoff fibroblasts. Neurobiol Dis 2005; 20:583-93. [PMID: 15953731 DOI: 10.1016/j.nbd.2005.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 04/12/2005] [Accepted: 04/28/2005] [Indexed: 11/30/2022] Open
Abstract
Sandhoff disease is an autosomal recessive neurodegenerative disease characterized by a GM2 ganglioside intralysosomal accumulation. It is due to mutations in the beta-hexosaminidases beta-chain gene, resulting in a beta-hexosaminidases A (alphabeta) and B (betabeta) deficiency. Mono and bicistronic lentiviral vectors containing the HEXA or/and HEXB cDNAs were constructed and tested on human Sandhoff fibroblasts. The bicistronic SIV.ASB vector enabled a massive restoration of beta-hexosaminidases activity on synthetic substrates and a 20% correction on the GM2 natural substrate. Metabolic labeling experiments showed a large reduction of ganglioside accumulation in SIV.ASB transduced cells, demonstrating a correct recombinant enzyme targeting to the lysosomes. Moreover, enzymes secreted by transduced Sandhoff fibroblasts were endocytosed in deficient cells via the mannose 6-phosphate pathway, allowing GM2 metabolism restoration in cross-corrected cells. Therefore, our bicistronic lentivector supplying both alpha- and beta-subunits of beta-hexosaminidases may provide a potential therapeutic tool for the treatment of Sandhoff disease.
Collapse
Affiliation(s)
- Audrey Arfi
- Laboratoire de Génétique, Institut Cochin (Université René Descartes Paris 5, INSERM U567, CNRS UMR 8104), 24 rue du faubourg St-Jacques, 75014 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Butters TD, Dwek RA, Platt FM. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. Glycobiology 2005; 15:43R-52R. [PMID: 15901676 DOI: 10.1093/glycob/cwi076] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The inherited metabolic disorders of glycosphingolipid (GSL) metabolism are a relatively rare group of diseases that have diverse and often neurodegenerative phenotypes. Typically, a deficiency in catabolic enzyme activity leads to lysosomal storage of GSL substrates and in many diseases, several other glycoconjugates. A novel generic approach to treating these diseases has been termed substrate reduction therapy (SRT), and the discovery and development of N-alkylated imino sugars as effective and approved drugs is discussed. An understanding of the molecular mechanism for the inhibition of the key enzyme in GSL biosynthesis, ceramide glucosyltransferase (CGT) by N-alkylated imino sugars, has also lead to compound design for improvements to inhibitory potency, bioavailability, enzyme selectivity, and biological safety. Following a successful clinical evaluation of one compound, N-butyl-deoxynojirimycin [(NB-DNJ), miglustat, Zavesca], for treating type I Gaucher disease, issues regarding the significance of side effects and CNS access have been addressed as exposure of drug to patients has increased. An alternative experimental approach to treat specific glycosphingolipid (GSL) lysosomal storage diseases is to use imino sugars as molecular chaperons that assist protein folding and stability of mutant enzymes. The principles of chaperon-mediated therapy (CMT) are described, and the potential efficacy and preclinical status of imino sugars is compared with substrate reduction therapy (SRT). The increasing use of imino sugars for clinical evaluation of a group of storage diseases that are complex and often intractable disorders to treat has considerable benefit. This is particularly so given the ability of small molecules to be orally available, penetrate the central nervous system (CNS), and have well-characterized biological and pharmacological properties.
Collapse
Affiliation(s)
- Terry D Butters
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | |
Collapse
|
76
|
Tsuji D, Kuroki A, Ishibashi Y, Itakura T, Kuwahara J, Yamanaka S, Itoh K. Specific induction of macrophage inflammatory protein 1-alpha in glial cells of Sandhoff disease model mice associated with accumulation of N-acetylhexosaminyl glycoconjugates. J Neurochem 2005; 92:1497-507. [PMID: 15748167 DOI: 10.1111/j.1471-4159.2005.02986.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sandhoff disease is a lysosomal storage disease caused by simultaneous deficiencies of beta-hexosaminidase A (HexA; alphabeta) and B (HexB; betabeta), due to a primary defect of the beta-subunit gene (HEXB) associated with excessive accumulation of GM2 ganglioside (GM2) and oligosaccharides with N-acetylhexosamine residues at their non-reducing termini, and with neurosomatic manifestations. To elucidate the neuroinflammatory mechanisms involved in its pathogenesis, we analyzed the expression of chemokines in Sandhoff disease model mice (SD mice) produced by disruption of the murine Hex beta-subunit gene allele (Hexb-/-). We demonstrated that chemokine macrophage inflammatory protein-1 alpha (MIP-1alpha) was induced in brain regions, including the cerebral cortex, brain stem and cerebellum, of SD mice from an early stage of the pathogenesis but not in other systemic organs. On the other hand, little changes in other chemokine mRNAs, including those of RANTES (regulated upon activation, normal T expressed and secreted), MCP-1 (monocyte chemotactic protein-1), SLC (secondary lymphoid-tissue chemokine), fractalkine and SDF-1 (stromal derived factor-1), were detected. Significant up-regulation of MIP-1alpha mRNA and protein in the above-mentioned brain regions was observed in parallel with the accumulation of natural substrates of HexA and HexB. Immunohistochemical analysis revealed that MIP-1alpha-immunoreactivity (IR) in the above-mentioned brain regions of SD mice was co-localized in Iba1-IR-positive microglial cells and partly in glial fibrillary acidic protein (GFAP)-IR-positive astrocytes, in which marked accumulation of N-acetylglucosaminyl (GlcNAc)-oligosaccharides was observed from the presymptomatic stage of the disease. In contrast, little MIP-1alpha-IR was observed in neurons in which GM2 accumulated predominantly. These results suggest that specific induction of MIP-1alpha might coincide with the accumulation of GlcNAc-oligosaccharides due to a HexB deficiency in resident microglia and astrocytes in the brains of SD mice causing their activation and acceleration of the progressive neurodegeneration in SD mice.
Collapse
Affiliation(s)
- Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute of Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Fasipe FR, Ubawike AE, Eva R, Fabry ME. Arginine supplementation improves rotorod performance in sickle transgenic mice. ACTA ACUST UNITED AC 2005; 9:301-5. [PMID: 15621739 DOI: 10.1080/10245330410001714185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Patients with sickle cell disease (SCD) have been shown to have impaired visual-motor speed and coordination. Sensorimotor deficits in mice can be investigated by motor coordination tests that require whole body movements such as the rotorod. A sickle transgenic mouse model (S+S-Antilles) that expresses human alpha, human beta(S) and human beta(S-Antilles), is homozygous for the mouse beta(major) deletion, and has low plasma arginine was compared to control C57BL/6J mice and S+S-Antilles mice supplemented with 5% arginine on the rotorod. The rotorod consists of a 2.5 cm diameter, grooved rod turning at constant acceleration, requiring postural adjustments on the part of the mice to maintain equilibrium. C57BL mice on Purina mouse chow had an average latency to fall of S+S-Antilles mice on Purina mouse chow had an average of 127+/-56 s S+S-Antilles mice after 5% arginine supplementation had a mean latency of Arginine may improve rotorod performance in sickle transgenic mice by increasing NO synthesis thereby improving vasodilatation and blood flow with reversal of ischemia in brain and/or muscle. In conclusion, impaired rotorod performance in sickle transgenic mice presents an opportunity to apply this simple task to provide an efficient method to screen some types of therapeutic regimens for efficacy in SCD.
Collapse
Affiliation(s)
- Francisca R Fasipe
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Montefiore Medical Centre, Albert Einstein College of Medicine, Bronx, NY 10467, USA.
| | | | | | | |
Collapse
|
78
|
Kyrkanides S, Miller JH, Brouxhon SM, Olschowka JA, Federoff HJ. β-hexosaminidase lentiviral vectors: transfer into the CNS via systemic administration. ACTA ACUST UNITED AC 2005; 133:286-98. [PMID: 15710246 DOI: 10.1016/j.molbrainres.2004.10.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2004] [Indexed: 12/25/2022]
Abstract
Brain inflammation in GM2 gangliosidosis has been recently realized as a key factor in disease development. The aim of this study was to investigate the effects of a FIV beta-hexosaminidase vector in the brain of HexB-deficient (Sandhoff disease) mice following intraperitoneal administration to pups of neonatal age. Since brain inflammation, lysosomal storage and neuromuscular dysfunction are characteristics of HexB deficiency, these parameters were employed as experimental outcomes in our study. The ability of the lentiviral vector FIV(HEX) to infect murine cells was initially demonstrated with success in normal mouse fibroblasts and human Tay-Sachs cells in vitro. Furthermore, systemic transfer of FIV(HEX) to P2 HexB-/- knockout pups lead to transduction of peripheral and central nervous system tissues. Specifically, beta-hexosaminidase expressing cells were immunolocalized in periventricular areas of the cerebrum as well as in the cerebellar cortex. FIV(HEX) neonatal treatment resulted in reduction of GM2 storage along with attenuation of the brain inflammation and amelioration of the attendant neuromuscular deterioration. In conclusion, these results demonstrate the effective transfer of a beta-hexosaminidase lentiviral vector to the brain of Sandhoff mice and resolution of the GM2 gangliosidosis after neonatal intraperitoneal administration.
Collapse
Affiliation(s)
- Stephanos Kyrkanides
- Department of Dentistry, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester NY 14642, United States.
| | | | | | | | | |
Collapse
|
79
|
Wilson JMB, Petrik MS, Moghadasian MH, Shaw CA. Examining the interaction of apo E and neurotoxicity on a murine model of ALS-PDC. Can J Physiol Pharmacol 2005; 83:131-41. [PMID: 15791286 DOI: 10.1139/y04-140] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological studies have shown a positive relationship between cycad flour consumption and the development of the neurodegenerative disorder, amyotrophic lateral sclerosis – parkinsonism – dementia complex (ALS-PDC). Apolipoprotein E (apo E) allele variations have been associated with genetic susceptibility in neurodegenerative diseases, including ALS-PDC. We have studied cycad toxicity in a mouse model of ALS-PDC with a particular interest in its impact on the central nervous system (CNS) in both apo E knock-out (KO) mice and their wild-type (WT) counterparts. Behavioral motor tests, motor neuron counts, and immunohistochemical staining in brain and spinal cord, as well as routine histological examinations on internal organs, were performed to evaluate cycad toxicity. Plasma cholesterol levels were also measured before and during the study. Cycad treatment was associated with higher levels of plasma cholesterol only in apo E KO mice; increased levels of plasma cholesterol did not result in increased athero genesis. Cycad-fed wild-type mice developed progressive behavioral deficits including ALS-PDC-like pathological outcomes, while cycad-fed apo E KO mice were not significantly affected. Cycad-fed wild-type mice had shorter gait length measurements along with higher active caspase-3 levels in the striatum, substantia nigra, primary motor cortex, and spinal cord as compared with corresponding controls. These changes were associated with decreased labeling for glutamate transporter 1B and tyrosine hydroxylase activity levels. No evidence of cycad toxicity was observed in internal organs of either wild-type or apo E KO mice. Our data demonstrate that apo E KO mice are less susceptible to cycad toxicity, suggesting a role for apo E as a possible genetic susceptibility factor for some forms of toxin-induced neurodegeneration.Key words: apolipoprotein E, amyotrophic lateral sclerosis (ALS), ALS-parkinsonism dementia complex (ALS-PDC), parkinsonism, dementia, neurodegeneration, glutamate transporter, sterol, sterol glucoside.
Collapse
Affiliation(s)
- J M B Wilson
- Department of Opthalmology and Program in Neuroscience, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
80
|
Kasperzyk JL, d'Azzo A, Platt FM, Alroy J, Seyfried TN. Substrate reduction reduces gangliosides in postnatal cerebrum-brainstem and cerebellum in GM1 gangliosidosis mice. J Lipid Res 2005; 46:744-51. [PMID: 15687347 DOI: 10.1194/jlr.m400411-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
II3NeuAc-GgOse4Cer (GM1) gangliosidosis is an incurable lysosomal storage disease caused by a deficiency in acid beta-galactosidase (beta-gal), resulting in the accumulation of ganglioside GM1 and its asialo derivative GgOse4Cer (GA1) in the central nervous system, primarily in the brain. In this study, we investigated the effects of N-butyldeoxygalacto-nojirimycin (N B-DGJ), an imino sugar that inhibits ganglioside biosynthesis, in normal C57BL/6J mice and in beta-gal knockout (beta-gal-/-) mice from postnatal day 9 (p-9) to p-15. This is a period of active cerebellar development and central nervous system (CNS) myelinogenesis in the mouse and would be comparable to late-stage embryonic and early neonatal development in humans. N B-DGJ significantly reduced total ganglioside and GM1 content in cerebrum-brainstem (C-BS) and in cerebellum of normal and beta-gal-/- mice. N B-DGJ had no adverse effects on body weight or C-BS/cerebellar weight, water content, or thickness of the external cerebellar granule cell layer. Sphingomyelin was increased in C-BS and cerebellum, but no changes were found for cerebroside (a myelin-enriched glycosphingolipid), neutral phospholipids, or GA1 in the treated mice. Our findings indicate that the effects of N B-DGJ in the postnatal CNS are largely specific to gangliosides and suggest that N B-DGJ may be an effective early intervention therapy for GM1 gangliosidosis and other ganglioside storage disorders.
Collapse
Affiliation(s)
- J L Kasperzyk
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | |
Collapse
|
81
|
Zheng Y, Ryazantsev S, Ohmi K, Zhao HZ, Rozengurt N, Kohn DB, Neufeld EF. Retrovirally transduced bone marrow has a therapeutic effect on brain in the mouse model of mucopolysaccharidosis IIIB. Mol Genet Metab 2004; 82:286-95. [PMID: 15308126 DOI: 10.1016/j.ymgme.2004.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 05/30/2004] [Accepted: 06/02/2004] [Indexed: 11/19/2022]
Abstract
Mucopolysaccharidosis IIIB (MPS IIIB) is a lysosomal storage disorder caused by mutations in NAGLU, the gene encoding alpha-N-acetylglucosaminidase. The disease is characterized by profound mental retardation and eventual neurodegeneration, but relatively mild somatic manifestations. There is no available therapy. We have used a mouse knockout model of the disease to test therapy by genetically modified bone marrow. Bone marrow from Naglu -/- male mice was transduced with human NAGLU cDNA in an MND-MFG vector, and transplanted into 6- to 8-week-old lethally irradiated female -/- mice. Sham-treated mice received bone marrow transduced with eGFP cDNA in an MND vector. alpha-N-Acetylglucosaminidase activity in plasma and leukocytes, measured 3 and 6 months after transplantation, varied from marginal to nearly 30 times wild-type. A low level of alpha-N-acetylglucosaminidase activity, as little as provided by transplantation of unmodified Naglu +/+ bone marrow, could normalize biochemical defects (glycosaminoglycan storage and beta-hexosaminidase elevation) in liver and spleen, but a very high level was required for an effect on kidney. Effects on the brain were best seen by examination of cellular morphology using light and electron microcopy. Mice that expressed very high levels of alpha-N-acetylglucosaminidase in blood had an increased number of normal-appearing neurons in the cortex and other parts of the brain, while microglia with engorged lysosomes had almost completely disappeared. Immunohistochemistry showed a marked decrease of staining for subunit c of mitochondrial ATP synthase and for Lamp1, markers of neuronal and microglial pathology, respectively, as well as a decrease in staining for glial fibrillary acid protein, a marker of activated astrocytes. These results show that genetically modified cells of hematopoietic origin can reduce the pathologic manifestations of MPS IIIB in the Naglu -/- mouse brain.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Andersson U, Smith D, Jeyakumar M, Butters TD, Borja MC, Dwek RA, Platt FM. Improved outcome of N-butyldeoxygalactonojirimycin-mediated substrate reduction therapy in a mouse model of Sandhoff disease. Neurobiol Dis 2004; 16:506-15. [PMID: 15262262 DOI: 10.1016/j.nbd.2004.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 03/31/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022] Open
Abstract
Sandhoff disease is a severe neurodegenerative glycosphingolipid (GSL) lysosomal storage disorder, currently without treatment options. One therapeutic approach under investigation is substrate reduction therapy (SRT). By partially inhibiting GSL biosynthesis, the impaired rate of GSL catabolism is balanced by a slower rate of influx of GSLs into the lysosome. In a previous study, we reported the beneficial effects of treating Sandhoff disease mice with the glucose analogue N-butyldeoxynojirimycin (NB-DNJ), a compound that inhibits the first step of GSL biosynthesis catalysed by the ceramide specific glucosyltransferase. NB-DNJ, however, exhibits adverse effects at high doses such as weight loss and GI tract distress (due to glucosidase inhibition). This might limit the therapeutic potential of NB-DNJ for treating diseases affecting the CNS where high dose therapy may be required to achieve therapeutic levels of the drug in the brain. In the present study, a more selective compound, the galactose analogue N-butyldeoxygalactonojirimycin (NB-DGJ), was evaluated in the Sandhoff disease mouse model. Treatment with NB-DGJ showed greater therapeutic efficacy than NB-DNJ with no detectable side effects. The ability to escalate the dose of NB-DGJ, leading to extended life expectancy and increased delay in symptom onset, demonstrates the greater therapeutic potential of NB-DGJ for the treatment of the human gangliosidoses.
Collapse
Affiliation(s)
- Ulrika Andersson
- Department of Biochemistry, Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK
| | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
It has been long believed that cathepsins compensate for each other because of their overlapping substrate specificities. However, there is increasing evidence that disturbance of the normal balance of their enzymatic activities is the first insult in brain aging and age-related diseases. The imbalance of cathepsins may further cause age-related neuropathological changes such as accumulation of autophagic vacuoles and the formation of ceroid-lipofuscin leading to neuronal dysfunction and damage. Leakage of cathepsins due to the fragility of lysosomal membranes during aging also contributes to neurodegeneration. Furthermore, the deficiency of cathepsin D has been recently revealed to provoke a novel type of lysosomal storage disease associated with massive neurodegeneration. In these animals, microglia are activated to initiate inflammatory and cytotoxic responses by binding and phagocytosis of storage neurons. Activated microglia also release some members of cathepsins to induce neuronal death by degrading extracellular matrix proteins. Thus the microglial activation possibly through sensing neuronal storage may also be an important causative factor for neurodegeneration in lysosomal storage diseases and age-related diseases such as Alzheimer's disease. This review describes the pathological roles of neuronal and microglial cathepsins in brain aging and age-related diseases.
Collapse
Affiliation(s)
- Hiroshi Nakanishi
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
84
|
Wu YP, Proia RL. Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice. Proc Natl Acad Sci U S A 2004; 101:8425-30. [PMID: 15155903 PMCID: PMC420410 DOI: 10.1073/pnas.0400625101] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sandhoff disease is a prototypical lysosomal storage disorder in which a heritable deficiency of a lysosomal enzyme, beta-hexosaminidase, results in the storage of the enzyme's substrates in lysosomes. As with many of the other lysosomal storage diseases, neurodegeneration is a prominent feature. Although the cellular and molecular pathways that underlie the neurodegenerative process are not yet fully understood, macrophage/microglial-mediated inflammation has been suggested as one possible mechanism. We now show that the expanded macrophage/microglial population in the CNS of Sandhoff disease mice is compounded by the infiltration of cells from the periphery. Coincident with the cellular infiltration was an increased expression of macrophage-inflammatory protein 1alpha (MIP-1alpha), a leukocyte chemokine, in astrocytes. Deletion of MIP-1alpha expression resulted in a substantial decrease in infiltration and macrophage/microglial-associated pathology together with neuronal apoptosis in Sandhoff disease mice. These mice without MIP-1alpha showed improved neurologic status and a longer lifespan. The results indicate that the pathogenesis of Sandhoff disease involves an increase in MIP-1alpha that induces monocytes to infiltrate the CNS, expand the activated macrophage/microglial population, and trigger apoptosis of neurons, resulting in a rapid neurodegenerative course.
Collapse
Affiliation(s)
- Yun-Ping Wu
- Genetics of Development and Disease Branch, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
85
|
|
86
|
Miklyaeva EI, Dong W, Bureau A, Fattahie R, Xu Y, Su M, Fick GH, Huang JQ, Igdoura S, Hanai N, Gravel RA. Late onset Tay–Sachs disease in mice with targeted disruption of the Hexa gene: behavioral changes and pathology of the central nervous system. Brain Res 2004; 1001:37-50. [PMID: 14972652 DOI: 10.1016/j.brainres.2003.11.067] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2003] [Indexed: 11/22/2022]
Abstract
Tay-Sachs disease is an autosomal recessive neurodegenerative disease resulting from a block in the hydrolysis of GM2 ganglioside, an intermediate in ganglioside catabolism. The mouse model of Tay-Sachs disease (Hexa -/-) has been described as behaviorally indistinguishable from wild type until at least 1 year of age due to a sialidase-mediated bypass of the metabolic defect that reduces the rate of GM2 ganglioside accumulation. In this study, we have followed our mouse model to over 2 years of age and have documented a significant disease phenotype that is reminiscent of the late onset, chronic form of human Tay-Sachs disease. Onset occurs at 11-12 months of age and progresses slowly, in parallel with increasing storage of GM2 ganglioside. The disease is characterized by hind limb spasticity, weight loss, tremors, abnormal posture with lordosis, possible visual impairment, and, late in the disease, muscle weakness, clasping of the limbs, and myoclonic twitches of the head. Immunodetection of GM2 ganglioside showed that storage varies widely in different regions, but is most intense in pyriform cortex, hippocampus (CA3 field, subiculum), amygdala, hypothalamus (paraventricular supraoptic, ventromedial and arcuate nuclei, and mammilary body), and the somatosensory cortex (layer V) in 1- to 2-year-old mutant mice. We suggest that the Tay-Sachs mouse model is a phenotypically valid model of disease and may provide for a reliable indicator of the impact of therapeutic strategies, in particular geared to the late onset, chronic form of human Tay-Sachs disease.
Collapse
Affiliation(s)
- Elena I Miklyaeva
- Neuroscience Research Group and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Yamaguchi A, Katsuyama K, Nagahama K, Takai T, Aoki I, Yamanaka S. Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses. J Clin Invest 2004; 113:200-8. [PMID: 14722612 PMCID: PMC311432 DOI: 10.1172/jci19639] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2003] [Accepted: 11/11/2003] [Indexed: 01/19/2023] Open
Abstract
Mice containing a disruption of the Hexb gene have provided a useful model system for the study of the human lysosomal storage disorder known as Sandhoff disease (SD). Hexb(-/-) mice rapidly develop a progressive neurologic disease of ganglioside GM2 and GA2 storage. Our study revealed that the disease states in this model are associated with the appearance of antiganglioside autoantibodies. Both elevation of serum antiganglioside autoantibodies and IgG deposition to CNS neurons were found in the advanced stages of the disease in Hexb(-/-) mice; serum transfer from these mice showed IgG binding to neurons. To determine the role of these autoantibodies, the Fc receptor gamma gene (FcR gamma) was additionally disrupted in Hexb(-/-) mice, as it plays a key role in immune complex-mediated autoimmune diseases. Clinical symptoms were improved and life spans were extended in the Hexb(-/-)FcR gamma(-/-) mice; the number of apoptotic cells was also decreased. The level of ganglioside accumulation, however, did not change. IgG deposition was also confirmed in the brain of an autopsied SD patient. Taken together, these findings suggest that the production of autoantibodies plays an important role in the pathogenesis of neuropathy in SD and therefore provides a target for novel therapies.
Collapse
Affiliation(s)
- Akira Yamaguchi
- Department of Pathology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
88
|
Yamaguchi A, Katsuyama K, Nagahama K, Takai T, Aoki I, Yamanaka S. Possible role of autoantibodies in the pathophysiology of GM2 gangliosidoses. J Clin Invest 2004. [DOI: 10.1172/jci200419639] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
89
|
Kyrkanides S, Miller JH, Federoff HJ. Systemic FIV vector administration: transduction of CNS immune cells and Purkinje neurons. ACTA ACUST UNITED AC 2003; 119:1-9. [PMID: 14597224 DOI: 10.1016/j.molbrainres.2003.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The systemic effects of gene therapy have been previously described in a variety of peripheral organs following intravenous administration or intraperitoneal inoculation of viral vectors, as well as in the brain following intracranial administration. However, limited information is available on the ability of viral vectors to cross the blood-brain barrier and infect cells located within the central nervous system (CNS). We employed a VSV-G pseudotyped FIV(lacZ) vector capable of transducing dividing, growth-arrested, as well as post-mitotic cells with the reporter gene lacZ. Adult mice were injected intraperitoneally with FIV(lacZ), and the expression of beta-galactosidase was studied 5 weeks following treatment in the brain, liver, spleen and kidney by X-gal histochemistry and immunocytochemistry. Interestingly, relatively low doses of FIV(lacZ) administered intraperitoneally lead to beta-galactosidase detection in the brain and cerebellum. The identity of these cells was confirmed by double immunofluorescence, and included CD31-, CD3- and CD11b-positive cells. Fluorescent microspheres co-injected with FIV(lacZ) virus were identified within mononuclear cells in the brain parenchyma, suggesting infiltration of peripheral immune cells in the CNS. Cerebellar Purkinje neurons were also transduced in all adult-injected mice. Our observations indicate that relatively low doses of FIV(lacZ) administered intraperitoneally resulted in the transduction of immune cells in the brain, as well as a specific subset of cerebellar neurons.
Collapse
MESH Headings
- Animals
- Antigens, Surface/immunology
- Blood-Brain Barrier/virology
- Brain/cytology
- Brain/immunology
- Brain/virology
- Chemotaxis, Leukocyte/genetics
- Cyclooxygenase 2
- Genes, Reporter/genetics
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Genetic Vectors/metabolism
- Immunodeficiency Virus, Feline/genetics
- Injections, Intraperitoneal
- Isoenzymes/metabolism
- Lac Operon/genetics
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Male
- Mice
- Mice, Inbred C57BL
- Prostaglandin-Endoperoxide Synthases/metabolism
- Purkinje Cells/cytology
- Purkinje Cells/metabolism
- Purkinje Cells/virology
- Transduction, Genetic/methods
- Vascular Cell Adhesion Molecule-1/metabolism
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Stephanos Kyrkanides
- Department of Dentistry, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | | | | |
Collapse
|
90
|
Platt FM, Jeyakumar M, Andersson U, Heare T, Dwek RA, Butters TD. Substrate reduction therapy in mouse models of the glycosphingolipidoses. Philos Trans R Soc Lond B Biol Sci 2003; 358:947-54. [PMID: 12803928 PMCID: PMC1693185 DOI: 10.1098/rstb.2003.1279] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Substrate reduction therapy uses small molecules to slow the rate of glycolipid biosynthesis. One of these drugs, N-butyldeoxynojirimycin (NB-DNJ), shows efficacy in mouse models of Tay-Sachs, Sandhoff and Fabry diseases. This offers the prospect that NB-DNJ may be of therapeutic benefit, at least in the juvenile and adult onset variants of these disorders. The infantile onset variants will require an additional enzyme-augmenting modality if the pathology is to be significantly improved. A second drug, N-butyldeoxyglactonojirimycin, looks very promising for treating storage diseases with neurological involvement as high systemic dosing is achievable without any side-effects.
Collapse
Affiliation(s)
- Frances M Platt
- Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | | | | | | | | | | |
Collapse
|
91
|
Mabe P, Beck M. Serum hexosaminidase and beta-glucuronidase activities in infants: effects of age and sex. Braz J Med Biol Res 2003; 36:377-83. [PMID: 12640503 DOI: 10.1590/s0100-879x2003000300013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of age and sex on the serum activity of hexosaminidase (HEX) and -glucuronidase (BGLU) in 275 normal term infants aged 12 h to 12 months. Up to six weeks of life, HEX was significantly higher in boys (P<=0.023). During the age period of 1-26 weeks, BGLU was also higher in boys, but differences were significant only at 2-6 and 7-15 weeks (P<=0.016). The developmental pattern of HEX and BGLU was sex dependent. HEX activity increased in both sexes from 4-7 days of life, reaching a maximum of 1.4-fold the birth value at 2-6 weeks of age in boys (P<0.001) and a maximum of 1.6-fold at 7-15 weeks in girls (P<0.001). HEX activity gradually decreased thereafter, reaching significantly lower levels at 27-53 weeks than during the first three days of life in boys (P = 0.002) and the same level of this age interval in girls. BGLU increased in both sexes from 4-7 days of age, showing a maximum increase at 7-15 weeks (3.3-fold in boys and 2.9-fold in girls, both P<0.001). Then BGLU decreased in boys to a value similar to that observed at 4-7 days of age. In girls, BGLU remained elevated until the end of the first year of life. These results indicate a variation of HEX and BGLU activities during the first year of life and a sex influence on their developmental pattern. This observation should be considered in the diagnosis of GM2 gangliosidosis and mucopolysaccharidosis type VII.
Collapse
Affiliation(s)
- P Mabe
- Unidad de Genética y Enfermedades Metabólicas, INTA, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
92
|
Muschol N, Matzner U, Tiede S, Gieselmann V, Ullrich K, Braulke T. Secretion of phosphomannosyl-deficient arylsulphatase A and cathepsin D from isolated human macrophages. Biochem J 2003; 368:845-53. [PMID: 12296771 PMCID: PMC1223046 DOI: 10.1042/bj20020249] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 09/17/2002] [Accepted: 09/24/2002] [Indexed: 01/26/2023]
Abstract
The transfer of macrophage-secreted arylsulphatase A (ASA) to enzyme-deficient brain cells is part of the therapeutic concept of bone marrow transplantation in lysosomal storage diseases. Here we have investigated this transfer in vitro. The uptake of (125)I-labelled recombinant human ASA purified from ASA-overexpressing mouse embryonic fibroblasts deficient for mannose 6-phosphate (M6P) receptors in a mouse ASA-deficient astroglial cell line was completely inhibited by M6P. In contrast, when ASA-deficient astroglial cells were incubated with secretions of [(35)S]methionine-labelled human macrophages or mouse microglia, containing various lysosomal enzymes, neither ASA nor cathepsin D (CTSD) were detected in acceptor cells. Co-culturing of metabolically labelled macrophages with ASA-deficient glial cells did not result in an M6P-dependent transfer of ASA or CTSD between these two cell types. In secretions of [(33)P]phosphate-labelled macrophages no or weakly phosphorylated ASA and CTSD precursor polypeptides were found, whereas both intracellular and secreted ASA from ASA-overexpressing baby hamster kidney cells displayed (33)P-labelled M6P residues. Finally, the uptake of CTSD from secretions of [(35)S]methionine-labelled macrophages in rat hepatocytes was M6P-independent. These data indicated that lysosomal enzymes secreted by human macrophages or a mouse microglial cell line cannot be endocytosed by brain cells due to the failure to equip newly synthesized lysosomal enzymes with the M6P recognition marker efficiently. The data suggest that other mechanisms than the proposed M6P-dependent secretion/recapture of lysosomal enzymes might be responsible for therapeutic effects of bone marrow transplantation in the brain.
Collapse
Affiliation(s)
- Nicole Muschol
- Children's Hospital, University of Hamburg, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Wilson JMB, Khabazian I, Wong MC, Seyedalikhani A, Bains JS, Pasqualotto BA, Williams DE, Andersen RJ, Simpson RJ, Smith R, Craig UK, Kurland LT, Shaw CA. Behavioral and neurological correlates of ALS-parkinsonism dementia complex in adult mice fed washed cycad flour. Neuromolecular Med 2003; 1:207-21. [PMID: 12095162 DOI: 10.1385/nmm:1:3:207] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Consumption of cycad seed products (Cycas circinalis) is one of the strongest epidemiological links to the Guamian neurological disorder amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), however, the putative toxin which causes neurodegeneration has never been identified definitively. To reexamine this issue, 6-7-mo-old, male CD-1 mice were assessed for motor and cognitive behaviours during and following feeding with pellets made from washed cycad flour. Cycad-fed animals showed early evidence of progressive motor and cognitive dysfunctions. Neurodegeneration measured using TUNEL and caspase-3 labeling was found in neocortex, various hippocampal fields, substantia nigra, olfactory bulb, and spinal cord. In vitro studies using rat neocortex have identified toxic compounds in washed cycad flour that induce depolarizing field potentials and lead to release of lactate dehydrogenase (LDH), both blocked by AP5. High-performance liquid chromatography (HPLC)/mass spectrometry of cycad flour samples failed to show appreciable amounts of other known cycad toxins, cycasin, MAM, or BMAA; only trace amounts of BOAA were present. Isolation procedures employing these techniques identified the most toxic component as beta-sitosterol beta-D-glucoside (BSSG). The present data suggest that a neurotoxin, or a toxic metabolite, not previously identified in cycad, is able to gain access to central nervous system (CNS) resulting in neurodegeneration of specific neural populations and in motor and cognitive dysfunctions. These data are consistent with a number of major features of ALS-PDC in humans.
Collapse
Affiliation(s)
- Jason M B Wilson
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Howard HC, Mount DB, Rochefort D, Byun N, Dupré N, Lu J, Fan X, Song L, Rivière JB, Prévost C, Horst J, Simonati A, Lemcke B, Welch R, England R, Zhan FQ, Mercado A, Siesser WB, George AL, McDonald MP, Bouchard JP, Mathieu J, Delpire E, Rouleau GA. The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet 2002; 32:384-92. [PMID: 12368912 DOI: 10.1038/ng1002] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2002] [Accepted: 08/16/2002] [Indexed: 11/09/2022]
Abstract
Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q. The gene SLC12A6 (solute carrier family 12, member 6), which encodes the K+-Cl- transporter KCC3 and maps within the ACCPN candidate region, was screened for mutations in individuals with ACCPN. Four distinct protein-truncating mutations were found: two in the French Canadian population and two in non-French Canadian families. The functional consequence of the predominant French Canadian mutation (2436delG, Thr813fsX813) was examined by heterologous expression of wildtype and mutant KCC3 in Xenopus laevis oocytes; the truncated mutant is appropriately glycosylated and expressed at the cellular membrane, where it is non-functional. Mice generated with a targeted deletion of Slc12a6 have a locomotor deficit, peripheral neuropathy and a sensorimotor gating deficit, similar to the human disease. Our findings identify mutations in SLC12A6 as the genetic lesion underlying ACCPN and suggest a critical role for SLC12A6 in the development and maintenance of the nervous system.
Collapse
MESH Headings
- Agenesis of Corpus Callosum
- Animals
- Blotting, Southern
- Brain/pathology
- Canada
- Chromosomes, Human, Pair 15
- Corpus Callosum/embryology
- Exons
- Gene Deletion
- Genes, Recessive
- Haplotypes
- Homozygote
- Humans
- Immunoblotting
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Open Reading Frames
- Peripheral Nervous System Diseases/genetics
- Phenotype
- Polymorphism, Genetic
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sodium-Potassium-Chloride Symporters/genetics
- Spinal Cord/pathology
- Symporters/genetics
- Symporters/physiology
- Time Factors
- Xenopus
Collapse
Affiliation(s)
- Heidi C Howard
- Centre for Research in Neuroscience, McGill University and the Montreal General Hospital Research Institute, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Jeyakumar M, Butters TD, Dwek RA, Platt FM. Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis. Neuropathol Appl Neurobiol 2002; 28:343-57. [PMID: 12366816 DOI: 10.1046/j.1365-2990.2002.00422.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Paediatric neurodegenerative diseases are frequently caused by inborn errors in glycosphingolipid (GSL) catabolism and are collectively termed the glycosphingolipidoses. GSL catabolism occurs in the lysosome and a defect in an enzyme involved in GSL degradation leads to the lysosomal storage of its substrate(s). GSLs are abundantly expressed in the central nervous system (CNS) and the disorders frequently have a progressive neurodegenerative course. Our understanding of pathogenesis in these diseases is incomplete and currently few options exist for therapy. In this review we discuss how mouse models of these disorders are providing insights into pathogenesis and also leading to progress in evaluating experimental therapies.
Collapse
Affiliation(s)
- M Jeyakumar
- Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
96
|
Leimig T, Mann L, Martin MDP, Bonten E, Persons D, Knowles J, Allay JA, Cunningham J, Nienhuis AW, Smeyne R, d'Azzo A. Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood 2002; 99:3169-78. [PMID: 11964280 DOI: 10.1182/blood.v99.9.3169] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protective protein/cathepsin A (PPCA), a lysosomal carboxypeptidase, is deficient in the neurodegenerative lysosomal disorder galactosialidosis (GS). PPCA(-/-) mice display a disease course similar to that of severe human GS, resulting in nephropathy, ataxia, and premature death. Bone marrow transplantation (BMT) in mutant animals using transgenic BM overexpressing the corrective enzyme in either erythroid cells or monocytes/macrophages has proven effective for the improvement of the phenotype, and encouraged the use of genetically modified BM cells for ex vivo gene therapy of GS. Here, we established stable donor hematopoiesis in PPCA(-/-) mice that received hematopoietic progenitors transduced with a murine stem cell virus (MSCV)-based, bicistronic retroviral vector overexpressing PPCA and the green fluorescent protein (GFP) marker. We observed complete correction of the disease phenotype in the systemic organs up to 10 months after transplantation. PPCA(+) BM-derived cells were detected in all tissues, with the highest expression in liver, spleen, BM, thymus, and lung. In addition, a lysosomal immunostaining was seen in nonhematopoietic cells, indicating efficient uptake of the corrective protein by these cells and cross-correction. Expression in the brain occurred throughout the parenchyma but was mainly localized on perivascular areas. However, PPCA expression in the central nervous system was apparently sufficient to delay the onset of Purkinje cell degeneration and to correct the ataxia. The long-term expression and internalization of the PPCA by cells of systemic organs and the clear improvement of the neurologic phenotype support the use of this approach for the treatment of GS in humans. (Blood. 2002;99:3169-3178)
Collapse
Affiliation(s)
- Thasia Leimig
- St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Affiliation(s)
- R J Desnick
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, New York 10029, USA
| | | |
Collapse
|
98
|
Rattazzi MC, Dobrenis K. Treatment of GM2 gangliosidosis: past experiences, implications, and future prospects. ADVANCES IN GENETICS 2002; 44:317-39. [PMID: 11596993 DOI: 10.1016/s0065-2660(01)44089-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M C Rattazzi
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | | |
Collapse
|
99
|
Proia RL. Targeting the hexosaminidase genes: mouse models of the GM2 gangliosidoses. ADVANCES IN GENETICS 2002; 44:225-31. [PMID: 11596985 DOI: 10.1016/s0065-2660(01)44082-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- R L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
100
|
Sango K, Yamanaka S, Ajiki K, Tokashiki A, Watabe K. Lysosomal storage results in impaired survival but normal neurite outgrowth in dorsal root ganglion neurones from a mouse model of Sandhoff disease. Neuropathol Appl Neurobiol 2002; 28:23-34. [PMID: 11849560 DOI: 10.1046/j.1365-2990.2002.00366.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sandhoff disease is a heritable lysosomal storage disease resulting from impaired degradation of GM2 ganglioside and related substrates. A mouse model of Sandhoff disease created by gene targeting displays progressive neurological manifestations, similar to patients with the disease. In the present in vivo and in vitro studies, we examined morphological and functional abnormalities of dorsal root ganglion (DRG) neurones in Sandhoff disease mice at an asymptomatic stage (approximately 1 month of age). Light microscopic studies with Nissl staining and immunocytochemistry suggested extensive intracytoplasmic storage of GM2 ganglioside in the Sandhoff mouse DRG neurones. These findings were consistent with the results of electron microscopy, in which a huge number of pleomorphic inclusion bodies immunoreactive for GM2 ganglioside were present in the cytoplasm of the neurones. The inclusion bodies were also identified in satellite cells and Schwann cells in the Sandhoff mouse DRG. The survival ratios of DRG neurones after 1, 2, 4 and 6 days in culture were significantly lower in the Sandhoff mice than in the age-matched heterozygous mice. The ratio of neurite-bearing cells on poly-l-lysine-coated dishes after 2 days in culture was also lower by approximately 10% in the Sandhoff mice compared to the heterozygotes, but additional coating of laminin onto poly-l-lysine dramatically enhanced the neurite extension from the neurones in both groups of mice. These results indicate that accumulation of GM2 ganglioside in DRG neurones impairs the capability of the neurones to survive in vitro, although viable neurones from the Sandhoff mice in culture can regenerate neurites nearly as well as unaffected neurones.
Collapse
Affiliation(s)
- K Sango
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, Fuchu-shi, Tokyo, Japan.
| | | | | | | | | |
Collapse
|