51
|
Abdel-Wahhab MA, El-Nekeety AA, Salman AS, Abdel-Aziem SH, Mehaya FM, Hassan NS. Protective capabilities of silymarin and inulin nanoparticles against hepatic oxidative stress, genotoxicity and cytotoxicity of Deoxynivalenol in rats. Toxicon 2018; 142:1-13. [PMID: 29248467 DOI: 10.1016/j.toxicon.2017.12.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 01/26/2023]
Abstract
Deoxynivalenol (DON) is a Fusarium mycotoxin that frequently contaminates cereal and cereal-based food and induces liver injury. This study evaluated the protective role of silymarin nanoparticles (SILNPs) and inulin nanoparticles (INNPs) against DON-induced liver injury in rats. Eleven groups of rats were treated orally for 3 weeks as follows: the control group, DON-treated group (5 mg/kg b.w.); INNPs-treated groups at low (LD) or high (HD) dose (100 or 200 mg/kg b.w.); SILPNs-treated group (50 mg/kg b.w.); SILNPs plus INNPs(LD) or INNPs(HD)-treated groups; INNPs(LD) or INNPs(HD) plus DON-treated groups and DON plus SILNPs and INNPs(LD) or INNPs(HD)-treated groups. Blood and tissue samples were collected for different analyses. The results revealed that the practical sizes were 200 and 98 nm for SILNPs and INNPs respectively. DON increased liver enzymes activity, lipid profile, serum cytokines, number and percentage of chromosomal aberration, DNA fragmentation and comet score. It disturbed the oxidative stress markers, down regulated gene expression and induced histological changes in the liver tissue. Treatment with DON and SILNPs and/or INNPs at the two tested doses improved all the tested parameters and SILNPs plus INNPs(HD) normalized most of these parameters in DON-treated animals. SILNPs and INNPs could be promising candidates as hepatoprotective against DON or other hepatotoxins.
Collapse
Affiliation(s)
- Mosaad A Abdel-Wahhab
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology and Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Asmaa S Salman
- Genetic and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Fathy M Mehaya
- Food Technology Department, National Research Center, Dokki, Cairo, Egypt
| | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| |
Collapse
|
52
|
Dihydroquercetin ameliorated acetaminophen-induced hepatic cytotoxicity via activating JAK2/STAT3 pathway and autophagy. Appl Microbiol Biotechnol 2017; 102:1443-1453. [DOI: 10.1007/s00253-017-8686-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
|
53
|
Darvishi-Khezri H, Salehifar E, Kosaryan M, Karami H, Alipour A, Shaki F, Aliasgharian A. The impact of silymarin on antioxidant and oxidative status in patients with β-thalassemia major: A crossover, randomized controlled trial. Complement Ther Med 2017; 35:25-32. [DOI: 10.1016/j.ctim.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
|
54
|
Yin T, Zhang Y, Liu Y, Chen Q, Fu Y, Liang J, Zhou J, Tang X, Liu J, Huo M. The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm 2017; 536:231-240. [PMID: 29162374 DOI: 10.1016/j.ijpharm.2017.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/05/2017] [Accepted: 11/17/2017] [Indexed: 01/09/2023]
Abstract
This study demonstrates the preparation of a silybin-loaded N-octyl-O, N-carboxymethyl chitosan micelle (OCC-SLB) to enhance the oral absorption efficiency of silybin (SLB) and investigate the related mechanisms of enhancement. Firstly, the physicochemical properties of OCC and OCC-SLB micelles, including critical micelle concentration (CMC), particle size, zeta potential, drug-loading, etc., were determined. Results of pharmacokinetic studies on rats then confirmed a desirable enhancement in the oral bioavailability of SLB by OCC-SLB micelles compared with a stock SLB suspension solution. Subsequently, uptake studies on the Caco-2 cell line demonstrated that OCC-SLB micelles effectively accumulated SLB or rhodamine-123 into cells through clathrin and caveolae-mediated endocytosis and the inhibition of P-glycoprotein (P-gp) efflux. In addition, results of the Caco-2 transport study further clarified that OCC-SLB micelles enhanced the permeability of SLB via tight junction opening and clathrin-mediated transcytosis across the endothelium. These findings indicated the OCC micelle platform as a potential delivery vehicle for oral administration of P-gp substrates such as SLB.
Collapse
Affiliation(s)
- Tingjie Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yanhong Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Qinyu Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jinlai Liang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Xiaomeng Tang
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jiyong Liu
- Department of Pharmacy, Changhai Hospital, The Second Military Medical University, Shanghai 200433, China.
| | - Meirong Huo
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
55
|
Fathalah WF, Abdel Aziz MA, Abou el Soud NH, El Raziky MES. High Dose of Silymarin in Patients with Decompensated Liver Disease: A Randomized Controlled Trial. J Interferon Cytokine Res 2017; 37:480-487. [DOI: 10.1089/jir.2017.0051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Waleed Fouad Fathalah
- Endemic Gastroenterology and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
56
|
Tsaroucha AK, Valsami G, Kostomitsopoulos N, Lambropoulou M, Anagnostopoulos C, Christodoulou E, Falidas E, Betsou A, Pitiakoudis M, Simopoulos CE. Silibinin Effect on Fas/FasL, HMGB1, and CD45 Expressions in a Rat Model Subjected to Liver Ischemia-Reperfusion Injury. J INVEST SURG 2017; 31:491-502. [DOI: 10.1080/08941939.2017.1360416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alexandra K. Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | | | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Eirini Christodoulou
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Evangelos Falidas
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Afrodite Betsou
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Pitiakoudis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos E. Simopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- 2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
- Department of Experimental Surgery, Bioresearch Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
57
|
Marin V, Gazzin S, Gambaro SE, Dal Ben M, Calligaris S, Anese M, Raseni A, Avellini C, Giraudi PJ, Tiribelli C, Rosso N. Effects of Oral Administration of Silymarin in a Juvenile Murine Model of Non-alcoholic Steatohepatitis. Nutrients 2017; 9:1006. [PMID: 28895929 PMCID: PMC5622766 DOI: 10.3390/nu9091006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 12/29/2022] Open
Abstract
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) in adolescents is challenging the global care system. No therapeutic strategies have been defined so far, and changes in the lifestyle remain the only alternative. In this study, we assessed the protective effects of silymarin in a juvenile non-alcoholic steatohepatitis (NASH) model and the in vitro effects on fat-laden human hepatocytes. C57Bl/6 mice were exposed to HFHC diet immediately after weaning. After eight weeks, animals showed histological signs of NASH. Silymarin was added to the HFHC diet, the treatment continued for additional 12 weeks and the effects on BMI, hepatomegaly, visceral fat, lipid profile, transaminases, HOMA-IR, steatosis, inflammation, fibrosis, oxidative stress, and apoptosis were determined. The switch from HFHC to control diet was used to mimic life style changes. In vitro experiments were performed in parallel in human hepatocytes. HFHC diet supplemented with silymarin showed a significant improvement in glycemia, visceral fat, lipid profile, and liver fibrosis. Moreover, it reduced (both in vitro and in vivo) ALT, hepatic inflammation, oxidative stress, and apoptosis. Lifestyle changes restored the control group parameters. The data presented show the beneficial effects of the oral administration of silymarin in the absence of changes in the dietary habits in a juvenile model of NASH.
Collapse
Affiliation(s)
- Veronica Marin
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Silvia Gazzin
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Sabrina E Gambaro
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Matteo Dal Ben
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Sonia Calligaris
- Università di Udine, Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Università di Udine, Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Alan Raseni
- IRCCS Burlo Garofolo Paediatric Hospital, Clinical Chemistry Laboratory, 34100 Trieste, Italy.
| | - Claudio Avellini
- Azienda Ospedaliero-Universitaria "Santa Maria della Misericordia", Dipartimento di Laboratorio, Istituto di Anatomia Patologica, 33100 Udine, Italy.
| | - Pablo J Giraudi
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS-Centro Studi Fegato, Area Science Park Basovizza Bldg, Q SS 14 Km 163,5, Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
58
|
Attia YA, Hamed RS, Bovera F, Abd El-Hamid AEHE, Al-Harthi MA, Shahba HA. Semen quality, antioxidant status and reproductive performance of rabbits bucks fed milk thistle seeds and rosemary leaves. Anim Reprod Sci 2017; 184:178-186. [PMID: 28765034 DOI: 10.1016/j.anireprosci.2017.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 01/28/2023]
Abstract
The study aimed to investigate the effects of milk thistle seeds (MTS) and rosemary leaves (RL) both at 5 and 10g/kg diet on reproductive performance, semen quality and blood metabolites of rabbit bucks. A total of 35 rabbit bucks were randomly distributed into five experimental groups (7 bucks/group). All the groups were fed the same basal diet. The 1st group (control) did not have MTS and RL in its basal diet. The 2nd and 3rd groups were supplemented with MTS at 5 and 10g/kg, respectively. The 4th and 5th groups were fed the basal diet supplemented with RL at 5 and 10g/kg, respectively. The sperm concentration (SC), total sperm output (TSO), live sperm (LS), total live sperm (TLS) and total motile sperm (TMS) were significantly greater in the bucks fed MTS at 10 and RL at 5g/kg diet than the control group. Bucks fed MTS at 10g/kg diet had higher fertility than the control. Also, RL 5g/kg group showed higher testosterone and fertility than the control, but the MTS 10g/kg group showed the highest value for both parameters. In conclusion, MTS and RL at 10 and 5g/kg, respectively, significantly improved the semen quality and the fertility and MTS also increased the economic efficiency of rabbit bucks.
Collapse
Affiliation(s)
- Youssef A Attia
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rawia S Hamed
- Animal Production Research Institute, Ministry of Agriculture, ARC, Dokki, 12816, Gizza, Egypt
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137, Napoli, Italy.
| | - Abd El-Hamid E Abd El-Hamid
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| | - Mohammed A Al-Harthi
- Department of Arid Land Agriculture, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hossam A Shahba
- Animal Production Research Institute, Ministry of Agriculture, ARC, Dokki, 12816, Gizza, Egypt
| |
Collapse
|
59
|
Vue B, Zhang X, Lee T, Nair N, Zhang S, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. 5- or/and 20-O-alkyl-2,3-dehydrosilybins: Synthesis and biological profiles on prostate cancer cell models. Bioorg Med Chem 2017; 25:4845-4854. [PMID: 28756013 PMCID: PMC5568090 DOI: 10.1016/j.bmc.2017.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
To investigate the effects of alkylation at 5-OH and 20-OH of 2,3-dehydrosilybin on prostate cancer cell proliferation, the synthetic approaches to 5- or/and 20-O-alkyl-2,3-dehydrosilybins, through a multi-step sequence from commercially available silybin, have been successfully developed. The first three reactions in the syntheses were completed through a one-pot procedure by managing anaerobic and aerobic conditions. With these synthetic methods in hand, twenty-one 2,3-dehydrosilybins, including seven 20-O-alkyl, seven 5,20-O-dialkyl, and seven 5-O-alkyl-2,3-dehydrosilybins, have been achieved for the evaluation of their biological profiles. Our WST-1 cell proliferation assay data indicate that nineteen out of the twenty-one 2,3-dehydrosilybins possess significantly improved antiproliferative potency as compared with silybin toward both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145). 5-O-Alkyl-2,3-dehydrosilybins were identified as the optimal subgroup that can consistently inhibit cell proliferation in three prostate cancer cell models with all IC50 values lower than 8µM. Our flow cytometry-based assays also demonstrate that 5-O-heptyl-2,3-dehydrosilybin effectively arrests the cell cycle in the G0/G1 phase and activates PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Timmy Lee
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Nandini Nair
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
60
|
Radu IC, Hudita A, Zaharia C, Stanescu PO, Vasile E, Iovu H, Stan M, Ginghina O, Galateanu B, Costache M, Langguth P, Tsatsakis A, Velonia K, Negrei C. Poly(HydroxyButyrate-co-HydroxyValerate) (PHBHV) Nanocarriers for Silymarin Release as Adjuvant Therapy in Colo-rectal Cancer. Front Pharmacol 2017; 8:508. [PMID: 28824432 PMCID: PMC5539237 DOI: 10.3389/fphar.2017.00508] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to address one of the major challenges of the actual era of nanomedicine namely, the bioavailability of poorly water soluble drugs such as Silymarin. We developed new, biodegradable, and biocompatible nanosized shuttles for Silymarin targeted delivery in colon-cancer cells. The design of these 100 nm sized carrier nanoparticles was based on natural polymers and their biological properties such as cellular uptake potential, cytotoxicity and 3D penetrability were tested using a colon cancer cell line (HT-29) as the in vitro culture model. Comparative scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements demonstrated that the Silymarin loaded Poly(3-HydroxyButyrate-co-3-HydroxyValerate) (PHBHV) nanocarriers significantly decreased HT-29 cells viability after 6 and 24 h of treatment. Moreover, in vivo-like toxicity studies on multicellular tumor spheroids showed that the Silymarin loaded PHBHV nanocarriers are able to penetrate 3D micro tumors and significantly reduce their size.
Collapse
Affiliation(s)
- Ionut-Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of BucharestBucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Paul O Stanescu
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Eugenia Vasile
- Department of Bioresources and Polymer Science, University Politehnica of BucharestBucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of BucharestBucharest, Romania
| | - Miriana Stan
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and PharmacyBucharest, Romania
| | - Octav Ginghina
- Department of Surgery, Sf. Ioan Emergency Clinical HospitalBucharest, Romania.,Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy BucharestBucharest, Romania
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of BucharestBucharest, Romania.,Research Institute of University of Bucharest, University of BucharestBucharest, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of BucharestBucharest, Romania
| | - Peter Langguth
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Johannes Gutenberg-UniversityMainz, Germany
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of CreteHeraklion, Greece
| | - Kelly Velonia
- Department of Materials Science and Technology, University of CreteHeraklion, Greece
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and PharmacyBucharest, Romania
| |
Collapse
|
61
|
Albassam AA, Frye RF, Markowitz JS. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes. Chem Biol Interact 2017; 271:24-29. [PMID: 28457856 DOI: 10.1016/j.cbi.2017.04.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/27/2017] [Indexed: 01/04/2023]
Abstract
Milk thistle is a widely-consumed botanical used for an array of purported health benefits. The primary extract of milk thistle is termed silymarin, a complex mixture that contains a number of structurally-related flavonolignans, the flavonoid, taxifolin, and a number of other constituents. The major flavonolignans present in most extracts are silybin A, silybin B, isosilybin A and isosilybin B, silydianin, silychristin and isosilychristin. Silymarin itself has been reported to inhibit CYP2C8 activity in vitro, but the effect of the individual flavonolignans on this enzyme has not been studied. To investigate the effects of milk thistle extract and its main flavonolignans (silybin A, silybin B, isosilybin A and isosilybin B) on CYP2C8 activity at relevant concentrations, the effect of milk thistle extract and the flavonolignans on CYP2C8 enzyme activity was studied in vitro using human liver microsomes (HLM) incorporating an enzyme-selective substrate for CYP2C8, amodiaquine. Metabolite formation was analyzed using liquid chromatography-tandem mass spectrometry (LC/MS-MS). The concentration causing 50% inhibition of enzyme activity (IC50) was used to express the degree of inhibition. Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B with IC50 values (mean ± SE) of 1.64 ± 0.66 μg/mL and 2.67 ± 1.18 μg/mL, respectively. The rank order of observed inhibitory potency after isosilibinin was silibinin > isosilybin A > silybin A > milk thistle extract > and silybin B. These in vitro results suggest a potentially significant inhibitory effect of isosilibinin and isosilybin B on CYP2C8 activity. However, the observed IC50 values are unlikely to be achieved in humans supplemented with orally administered milk thistle extracts due to the poor bioavailability of flavonolignans documented with most commercially available formulations.
Collapse
Affiliation(s)
- Ahmed A Albassam
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA; Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| |
Collapse
|
62
|
Onaolapo AY, Abdusalam SZ, Onaolapo OJ. Silymarin attenuates aspartame-induced variation in mouse behaviour, cerebrocortical morphology and oxidative stress markers. PATHOPHYSIOLOGY 2017; 24:51-62. [DOI: 10.1016/j.pathophys.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/30/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
|
63
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Ahmad R, Ahmad N, Naqvi AA, Shehzad A, Al-Ghamdi MS. Role of traditional Islamic and Arabic plants in cancer therapy. J Tradit Complement Med 2017; 7:195-204. [PMID: 28417090 PMCID: PMC5388086 DOI: 10.1016/j.jtcme.2016.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022] Open
Abstract
ETHNO PHARMACOLOGICAL RELEVANCE This review article underlines individual Traditional Islamic and Arabic plant (TAI) and their role in treating cancer. The aim of the study is to specifically evaluate the progress of herbs, Arabic and Islamic traditional herbs in particular, applied in cancer treatment, so far. MATERIALS AND METHODS Islamic and Arabic plants were selected and identified through different literature survey using "Google scholar", "Web of science", "Scopus" and "PubMed". Each plant, from identified Arabic and Islamic plants list, was search individually for the most cited articles in the aforementioned databases using the keywords, "Anticancer", "Uses in cancer treatment", "Ethno pharmacological importance in cancer" etc. RESULTS The current review about Islamic and Arabic plants illuminates the importance of Islamic and Arabic plants and their impact in treating cancer. There is a long list of Islamic and Arabic plants used in cancer as mentioned in review with enormous amount of literature. Each plant has been investigated for its anticancer potential. The literature survey as mentioned in table shows; these plants are widely utilized in cancer as a whole, a part thereof or in the form of isolated chemical constituent. CONCLUSIONS This review strongly supports the fact; Arabic and Islamic traditional plants have emerged as a good source of complementary and alternative medicine in treating cancer. Traditional Arab-Islamic herbal-based medicines might be promising for new cancer therapeutics with low toxicity and minimal side effects. The plants used are mostly in crude form and still needs advance research for the isolation of phytochemicals and establishing its cellular and molecular role in treating cancer.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Natural Products and Alternative Medicines, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Niyaz Ahmad
- Department of Pharmaceutics, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Atta Abbas Naqvi
- Department of Pharmacy Practice, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mastour Safer Al-Ghamdi
- Department of Pharmacology, College of Clinical Pharmacy, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
65
|
Yamasaki K, Sato H, Minagoshi S, Kyubun K, Anraku M, Miyamura S, Watanabe H, Taguchi K, Seo H, Maruyama T, Otagiri M. The Binding of Silibinin, the Main Constituent of Silymarin, to Site I on Human Serum Albumin. Biol Pharm Bull 2017; 40:310-317. [PMID: 28250272 DOI: 10.1248/bpb.b16-00790] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Silibinin is the main constituent of silymarin, an extract from the seeds of milk thistle (Silybum marianum). Because silibinin has many pharmacological activities, extending its clinical use in the treatment of a wider variety of diseases would be desirable. In this study, we report on the binding of silibinin to plasma proteins, an issue that has not previously been extensively studied. The findings indicated that silibinin mainly binds to human serum albumin (HSA). Mutual displacement experiments using ligands that primarily bind to sites I and II clearly revealed that silibinin binds tightly and selectively to site I (subsites Ia and/or Ic) of HSA, which is located in subdomain IIA. Thermodynamic analyses suggested that hydrogen bonding and van der Waals interactions are major contributors to silibinin-HSA interactions. Furthermore, the binding of silibinin to HSA was found to be decreased with increasing ionic strength and detergent concentration of the media, suggesting that electrostatic and hydrophobic interactions are involved in the binding. Trp214 and Arg218 were identified as being involved in the binding of silibinin to site I, based on binding experiments using chemically modified- and mutant-HSAs. In conclusion, the available evidence indicates that silibinin binds to the region close to Trp214 and Arg218 in site I of HSA with assistance by multiple forces and can displace site I drugs (e.g., warfarin or iodipamide), but not site II drugs (e.g., ibuprofen).
Collapse
|
66
|
Alhusban A, Alkhazaleh E, El-Elimat T. Silymarin Ameliorates Diabetes-Induced Proangiogenic Response in Brain Endothelial Cells through a GSK-3 β Inhibition-Induced Reduction of VEGF Release. J Diabetes Res 2017; 2017:2537216. [PMID: 29209632 PMCID: PMC5676450 DOI: 10.1155/2017/2537216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/24/2017] [Indexed: 02/03/2023] Open
Abstract
Diabetes mellitus (DM) is a major risk factor for cardiovascular disease. Additionally, it was found to induce a dysfunctional angiogenic response in the brain that was attributed to oxidative stress. Milk thistle seed extract (silymarin) has potent antioxidant properties, though its potential use in ameliorating diabetes-induced aberrant brain angiogenesis is unknown. Glycogen synthase kinase-3β is a regulator of angiogenesis that is upregulated by diabetes. Its involvement in diabetes-induced angiogenesis is unknown. To evaluate the potential of silymarin to ameliorate diabetes-induced aberrant angiogenesis, human brain endothelial cells (HBEC-5i) were treated with 50 μg/mL advanced glycation end (AGE) products in the presence or absence of silymarin (50, 100 μM). The angiogenic potential of HBEC-5i was evaluated in terms of migration and in vitro tube formation capacities. The involvement of GSK-3β was also evaluated. AGE significantly increased the migration and tube formation rates of HBEC-5i by about onefold (p = 0.0001). Silymarin reduced AGE-induced migration in a dose-dependent manner where 50 μM reduced migration by about 50%, whereas the 100 μM completely inhibited AGE-induced migration. Similarly, silymarin 50 μg/mL blunted AGE-induced tube formation (p = 0.001). This effect was mediated through a GSK-3β-dependent inhibition of VEGF release. In conclusion, silymarin inhibits AGE-induced aberrant angiogenesis in a GSK-3β-mediated inhibition of VEGF release.
Collapse
Affiliation(s)
- Ahmed Alhusban
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Enaam Alkhazaleh
- Clinical Pharmacy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tamam El-Elimat
- Medicinal Chemistry & Pharmacognosy Department, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
67
|
Anestopoulos I, Sfakianos AP, Franco R, Chlichlia K, Panayiotidis MI, Kroll DJ, Pappa A. A Novel Role of Silibinin as a Putative Epigenetic Modulator in Human Prostate Carcinoma. Molecules 2016; 22:molecules22010062. [PMID: 28042859 PMCID: PMC6155798 DOI: 10.3390/molecules22010062] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Silibinin, extracted from milk thistle (Silybum marianum L.), has exhibited considerable preclinical activity against prostate carcinoma. Its antitumor and chemopreventive activities have been associated with diverse effects on cell cycle, apoptosis, and receptor-dependent mitogenic signaling pathways. Here we hypothesized that silibinin's pleiotropic effects may reflect its interference with epigenetic mechanisms in human prostate cancer cells. More specifically, we have demonstrated that silibinin reduces gene expression levels of the Polycomb Repressive Complex 2 (PRC2) members Enhancer of Zeste Homolog 2 (EZH2), Suppressor of Zeste Homolog 12 (SUZ12), and Embryonic Ectoderm Development (EED) in DU145 and PC3 human prostate cancer cells, as evidenced by Real Time Polymerase Chain Reaction (RT-PCR). Furthermore immunoblot and immunofluorescence analysis revealed that silibinin-mediated reduction of EZH2 levels was accompanied by an increase in trimethylation of histone H3 on lysine (Κ)-27 residue (H3K27me3) levels and that such response was, in part, dependent on decreased expression levels of phosphorylated Akt (ser473) (pAkt) and phosphorylated EZH2 (ser21) (pEZH2). Additionally silibinin exerted other epigenetic effects involving an increase in total DNA methyltransferase (DNMT) activity while it decreased histone deacetylases 1-2 (HDACs1-2) expression levels. We conclude that silibinin induces epigenetic alterations in human prostate cancer cells, suggesting that subsequent disruptions of central processes in chromatin conformation may account for some of its diverse anticancer effects.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Aristeidis P Sfakianos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - David J Kroll
- Department of Pharmaceutical Sciences, College of Science & Technology, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| |
Collapse
|
68
|
Csupor D, Csorba A, Hohmann J. Recent advances in the analysis of flavonolignans of Silybum marianum. J Pharm Biomed Anal 2016; 130:301-317. [PMID: 27321822 DOI: 10.1016/j.jpba.2016.05.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/05/2023]
Abstract
Extracts of milk thistle (Silybum marianum, Asteraceae) have been recognized for centuries as remedies for liver and gallbladder disorders. The active constituents of milk thistle fruits are flavonolignans, collectively known as silymarin. Flavonolignans in S. marianum are structurally diverse, 23 constituents have been isolated from purple- and white-flowering variants. Flavonolignans have a broad spectrum of bioactivities and silymarin has been the subject of intensive research for its profound pharmacological activities. Silymarin is extracted from the seeds, commercialized in standardized form, and widely used in drugs and dietary supplements. The thorough analysis of silymarin, its constituents and silymarin-containing products has a key role in the quality control of milk thistle-based products. Due to the low concentration of analytes, especially pharmacological and pharmacokinetic studies require more and more selective and sensitive, advanced techniques. The objective of the present review is to summarize the recent advances in the chemical analysis of S. marianum extracts, including the chemical composition, isolation and identification of flavonolignans, sample preparation, and methods used for qualitative and quantitative analysis. Various analytical approaches have been surveyed, and their respective advantages and limits are discussed.
Collapse
Affiliation(s)
- Dezső Csupor
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Attila Csorba
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary; Interdisciplinary Centre of Natural Compounds, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
69
|
Samanta R, Pattnaik AK, Pradhan KK, Mehta BK, Pattanayak SP, Banerjee S. Wound Healing Activity of Silibinin in Mice. Pharmacognosy Res 2016; 8:298-302. [PMID: 27695272 PMCID: PMC5004523 DOI: 10.4103/0974-8490.188880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Silibinin is a semi-purified fraction of silymarin contained in milk thistle (Silybum marianum Asteraceae). Primarily known for its hepatoprotective actions, silymarin may also stimulate epithelialization and reduce inflammation in excision wound. Previous studies show antioxidant, anti-inflammatory, and antimicrobial actions of silibinin. However, wound healing property of silibinin is not well studied. OBJECTIVE This study investigates wound healing activity of silibinin topical formulation. MATERIALS AND METHODS Wound healing activity of 0.2% silibinin gel was assessed by incision and excision wound models in mice. Animals were divided into gel base, silibinin gel, and Mega Heal gel® treated groups with six animals in each group. Wound contraction, wound tissue tensile strength, and hydroxyproline content were measured, and histopathological evaluation of wound tissue of all the above treatment groups was carried out. RESULTS Application of 0.2% silibinin hydrogel for 8 days led to 56.3% wound contraction compared to 64.6% using standard Mega Heal gel with a subsequent increase in hydroxyproline content, which was significantly higher (P < 0.001) over control animals showing 33.2% contraction. After 14 days, percentage of contraction reached 96.1%, 97.6%, and 86.7%, respectively. Wound tissue tensile strength with silibinin (223.55 ± 3.82 g) and standard (241.38 ± 2.49 g) was significantly higher (P < 0.001) than control (174.06 ± 5.75 g). Histopathology of silibinin and standard gel treated wound tissue showed more fibroblasts, fewer macrophage infiltration, and well-formed collagen fibers. CONCLUSION Here, we show potent wound healing activity of silibinin hydrogel formulation. SUMMARY 0.2% silibinin hydrogel showed potent wound healing activity in incision and excision wound models in mice. Abbreviations Used: ROS: Reactive oxygen species.
Collapse
Affiliation(s)
- Rojalini Samanta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Ashok K. Pattnaik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Kishanta K. Pradhan
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Beena K. Mehta
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Shakti P. Pattanayak
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Sugato Banerjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Ranchi, Jharkhand, India
| |
Collapse
|
70
|
Graf TN, Cech NB, Polyak SJ, Oberlies NH. A validated UHPLC-tandem mass spectrometry method for quantitative analysis of flavonolignans in milk thistle (Silybum marianum) extracts. J Pharm Biomed Anal 2016; 126:26-33. [PMID: 27136284 PMCID: PMC4893890 DOI: 10.1016/j.jpba.2016.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 11/25/2022]
Abstract
Validated methods are needed for the analysis of natural product secondary metabolites. These methods are particularly important to translate in vitro observations to in vivo studies. Herein, a method is reported for the analysis of the key secondary metabolites, a series of flavonolignans and a flavonoid, from an extract prepared from the seeds of milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)]. This report represents the first UHPLC MS-MS method validated for quantitative analysis of these compounds. The method takes advantage of the excellent resolution achievable with UHPLC to provide a complete analysis in less than 7min. The method is validated using both UV and MS detectors, making it applicable in laboratories with different types of analytical instrumentation available. Lower limits of quantitation achieved with this method range from 0.0400μM to 0.160μM with UV and from 0.0800μM to 0.160μM with MS. The new method is employed to evaluate variability in constituent composition in various commercial S. marianum extracts, and to show that storage of the milk thistle compounds in DMSO leads to degradation.
Collapse
Affiliation(s)
- Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA, 98104, USA; Department of Global Health, University of Washington, Seattle, WA, 98104, USA; Department of Microbiology, University of Washington, Seattle, WA, 98104, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
71
|
Sati J, Mohanty BP, Garg ML, Koul A. Pro-Oxidant Role of Silibinin in DMBA/TPA Induced Skin Cancer: 1H NMR Metabolomic and Biochemical Study. PLoS One 2016; 11:e0158955. [PMID: 27414401 PMCID: PMC4944989 DOI: 10.1371/journal.pone.0158955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/23/2016] [Indexed: 01/08/2023] Open
Abstract
Silibinin, a major bioactive flavonolignan in Silybum marianum, has received considerable attention in view of its anticarcinogenic activity. The present study examines its anticancer potential against 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin cancer. Male LACA mice were randomly segregated into 4 groups: Control, DMBA/TPA, Silibinin and Silibinin+DMBA/TPA. Tumors in DMBA/TPA and Silibinin+DMBA/TPA groups were histologically graded as squamous cell carcinoma. In the Silibinin+DMBA/TPA group, significant reduction in tumor incidence (23%), tumor volume (64.4%), and tumor burden (84.8%) was observed when compared to the DMBA/TPA group. The underlying protective mechanism of Silibinin action was studied at pre-initiation (2 weeks), post-initiation (10 weeks) and promotion (22 weeks) stages of the skin carcinogenesis. The antioxidant nature of Silibinin was evident at the end of 2 weeks of its treatment. However, towards the end of 10 and 22 weeks, elevated lipid peroxidation (LPO) levels indicate the pro-oxidative nature of Silibinin in the cancerous tissue. TUNEL assay revealed enhanced apoptosis in the Silibinin+DMBA/TPA group with respect to the DMBA/TPA group. Therefore, it may be suggested that raised LPO could be responsible for triggering apoptosis in the Silibinin+DMBA/TPA group. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to determine the metabolic profile of the skin /skin tumors. Dimethylamine (DMA), glycerophosphocholine (GPC), glucose, lactic acid, taurine and guanine were identified as the major contributors for separation between the groups from the Principal Component Analysis (PCA) of the metabolite data. Enhanced DMA levels with no alteration in GPC, glucose and lactate levels reflect altered choline metabolism with no marked Warburg effect in skin tumors. However, elevated guanine levels with potent suppression of taurine and glucose levels in the Silibinin+DMBA/TPA group are suggestive of the pro-oxidative nature of Silibinin in regressing tumors. Thus, supporting the theory of augmented LPO levels resulting in increased apoptosis in the skin tumors treated with Silibinin.
Collapse
Affiliation(s)
- Jasmine Sati
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Biraja Prasad Mohanty
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Mohan Lal Garg
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
| | - Ashwani Koul
- Department of Biophysics, Basic Medical Sciences Block, Panjab University, Chandigarh, 160014, India
- * E-mail:
| |
Collapse
|
72
|
DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification? Food Chem 2016; 214:383-392. [PMID: 27507489 DOI: 10.1016/j.foodchem.2016.07.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 06/03/2016] [Accepted: 07/09/2016] [Indexed: 02/06/2023]
Abstract
One challenge in the dietary supplement industry is confirmation of species identity for processed raw materials, i.e. those modified by milling, drying, or extraction, which move through a multilevel supply chain before reaching the finished product. This is particularly difficult for samples containing fungal mycelia, where processing removes morphological characteristics, such that they do not present sufficient variation to differentiate species by traditional techniques. To address this issue, we have demonstrated the utility of DNA barcoding to verify the taxonomic identity of fungi found commonly in the food and dietary supplement industry; such data are critical for protecting consumer health, by assuring both safety and quality. By using DNA barcoding of nuclear ribosomal internal transcribed spacer (ITS) of the rRNA gene with fungal specific ITS primers, ITS barcodes were generated for 33 representative fungal samples, all of which could be used by consumers for food and/or dietary supplement purposes. In the majority of cases, we were able to sequence the ITS region from powdered mycelium samples, grocery store mushrooms, and capsules from commercial dietary supplements. After generating ITS barcodes utilizing standard procedures accepted by the Consortium for the Barcode of Life, we tested their utility by performing a BLAST search against authenticate published ITS sequences in GenBank. In some cases, we also downloaded published, homologous sequences of the ITS region of fungi inspected in this study and examined the phylogenetic relationships of barcoded fungal species in light of modern taxonomic and phylogenetic studies. We anticipate that these data will motivate discussions on DNA barcoding based species identification as applied to the verification/certification of mushroom-containing dietary supplements.
Collapse
|
73
|
Cheilari A, Sturm S, Intelmann D, Seger C, Stuppner H. Head-to-Head Comparison of Ultra-High-Performance Liquid Chromatography with Diode Array Detection versus Quantitative Nuclear Magnetic Resonance for the Quantitative Analysis of the Silymarin Complex in Silybum marianum Fruit Extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1618-26. [PMID: 26806429 DOI: 10.1021/acs.jafc.5b05494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Quantitative nuclear magnetic resonance (qNMR) spectroscopy is known as an excellent alternative to chromatography-based mixture analysis. NMR spectroscopy is a non-destructive method, needs only limited sample preparation, and can be readily automated. A head-to-head comparison of qNMR to an ultra-high-performance liquid chromatography with diode array detection (uHPLC-DAD)-based quantitative analysis of six flavonolignan congeners (silychristin, silydianin, silybin A, silybin B, isosilybin A, and isosilybin B) of the Silybum marianum silymarin complex is presented. Both assays showed similar performance characteristics (linear range, accuracy, precision, and limits of quantitation) with analysis times below 30 min/sample. The assays were applied to industrial S. marianum extracts (AC samples) and to extracts locally prepared from S. marianum fruits (PL samples). An assay comparison by Bland-Altman plots (relative method bias AC samples, -0.1%; 2SD range, ±5.1%; relative method bias PL samples, -0.3%; 2SD range, ±7.8%) and Passing-Bablok regression analysis (slope and intercept for AC and PL samples not significantly different from 1.00 and 0.00, respectively; Spearman's coefficient of rank correlation, >0.99) did show that qNMR and uHPLC-DAD can be used interchangeably to quantitate flavonolignans in the silymarin complex.
Collapse
Affiliation(s)
- Antigoni Cheilari
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Sonja Sturm
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | | | - Christoph Seger
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| | - Hermann Stuppner
- Institute of Pharmacy, Department of Pharmacognosy, Centrum of Chemistry and Biomedicine (CCB), University of Innsbruck , Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
74
|
Biomolecular Characterization of Putative Antidiabetic Herbal Extracts. PLoS One 2016; 11:e0148109. [PMID: 26820984 PMCID: PMC4731058 DOI: 10.1371/journal.pone.0148109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.
Collapse
|
75
|
Kim MS, Ong M, Qu X. Optimal management for alcoholic liver disease: Conventional medications, natural therapy or combination? World J Gastroenterol 2016; 22:8-23. [PMID: 26755857 PMCID: PMC4698510 DOI: 10.3748/wjg.v22.i1.8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Alcohol consumption is the principal factor in the pathogenesis of chronic liver diseases. Alcoholic liver disease (ALD) is defined by histological lesions on the liver that can range from simple hepatic steatosis to more advanced stages such as alcoholic steatohepatitis, cirrhosis, hepatocellular carcinoma and liver failure. As one of the oldest forms of liver injury known to humans, ALD is still a leading cause of liver-related morbidity and mortality and the burden is exerting on medical systems with hospitalization and management costs rising constantly worldwide. Although the biological mechanisms, including increasing of acetaldehyde, oxidative stress with induction of cytochrome p450 2E1, inflammatory cytokine release, abnormal lipid metabolism and induction of hepatocyte apoptosis, by which chronic alcohol consumption triggers serious complex progression of ALD is well established, there is no universally accepted therapy to prevent or reverse. In this article, we have briefly reviewed the pathogenesis of ALD and the molecular targets for development of novel therapies. This review is focused on current therapeutic strategies for ALD, including lifestyle modification with nutrition supplements, available pharmacological drugs and new agents that are under development, liver transplantation, application of complementary medicines, and their combination. The relevant molecular mechanisms of each conventional medication and natural agent have been reviewed according to current available knowledge in the literature. We also summarized efficacy vs safety on conventional and herbal medicines which are specifically used for the prevention and treatment of ALD. Through a system review, this article highlighted that the combination of pharmaceutical drugs with naturally occurring agents may offer an optimal management for ALD and its complications. It is worthwhile to conduct large-scale, multiple centre clinical trials to further prove the safety and benefits for the integrative therapy on ALD.
Collapse
|
76
|
Gufford BT, Barr JT, González-Pérez V, Layton ME, White JR, Oberlies NH, Paine MF. Quantitative prediction and clinical evaluation of an unexplored herb-drug interaction mechanism in healthy volunteers. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015; 4:701-10. [PMID: 26904384 PMCID: PMC4759704 DOI: 10.1002/psp4.12047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
Quantitative prediction of herb–drug interaction risk remains challenging. A quantitative framework to assess a potential interaction was used to evaluate a mechanism not previously tested in humans. The semipurified milk thistle product, silibinin, was selected as an exemplar herbal product inhibitor of raloxifene intestinal glucuronidation. Physiologically based pharmacokinetic (PBPK) model simulations of the silibinin–raloxifene interaction predicted up to 30% increases in raloxifene area under the curve (AUC0‐inf) and maximal concentration (Cmax). Model‐informed clinical evaluation of the silibinin–raloxifene interaction indicated minimal clinical interaction liability, with observed geometric mean raloxifene AUC0‐inf and Cmax ratios lying within the predefined no effect range (0.75–1.33). Further refinement of PBPK modeling and simulation approaches will enhance confidence in predictions and facilitate generalizability to additional herb–drug combinations. This quantitative framework can be used to develop guidances to evaluate potential herb–drug interactions prospectively, providing evidenced‐based information about the risk or safety of these interactions.
Collapse
Affiliation(s)
- B T Gufford
- College of Pharmacy Washington State University Spokane, Washington USA
| | - J T Barr
- College of Pharmacy Washington State University Spokane, Washington USA
| | - V González-Pérez
- College of Pharmacy Washington State University Spokane, Washington USA
| | - M E Layton
- College of Medical Sciences Washington State University Spokane, Washington USA
| | - J R White
- College of Pharmacy Washington State University Spokane, Washington USA
| | - N H Oberlies
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina USA
| | - M F Paine
- College of Pharmacy Washington State University Spokane, Washington USA
| |
Collapse
|
77
|
Bahmani M, Shirzad H, Rafieian S, Rafieian-Kopaei M. Silybum marianum: Beyond Hepatoprotection. J Evid Based Complementary Altern Med 2015; 20:292-301. [PMID: 25686616 DOI: 10.1177/2156587215571116] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/06/2015] [Indexed: 12/17/2022] Open
Abstract
Silybum marianum is a medicinal plant that has long been used as hepatoprotective remedy. It has been used for the treatment of numerous liver disorders characterized by functional impairment or degenerative necrosis. Its hepatoprotective activity is unique and acts in different ways, including antioxidant and anti-inflammatory activities, cell permeability regulator and membrane stabilizer, stimulation of liver regeneration and inhibition of deposition in collagen fibers, which may lead to cirrhosis. Most of documented data with Silybum marianum are about liver disorders; however, recently several beneficial properties on a wide variety of other disorders such as renal protection, hypolipidemic and anti-atherosclerosis activities, cardiovascular protection, prevention of insulin resistance, especially in cirrhotic patients, cancer, and Alzheimer prevention. It is also used as a food remedy. This review article aims to present different aspects of Silybum marianum, especially the data in recently published articles about its effects on different diseases, apart from presenting the aspects of its hepatoprotection.
Collapse
Affiliation(s)
- Mahmood Bahmani
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | | |
Collapse
|
78
|
Mudge E, Paley L, Schieber A, Brown PN. Optimization and single-laboratory validation of a method for the determination of flavonolignans in milk thistle seeds by high-performance liquid chromatography with ultraviolet detection. Anal Bioanal Chem 2015; 407:7657-66. [PMID: 26229030 PMCID: PMC4575382 DOI: 10.1007/s00216-015-8925-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 12/31/2022]
Abstract
Seeds of milk thistle, Silybum marianum (L.) Gaertn., are used for treatment and prevention of liver disorders and were identified as a high priority ingredient requiring a validated analytical method. An AOAC International expert panel reviewed existing methods and made recommendations concerning method optimization prior to validation. A series of extraction and separation studies were undertaken on the selected method for determining flavonolignans from milk thistle seeds and finished products to address the review panel recommendations. Once optimized, a single-laboratory validation study was conducted. The method was assessed for repeatability, accuracy, selectivity, LOD, LOQ, analyte stability, and linearity. Flavonolignan content ranged from 1.40 to 52.86% in raw materials and dry finished products and ranged from 36.16 to 1570.7 μg/mL in liquid tinctures. Repeatability for the individual flavonolignans in raw materials and finished products ranged from 1.03 to 9.88% RSDr, with HorRat values between 0.21 and 1.55. Calibration curves for all flavonolignan concentrations had correlation coefficients of >99.8%. The LODs for the flavonolignans ranged from 0.20 to 0.48 μg/mL at 288 nm. Based on the results of this single-laboratory validation, this method is suitable for the quantitation of the six major flavonolignans in milk thistle raw materials and finished products, as well as multicomponent products containing dandelion, schizandra berry, and artichoke extracts. It is recommended that this method be adopted as First Action Official Method status by AOAC International.
Collapse
Affiliation(s)
- Elizabeth Mudge
- Natural Health & Food Products Research Group, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, V5G 3H2, Canada
| | - Lori Paley
- Natural Health & Food Products Research Group, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, V5G 3H2, Canada
| | - Andreas Schieber
- 4-10 Agriculture/Forestry Centre, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Institute of Nutritional and Food Sciences, Chair of Food Technology and Food Biotechnology, University of Bonn, Roemerstrasse 164, D-53117, Bonn, Germany
| | - Paula N Brown
- Natural Health & Food Products Research Group, British Columbia Institute of Technology, 3700 Willingdon Avenue, Burnaby, BC, V5G 3H2, Canada.
| |
Collapse
|
79
|
Gufford BT, Chen G, Vergara AG, Lazarus P, Oberlies NH, Paine MF. Milk Thistle Constituents Inhibit Raloxifene Intestinal Glucuronidation: A Potential Clinically Relevant Natural Product-Drug Interaction. Drug Metab Dispos 2015; 43:1353-9. [PMID: 26070840 PMCID: PMC4538855 DOI: 10.1124/dmd.115.065086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/12/2015] [Indexed: 12/26/2022] Open
Abstract
Women at high risk of developing breast cancer are prescribed selective estrogen response modulators, including raloxifene, as chemoprevention. Patients often seek complementary and alternative treatment modalities, including herbal products, to supplement prescribed medications. Milk thistle preparations, including silibinin and silymarin, are top-selling herbal products that may be consumed by women taking raloxifene, which undergoes extensive first-pass glucuronidation in the intestine. Key constituents in milk thistle, flavonolignans, were previously shown to be potent inhibitors of intestinal UDP-glucuronosyl transferases (UGTs), with IC50s ≤ 10 μM. Taken together, milk thistle preparations may perpetrate unwanted interactions with raloxifene. The objective of this work was to evaluate the inhibitory effects of individual milk thistle constituents on the intestinal glucuronidation of raloxifene using human intestinal microsomes and human embryonic kidney cell lysates overexpressing UGT1A1, UGT1A8, and UGT1A10, isoforms highly expressed in the intestine that are critical to raloxifene clearance. The flavonolignans silybin A and silybin B were potent inhibitors of both raloxifene 4'- and 6-glucuronidation in all enzyme systems. The Kis (human intestinal microsomes, 27-66 µM; UGT1A1, 3.2-8.3 µM; UGT1A8, 19-73 µM; and UGT1A10, 65-120 µM) encompassed reported intestinal tissue concentrations (20-310 µM), prompting prediction of clinical interaction risk using a mechanistic static model. Silibinin and silymarin were predicted to increase raloxifene systemic exposure by 4- to 5-fold, indicating high interaction risk that merits further evaluation. This systematic investigation of the potential interaction between a widely used herbal product and chemopreventive agent underscores the importance of understanding natural product-drug interactions in the context of cancer prevention.
Collapse
Affiliation(s)
- Brandon T Gufford
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Gang Chen
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Ana G Vergara
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Philip Lazarus
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Nicholas H Oberlies
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| | - Mary F Paine
- Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., A.G.V., P.L.), College of Pharmacy, Washington State University, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina, Greensboro, North Carolina (N.H.O.)
| |
Collapse
|
80
|
Christodoulou E, Kechagia IA, Tzimas S, Balafas E, Kostomitsopoulos N, Archontaki H, Dokoumetzidis A, Valsami G. Serum and tissue pharmacokinetics of silibinin after per os and i.v. administration to mice as a HP-β-CD lyophilized product. Int J Pharm 2015. [PMID: 26222744 DOI: 10.1016/j.ijpharm.2015.07.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Silibinin, the main active component of Silybum marianum is a hepatoprotective and antioxidant agent with antitumor effect, exhibiting very low aqueous solubility and oral bioavailability limiting its use in therapeutics. We characterized serum and tissue pharmacokinetics of SLB, calculated its absolute bioavailability and developed an open loop physiologically based pharmacokinetic (PBPK) model, after oral (per os, p.o) and intravenous (i.v.) administration in mice as water-soluble silibinin-hydroxypropyl-beta-cyclodextrin (SLB-HP-β-CD) lyophilized product. 60 C57Bl/6J mice were divided into groups of 5, each group representing one sampling time point. SLB-HP-β-CD lyophilized product was administered orally (50mg/kg) and i.v. (20mg/kg) after reconstitution with water for injection. Blood and tissue samples were collected at selected time points after animal sacrificed, properly treated and analyzed with HPLC-PDA for non-metabolized and total SLB. NONMEM pharmacokinetic analysis revealed a 2-compartment PK model to describe serum SLB pharmacokinetics, with zero order absorption after oral administration and was applied as forcing function to an open loop PBPK model incorporating heart, liver, kidneys and lungs. Tissue/plasma Kp values were estimated using i.v. data and can be used to predict tissue SLB distribution after oral administration. Absolute oral bioavailability of SLB from the lyophilized SLB-HP-β-CD product was 10 times higher than after administration of pure SLB.
Collapse
Affiliation(s)
- Eirini Christodoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Irene-Ariadne Kechagia
- Laboratory of Biopharmaceutics-Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stavros Tzimas
- Laboratory of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Evangelos Balafas
- Department of Experimental Surgery, Bioresearch Foundation of the Academy of Athens, 4 Soranou Efesiou str., 11527 Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Department of Experimental Surgery, Bioresearch Foundation of the Academy of Athens, 4 Soranou Efesiou str., 11527 Athens, Greece
| | - Helen Archontaki
- Laboratory of Analytical Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Aristides Dokoumetzidis
- Laboratory of Biopharmaceutics-Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
81
|
Herbal product silibinin-induced programmed cell death is enhanced by metformin in cervical cancer cells at the dose without influence on nonmalignant cells. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2014.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
82
|
Gu HR, Park SC, Choi SJ, Lee JC, Kim YC, Han CJ, Kim J, Yang KY, Kim YJ, Noh GY, No SH, Jeong JH. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells. Clin Mol Hepatol 2015; 21:49-59. [PMID: 25834802 PMCID: PMC4379197 DOI: 10.3350/cmh.2015.21.1.49] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIMS Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. METHODS Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. RESULTS Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. CONCLUSIONS Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future.
Collapse
Affiliation(s)
- Ha Ra Gu
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Su Cheol Park
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Su Jin Choi
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Jae Cheol Lee
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - You Cheoul Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Chul Ju Han
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Jin Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Ki Young Yang
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Yeon Joo Kim
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Geum Youb Noh
- Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - So Hyeon No
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea. ; Department of Radiological Cancer Medicine, University of Science and Technology, Seoul, Korea
| | - Jae-Hoon Jeong
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea. ; Department of Radiological Cancer Medicine, University of Science and Technology, Seoul, Korea
| |
Collapse
|
83
|
Öztürk B, Kocaoğlu EH, Durak ZE. Effects of aqueous extract from Silybum marianum on adenosine deaminase activity in cancerous and noncancerous human gastric and colon tissues. Pharmacogn Mag 2015; 11:143-6. [PMID: 25709224 PMCID: PMC4329615 DOI: 10.4103/0973-1296.149729] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/14/2014] [Accepted: 01/21/2015] [Indexed: 01/30/2023] Open
Abstract
Objective: Investigation of possible effects of Silybum marianum extract (SME) on adenosine deaminase (ADA) activity in cancerous and noncancerous human gastric and colon tissues to obtain information about possible mechanism of anticancer action of S. marianum. Materials and Methods: Cancerous and noncancerous human gastric and colon tissues removed from patients by surgical operations were used in the studies. The extract was prepared in distilled water. Before and after treatment with the extract, ADA activities in the samples were measured. Results: ADA activity was found to be lowered significantly in cancerous gastric tissues but not in noncancerous gastric tissues after treatment with the SME. In the colon tissues, ADA activities were however found to increase after the treatment of SME. Conclusion: Our results suggest that the aqueous extract from S. marianum inhibits ADA activity in cancerous gastric tissues significantly. It is suggested that in addition to other proposed mechanisms, accumulated adenosine due to the inhibition of ADA might also play a part in the anticancer properties of the S. marianum.
Collapse
Affiliation(s)
- Bahadır Öztürk
- Department of Medical Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| | | | | |
Collapse
|
84
|
Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, Glaubitz C, Tzakos AG, Viras K, Chatzigeorgiou P, Tzimas S, Kefala E, Valsami G, Archontaki H, Papadopoulos MG, Mavromoustakos T. Investigation of the Interactions of Silibinin with 2-Hydroxypropyl-β-cyclodextrin through Biophysical Techniques and Computational Methods. Mol Pharm 2015; 12:954-65. [DOI: 10.1021/mp5008053] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tahsin F. Kellici
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
- Department
of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Ntountaniotis
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Georgios Leonis
- Institute
of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | - Johanna Becker-Baldus
- Institute
of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt, Germany
| | - Clemens Glaubitz
- Institute
of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt, Germany
| | - Andreas G. Tzakos
- Department
of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Kyriakos Viras
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Petros Chatzigeorgiou
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Stavros Tzimas
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Evangelia Kefala
- Department
of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Georgia Valsami
- Department
of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Helen Archontaki
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Manthos G. Papadopoulos
- Institute
of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| |
Collapse
|
85
|
Wianowska D, Wiśniewski M. Simplified procedure of silymarin extraction from Silybum marianum L. Gaertner. J Chromatogr Sci 2015; 53:366-72. [PMID: 24895445 DOI: 10.1093/chromsci/bmu049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Silymarin, a mixture of flavonolignans exhibiting many pharmacological activities, is obtained from the fruits of milk thistle (Silybum marianum L. Gaertner). Due to the high lipid content in thistle fruits, the European Pharmacopoeia recommends a two-step process of its extraction. First, the fruits are defatted for 6 h, using n-hexane; second, silymarin is extracted with methanol for 5 more hours. The presented data show that this extremely long traditional Soxhlet extraction process can be shortened to a few minutes using pressurized liquid extraction (PLE). PLE also allows to eliminate the defatting stage required in the traditional procedure, thus simplifying the silymarin extraction procedure and preventing silymarin loss caused by defatting. The PLE recoveries obtained under the optimized extraction conditions are clearly better than the ones obtained by the Pharmacopoeia-recommended Soxhlet extraction procedure. The PLE yields of silychristin, silydianin, silybin A, silybin B, isosilybin A and isosilybin B in acetone are 3.3, 6.9, 3.3, 5.1, 2.6 and 1.5 mg/g of the non-defatted fruits, respectively. The 5-h Soxhlet extraction with methanol on defatted fruits gives only ∼72% of the silymarin amount obtained in 10 min PLE at 125°C.
Collapse
Affiliation(s)
- Dorota Wianowska
- Faculty of Chemistry, Department of Chromatographic Methods, Maria Curie-Sklodowska University, Pl. Maria Curie-Sklodowska 3, Lublin 20-031, Poland
| | - Mariusz Wiśniewski
- Faculty of Chemistry, Department of Chromatographic Methods, Maria Curie-Sklodowska University, Pl. Maria Curie-Sklodowska 3, Lublin 20-031, Poland
| |
Collapse
|
86
|
Abstract
The rise in solar ultraviolet radiation on the earth's surface has led to a depletion of stratospheric ozone over recent decades, thus accelerating the need to protect human skin against the harmful effects of UV radiation such as erythema, edema, hyperpigmentation, photoaging, and skin cancer. There are many different ways to protect skin against UV radiation's harmful effects. The most popular way to reduce the amount of UV radiation penetrating the skin is topical application of sunscreen products that contain UV absorbing or reflecting active molecules. Based on their protection mechanism, the active molecules in sunscreens are broadly divided into inorganic and organic agents. Inorganic sunscreens reflect and scatter UV and visible radiation, while organic sunscreens absorb UV radiation and then re-emit energy as heat or light. These synthetic molecules have limited concentration according to regulation concern. Several natural compounds with UV absorption property have been used to substitute for or to reduce the quantity of synthetic sunscreen agents. In addition to UV absorption property, most natural compounds were found to act as antioxidants, anti-inflammatory, and immunomodulatory agents, which provide further protection against the damaging effects of UV radiation exposure. Compounds derived from natural sources have gained considerable attention for use in sunscreen products and have bolstered the market trend toward natural cosmetics. This adds to the importance of there being a wide selection of active molecules in sunscreen formulations. This paper summarizes a number of natural products derived from propolis, plants, algae, and lichens that have shown potential photoprotection properties against UV radiation exposure-induced skin damage.
Collapse
Affiliation(s)
- Nisakorn Saewan
- School of Cosmetic Science, Mae Fah Luang University, Muang, Chiangrai, Thailand
| | | |
Collapse
|
87
|
Raja HA, Kaur A, El-Elimat T, Figueroa M, Kumar R, Deep G, Agarwal R, Faeth SH, Cech NB, Oberlies NH. Phylogenetic and chemical diversity of fungal endophytes isolated from Silybum marianum (L) Gaertn. (milk thistle). Mycology 2015; 6:8-27. [PMID: 26000195 PMCID: PMC4409047 DOI: 10.1080/21501203.2015.1009186] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/13/2015] [Indexed: 01/30/2023] Open
Abstract
Use of the herb milk thistle (Silybum marianum) is widespread, and its chemistry has been studied for over 50 years. However, milk thistle endophytes have not been studied previously for their fungal and chemical diversity. We examined the fungal endophytes inhabiting this medicinal herb to determine: (1) species composition and phylogenetic diversity of fungal endophytes; (2) chemical diversity of secondary metabolites produced by these organisms; and (3) cytotoxicity of the pure compounds against the human prostate carcinoma (PC-3) cell line. Forty-one fungal isolates were identified from milk thistle comprising 25 operational taxonomic units based on BLAST search via GenBank using published authentic sequences from nuclear ribosomal internal transcribed spacer sequence data. Maximum likelihood analyses of partial 28S rRNA gene showed that these endophytes had phylogenetic affinities to four major classes of Ascomycota, the Dothideomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes. Chemical studies of solid-substrate fermentation cultures led to the isolation of four new natural products. In addition, 58 known secondary metabolites, representing diverse biosynthetic classes, were isolated and characterized using a suite of nuclear magnetic resonance and mass spectrometry techniques. Selected pure compounds were tested against the PC-3 cell line, where six compounds displayed cytotoxicity.
Collapse
Affiliation(s)
- Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Amninder Kaur
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico, DF04510, Mexico
| | - Rahul Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO80045, USA
| | - Stanley H. Faeth
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nadja B. Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC27402, USA
| |
Collapse
|
88
|
Kawaguchi-Suzuki M, Frye RF, Zhu HJ, Brinda BJ, Chavin KD, Bernstein HJ, Markowitz JS. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab Dispos 2014; 42:1611-6. [PMID: 25028567 PMCID: PMC4164972 DOI: 10.1124/dmd.114.057232] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023] Open
Abstract
Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities.
Collapse
Affiliation(s)
- Marina Kawaguchi-Suzuki
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Reginald F Frye
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Bryan J Brinda
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Kenneth D Chavin
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - Hilary J Bernstein
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research (M.K.-S., R.F.F., B.J.B., J.S.M.) and Center for Pharmacogenomics (M.K.-S., R.F.F., J.S.M.), University of Florida, Gainesville, Florida; Department of Clinical, Social, and Administrative Sciences, University of Michigan College of Pharmacy, Ann Arbor, Michigan (H.-J.Z.); and Department of Surgery, Division of Transplantation (K.D.C.), and Department of Psychiatry and Behavioral Sciences (H.J.B.), Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
89
|
Gufford BT, Chen G, Lazarus P, Graf TN, Oberlies NH, Paine MF. Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation. Drug Metab Dispos 2014; 42:1675-83. [PMID: 25008344 PMCID: PMC4164973 DOI: 10.1124/dmd.114.059451] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/09/2014] [Indexed: 12/29/2022] Open
Abstract
Drug-metabolizing enzymes within enterocytes constitute a key barrier to xenobiotic entry into the systemic circulation. Furanocoumarins in grapefruit juice are cornerstone examples of diet-derived xenobiotics that perpetrate interactions with drugs via mechanism-based inhibition of intestinal CYP3A4. Relative to intestinal CYP3A4-mediated inhibition, alternate mechanisms underlying dietary substance-drug interactions remain understudied. A working systematic framework was applied to a panel of structurally diverse diet-derived constituents/extracts (n = 15) as inhibitors of intestinal UDP-glucuronosyl transferases (UGTs) to identify and characterize additional perpetrators of dietary substance-drug interactions. Using a screening assay involving the nonspecific UGT probe substrate 4-methylumbelliferone, human intestinal microsomes, and human embryonic kidney cell lysates overexpressing gut-relevant UGT1A isoforms, 14 diet-derived constituents/extracts inhibited UGT activity by >50% in at least one enzyme source, prompting IC(50) determination. The IC(50) values of 13 constituents/extracts (≤10 μM with at least one enzyme source) were well below intestinal tissue concentrations or concentrations in relevant juices, suggesting that these diet-derived substances can inhibit intestinal UGTs at clinically achievable concentrations. Evaluation of the effect of inhibitor depletion on IC(50) determination demonstrated substantial impact (up to 2.8-fold shift) using silybin A and silybin B, two key flavonolignans from milk thistle (Silybum marianum) as exemplar inhibitors, highlighting an important consideration for interpretation of UGT inhibition in vitro. Results from this work will help refine a working systematic framework to identify dietary substance-drug interactions that warrant advanced modeling and simulation to inform clinical assessment.
Collapse
Affiliation(s)
- Brandon T Gufford
- Section of Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., P.L.), Washington State University College of Pharmacy, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Gang Chen
- Section of Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., P.L.), Washington State University College of Pharmacy, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Philip Lazarus
- Section of Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., P.L.), Washington State University College of Pharmacy, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Tyler N Graf
- Section of Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., P.L.), Washington State University College of Pharmacy, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Nicholas H Oberlies
- Section of Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., P.L.), Washington State University College of Pharmacy, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| | - Mary F Paine
- Section of Experimental and Systems Pharmacology (B.T.G., M.F.P.) and Department of Pharmaceutical Sciences (G.C., P.L.), Washington State University College of Pharmacy, Spokane, Washington; and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (T.N.G., N.H.O.)
| |
Collapse
|
90
|
Anestopoulos I, Voulgaridou GP, Georgakilas AG, Franco R, Pappa A, Panayiotidis MI. Epigenetic therapy as a novel approach in hepatocellular carcinoma. Pharmacol Ther 2014; 145:103-19. [PMID: 25205159 DOI: 10.1016/j.pharmthera.2014.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver malignancy and one with high fatality. Its 5-year survival rate remains low and thus, there is a need for improvement of current treatment strategies as well as development of novel targeted methodologies in order to optimize existing therapeutic protocols. To this end, only recently, it was discovered that its pathophysiology also involves epigenetic alterations in DNA methylation, histone modifications and/or non-coding microRNA patterns. Unlike genetic events, epigenetic alterations are reversible and thus potentially considered to be an alternative option in cancer treatment protocols. In this review, we describe the general characteristics and resulted major alterations of the epigenetic machinery as well as current state of progress of epigenetic therapy (via different single or combinatorial experimental approaches) in HCC.
Collapse
Affiliation(s)
- Ioannis Anestopoulos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Alexandros G Georgakilas
- School of Applied Mathematical & Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Rodrigo Franco
- Redox Biology Center, School of Veterinary Medicine & Biomedical Sciences, Redox Biology Center, University of Nebraska-Lincoln, USA
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
91
|
Mooiman KD, Goey AKL, Huijbregts TJ, Maas-Bakker RF, Beijnen JH, Schellens JHM, Meijerman I. The in-vitro effect of complementary and alternative medicines on cytochrome P450 2C9 activity. J Pharm Pharmacol 2014; 66:1339-46. [PMID: 24730468 DOI: 10.1111/jphp.12259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 03/02/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The aim of this study is to establish the inhibitory effects of 14 commonly used complementary and alternative medicines (CAM) on the metabolism of cytochrome P450 2C9 (CYP2C9) substrates 7-methoxy-4-trifluoromethyl coumarine (MFC) and tolbutamide. CYP2C9 is important for the metabolism of numerous drugs and inhibition of this enzyme by CAM could result in elevated plasma levels of drugs that are CYP2C9 substrates. Especially for anticancer drugs, which have a narrow therapeutic window, small changes in their plasma levels could easily result in clinically relevant toxicities. METHODS The effects of CAM on CYP2C9-mediated metabolism of MFC were assessed in Supersomes, using the fluorometric CYP2C9 inhibition assay. In human liver microsomes (HLM) the inhibition of CYP2C9-mediated metabolism of tolbutamide was determined, using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). KEY FINDINGS The results indicated milk thistle as the most potent CYP2C9 inhibitor. For milk thistle, silybin (main constituent of milk thistle) was mainly responsible for the inhibition of CY2C9. CONCLUSIONS Milk thistle and green tea were confirmed as potent inhibitors of CYP2C9-mediated metabolism of multiple substrates in vitro. Clinical studies with milk thistle are recommended to establish the clinical relevance of the demonstrated CYP2C9 inhibition.
Collapse
Affiliation(s)
- Kim D Mooiman
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
92
|
Physiologically based pharmacokinetic modeling framework for quantitative prediction of an herb-drug interaction. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e107. [PMID: 24670388 PMCID: PMC4042458 DOI: 10.1038/psp.2013.69] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/28/2013] [Indexed: 11/08/2022]
Abstract
Herb-drug interaction predictions remain challenging. Physiologically based pharmacokinetic (PBPK) modeling was used to improve prediction accuracy of potential herb-drug interactions using the semipurified milk thistle preparation, silibinin, as an exemplar herbal product. Interactions between silibinin constituents and the probe substrates warfarin (CYP2C9) and midazolam (CYP3A) were simulated. A low silibinin dose (160 mg/day × 14 days) was predicted to increase midazolam area under the curve (AUC) by 1%, which was corroborated with external data; a higher dose (1,650 mg/day × 7 days) was predicted to increase midazolam and (S)-warfarin AUC by 5% and 4%, respectively. A proof-of-concept clinical study confirmed minimal interaction between high-dose silibinin and both midazolam and (S)-warfarin (9 and 13% increase in AUC, respectively). Unexpectedly, (R)-warfarin AUC decreased (by 15%), but this is unlikely to be clinically important. Application of this PBPK modeling framework to other herb-drug interactions could facilitate development of guidelines for quantitative prediction of clinically relevant interactions.CPT Pharmacometrics Syst. Pharmacol. (2014) 3, e107; doi:10.1038/psp.2013.69; advance online publication 26 March 2014.
Collapse
|
93
|
Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos 2014; 42:301-17. [PMID: 24335390 PMCID: PMC3935140 DOI: 10.1124/dmd.113.055236] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/11/2013] [Indexed: 01/23/2023] Open
Abstract
Supported by a usage history that predates written records and the perception that "natural" ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb-drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb-drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb-drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb-drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens.
Collapse
Affiliation(s)
- Scott J Brantley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (S.J.B.); Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (A.A.A., S.N.); Department of Pharmaceutics, University of Washington, Seattle, Washington (Y.S.L.); and College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.)
| | | | | | | | | |
Collapse
|
94
|
El-Elimat T, Raja HA, Graf TN, Faeth SH, Cech NB, Oberlies NH. Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). JOURNAL OF NATURAL PRODUCTS 2014; 77:193-9. [PMID: 24456525 DOI: 10.1021/np400955q] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Silybin A (1), silybin B (2), and isosilybin A (3), three of the seven flavonolignans that constitute silymarin, an extract of the fruits of milk thistle (Silybum marianum), were detected for the first time from a fungal endophyte, Aspergillus iizukae, isolated from the surface-sterilized leaves of S. marianum. The flavonolignans were identified using a UPLC-PDA-HRMS-MS/MS method by matching retention times, HRMS, and MS/MS data with authentic reference compounds. Attenuation of flavonolignan production was observed following successive subculturing of the original flavonolignan-producing culture, as is often the case with endophytes that produce plant-based secondary metabolites. However, production of 1 and 2 resumed when attenuated spores were harvested from cultures grown on a medium to which autoclaved leaves of S. marianum were added. The cycle of attenuation followed by resumed biosynthesis of these flavonolignans was replicated in triplicate.
Collapse
Affiliation(s)
- Tamam El-Elimat
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro , Greensboro, North Carolina 27402, United States
| | | | | | | | | | | |
Collapse
|
95
|
Forghani P, Khorramizadeh MR, Waller EK. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Med 2014; 3:215-24. [PMID: 24574320 PMCID: PMC3987072 DOI: 10.1002/cam4.186] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/18/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC)s increase in blood and accumulate in the tumor microenvironment of tumor-bearing animals, contributing to immune suppression in cancer. Silibinin, a natural flavonoid from the seeds of milk thistle, has been developed as an anti-inflammatory agent and supportive care agent to reduce the toxicity of cancer chemotherapy. The goals of this study were to evaluate the effect of silibinin on MDSCs in tumor-bearing mice and antitumor activity of silibinin in a mouse model of breast cancer. 4T1 luciferase-transfected mammary carcinoma cells were injected into in the mammary fat pad female BALB/c mice, and female CB17-Prkdc Scid/J mice. Silibinin treatment started on day 4 or day 14 after tumor inoculation continued every other day. Tumor growth was monitored by bioluminescent imaging (BLI) measuring total photon flux. Flow cytometry measured total leukocytes, CD11b+ Gr-1+ MDSC, and T cells in the blood and tumors of tumor-bearing mice. The effects of silibinin on 4T1 cell viability in vitro were measured by BLI. Treatment with silibinin increased overall survival in mice harboring tumors derived from the 4T1-luciferase breast cancer cell line, and reduced tumor volumes and numbers of CD11b+Gr-1+ MDSCs in the blood and tumor, and increased the content of T cells in the tumor microenvironment. Silibinin failed to inhibit tumor growth in immunocompromised severe combined immunodeficiency mice, supporting the hypothesis that anticancer effect of silibinin is immune-mediated. The antitumor activity of silibinin requires an intact host immune system and is associated with decreased accumulation of blood and tumor-associated MDSCs.
Collapse
Affiliation(s)
- Parvin Forghani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | | | | |
Collapse
|
96
|
Mateen S, Raina K, Agarwal R. Chemopreventive and anti-cancer efficacy of silibinin against growth and progression of lung cancer. Nutr Cancer 2014; 65 Suppl 1:3-11. [PMID: 23682778 DOI: 10.1080/01635581.2013.785004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of systemic chemotherapeutic drugs and molecular-targeted therapies in the treatment of patients with locally advanced or metastatic lung cancer has its limitations due to the associated acute and cumulative dose limiting toxicities and acquisition of drug resistance. Prevention and therapeutic intervention by dietary agents including nutraceuticals which are non-toxic, cost-effective, and physiologically bioavailable, are emerging approaches in lung cancer management. In this regard, silibinin, a natural flavonolignan, has been rigorously evaluated for the prevention and growth control of lung cancer through extensive in vitro and in vivo studies. Successful studies conducted so far, have established that silibinin is effective both alone and in combination with other agents (e.g., chemotherapeutic and epigenetic agents) in significantly inhibiting the growth of lung cancer cells. In vivo, its effects have been shown to be mediated through inhibition of proliferation, angiogenesis and epigenetic-related events. Therefore, the present review focuses on encompassing the efficacy and mechanisms of silibinin against lung cancer.
Collapse
Affiliation(s)
- Samiha Mateen
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, 12850 E. Montview Blvd, C238, Aurora, CO 80045, USA
| | | | | |
Collapse
|
97
|
Siegel AB, Narayan R, Rodriguez R, Goyal A, Jacobson JS, Kelly K, Ladas E, Lunghofer PJ, Hansen RJ, Gustafson DL, Flaig TW, Tsai WY, Wu DPH, Lee V, Greenlee H. A phase I dose-finding study of silybin phosphatidylcholine (milk thistle) in patients with advanced hepatocellular carcinoma. Integr Cancer Ther 2014; 13:46-53. [PMID: 23757319 PMCID: PMC3866213 DOI: 10.1177/1534735413490798] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To determine the maximum tolerated dose per day of silybin phosphatidylcholine (Siliphos) in patients with advanced hepatocellular carcinoma (HCC) and hepatic dysfunction. EXPERIMENTAL DESIGN Patients with advanced HCC not eligible for other therapies based on poor hepatic function were enrolled in a phase I study of silybin phosphatidylcholine. A standard phase I design was used with 4 planned cohorts, dose escalating from 2, 4, 8, to 12 g per day in divided doses for 12 weeks. RESULTS Three participants enrolled in this single institution trial. All enrolled subjects consumed 2 g per day of study agent in divided doses. Serum concentrations of silibinin and silibinin glucuronide increased within 1 to 3 weeks. In all 3 patients, liver function abnormalities and tumor marker α-fetoprotein progressed, but after day 56 the third patient showed some improvement in liver function abnormalities and inflammatory biomarkers. All 3 participants died within 23 to 69 days of enrolling into the trial, likely from hepatic failure, but it could not be ruled out that deaths were possibly due to the study drug. CONCLUSION Short-term administration of silybin phosphatidylcholine in patients with advanced HCC resulted in detectable increases in silibinin and its metabolite, silibinin glucuronide. The maximum tolerated dose could not be established. Since patients died soon after enrollment, this patient population may have been too ill to benefit from an intervention designed to improve liver function tests.
Collapse
Affiliation(s)
| | - Rupa Narayan
- Stanford University Medical Center, Palo Alto, CA,
USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Hajighasemlou S, Farajollahi M, Alebouyeh M, Rastegar H, Manzari MT, Mirmoghtadaei M, Moayedi B, Ahmadzadeh M, Kazemi M, Parvizpour F, Gharibzadeh S. Study of the Effect of Silymarin on Viability of Breast Cancer Cell Lines. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abcr.2014.33015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Cardile AP, Mbuy GK. Anti-herpes virus activity of silibinin, the primary active component of Silybum marianum. J Herb Med 2013. [DOI: 10.1016/j.hermed.2013.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
100
|
Milić N, Milošević N, Suvajdžić L, Žarkov M, Abenavoli L. New Therapeutic Potentials of Milk Thistle (Silybum marianum). Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Silymarin is a bioflavonoid complex extract derived from dry seeds of Milk thistle [( Silybum marianum(L.) Gaernt. (Fam. Asteraceae/Compositaceae)] whose hepatoprotective effect has clinically been proved. Low toxicity, favorable pharmacokinetics, powerful antioxidant, detoxifying, preventive, protective and regenerative effects and side effects similar to placebo make silymarin extremely attractive and safe for therapeutic use. The medicinal properties of silymarin and its main component silibinin have been studied in the treatment of Alzheimer's disease, Parkinson's disease, sepsis, burns, osteoporosis, diabetes, cholestasis and hypercholesterolemia. Owing to its apoptotic effect, without cytotoxic effects, silymarin possesses potential applications in the treatment of various cancers. Silymarin is being examined as a neuro-, nephro- and cardio-protective in the damage of different etiologies due to its strong antioxidant potentials. Furthermore, it has fetoprotective (against the influence of alcohol) and prolactin effects and is safe to be used during pregnancy and lactation. Finally, the cosmetics industry is examining the antioxidant and UV-protective effects of silymarin. Further clinical studies and scientific evidence that silymarin and silibinin are effective in the therapy of various pathologies are indispensable in order to confirm their different flavonolignan pharmacological effects.
Collapse
Affiliation(s)
- Nataša Milić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Milošević
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ljiljana Suvajdžić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Marija Žarkov
- Department of Neurology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|