51
|
Abstract
Neuroplasticity, i.e., the modifiability of the brain, is different in development and adulthood. The first includes changes in: (i) neurogenesis and control of neuron number; (ii) neuronal migration; (iii) differentiation of the somato-dendritic and axonal phenotypes; (iv) formation of connections; (v) cytoarchitectonic differentiation. These changes are often interrelated and can lead to: (vi) system-wide modifications of brain structure as well as to (vii) acquisition of specific functions such as ocular dominance or language. Myelination appears to be plastic both in development and adulthood, at least, in rodents. Adult neuroplasticity is limited, and is mainly expressed as changes in the strength of excitatory and inhibitory synapses while the attempts to regenerate connections have met with limited success. The outcomes of neuroplasticity are not necessarily adaptive, but can also be the cause of neurological and psychiatric pathologies.
Collapse
|
52
|
Co-Expression of Nogo-A in Dopaminergic Neurons of the Human Substantia Nigra Pars Compacta Is Reduced in Parkinson’s Disease. Cells 2021; 10:cells10123368. [PMID: 34943877 PMCID: PMC8699585 DOI: 10.3390/cells10123368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease is mainly characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Together with the small number, the high vulnerability of the dopaminergic neurons is a major pathogenic culprit of Parkinson’s disease. Our previous findings of a higher survival of dopaminergic neurons in the substantia nigra co-expressing Nogo-A in an animal model of Parkinson’s disease suggested that Nogo-A may be associated with dopaminergic neurons resilience against Parkinson’s disease neurodegeneration. In the present study, we have addressed the expression of Nogo-A in the dopaminergic neurons in the substantia nigra in postmortem specimens of diseased and non-diseased subjects of different ages. For this purpose, in a collaborative effort we developed a tissue micro array (TMA) that allows for simultaneous staining of many samples in a single run. Interestingly, and in contrast to the observations gathered during normal aging and in the animal model of Parkinson’s disease, increasing age was significantly associated with a lower co-expression of Nogo-A in nigral dopaminergic neurons of patients with Parkinson’s disease. In sum, while Nogo-A expression in dopaminergic neurons is higher with increasing age, the opposite is the case in Parkinson’s disease. These observations suggest that Nogo-A might play a substantial role in the vulnerability of dopaminergic neurons in Parkinson’s disease.
Collapse
|
53
|
NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nat Commun 2021; 12:6906. [PMID: 34824275 PMCID: PMC8617297 DOI: 10.1038/s41467-021-27245-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022] Open
Abstract
Astrocytes play critical roles after brain injury, but their precise function is poorly defined. Utilizing single-nuclei transcriptomics to characterize astrocytes after ischemic stroke in the visual cortex of the marmoset monkey, we observed nearly complete segregation between stroke and control astrocyte clusters. Screening for the top 30 differentially expressed genes that might limit stroke recovery, we discovered that a majority of astrocytes expressed RTN4A/ NogoA, a neurite-outgrowth inhibitory protein previously only associated with oligodendrocytes. NogoA upregulation on reactive astrocytes post-stroke was significant in both the marmoset and human brain, whereas only a marginal change was observed in mice. We determined that NogoA mediated an anti-inflammatory response which likely contributes to limiting the infiltration of peripheral macrophages into the surviving parenchyma.
Collapse
|
54
|
Zhang H, Liu Y, Zhou K, Wei W, Liu Y. Restoring Sensorimotor Function Through Neuromodulation After Spinal Cord Injury: Progress and Remaining Challenges. Front Neurosci 2021; 15:749465. [PMID: 34720867 PMCID: PMC8551759 DOI: 10.3389/fnins.2021.749465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) is a major disability that results in motor and sensory impairment and extensive complications for the affected individuals which not only affect the quality of life of the patients but also result in a heavy burden for their families and the health care system. Although there are few clinically effective treatments for SCI, research over the past few decades has resulted in several novel treatment strategies which are related to neuromodulation. Neuromodulation-the use of neuromodulators, electrical stimulation or optogenetics to modulate neuronal activity-can substantially promote the recovery of sensorimotor function after SCI. Recent studies have shown that neuromodulation, in combination with other technologies, can allow paralyzed patients to carry out intentional, controlled movement, and promote sensory recovery. Although such treatments hold promise for completely overcoming SCI, the mechanisms by which neuromodulation has this effect have been difficult to determine. Here we review recent progress relative to electrical neuromodulation and optogenetics neuromodulation. We also examine potential mechanisms by which these methods may restore sensorimotor function. We then highlight the strengths of these approaches and remaining challenges with respect to its application.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaping Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
55
|
Seáñez I, Capogrosso M. Motor improvements enabled by spinal cord stimulation combined with physical training after spinal cord injury: review of experimental evidence in animals and humans. Bioelectron Med 2021; 7:16. [PMID: 34706778 PMCID: PMC8555080 DOI: 10.1186/s42234-021-00077-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Electrical spinal cord stimulation (SCS) has been gaining momentum as a potential therapy for motor paralysis in consequence of spinal cord injury (SCI). Specifically, recent studies combining SCS with activity-based training have reported unprecedented improvements in motor function in people with chronic SCI that persist even without stimulation. In this work, we first provide an overview of the critical scientific advancements that have led to the current uses of SCS in neurorehabilitation: e.g. the understanding that SCS activates dormant spinal circuits below the lesion by recruiting large-to-medium diameter sensory afferents within the posterior roots. We discuss how this led to the standardization of implant position which resulted in consistent observations by independent clinical studies that SCS in combination with physical training promotes improvements in motor performance and neurorecovery. While all reported participants were able to move previously paralyzed limbs from day 1, recovery of more complex motor functions was gradual, and the timeframe for first observations was proportional to the task complexity. Interestingly, individuals with SCI classified as AIS B and C regained motor function in paralyzed joints even without stimulation, but not individuals with motor and sensory complete SCI (AIS A). Experiments in animal models of SCI investigating the potential mechanisms underpinning this neurorecovery suggest a synaptic reorganization of cortico-reticulo-spinal circuits that correlate with improvements in voluntary motor control. Future experiments in humans and animal models of paralysis will be critical to understand the potential and limits for functional improvements in people with different types, levels, timeframes, and severities of SCI.
Collapse
Affiliation(s)
- Ismael Seáñez
- Biomedical Engineering, Washington University in St. Louis, St. Louis, USA. .,Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, USA.
| | - Marco Capogrosso
- Neurological Surgery, University of Pittsburgh, Pittsburgh, USA.,Department of Physical Medicine and Rehabilitation, Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
56
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
57
|
A review of emerging neuroprotective and neuroregenerative therapies in traumatic spinal cord injury. Curr Opin Pharmacol 2021; 60:331-340. [PMID: 34520943 DOI: 10.1016/j.coph.2021.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Traumatic spinal cord injuries (SCIs) have far-reaching physical, social, and financial consequences. While medical advancements have improved supportive therapeutic measures for SCI patients, no effective neuroregenerative therapeutic options exist to date. Instead, the paradigm of SCI therapy is inevitably directed towards damage control rather than the restoration of a state of functional independence. Facing a continuous increase in the prevalence of spinal cord injured patients, neuroprotective and neuroregenerative strategies have earned tremendous scientific interest. This review intends to provide a robust summary of the most promising neuroprotective and neuroregenerative therapies currently under investigation. While we highlight encouraging neuroprotective strategies as well, the focus of this review lies on neuroregenerative therapies, including neuropharmacological and cell-based approaches. We finally point to the exciting investigational areas of biomaterial scaffolds and neuromodulation therapies.
Collapse
|
58
|
Fague L, Liu YA, Marsh-Armstrong N. The basic science of optic nerve regeneration. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1276. [PMID: 34532413 PMCID: PMC8421956 DOI: 10.21037/atm-20-5351] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
Diverse insults to the optic nerve result in partial to total vision loss as the axons of retinal ganglion cells are destroyed. In glaucoma, axons are injured at the optic nerve head; in other optic neuropathies, axons can be damaged along the entire visual pathway. In all cases, as mammals cannot regenerate injured central nervous system cells, once the axons are lost, vision loss is irreversible. However, much has been learned about how retinal ganglion cells respond to axon injuries, and many of these crucial discoveries offer hope for future regenerative therapies. Here we review the current understanding regarding the temporal progression of axonal degeneration. We summarize known survival and regenerative mechanisms in mammals, including specific signaling pathways, key transcription factors, and reprogramming genes. We cover mechanisms intrinsic to retinal ganglion cells as well as their interactions with myeloid and glial cell populations in the retina and optic nerve that affect survival and regeneration. Finally, we highlight some non-mammalian species that are able to regenerate their retinal ganglion cell axons after injury, as understanding these successful regenerative responses may be essential to the rational design of future clinical interventions to regrow the optic nerve. In the end, a combination of many different molecular and cellular interventions will likely be the only way to achieve functional recovery of vision and restore quality of life to millions of patients around the world.
Collapse
Affiliation(s)
- Lindsay Fague
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Yin Allison Liu
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| | - Nicholas Marsh-Armstrong
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
59
|
Aspinall P, Harrison L, Scheuren P, Cragg JJ, Ferguson AR, Guest JD, Hsieh J, Jones L, Kirshblum S, Lammertse D, Kwon BK, Kramer JLK. A Systematic Review of Safety Reporting in Acute Spinal Cord Injury Clinical Trials: Challenges and Recommendations. J Neurotrauma 2021; 38:2047-2054. [PMID: 33899507 DOI: 10.1089/neu.2020.7540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accurate safety information in published clinical trials guides the assessment of risk-benefit, as well as the design of future clinical trials. Comprehensive reporting of adverse events, toxicity, and discontinuations from acute spinal cord injury clinical trials is an essential step in this process. Here, we sought to assess the degree of "satisfactoriness" of reporting in past clinical trials in spinal cord injury. A review of citations from MEDLINE and EMBASE identified eligible clinical trials in acute (within 30 days) spinal cord injury. English language studies, published between 1980 and 2020, with sensory, motor, or autonomic neurological assessments as the primary outcome measure were eligible for inclusion. Criteria were then established to qualify the safety reporting as satisfactory (i.e., distinguished severe/life-threatening events), partially satisfactory, or unsatisfactory (i.e., only mentioned in general statements, or reported but without distinguishing severe events). A total of 40 trials were included. Satisfactory reporting for clinical adverse events was observed in 30% of trials; partially satisfactory was achieved by 10% of the trials, and the remaining 60% were unsatisfactory. The majority of trials were determined to be unsatisfactory for the reporting of laboratory-defined toxicity (82.5%); only 17.5% were satisfactory. Discontinuations were satisfactorily reported for the majority of trials (80%), with the remaining partially satisfactory (5%) or unsatisfactory (15%). Reporting of safety in clinical trials for acute spinal cord injury is suboptimal. Due to the complexities of acute spinal cord injury (e.g., polytrauma, multiple systems affected), tailored and specific standards for tracking adverse events and safety reporting should be established.
Collapse
Affiliation(s)
- Paul Aspinall
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam Harrison
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - Paulina Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jacquelyn J Cragg
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam R Ferguson
- Data Science, Brain and Spinal Injury Center, Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- San Francisco Veteran's Affairs Healthcare System, San Francisco, California, USA
| | - James D Guest
- Department of Neurological Surgery, University of Miami and the Miami Project to Cure Paralysis, Miami, Florida, USA
| | | | - Linda Jones
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Steven Kirshblum
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation, West Orange, New Jersey, USA
| | | | - Brian K Kwon
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Hugill Center for Anesthesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
60
|
Guérout N. Plasticity of the Injured Spinal Cord. Cells 2021; 10:cells10081886. [PMID: 34440655 PMCID: PMC8395000 DOI: 10.3390/cells10081886] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Complete spinal cord injury (SCI) leads to permanent motor, sensitive and sensory deficits. In humans, there is currently no therapy to promote recovery and the only available treatments include surgical intervention to prevent further damage and symptomatic relief of pain and infections in the acute and chronic phases, respectively. Basically, the spinal cord is classically viewed as a nonregenerative tissue with limited plasticity. Thereby the establishment of the “glial” scar which appears within the SCI is mainly described as a hermetic barrier for axon regeneration. However, recent discoveries have shed new light on the intrinsic functional plasticity and endogenous recovery potential of the spinal cord. In this review, we will address the different aspects that the spinal cord plasticity can take on. Indeed, different experimental paradigms have demonstrated that axonal regrowth can occur even after complete SCI. Moreover, recent articles have demonstrated too that the “glial” scar is in fact composed of several cellular populations and that each of them exerts specific roles after SCI. These recent discoveries underline the underestimation of the plasticity of the spinal cord at cellular and molecular levels. Finally, we will address the modulation of this endogenous spinal cord plasticity and the perspectives of future therapeutic opportunities which can be offered by modulating the injured spinal cord microenvironment.
Collapse
Affiliation(s)
- Nicolas Guérout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France
| |
Collapse
|
61
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|
62
|
Jacobson PB, Goody R, Lawrence M, Mueller BK, Zhang X, Hooker BA, Pfleeger K, Ziemann A, Locke C, Barraud Q, Droescher M, Bernhard J, Popp A, Boeser P, Huang L, Mollon J, Mordashova Y, Cui YF, Savaryn JP, Grinnell C, Dreher I, Gold M, Courtine G, Mothe A, Tator CH, Guest JD. Elezanumab, a human anti-RGMa monoclonal antibody, promotes neuroprotection, neuroplasticity, and neurorecovery following a thoracic hemicompression spinal cord injury in non-human primates. Neurobiol Dis 2021; 155:105385. [PMID: 33991647 DOI: 10.1016/j.nbd.2021.105385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/10/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition characterized by loss of function, secondary to damaged spinal neurons, disrupted axonal connections, and myelin loss. Spontaneous recovery is limited, and there are no approved pharmaceutical treatments to reduce ongoing damage or promote repair. Repulsive guidance molecule A (RGMa) is upregulated following injury to the central nervous system (CNS), where it is believed to induce neuronal apoptosis and inhibit axonal growth and remyelination. We evaluated elezanumab, a human anti-RGMa monoclonal antibody, in a novel, newly characterized non-human primate (NHP) hemicompression model of thoracic SCI. Systemic intravenous (IV) administration of elezanumab over 6 months was well tolerated and associated with significant improvements in locomotor function. Treatment of animals for 16 weeks with a continuous intrathecal infusion of elezanumab below the lesion was not efficacious. IV elezanumab improved microstructural integrity of extralesional tissue as reflected by higher fractional anisotropy and magnetization transfer ratios in treated vs. untreated animals. IV elezanumab also reduced SCI-induced increases in soluble RGMa in cerebrospinal fluid, and membrane bound RGMa rostral and caudal to the lesion. Anterograde tracing of the corticospinal tract (CST) from the contralesional motor cortex following 20 weeks of IV elezanumab revealed a significant increase in the density of CST fibers emerging from the ipsilesional CST into the medial/ventral gray matter. There was a significant sprouting of serotonergic (5-HT) fibers rostral to the injury and in the ventral horn of lower thoracic regions. These data demonstrate that 6 months of intermittent IV administration of elezanumab, beginning within 24 h after a thoracic SCI, promotes neuroprotection and neuroplasticity of key descending pathways involved in locomotion. These findings emphasize the mechanisms leading to improved recovery of neuromotor functions with elezanumab in acute SCI in NHPs.
Collapse
Affiliation(s)
- Peer B Jacobson
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America.
| | - Robin Goody
- Virscio, New Haven, CT, United States of America
| | | | - Bernhard K Mueller
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Xiaomeng Zhang
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Bradley A Hooker
- Department of Translational Sciences, Imaging Research, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Kimberly Pfleeger
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Adam Ziemann
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Charles Locke
- Department of Biometrics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies, (NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Mathias Droescher
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Joerg Bernhard
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Andreas Popp
- Department of Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Preethne Boeser
- Department of Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Lili Huang
- AbbVie Biologics, AbbVie Bioresearch Center, 381 Plantation St., Worcester, MA 01605, United States of America
| | - Jennifer Mollon
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yulia Mordashova
- Data and Statistical Sciences, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yi-Fang Cui
- Discovery Biology, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - John P Savaryn
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Christine Grinnell
- Department of Drug Metabolism and Pharmacokinetics, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Ingeborg Dreher
- Department of Bioanalytics, AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Michael Gold
- Department of Neuroscience Development, AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, United States of America
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Defitech Center for Interventional Neurotherapies, (NeuroRestore), CHUV/UNIL/EPFL, Lausanne, Switzerland
| | - Andrea Mothe
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charles H Tator
- Division of Neurosurgery, Toronto Western Hospital, and University of Toronto, Toronto, Canada
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
63
|
Delarue Q, Robac A, Massardier R, Marie JP, Guérout N. Comparison of the effects of two therapeutic strategies based on olfactory ensheathing cell transplantation and repetitive magnetic stimulation after spinal cord injury in female mice. J Neurosci Res 2021; 99:1835-1849. [PMID: 33960512 PMCID: PMC8359979 DOI: 10.1002/jnr.24836] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition, which leads to a permanent loss of functions below the injury site. The events which take place after SCI are characterized by cellular death, release of inhibitory factors, and inflammation. Many therapies have been studied to cure SCI, among them magnetic stimulation aims to reduce the secondary damages in particular by decreasing apoptosis, while, cellular transplantation promotes neuroregeneration by enhancing axonal regrowth. In the present study, we compared individually primary olfactory ensheathing cell (OEC) transplantation and repetitive trans‐spinal magnetic stimulation (rTSMS) and then, we combined these two therapeutic approaches on tissue repair and functional recovery after SCI. To do so, SCIs were performed at Th10 level on female C57BL/6 mice, which were randomized into four groups: SCI, SCI + primary bOECs, SCI + STM, SCI + primary bulbar olfactory ensheathing cells (bOECs) + stimulation (STM). On these animals bioluminescence, immunohistological, and behavioral experiments were performed after SCI. Our results show that rTSMS has beneficial effect on the modulation of spinal scar by reducing fibrosis, demyelination, and microglial cell activation and by increasing the astroglial component of the scar, while, primary bOEC transplantation decreases microglial reactivity. At the opposite, locotronic experiments show that both treatments induce functional recovery. We did not observed any additional effect by combining the two therapeutic approaches. Taken together, the present study indicates that primary bOEC transplantation and rTSMS treatment act through different mechanisms after SCI to induce functional recovery. In our experimental paradigm, the combination of the two therapies does not induce any additional benefit.
Collapse
Key Words
- RRID:AB_10563302: PDGFRβ, Abcam, ab91066
- RRID:AB_10643424: PE, poly4064, BioLegend, 406408
- RRID:AB_2313568: Jackson ImmunoResearch, 711-166-152
- RRID:AB_2340667: Jackson ImmunoResearch, 712-165-153
- RRID:AB_2340812: Jackson ImmunoResearch, 715-165-140
- RRID:AB_2715913: Alexa 488, MRG2b-85, BioLegend
- RRID:AB_306827: p75, Abcam, ab8874
- RRID:AB_476889: GFAP Cy3-conjugated Sigma-Aldrich, C9205
- RRID:AB_777165:P DGFRβAbcam ab32570
- RRID:AB_839504: Iba1, Wako, 019-19741
- RRID:AB_94975: MBP, Millipore, MAB386
- RRID:IMSR_JAX:008450: L2G85Chco+/+ (FVB-Tg(CAG-luc,-GFP)L2G85Chco/J)
- glial scar
- magnetic stimulation
- olfactory ensheathing cells and neuroregeneration
- rehabilitation
- spinal cord injury
Collapse
Affiliation(s)
- Quentin Delarue
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Amandine Robac
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Romane Massardier
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Jean-Paul Marie
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| | - Nicolas Guérout
- Normandie Univ, UNIROUEN, EA3830-GRHV, Rouen, France.,Institute for Research and Innovation in Biomedicine (IRIB), Rouen, France
| |
Collapse
|
64
|
Abstract
Spinal cord injury (SCI) triggers a complex cascade of molecular and cellular events that leads to progressive cell loss and tissue damage. In this review, the authors outline the temporal profile of SCI pathogenesis, focusing on key mediators of the secondary injury, and highlight cutting edge insights on the alterations in neural circuits that largely define the chronic injury environment. They bridge these important basic science concepts with clinical implications for informing novel experimental therapies. Furthermore, emerging concepts in the study of SCI pathogenesis that are transforming fundamental research into innovative clinical treatment paradigms are outlined.
Collapse
Affiliation(s)
- Laureen D Hachem
- Division of Neurosurgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4W-449, Toronto, Ontario M5T 2S8, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4W-449, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
65
|
Stehle JH, Sheng Z, Hausmann L, Bechstein P, Weinmann O, Hernesniemi J, Neimat JS, Schwab ME, Zemmar A. Exercise-induced Nogo-A influences rodent motor learning in a time-dependent manner. PLoS One 2021; 16:e0250743. [PMID: 33951058 PMCID: PMC8099082 DOI: 10.1371/journal.pone.0250743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
The adult, mature central nervous system (CNS) has limited plasticity. Physical exercising can counteract this limitation by inducing plasticity and fostering processes such as learning, memory consolidation and formation. Little is known about the molecular factors that govern these mechanisms, and how they are connected with exercise. In this study, we used immunohistochemical and behavioral analyses to investigate how running wheel exercise affects expression of the neuronal plasticity-inhibiting protein Nogo-A in the rat cortex, and how it influences motor learning in vivo. Following one week of exercise, rats exhibited a decrease in Nogo-A levels, selectively in motor cortex layer 2/3, but not in layer 5. Nogo-A protein levels returned to baseline after two weeks of running wheel exercise. In a skilled motor task (forelimb-reaching), administration of Nogo-A function-blocking antibodies over the course of the first training week led to improved motor learning. By contrast, Nogo-A antibody application over two weeks of training resulted in impaired learning. Our findings imply a bimodal, time-dependent function of Nogo-A in exercise-induced neuronal plasticity: While an activity-induced suppression of the plasticity-inhibiting protein Nogo-A appears initially beneficial for enhanced motor learning, presumably by allowing greater plasticity in establishing novel synaptic connections, this process is not sustained throughout continued exercise. Instead, upregulation of Nogo-A over the course of the second week of running wheel exercise in rats implies that Nogo-A is required for consolidation of acquired motor skills during the delayed memory consolidation process, possibly by inhibiting ongoing neuronal morphological reorganization to stabilize established synaptic pathways. Our findings suggest that Nogo-A downregulation allows leaning to occur, i.e. opens a 'learning window', while its later upregulation stabilizes the learnt engrams. These findings underline the importance of appropriately timing of application of Nogo-A antibodies in future clinical trials that aim to foster memory performance while avoiding adverse effects.
Collapse
Affiliation(s)
- Jörg H. Stehle
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Zhiyuan Sheng
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Laura Hausmann
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Bechstein
- Dr. Senckenbergische Anatomie, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Oliver Weinmann
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Juha Hernesniemi
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Joseph S. Neimat
- Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, Kentucky, United States of America
| | - Martin E. Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ajmal Zemmar
- Department of Neurosurgery, Henan Provincial People´s Hospital, Henan University People’s Hospital, Henan University School of Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Department of Biology and Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
66
|
Pizzolato C, Gunduz MA, Palipana D, Wu J, Grant G, Hall S, Dennison R, Zafonte RD, Lloyd DG, Teng YD. Non-invasive approaches to functional recovery after spinal cord injury: Therapeutic targets and multimodal device interventions. Exp Neurol 2021; 339:113612. [DOI: 10.1016/j.expneurol.2021.113612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/24/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
67
|
The Implication of Reticulons (RTNs) in Neurodegenerative Diseases: From Molecular Mechanisms to Potential Diagnostic and Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22094630. [PMID: 33924890 PMCID: PMC8125174 DOI: 10.3390/ijms22094630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.
Collapse
|
68
|
Baroncini A, Maffulli N, Eschweiler J, Tingart M, Migliorini F. Pharmacological management of secondary spinal cord injury. Expert Opin Pharmacother 2021; 22:1793-1800. [PMID: 33899630 DOI: 10.1080/14656566.2021.1918674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Secondary spinal cord injury (SCI) sets on immediately after trauma and, despite prompt treatment, may become chronic. SCI is a complex condition and presents numerous challenges to patients and physicians alike, also considering the lack of an approved pharmacological therapy.Areas covered: This review describes the pathophysiological mechanisms leading to secondary SCI to highlight possible targets for pharmacological therapy. Furthermore, an extensive search of the literature on different databases (PubMed, Google scholar, Embase, and Scopus) and of the current clinical trials (clinicaltrials.gov) was performed to investigate the current outlook for the pharmacological management of SCI. Only drugs with performed or ongoing clinical trials were considered.Expert opinion: Pharmacological therapy aims to improve motor and sensory function in patients. Overall, drugs are divided into neuroprotective compounds, which aim to limit the damage induced by the pro-inflammatory and pro-apoptotic milieu of SCI, and neuroregenerative drugs, which induce neuronal and axonal regrowth. While many compounds have been trialed with promising results, none has yet completed a stage III trial and has been approved for the pharmacological management of SCI.
Collapse
Affiliation(s)
- Alice Baroncini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UK.,Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| |
Collapse
|
69
|
Chavda V, Madhwani K, Chaurasia B. Stroke and immunotherapy: Potential mechanisms and its implications as immune-therapeutics. Eur J Neurosci 2021; 54:4338-4357. [PMID: 33829590 DOI: 10.1111/ejn.15224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022]
Abstract
Ischemia or brain injuries are mostly associated with emergency admissions and huge mortality rates. Stroke is a fatal cerebrovascular malady and second top root of disability and death in both developing and developed countries with a projected rise of 24.9% (from 2010) by 2030. It's the most frequent cause of morbidities and systemic permanent morbidities due to its multi-organ systemic pathology. Brain edema or active immune response cause disturbed or abnormal systemic affects causing inflammatory damage leading to secondary infection and secondary immune response which leads to activation like pneumonia or urine tract infections. There are a variety of post stroke treatments available which claims their usefulness in reducing or inhibiting post stroke and recurrent stroke damage followed by heavy inflammatory actions. Stroke does change the quality of life and also ensures daily chronic rapid neurodegeneration and cognitive decline. The only approved therapies for stroke are alteplase and thrombectomy which is associated with adverse outcomes and are not a total cure for ischemic stroke. Stroke and immune response are reciprocal to the pathology and time of event and it progresses till untreated. The immune reaction during ischemia opens new doors for advanced targeted therapeutics. Nowadays stem cell therapy has shown better results in stroke-prone individuals. Few monoclonal antibodies like natalizumab have shown great impact on pre-clinical and clinical stroke trial studies. In this current review, we have explored an immunology of stroke, current therapeutic scenario and future potential targets as immunotherapeutic agents in stroke therapeutics.
Collapse
Affiliation(s)
- Vishal Chavda
- Division of Anesthesia, Sardar Women's Hospital, Ahmadabad, Gujarat, India
| | - Kajal Madhwani
- Department of Microbiology, Nirma University, Ahmadabad, Gujarat, India
| | | |
Collapse
|
70
|
Santamaria AJ, Benavides FD, Saraiva PM, Anderson KD, Khan A, Levi AD, Dietrich WD, Guest JD. Neurophysiological Changes in the First Year After Cell Transplantation in Sub-acute Complete Paraplegia. Front Neurol 2021; 11:514181. [PMID: 33536992 PMCID: PMC7848788 DOI: 10.3389/fneur.2020.514181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Neurophysiological testing can provide quantitative information about motor, sensory, and autonomic system connectivity following spinal cord injury (SCI). The clinical examination may be insufficiently sensitive and specific to reveal evolving changes in neural circuits after severe injury. Neurophysiologic data may provide otherwise imperceptible circuit information that has rarely been acquired in biologics clinical trials in SCI. We reported a Phase 1 study of autologous purified Schwann cell suspension transplantation into the injury epicenter of participants with complete subacute thoracic SCI, observing no clinical improvements. Here, we report longitudinal electrophysiological assessments conducted during the trial. Six participants underwent neurophysiology screening pre-transplantation with three post-transplantation neurophysiological assessments, focused on the thoracoabdominal region and lower limbs, including MEPs, SSEPs, voluntarily triggered EMG, and changes in GSR. We found several notable signals not detectable by clinical exam. In all six participants, thoracoabdominal motor connectivity was detected below the clinically assigned neurological level defined by sensory preservation. Additionally, small voluntary activations of leg and foot muscles or positive lower extremity MEPs were detected in all participants. Voluntary EMG was most sensitive to detect leg motor function. The recorded MEP amplitudes and latencies indicated a more caudal thoracic level above which amplitude recovery over time was observed. In contrast, further below, amplitudes showed less improvement, and latencies were increased. Intercostal spasms observed with EMG may also indicate this thoracic “motor level.” Galvanic skin testing revealed autonomic dysfunction in the hands above the injury levels. As an open-label study, we can establish no clear link between these observations and cell transplantation. This neurophysiological characterization may be of value to detect therapeutic effects in future controlled studies.
Collapse
Affiliation(s)
- Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Francisco D Benavides
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Pedro M Saraiva
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Kimberly D Anderson
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - Aisha Khan
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,Miller School of Medicine, The Interdisciplinary Stem Cell Institute, The University of Miami, Miami, FL, United States
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| | - James D Guest
- The Miami Project to Cure Paralysis, Miller School of Medicine, The University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Miller School of Medicine, The University of Miami, Miami, FL, United States
| |
Collapse
|
71
|
Bhattacharyya S, Dinda A, Vishnubhatla S, Anwar MF, Jain S. A combinatorial approach to modulate microenvironment toward regeneration and repair after spinal cord injury in rats. Neurosci Lett 2021; 741:135500. [PMID: 33197520 DOI: 10.1016/j.neulet.2020.135500] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Traumatic spinal cord injury (SCI) is a devastating condition of CNS which leads to loss of sensory as well as motor functions. Secondary damage after SCI initiates cascade of events that creates an inhibitory milieu for axonal growth and repair. Combinatorial therapies are the hope to attenuate secondary injury progression and make the microenvironment growth and repair friendly for the neurons. We fabricated gelatin- genipin hydrogel system which was impregnated with IONPs and injected at the lesion site in a clinically relevant contusion rat model of SCI. 24 h later, the rats were exposed to magnetic fields (17.96 μT, 50 Hz uniform EMF) for 2 h/day for 5 weeks. A significant (P < 0.001) improvement in Basso, Beattie and Bresnahan (BBB) locomotor score, amplitude and threshold of spinally mediated reflexes and motor and somatosensory evoked potentials (MEP & SSEP) was observed following IONPs implantation and EMF exposure. Moreover, retrograde tracing showed a higher level of neuronal connectivity and survival after the intervention. There was also a reduction in activated microglia and lesion volume which attenuate secondary damage as evident by reduction in the scaring following intervention for 5 weeks. Moreover, we observed increase in the neuronal growth cone marker, GAP-43, growth promoting neurotrophins (GDNF, BDNF & NT-3) and reduction in the inhibitory molecule (Nogo-A) after this combinatorial therapy. We obsrvered that a significant improvement in behavioral, electrophysiological and morphological parameters was due to an alteration in neurotrophin levels, reduction in activated microglia and increase in GAP-43 expression after the combinatorial therapy. We propose that implantation of IONPs embedded gelatin-genipin hydrogel system along with MF exposure modulated the microenvironment, making it conducive for neural repair and regeneration.
Collapse
Affiliation(s)
| | - Amit Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
72
|
Amo-Aparicio J, Sanchez-Fernandez A, Li S, Eisenmesser EZ, Garlanda C, Dinarello CA, Lopez-Vales R. Extracellular and nuclear roles of IL-37 after spinal cord injury. Brain Behav Immun 2021; 91:194-201. [PMID: 33002630 PMCID: PMC7749842 DOI: 10.1016/j.bbi.2020.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 01/01/2023] Open
Abstract
Interleukin 37 (IL-37) is an anti-inflammatory cytokine of the interleukin 1 family. Transgenic mice expressing the human form of the IL37 gene (hIL-37Tg) display protective effects in several animal models of disease. Previous data from our group revealed that IL-37 limits inflammation after spinal cord injury (SCI) and ameliorates tissue damage and functional deficits. IL-37 can exert its anti-inflammatory effects by translocating to the nucleus or acting as an extracellular cytokine. However, whether this protection after SCI is mediated by translocating to the nucleus, activating of extracellular receptors, or both, is currently unknown. In the present study, we used different transgenic animals to answer this question. We demonstrated that the beneficial effects of IL-37 on functional and histological outcomes after SCI were lost in the lack of the extracellular receptor IL-1R8, indicating that IL-37 induces protection as an extracellular cytokine. On the other hand, transgenic mice with the nuclear function of IL-37 abolished (hIL-37D20ATg) showed significant improvement in locomotor skills and myelin sparing after SCI, indicating that nuclear pathway is not required for the protective actions of IL-37. Moreover, we also showed that the therapeutic effects of the recombinant IL-37 protein are produced only in the presence of the extracellular receptor IL-1R8, further highlighting the importance of the extracellular function of this cytokine after SCI. Finally, we revealed that the administration of recombinant IL-37 protein exerted therapeutic actions when administered in the lesion site but not systemically. This work demonstrated for the first time that translocation of IL-37 to the nucleus is not required for the beneficial actions of this cytokine after SCI and highlights the importance of the extracellular signaling of IL-37 to mediate neuroprotective actions.
Collapse
Affiliation(s)
- Jesús Amo-Aparicio
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Bellaterra, Catalonia 08193, Spain,Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Alba Sanchez-Fernandez
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Suzhao Li
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, 80238, USA
| | - Cecilia Garlanda
- Humanitas University, Pieve Emanuele, MI, 20090, Italy,Humanitas Clinical and Research Center, Rozzano, MI, 20089, Italy
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA,Department of Medicine, Radboud University Medical Center, Nijmegen, 6500, The Netherlands
| | - Ruben Lopez-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autonoma de Barcelona, Bellaterra, Catalonia 08193, Spain.
| |
Collapse
|
73
|
Letaif OB, Tavares-Júnior MC, dos Santos GB, Ferreira RJ, Marcon RM, Cristante AF, de Barros-Filho TE. Standardization of an experimental model of intradural injection after spinal cord injury in rats. Clinics (Sao Paulo) 2021; 76:e2740. [PMID: 33787659 PMCID: PMC7978664 DOI: 10.6061/clinics/2021/e2740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/11/2021] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES The intrathecal route has not yet been thoroughly standardized and evaluated in an experimental model of spinal cord injury (SCI) in Wistar rats. The objective of this study was to standardize and evaluate the effect of intradural injection in this animal model. METHOD The animals were divided into 6 groups: 1) laminectomy and intradural catheter; 2) laminectomy, intradural catheter and infusion; 3) only SCI; 4) SCI and intradural catheter; 5) SCI, intradural catheter and infusion; and 6) control (laminectomy only). Motor evaluations were performed using the Basso, Beattie and Bresnahan (BBB) scale and the horizontal ladder test; motor evoked potentials were measured for functional evaluation, and histological evaluation was performed as well. All experimental data underwent statistical analysis. RESULTS Regarding motor evoked potentials, the groups with experimental SCI had worse results than those without, but neither dural puncture nor the injection of intrathecal solution aggravated the effects of isolated SCI. Regarding histology, adverse tissue effects were observed in animals with SCI. On average, the BBB scores had the same statistical behaviour as the horizontal ladder results, and at every evaluated timepoint, the groups without SCI presented scored significantly better than those with SCI (p<0.05). The difference in performance on motor tests between rats with and without experimental SCI persisted from the first to the last test. CONCLUSIONS The present work standardizes the model of intradural injection in experimental SCI in rats. Intrathecal puncture and injection did not independently cause significant functional or histological changes.
Collapse
Affiliation(s)
- Olavo B. Letaif
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Mauro C.M. Tavares-Júnior
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Gustavo B. dos Santos
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Ricardo J.R. Ferreira
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Raphael M. Marcon
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Alexandre F. Cristante
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Tarcísio E.P. de Barros-Filho
- Departamento de Ortopedia e Traumatologia, Instituto de Ortopedia e Traumatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
74
|
Takase H, Regenhardt RW. Motor tract reorganization after acute central nervous system injury: a translational perspective. Neural Regen Res 2021; 16:1144-1149. [PMID: 33269763 PMCID: PMC8224132 DOI: 10.4103/1673-5374.300330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Acute central nervous system injuries are among the most common causes of disability worldwide, with widespread social and economic implications. Motor tract injury accounts for the majority of this disability; therefore, there is impetus to understand mechanisms underlying the pathophysiology of injury and subsequent reorganization of the motor tract that may lead to recovery. After acute central nervous system injury, there are changes in the microenvironment and structure of the motor tract. For example, ischemic stroke involves decreased local blood flow and tissue death from lack of oxygen and nutrients. Traumatic injury, in contrast, causes stretching and shearing injury to microstructures, including myelinated axons and their surrounding vessels. Both involve blood-brain barrier dysfunction, which is an important initial event. After acute central nervous system injury, motor tract reorganization occurs in the form of cortical remapping in the gray matter and axonal regeneration and rewiring in the white matter. Cortical remapping involves one cortical region taking on the role of another. cAMP-response-element binding protein is a key transcription factor that can enhance plasticity in the peri-infarct cortex. Axonal regeneration and rewiring depend on complex cell-cell interactions between axons, oligodendrocytes, and other cells. The RhoA/Rho-associated coiled-coil containing kinase signaling pathway plays a central role in axon growth/regeneration through interactions with myelin-derived axonal growth inhibitors and regulation of actin cytoskeletal dynamics. Oligodendrocytes and their precursors play a role in myelination, and neurons are involved through their voltage-gated calcium channels. Understanding the pathophysiology of injury and the biology of motor tract reorganization may allow the development of therapies to enhance recovery after acute central nervous system injury. These include targeted rehabilitation, novel pharmacotherapies, such as growth factors and axonal growth inhibitor blockade, and the implementation of neurotechnologies, such as central nervous system stimulators and robotics. The translation of these advances depends on careful alignment of preclinical studies and human clinical trials. As experimental data mount, the future is one of optimism.
Collapse
Affiliation(s)
- Hajime Takase
- Department of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
75
|
Silva D, Sousa R, Salgado A. Hydrogels as delivery systems for spinal cord injury regeneration. Mater Today Bio 2021; 9:100093. [PMID: 33665602 PMCID: PMC7905359 DOI: 10.1016/j.mtbio.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/04/2023] Open
Abstract
Spinal cord injury is extremely debilitating, both at physiological and psychological levels, changing completely the patient's lifestyle. The introduction of biomaterials has opened a new window to develop a therapeutic approach to induce regeneration after injury due to similarities with extracellular matrix. Particularly, hydrogels have the ability to support axonal growth and endogenous regeneration. Moreover, they can also act as potential matrixes in which to load and deliver therapeutic agents at injury site. In this review, we highlight some important characteristics to be considered when designing hydrogels as delivery systems (DS), such as rheology, mesh size, swelling, degradation, gelation temperature and surface charge. Additionally, affinity-based release systems, incorporation of nanoparticles, or ion-mediated interactions are also pondered. Overall, hydrogel DS aim to promote a sustained, controlled and prolonged release at injury site, allowing a targeted oriented action of the therapeutic agent that will be used.
Collapse
Affiliation(s)
- D. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - R.A. Sousa
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017, Guimarães, Portugal
| | - A.J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057/4805-017, Braga/Guimarães, Portugal
| |
Collapse
|
76
|
Savidan J, Beaud ML, Rouiller EM. Cutaneous Inputs to Dorsal Column Nuclei in Adult Macaque Monkeys Subjected to Unilateral Lesion of the Primary Motor Cortex or of the Cervical Spinal Cord and Treatments Promoting Axonal Growth. Neurosci Insights 2020; 15:2633105520973991. [PMID: 33283186 PMCID: PMC7683840 DOI: 10.1177/2633105520973991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The highly interconnected somatosensory and motor systems are subjected to connectivity changes at close or remote locations following a central nervous system injury. What is the impact of unilateral injury of the primary motor cortex (hand area; MCI) or of the cervical cord (hemisection at C7-C8 level; SCI) on the primary somatosensory (cutaneous) inputs to the dorsal column nuclei (DCN) in adult macaque monkeys? The effects of treatments promoting axonal growth were assessed. In the SCI group (n = 4), 1 monkey received a control antibody and 3 monkeys a combination treatment of anti-Nogo-A antibody and brain-derived neurotrophic factor (BDNF). In the MCI group (n = 4), 2 monkeys were untreated and 2 were treated with the anti-Nogo-A antibody. Using trans-ganglionic transport of cholera toxin B subunit injected in the first 2 fingers and toes on both sides, the areas of axonal terminal fields in the cuneate and gracile nuclei were bilaterally compared. Unilateral SCI at C7-C8 level, encroaching partially on the dorsal funiculus, resulted in an ipsilesional lower extent of the inputs from the toes in the gracile nuclei, not modified by the combined treatment. SCI at C7-C8 level did not affect the bilateral balance of primary inputs to the cuneate nuclei, neither in absence nor in presence of the combined treatment. MCI targeted to the hand area did not impact on the primary inputs to the cuneate nuclei in 2 untreated monkeys. After MCI, the administration of anti-Nogo-A antibody resulted in a slight bilateral asymmetrical extent of cutaneous inputs to the cuneate nuclei, with a larger extent ipsilesionally. Overall, remote effects following MCI or SCI have not been observed at the DCN level, except possibly after MCI and anti-Nogo-A antibody treatment.
Collapse
Affiliation(s)
- Julie Savidan
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marie-Laure Beaud
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eric M Rouiller
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
77
|
Takami T, Shimokawa N, Parthiban J, Zileli M, Ali S. Pharmacologic and Regenerative Cell Therapy for Spinal Cord Injury: WFNS Spine Committee Recommendations. Neurospine 2020; 17:785-796. [PMID: 33401856 PMCID: PMC7788403 DOI: 10.14245/ns.2040408.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
This is a review article examining the pharmacologic and regenerative cell therapy for spinal cord injury. A literature search during last 10 years were conducted using key words. Case reports, experimental (nonhuman) studies, papers other than English language were excluded. Up-to-date information on the pharmacologic and regenerative cell therapy for spinal cord injury was reviewed and statements were produced to reach a consensus in 2 separate consensus meeting of WFNS Spine Committee. The statements were voted and reached a consensus using Delphi method. Pharmacologic and regenerative cell therapy for spinal cord injury have long been an interest of many experimental and clinical researches. Clinical studies with methylpredinisolone have not shown clear cut benefit. Other drugs such as Rho inhibitor, minocycline, riluzole, granulocyte colony-stimulating factor have also been tried without significant benefits. Regenerative cell therapy using different types of stem cells, different inoculation techniques, and scaffolds have undergone many trials highlighting the efficacies of cells and their limitations. This review article summarizes the current knowledge on pharmacologic and regenerative cell therapy for spinal cord injury. Unfortunately, there is a need for further experimental and human trials to recommend effective pharmacologic and regenerative cell therapy.
Collapse
Affiliation(s)
- Toshihiro Takami
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | - Jutty Parthiban
- Department of Neurosurgery, Kovai Medical Center and Hospital Coimbatore, Tamilnadu, India
| | - Mehmet Zileli
- Department of Neurosurgery, Ege University, Izmir, Turkey
| | - Sheena Ali
- Department of Neurosurgery, Kovai Medical Center and Hospital Coimbatore, Tamilnadu, India
| |
Collapse
|
78
|
Qu W, Chen B, Shu W, Tian H, Ou X, Zhang X, Wang Y, Wu M. Polymer-Based Scaffold Strategies for Spinal Cord Repair and Regeneration. Front Bioeng Biotechnol 2020; 8:590549. [PMID: 33117788 PMCID: PMC7576679 DOI: 10.3389/fbioe.2020.590549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
The injury to the spinal cord is among the most complex fields of medical development. Spinal cord injury (SCI) leads to acute loss of motor and sensory function beneath the injury level and is linked to a dismal prognosis. Currently, while a strategy that could heal the injured spinal cord remains unforeseen, the latest advancements in polymer-mediated approaches demonstrate promising treatment forms to remyelinate or regenerate the axons and to integrate new neural cells in the SCI. Moreover, they possess the capacity to locally deliver synergistic cells, growth factors (GFs) therapies and bioactive substances, which play a critical role in neuroprotection and neuroregeneration. Here, we provide an extensive overview of the SCI characteristics, the pathophysiology of SCI, and strategies and challenges for the treatment of SCI in a review. This review highlights the recent encouraging applications of polymer-based scaffolds in developing the novel SCI therapy.
Collapse
Affiliation(s)
- Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bingpeng Chen
- The Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Wentao Shu
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- The Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
79
|
Salinas PC. Restoring neuron connections. Science 2020; 369:1052-1053. [PMID: 32855323 DOI: 10.1126/science.abd4762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
80
|
Scivoletto G, Torre M, Mammone A, Maier DD, Weidner N, Schubert M, Rupp R, Abel R, Yorck-Bernhard K, Jiri K, Curt A, Molinari M. Acute Traumatic and Ischemic Spinal Cord Injuries Have a Comparable Course of Recovery. Neurorehabil Neural Repair 2020; 34:723-732. [DOI: 10.1177/1545968320939569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background. The relative rarity of ischemic compared with traumatic spinal cord injury (SCI) has limited a comparison of the outcomes of these conditions. Objective. To investigate the neurological and functional recovery of ischemic compared with traumatic acute SCI. Methods. Data were derived from the European Multicenter Study Spinal Cord Injury database. Patients with ischemic (iSCI) or traumatic SCI (tSCI), aged 18 years or older were evaluated at different time points from incidence: at about 1 month, 3 months, and 6 months. The neurological status was assessed at each time point by the International Standards for Neurological Classification of Spinal Cord Injury and the functional status by the Spinal Cord Independence Measure. Walking ability was evaluated by Walking Index for Spinal Cord Injury, 10-Meter Walk Test, and 6-Minute Walk Test. Because of the imbalances of the 2 groups in respect to size and lesion severity, a matching procedure according to age, neurological level, and severity of injury was performed. Outcomes evaluation was performed by means of a 2-way repeated-measures ANOVA. Results. The matching procedure resulted in 191 pairs. Both groups significantly improved from about 15 days after the lesion to 6 months. No differences were found in the course of neurological and functional recovery of iSCI compared with tSCI. Conclusions. This analysis from a representative cohort of participants revealed that from 15 days following the cord damage onward, the outcomes after iSCI and tSCI are comparable. This finding supports the potential enrolment of patients with acute iSCI into clinical trials from that point in time after the event and an evaluation up to 6 months afterward.
Collapse
Affiliation(s)
| | | | | | - Doris D. Maier
- Berufsgenossenschaftliche Unfallklinik Murnau, Murnau, Germany
| | | | | | | | - Rainer Abel
- Spinal Cord Injury Center, Bayreuth, Germany
| | | | - Kriz Jiri
- University Hospital Motol, Prague, Czech Republic
| | | | | |
Collapse
|
81
|
Leutritz T, Seif M, Helms G, Samson RS, Curt A, Freund P, Weiskopf N. Multiparameter mapping of relaxation (R1, R2*), proton density and magnetization transfer saturation at 3 T: A multicenter dual-vendor reproducibility and repeatability study. Hum Brain Mapp 2020; 41:4232-4247. [PMID: 32639104 PMCID: PMC7502832 DOI: 10.1002/hbm.25122] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023] Open
Abstract
Multicenter clinical and quantitative magnetic resonance imaging (qMRI) studies require a high degree of reproducibility across different sites and scanner manufacturers, as well as time points. We therefore implemented a multiparameter mapping (MPM) protocol based on vendor's product sequences and demonstrate its repeatability and reproducibility for whole‐brain coverage. Within ~20 min, four MPM metrics (magnetization transfer saturation [MT], proton density [PD], longitudinal [R1], and effective transverse [R2*] relaxation rates) were measured using an optimized 1 mm isotropic resolution protocol on six 3 T MRI scanners from two different vendors. The same five healthy participants underwent two scanning sessions, on the same scanner, at each site. MPM metrics were calculated using the hMRI‐toolbox. To account for different MT pulses used by each vendor, we linearly scaled the MT values to harmonize them across vendors. To determine longitudinal repeatability and inter‐site comparability, the intra‐site (i.e., scan‐rescan experiment) coefficient of variation (CoV), inter‐site CoV, and bias across sites were estimated. For MT, R1, and PD, the intra‐ and inter‐site CoV was between 4 and 10% across sites and scan time points for intracranial gray and white matter. A higher intra‐site CoV (16%) was observed in R2* maps. The inter‐site bias was below 5% for all parameters. In conclusion, the MPM protocol yielded reliable quantitative maps at high resolution with a short acquisition time. The high reproducibility of MPM metrics across sites and scan time points combined with its tissue microstructure sensitivity facilitates longitudinal multicenter imaging studies targeting microstructural changes, for example, as a quantitative MRI biomarker for interventional clinical trials.
Collapse
Affiliation(s)
- Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Gunther Helms
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
82
|
Wahl AS, Correa D, Imobersteg S, Maurer MA, Kaiser J, Augath MA, Schwab ME. Targeting Therapeutic Antibodies to the CNS: a Comparative Study of Intrathecal, Intravenous, and Subcutaneous Anti-Nogo A Antibody Treatment after Stroke in Rats. Neurotherapeutics 2020; 17:1153-1159. [PMID: 32378027 PMCID: PMC7609675 DOI: 10.1007/s13311-020-00864-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibody-based therapeutics targeting CNS antigens emerge as promising treatments in neurology. However, access to the CNS is limited by the blood-brain barrier. We examined the effects of a neurite growth-enhancing anti-Nogo A antibody therapy following 3 routes of administration-intrathecal (i.t.), intravenous (i.v.), and subcutaneous (s.c.)-after large photothrombotic strokes in adult rats. Intrathecal treatment of full-length IgG anti-Nogo A antibodies enhanced recovery of the grasping function, but intravenous or subcutaneous administration had no detectable effect in spite of large amounts of antibodies in the peripheral circulation. Thus, in contrast to intravenous and subcutaneous delivery, intrathecal administration is an effective and reliable way to target CNS antigens. Our data reveal that antibody delivery to the CNS is far from trivial. While intrathecal application is feasible and guarantees defined antibody doses in the effective range for a biological function, the identification and establishment of easier routes of administration remains an important task to facilitate antibody-based future therapies of CNS disorders.
Collapse
Affiliation(s)
- Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
- Central Institute of Mental Health, University of Heidelberg, J5, 68159, Mannheim, Germany.
- Department of Health Sciences and Technology, ETH Zurich, Universitätsstrasse 2, 8092, Zurich, Switzerland.
| | - Daphne Correa
- Brain Research Institute, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Universitätsstrasse 2, 8092, Zurich, Switzerland
| | - Stefan Imobersteg
- Brain Research Institute, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Universitätsstrasse 2, 8092, Zurich, Switzerland
| | - Michael Andreas Maurer
- Brain Research Institute, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Universitätsstrasse 2, 8092, Zurich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Zurich, Switzerland
| | - Julia Kaiser
- Brain Research Institute, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Universitätsstrasse 2, 8092, Zurich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Zurich, Switzerland
| | - Marc Aurel Augath
- Institute for Biomedical Imaging, ETH Zurich, Wolfgang-Pauli-Strasse 27, 8093, Zürich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Universitätsstrasse 2, 8092, Zurich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952, Zurich, Switzerland
| |
Collapse
|
83
|
Yin Y, De Lima S, Gilbert HY, Hanovice NJ, Peterson SL, Sand RM, Sergeeva EG, Wong KA, Xie L, Benowitz LI. Optic nerve regeneration: A long view. Restor Neurol Neurosci 2020; 37:525-544. [PMID: 31609715 DOI: 10.3233/rnn-190960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The optic nerve conveys information about the outside world from the retina to multiple subcortical relay centers. Until recently, the optic nerve was widely believed to be incapable of re-growing if injured, with dire consequences for victims of traumatic, ischemic, or neurodegenerative diseases of this pathway. Over the past 10-20 years, research from our lab and others has made considerable progress in defining factors that normally suppress axon regeneration and the ability of retinal ganglion cells, the projection neurons of the retina, to survive after nerve injury. Here we describe research from our lab on the role of inflammation-derived growth factors, suppression of inter-cellular signals among diverse retinal cell types, and combinatorial therapies, along with related studies from other labs, that enable animals with optic nerve injury to regenerate damaged retinal axons back to the brain. These studies raise the possibility that vision might one day be restored to people with optic nerve damage.
Collapse
Affiliation(s)
- Yuqin Yin
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Silmara De Lima
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Hui-Ya Gilbert
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Rheanna M Sand
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Elena G Sergeeva
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Lili Xie
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.,Department of Neurosurgery, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
84
|
Abstract
Therapeutic strategies for traumatic injuries in the central nervous system (CNS) are largely limited to the efficiency of drug delivery. Despite the disrupted blood-CNS barrier during the early phase after injury, the drug administration faces a variety of obstacles derived from homeostatic imbalance at the injury site. In the late phase after CNS injury, the restoration of the blood-CNS barrier integrity varies depending on the injury severity resulting in inconsistent delivery of therapeutics. This review intends to characterize those different challenges of the therapeutic delivery in acute and chronic phases after injury and discuss recent advances in various approaches to explore novel strategies for the treatment of traumatic CNS injury.
Collapse
|
85
|
Wang X, Zhou T, Maynard GD, Terse PS, Cafferty WB, Kocsis JD, Strittmatter SM. Nogo receptor decoy promotes recovery and corticospinal growth in non-human primate spinal cord injury. Brain 2020; 143:1697-1713. [PMID: 32375169 PMCID: PMC7850069 DOI: 10.1093/brain/awaa116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/19/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
After CNS trauma such as spinal cord injury, the ability of surviving neural elements to sprout axons, reorganize neural networks and support recovery of function is severely restricted, contributing to chronic neurological deficits. Among limitations on neural recovery are myelin-associated inhibitors functioning as ligands for neuronal Nogo receptor 1 (NgR1). A soluble decoy (NgR1-Fc, AXER-204) blocks these ligands and provides a means to promote recovery of function in multiple preclinical rodent models of spinal cord injury. However, the safety and efficacy of this reagent in non-human primate spinal cord injury and its toxicological profile have not been described. Here, we provide evidence that chronic intrathecal and intravenous administration of NgR1-Fc to cynomolgus monkey and to rat are without evident toxicity at doses of 20 mg and greater every other day (≥2.0 mg/kg/day), and far greater than the projected human dose. Adult female African green monkeys underwent right C5/6 lateral hemisection with evidence of persistent disuse of the right forelimb during feeding and right hindlimb during locomotion. At 1 month post-injury, the animals were randomized to treatment with vehicle (n = 6) or 0.10-0.17 mg/kg/day of NgR1-Fc (n = 8) delivered via intrathecal lumbar catheter and osmotic minipump for 4 months. One animal was removed from the study because of surgical complications of the catheter, but no treatment-related adverse events were noted in either group. Animal behaviour was evaluated at 6-7 months post-injury, i.e. 1-2 months after treatment cessation. The use of the impaired forelimb during spontaneous feeding and the impaired hindlimb during locomotion were both significantly greater in the treatment group. Tissue collected at 7-12 months post-injury showed no significant differences in lesion size, fibrotic scar, gliosis or neuroinflammation between groups. Serotoninergic raphespinal fibres below the lesion showed no deficit, with equal density on the lesioned and intact side below the level of the injury in both groups. Corticospinal axons traced from biotin-dextran-amine injections in the left motor cortex were equally labelled across groups and reduced caudal to the injury. The NgR1-Fc group tissue exhibited a significant 2-3-fold increased corticospinal axon density in the cervical cord below the level of the injury relative to the vehicle group. The data show that NgR1-Fc does not have preclinical toxicological issues in healthy animals or safety concerns in spinal cord injury animals. Thus, it presents as a potential therapeutic for spinal cord injury with evidence for behavioural improvement and growth of injured pathways in non-human primate spinal cord injury.
Collapse
Affiliation(s)
- Xingxing Wang
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Tianna Zhou
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
| | | | - Pramod S Terse
- National Center for Translational Sciences, NIH, Rockville, MD, USA
| | - William B Cafferty
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
86
|
Zavvarian MM, Hong J, Fehlings MG. The Functional Role of Spinal Interneurons Following Traumatic Spinal Cord Injury. Front Cell Neurosci 2020; 14:127. [PMID: 32528250 PMCID: PMC7247430 DOI: 10.3389/fncel.2020.00127] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic spinal cord injury (SCI) impedes signal transmission by disrupting both the local neurons and their surrounding synaptic connections. Although the majority of SCI patients retain spared neural tissue at the injury site, they predominantly suffer from complete autonomic and sensorimotor dysfunction. While there have been significant advances in the characterization of the spared neural tissue following SCI, the functional role of injury-induced interneuronal plasticity remains elusive. In healthy individuals, spinal interneurons are responsible for relaying signals to coordinate both sympathetic and parasympathetic functions. However, the spontaneous synaptic loss following injury alters these intricate interneuronal networks in the spinal cord. Here, we propose the synaptopathy hypothesis of SCI based on recent findings regarding the maladaptive role of synaptic changes amongst the interneurons. These maladaptive consequences include circuit inactivation, neuropathic pain, spasticity, and autonomic dysreflexia. Recent preclinical advances have uncovered the therapeutic potential of spinal interneurons in activating the dormant relay circuits to restore sensorimotor function. This review will survey the diverse role of spinal interneurons in SCI pathogenesis as well as treatment strategies to target spinal interneurons.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
87
|
Zavvarian MM, Toossi A, Khazaei M, Hong J, Fehlings M. Novel innovations in cell and gene therapies for spinal cord injury. F1000Res 2020; 9. [PMID: 32399196 PMCID: PMC7194487 DOI: 10.12688/f1000research.21989.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) leads to chronic and multifaceted disability, which severely impacts the physical and mental health as well as the socio-economic status of affected individuals. Permanent disabilities following SCI result from the failure of injured neurons to regenerate and rebuild functional connections with their original targets. Inhibitory factors present in the SCI microenvironment and the poor intrinsic regenerative capacity of adult spinal cord neurons are obstacles for regeneration and functional recovery. Considerable progress has been made in recent years in developing cell and molecular approaches to enable the regeneration of damaged spinal cord tissue. In this review, we highlight several potent cell-based approaches and genetic manipulation strategies (gene therapy) that are being investigated to reconstruct damaged or lost spinal neural circuits and explore emerging novel combinatorial approaches for enhancing recovery from SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Amirali Toossi
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mohamad Khazaei
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - James Hong
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Michael Fehlings
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
88
|
Sartori AM, Hofer AS, Schwab ME. Recovery after spinal cord injury is enhanced by anti-Nogo-A antibody therapy — from animal models to clinical trials. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Rigby MJ, Gomez TM, Puglielli L. Glial Cell-Axonal Growth Cone Interactions in Neurodevelopment and Regeneration. Front Neurosci 2020; 14:203. [PMID: 32210757 PMCID: PMC7076157 DOI: 10.3389/fnins.2020.00203] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
The developing nervous system is a complex yet organized system of neurons, glial support cells, and extracellular matrix that arranges into an elegant, highly structured network. The extracellular and intracellular events that guide axons to their target locations have been well characterized in many regions of the developing nervous system. However, despite extensive work, we have a poor understanding of how axonal growth cones interact with surrounding glial cells to regulate network assembly. Glia-to-growth cone communication is either direct through cellular contacts or indirect through modulation of the local microenvironment via the secretion of factors or signaling molecules. Microglia, oligodendrocytes, astrocytes, Schwann cells, neural progenitor cells, and olfactory ensheathing cells have all been demonstrated to directly impact axon growth and guidance. Expanding our understanding of how different glial cell types directly interact with growing axons throughout neurodevelopment will inform basic and clinical neuroscientists. For example, identifying the key cellular players beyond the axonal growth cone itself may provide translational clues to develop therapeutic interventions to modulate neuron growth during development or regeneration following injury. This review will provide an overview of the current knowledge about glial involvement in development of the nervous system, specifically focusing on how glia directly interact with growing and maturing axons to influence neuronal connectivity. This focus will be applied to the clinically-relevant field of regeneration following spinal cord injury, highlighting how a better understanding of the roles of glia in neurodevelopment can inform strategies to improve axon regeneration after injury.
Collapse
Affiliation(s)
- Michael J Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Timothy M Gomez
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States.,Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, United States
| |
Collapse
|
90
|
Zhang J, Li Z, Liu W, Zeng W, Duan C, He X. Effects of bone marrow mesenchymal stem cells transplantation on the recovery of neurological functions and the expression of Nogo-A, NgR, Rhoa, and ROCK in rats with experimentally-induced convalescent cerebral ischemia. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:390. [PMID: 32355834 PMCID: PMC7186734 DOI: 10.21037/atm.2020.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background To investigate the effects of intravenous transplantation of bone marrow mesenchymal stem cells (BMSCs) on neurological function in rats with experimentally-induced convalescent cerebral ischemia and the expression of Nogo-A, NgR, Rhoa, and ROCK expression. Methods BMSCs were isolated and cultured in vitro using the whole bone marrow adherent method. Eighty-one adult male Sprague-Dawley rats were divided at random into three groups: the sham-operated group, the cerebral ischemia group, and the BMSC treatment group (n=27 rats per group). In the latter two groups, the middle cerebral artery occlusion (MCAO) model was performed by the modified Zea Longa method. After MCAO, rats in the sham-operated and cerebral ischemic groups were injected with 1 mL of phosphate buffered saline (PBS) via the tail vein. In the BMSC-treatment group, 1 mL of the BMSC suspension (containing 3×106 BMSCs) was injected through the rats’ femoral vein. At 12, 24, and 72 h after BMSC transplantation, modified neurological deficit scores (mNSS) were used to assess neurological function. TTC (2,3,5-triphenyl tetrazolium chloride) staining was used to measure the ischemic lesion volume, and the distribution of Nogo-A protein was observed by immunohistochemistry. The expressions of Nogo-A, NgR, Rhoa, and ROCK were detected by Western blot. Results At 72 h after BMSC transplantation, the mNSS scores were significantly lower in the BMSC treatment group than those in the cerebral ischemia group (7.50±0.55 vs. 8.67±0.52, P<0.01), and the ischemic lesions volume was significantly reduced. The expressions of Nogo-A, NgR, RhoA, and ROCK were significantly decreased compared with the controls (P<0.05). Conclusions The transplantation of BMSCs can improve neurological function in rats after convalescent cerebral ischemia, and their therapeutic effect may be related to the downregulation of Nogo-A, NgR, RhoA, and ROCK expression.
Collapse
Affiliation(s)
- Jianbo Zhang
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenjun Li
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenxian Zeng
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xuying He
- Department of Neurosurgery, The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Province Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Neurosurgery, Southern Medical University, Zhujiang Hospital, Guangzhou 510282, China
| |
Collapse
|
91
|
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020; 12:e11505. [PMID: 32090481 PMCID: PMC7059014 DOI: 10.15252/emmm.201911505] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
The recent years saw the advent of promising preclinical strategies that combat the devastating effects of a spinal cord injury (SCI) that are progressing towards clinical trials. However, individually, these treatments produce only modest levels of recovery in animal models of SCI that could hamper their implementation into therapeutic strategies in spinal cord injured humans. Combinational strategies have demonstrated greater beneficial outcomes than their individual components alone by addressing multiple aspects of SCI pathology. Clinical trial designs in the future will eventually also need to align with this notion. The scenario will become increasingly complex as this happens and conversations between basic researchers and clinicians are required to ensure accurate study designs and functional readouts.
Collapse
Affiliation(s)
- Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
92
|
Aarabi B, Akhtar-Danesh N, Chryssikos T, Shanmuganathan K, Schwartzbauer GT, Simard JM, Olexa J, Sansur CA, Crandall KM, Mushlin H, Kole MJ, Le EJ, Wessell AP, Pratt N, Cannarsa G, Lomangino C, Scarboro M, Aresco C, Oliver J, Caffes N, Carbine S, Mori K. Efficacy of Ultra-Early (< 12 h), Early (12-24 h), and Late (>24-138.5 h) Surgery with Magnetic Resonance Imaging-Confirmed Decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C Cervical Spinal Cord Injury. J Neurotrauma 2020; 37:448-457. [PMID: 31310155 PMCID: PMC6978784 DOI: 10.1089/neu.2019.6606] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In cervical traumatic spinal cord injury (TSCI), the therapeutic effect of timing of surgery on neurological recovery remains uncertain. Additionally, the relationship between extent of decompression, imaging biomarker evidence of injury severity, and outcome is incompletely understood. We investigated the effect of timing of decompression on long-term neurological outcome in patients with complete spinal cord decompression confirmed on postoperative magnetic resonance imaging (MRI). American Spinal Injury Association (ASIA) Impairment Scale (AIS) grade conversion was determined in 72 AIS grades A, B, and C patients 6 months after confirmed decompression. Thirty-two patients underwent decompressive surgery ultra-early (< 12 h), 25 underwent decompressive surgery early (12-24 h), and 15 underwent decompressive surgery late (> 24-138.5 h) after injury. Age, gender, injury mechanism, intramedullary lesion length (IMLL) on MRI, admission ASIA motor score, and surgical technique were not statistically different among groups. Motor complete patients (p = 0.009) and those with fracture dislocations (p = 0.01) tended to be operated on earlier. Improvement of one grade or more was present in 55.6% of AIS grade A, 60.9% of AIS grade B, and 86.4% of AIS grade C patients. Admission AIS motor score (p = 0.0004) and pre-operative IMLL (p = 0.00001) were the strongest predictors of neurological outcome. AIS grade improvement occurred in 65.6%, 60%, and 80% of patients who underwent decompression ultra-early, early, and late, respectively (p = 0.424). Multiple regression analysis revealed that IMLL was the only significant variable predictive of AIS grade conversion to a better grade (odds ratio, 0.908; confidence interval [CI], 0.862-0.957; p < 0.001). We conclude that in patients with post-operative MRI confirmation of complete decompression following cervical TSCI, pre-operative IMLL, not the timing of surgery, determines long-term neurological outcome.
Collapse
Affiliation(s)
- Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Noori Akhtar-Danesh
- School of Nursing and Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Timothy Chryssikos
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Gary T. Schwartzbauer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Joshua Olexa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Charles A. Sansur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenneth M. Crandall
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Harry Mushlin
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Matthew J. Kole
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elizabeth J. Le
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nathan Pratt
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Gregory Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Cara Lomangino
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maureen Scarboro
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Carla Aresco
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey Oliver
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Nicholas Caffes
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen Carbine
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kanami Mori
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
93
|
Rust R, Weber RZ, Grönnert L, Mulders G, Maurer MA, Hofer AS, Sartori AM, Schwab ME. Anti-Nogo-A antibodies prevent vascular leakage and act as pro-angiogenic factors following stroke. Sci Rep 2019; 9:20040. [PMID: 31882970 PMCID: PMC6934709 DOI: 10.1038/s41598-019-56634-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis is a key restorative process following stroke but has also been linked to increased vascular permeability and blood brain barrier (BBB) disruption. Previous pre-clinical approaches primarily focused on the administration of vascular endothelial growth factor (VEGF) to promote vascular repair after stroke. Although shown to improve angiogenesis and functional recovery from stroke, VEGF increased the risk of blood brain barrier disruption and bleedings to such an extent that its clinical use is contraindicated. As an alternative strategy, antibodies against the neurite growth inhibitory factor Nogo-A have recently been shown to enhance vascular regeneration in the ischemic central nervous system (CNS); however, their effect on vascular permeability is unknown. Here, we demonstrate that antibody-mediated Nogo-A neutralization following stroke has strong pro-angiogenic effects but does not increase vascular permeability as opposed to VEGF. Moreover, VEGF-induced vascular permeability was partially prevented when VEGF was co-administered with anti-Nogo-A antibodies. This study may provide a novel therapeutic strategy for vascular repair and maturation in the ischemic brain.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland. .,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland.
| | | | - Lisa Grönnert
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Geertje Mulders
- Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Michael A Maurer
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Anna-Sophie Hofer
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Andrea M Sartori
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Martin E Schwab
- Institute for Regenerative Medicine, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,Dept. of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
94
|
Freund P, Seif M, Weiskopf N, Friston K, Fehlings MG, Thompson AJ, Curt A. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol 2019; 18:1123-1135. [DOI: 10.1016/s1474-4422(19)30138-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/18/2023]
|
95
|
Ng SY, Lee AYW. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front Cell Neurosci 2019; 13:528. [PMID: 31827423 PMCID: PMC6890857 DOI: 10.3389/fncel.2019.00528] [Citation(s) in RCA: 439] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality amongst civilians and military personnel globally. Despite advances in our knowledge of the complex pathophysiology of TBI, the underlying mechanisms are yet to be fully elucidated. While initial brain insult involves acute and irreversible primary damage to the parenchyma, the ensuing secondary brain injuries often progress slowly over months to years, hence providing a window for therapeutic interventions. To date, hallmark events during delayed secondary CNS damage include Wallerian degeneration of axons, mitochondrial dysfunction, excitotoxicity, oxidative stress and apoptotic cell death of neurons and glia. Extensive research has been directed to the identification of druggable targets associated with these processes. Furthermore, tremendous effort has been put forth to improve the bioavailability of therapeutics to CNS by devising strategies for efficient, specific and controlled delivery of bioactive agents to cellular targets. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by an update on novel therapeutic targets and agents. Recent development of various approaches of drug delivery to the CNS is also discussed.
Collapse
Affiliation(s)
- Si Yun Ng
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Alan Yiu Wah Lee
- Neurobiology/Ageing Program, Centre for Life Sciences, Department of Physiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
96
|
Hutson TH, Di Giovanni S. The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol 2019; 15:732-745. [DOI: 10.1038/s41582-019-0280-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2019] [Indexed: 12/22/2022]
|
97
|
Huang H, Young W, Skaper S, Chen L, Moviglia G, Saberi H, Al-Zoubi Z, Sharma HS, Muresanu D, Sharma A, El Masry W, Feng S. Clinical Neurorestorative Therapeutic Guidelines for Spinal Cord Injury (IANR/CANR version 2019). J Orthop Translat 2019; 20:14-24. [PMID: 31908929 PMCID: PMC6939117 DOI: 10.1016/j.jot.2019.10.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022] Open
Abstract
Functional restoration after spinal cord injury (SCI) is one of the most challenging tasks in neurological clinical practice. With a view to exploring effective neurorestorative methods in the acute, subacute, and chronic phases of SCI, “Clinical Therapeutic Guidelines of Neurorestoration for Spinal Cord Injury (China Version 2016)” was first proposed in 2016 by the Chinese Association of Neurorestoratology (CANR). Given the rapid advances in this field in recent years, the International Association of Neurorestoratology (IANR) and CANR formed and approved the “Clinical Neurorestorative Therapeutic Guidelines for Spinal Cord Injury (IANR/CANR version 2019)”. These guidelines mainly introduce restoring damaged neurological structure and functions by varying neurorestorative strategies in acute, subacute, and chronic phases of SCI. These guidelines can provide a neurorestorative therapeutic standard or reference for clinicians and researchers in clinical practice to maximally restore functions of patients with SCI and improve their quality of life. The translational potential of this article This guideline provided comprehensive management strategies for SCI, which contains the evaluation and diagnosis, pre-hospital first aid, treatments, rehabilitation training, and complications management. Nowadays, amounts of neurorestorative strategies have been demonstrated to be benefit in promoting the functional recovery and improving the quality of life for SCI patients by clinical trials. Also, the positive results of preclinical research provided lots of new neurorestorative strategies for SCI treatment. These promising neurorestorative strategies are worthy of translation in the future and can promote the advancement of SCI treatments.
Collapse
Affiliation(s)
- Hongyun Huang
- Institute of Neurorestoratology, Third Medical Center of PLA General Hospital, Beijing, People's Republic of China.,Hongtianji Neuroscience Academy, Lingxiu Building, No.1 at Gucheng Street, Beijing, People's Republic of China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ, USA
| | - Stephen Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Lin Chen
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, People's Republic of China
| | - Gustavo Moviglia
- Center of Research and Engineer of Tissues and Cellular Therapy, Maimonides University, Buenos Aires, Argentina
| | - Hooshang Saberi
- Department of Neurosurgery, Brain and Spinal Injury Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziad Al-Zoubi
- Jordan Ortho and Spinal Centre, Al-Saif Medical Center, Amman, Jordan
| | - Hari Shanker Sharma
- Intensive Experimental CNS Injury and Repair, University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin Muresanu
- Department of Neurosciences "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alok Sharma
- Department of Neurosurgery, LTM Medical College, LTMG Hospital, Mumbai, Mumbai, India
| | - Wagih El Masry
- Spinal Injuries Unit, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, United Kingdom
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | | |
Collapse
|
98
|
David G, Mohammadi S, Martin AR, Cohen-Adad J, Weiskopf N, Thompson A, Freund P. Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging. Nat Rev Neurol 2019; 15:718-731. [PMID: 31673093 DOI: 10.1038/s41582-019-0270-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 01/23/2023]
Abstract
Pathophysiological changes in the spinal cord white and grey matter resulting from injury can be observed with MRI techniques. These techniques provide sensitive markers of macrostructural and microstructural tissue integrity, which correlate with histological findings. Spinal cord MRI findings in traumatic spinal cord injury (tSCI) and nontraumatic spinal cord injury - the most common form of which is degenerative cervical myelopathy (DCM) - have provided important insights into the pathophysiological processes taking place not just at the focal injury site but also rostral and caudal to the spinal injury. Although tSCI and DCM have different aetiologies, they show similar degrees of spinal cord pathology remote from the injury site, suggesting the involvement of similar secondary degenerative mechanisms. Advanced quantitative MRI protocols that are sensitive to spinal cord pathology have the potential to improve diagnosis and, more importantly, predict outcomes in patients with tSCI or nontraumatic spinal cord injury. This Review describes the insights into tSCI and DCM that have been revealed by neuroimaging and outlines current activities and future directions for the field.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK
| | - Allan R Martin
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - Nikolaus Weiskopf
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Patrick Freund
- Spinal Cord Injury Center Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, UK. .,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK. .,Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
99
|
Wang Z, Huang J, Liu C, Liu L, Shen Y, Shen C, Liu C. BAF45D Downregulation in Spinal Cord Ependymal Cells Following Spinal Cord Injury in Adult Rats and Its Potential Role in the Development of Neuronal Lesions. Front Neurosci 2019; 13:1151. [PMID: 31736692 PMCID: PMC6828649 DOI: 10.3389/fnins.2019.01151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The endogenous spinal cord ependymal cells (SCECs), which form the central canal (CC), are critically involved in proliferation, differentiation and migration after spinal cord injury (SCI) and represents a repair cell source in treating SCI. Previously, we reported that BAF45D is expressed in the SCECs and the spinal cord neurons in adult mice and knockdown of BAF45D fail to induce expression of PAX6, a neurogenic fate determinant, during early neural differentiation of human embryonic stem cells. However, the effects of SCI on expression of BAF45D have not been reported. The aim of this study is to explore the expression and potential role of BAF45D in rat SCI model. In this study, adult rats were randomly divided into intact, sham, and SCI groups. We first explored expression of BAF45D in the SCECs in intact adult rats. We then explored SCI-induced loss of motor neurons and lesion of neurites in the anterior horns induced by the SCI. We also investigated whether the SCI-induced lesions in SCECs are accompanied by the motor neuron lesions. Finally, we examined the effect of BAF45D knockdown on cell growth in neuro2a cells. Our data showed that BAF45D is expressed in SCECs, neurons, and oligodendrocytes but not astrocytes in the spinal cords of intact adult rats. After SCI, the structure of CC was disrupted and the BAF45D-positive SCEC-derivatives were decreased. During the early stages of SCI, when shape of CC was affected but there was no disruption in circular structure of the SCECs, it was evident that there was a significant reduction in the number of neurites and motor neurons in the anterior horns compared with those of intact rats. In comparison, a complete loss of SCECs accompanied by further loss of motor neurons but not neurites was observed at the later stage. BAF45D knockdown was also found to inhibit cell growth in neuro2a cells. These results highlight the decreased expression of BAF45D in SCI-injured SCECs and the potential role of BAF45D downregulation in development of neuronal lesion after SCI in adult rats.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Jian Huang
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| | - Chang Liu
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Cailiang Shen
- Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chao Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Histology and Embryology, Anhui Medical University, Hefei, China
- Institute of Stem Cell and Tissue Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
100
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|