51
|
Lin L, Huang M, Shi X, Mayakonda A, Hu K, Jiang YY, Guo X, Chen L, Pang B, Doan N, Said JW, Xie J, Gery S, Cheng X, Lin Z, Li J, Berman BP, Yin D, Lin DC, Koeffler H. Super-enhancer-associated MEIS1 promotes transcriptional dysregulation in Ewing sarcoma in co-operation with EWS-FLI1. Nucleic Acids Res 2019; 47:1255-1267. [PMID: 30496486 PMCID: PMC6379679 DOI: 10.1093/nar/gky1207] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023] Open
Abstract
As the second most common malignant bone tumor in children and adolescents, Ewing sarcoma is initiated and exacerbated by a chimeric oncoprotein, most commonly, EWS-FLI1. In this study, we apply epigenomic analysis to characterize the transcription dysregulation in this cancer, focusing on the investigation of super-enhancer and its associated transcriptional regulatory mechanisms. We demonstrate that super-enhancer-associated transcripts are significantly enriched in EWS-FLI1 target genes, contribute to the aberrant transcriptional network of the disease, and mediate the exceptional sensitivity of Ewing sarcoma to transcriptional inhibition. Through integrative analysis, we identify MEIS1 as a super-enhancer-driven oncogene, which co-operates with EWS-FLI1 in transcriptional regulation, and plays a key pro-survival role in Ewing sarcoma. Moreover, APCDD1, another super-enhancer-associated gene, acting as a downstream target of both MEIS1 and EWS-FLI1, is also characterized as a novel tumor-promoting factor in this malignancy. These data delineate super-enhancer-mediated transcriptional deregulation in Ewing sarcoma, and uncover numerous candidate oncogenes which can be exploited for further understanding of the molecular pathogenesis for this disease.
Collapse
Affiliation(s)
- Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, P.R. China
| | - Xianping Shi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Xiao Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Li Chen
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brendan Pang
- Department of Pathology, National University Hospital Singapore, 119074, Singapore
| | - Ngan Doan
- Department of Pathology and Laboratory Medicine, University of California Los Angeles and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, University of California Los Angeles and David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jianjun Xie
- Department of Biochemistry and Molecular Biology, Medical College of Shantou University, Shantou 515041, P.R. China
| | - Sigal Gery
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xu Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Zhaoyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
- Department of Oral & Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Benjamin P Berman
- Department of Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- National University Cancer Institute, National University Hospital Singapore, 119074, Singapore
| |
Collapse
|
52
|
Depauw S, Lambert M, Jambon S, Paul A, Peixoto P, Nhili R, Morongiu L, Figeac M, Dassi C, Paul-Constant C, Billoré B, Kumar A, Farahat AA, Ismail MA, Mineva E, Sweat DP, Stephens CE, Boykin DW, Wilson WD, David-Cordonnier MH. Heterocyclic Diamidine DNA Ligands as HOXA9 Transcription Factor Inhibitors: Design, Molecular Evaluation, and Cellular Consequences in a HOXA9-Dependant Leukemia Cell Model. J Med Chem 2019; 62:1306-1329. [PMID: 30645099 PMCID: PMC6561105 DOI: 10.1021/acs.jmedchem.8b01448] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most transcription factors were for a long time considered as undruggable targets because of the absence of binding pockets for direct targeting. HOXA9, implicated in acute myeloid leukemia, is one of them. To date, only indirect targeting of HOXA9 expression or multitarget HOX/PBX protein/protein interaction inhibitors has been developed. As an attractive alternative by inhibiting the DNA binding, we selected a series of heterocyclic diamidines as efficient competitors for the HOXA9/DNA interaction through binding as minor groove DNA ligands on the HOXA9 cognate sequence. Selected DB818 and DB1055 compounds altered HOXA9-mediated transcription in luciferase assays, cell survival, and cell cycle, but increased cell death and granulocyte/monocyte differentiation, two main HOXA9 functions also highlighted using transcriptomic analysis of DB818-treated murine Hoxa9-transformed hematopoietic cells. Altogether, these data demonstrate for the first time the propensity of sequence-selective DNA ligands to inhibit HOXA9/DNA binding both in vitro and in a murine Hoxa9-dependent leukemic cell model.
Collapse
Affiliation(s)
- Sabine Depauw
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Mélanie Lambert
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Samy Jambon
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Paul Peixoto
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Raja Nhili
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Laura Morongiu
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Martin Figeac
- Functional and Structural Genomic Platform, Lille University, F-59000 Lille, France
| | - Christelle Dassi
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Charles Paul-Constant
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Benjamin Billoré
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Abdelbasset A. Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Ismail
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ekaterina Mineva
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Daniel P. Sweat
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - Chad E. Stephens
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| |
Collapse
|
53
|
The NUP98-HOXD13 fusion oncogene induces thymocyte self-renewal via Lmo2/Lyl1. Leukemia 2019; 33:1868-1880. [PMID: 30700838 DOI: 10.1038/s41375-018-0361-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
T cell acute lymphoblastic leukaemia (T-ALL) cases include subfamilies that overexpress the TAL1/LMO, TLX1/3 and HOXA transcription factor oncogenes. While it has been shown that TAL1/LMO transcription factors induce self-renewal of thymocytes, whether this is true for other transcription factor oncogenes is unknown. To address this, we have studied NUP98-HOXD13-transgenic (NHD13-Tg) mice, which overexpress HOXA transcription factors throughout haematopoiesis and develop both myelodysplastic syndrome (MDS) progressing to acute myeloid leukaemia (AML) as well as T-ALL. We find that thymocytes from preleukaemic NHD13-Tg mice can serially transplant, demonstrating that they have self-renewal capacity. Transcriptome analysis shows that NHD13-Tg thymocytes exhibit a stem cell-like transcriptional programme closely resembling that induced by Lmo2, including Lmo2 itself and its critical cofactor Lyl1. To determine whether Lmo2/Lyl1 are required for NHD13-induced thymocyte self-renewal, NHD13-Tg mice were crossed with Lyl1 knockout mice. This showed that Lyl1 is essential for expression of the stem cell-like gene expression programme in thymocytes and self-renewal. Surprisingly however, NHD13 transgenic mice lacking Lyl1 showed accelerated T-ALL and absence of transformation to AML, associated with a loss of multipotent progenitors in the bone marrow. Thus multiple T cell oncogenes induce thymocyte self-renewal via Lmo2/Lyl1; however, NHD13 can also promote T-ALL via an alternative pathway.
Collapse
|
54
|
Torbica T, Wicks K, Umehara T, Gungordu L, Alrdahe S, Wemyss K, Grainger JR, Mace KA. Chronic Inflammation in Response to Injury: Retention of Myeloid Cells in Injured Tissue Is Driven by Myeloid Cell Intrinsic Factors. J Invest Dermatol 2019; 139:1583-1592. [PMID: 30703358 DOI: 10.1016/j.jid.2018.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/05/2018] [Accepted: 12/26/2018] [Indexed: 01/08/2023]
Abstract
Chronic inflammation is a hallmark of impaired healing in a plethora of tissues, including skin, and is associated with aging and diseases such as diabetes. Diabetic chronic skin wounds are characterized by excessive myeloid cells that display an aberrant phenotype, partially mediated by stable intrinsic changes induced during hematopoietic development. However, the relative contribution of myeloid cell-intrinsic factors to chronic inflammation versus aberrant signals from the local environmental was unknown. Moreover, identification of myeloid cell intrinsic factors that contribute to chronic inflammation in diabetic wounds remained elusive. Here we show that Gr-1+CD11b+ myeloid cells are retained specifically within the presumptive granulation tissue region of the wound at a higher density in diabetic mice and associate with endothelial cells at the site of injury with a higher frequency than in nondiabetic mice. Adoptive transfer of myeloid cells demonstrated that aberrant wound retention is due to myeloid cell intrinsic factors and not the local environment. RNA sequencing of bone marrow and wound-derived myeloid cells identified Selplg as a myeloid cell intrinsic factor that is deregulated in chronic wounds. In vivo blockade of this protein significantly accelerated wound healing in diabetic mice and may be a potential therapeutic target in chronic wounds and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Tanja Torbica
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kate Wicks
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Takahiro Umehara
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Lale Gungordu
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Salma Alrdahe
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kelly Wemyss
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - John R Grainger
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kimberly A Mace
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
55
|
Brunetti L, Gundry MC, Goodell MA. New insights into the biology of acute myeloid leukemia with mutated NPM1. Int J Hematol 2019; 110:150-160. [DOI: 10.1007/s12185-018-02578-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
|
56
|
Alsayegh K, Cortés-Medina LV, Ramos-Mandujano G, Badraiq H, Li M. Hematopoietic Differentiation of Human Pluripotent Stem Cells: HOX and GATA Transcription Factors as Master Regulators. Curr Genomics 2019; 20:438-452. [PMID: 32194342 PMCID: PMC7062042 DOI: 10.2174/1389202920666191017163837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023] Open
Abstract
Numerous human disorders of the blood system would directly or indirectly benefit from therapeutic approaches that reconstitute the hematopoietic system. Hematopoietic stem cells (HSCs), either from matched donors or ex vivo manipulated autologous tissues, are the most used cellular source of cell therapy for a wide range of disorders. Due to the scarcity of matched donors and the difficulty of ex vivo expansion of HSCs, there is a growing interest in harnessing the potential of pluripotent stem cells (PSCs) as a de novo source of HSCs. PSCs make an ideal source of cells for regenerative medicine in general and for treating blood disorders in particular because they could expand indefinitely in culture and differentiate to any cell type in the body. However, advancement in deriving functional HSCs from PSCs has been slow. This is partly due to an incomplete understanding of the molecular mechanisms underlying normal hematopoiesis. In this review, we discuss the latest efforts to generate human PSC (hPSC)-derived HSCs capable of long-term engraftment. We review the regulation of the key transcription factors (TFs) in hematopoiesis and hematopoietic differentiation, the Homeobox (HOX) and GATA genes, and the interplay between them and microRNAs. We also propose that precise control of these master regulators during the course of hematopoietic differentiation is key to achieving functional hPSC-derived HSCs.
Collapse
Affiliation(s)
- Khaled Alsayegh
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Lorena V Cortés-Medina
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Gerardo Ramos-Mandujano
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heba Badraiq
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Mo Li
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
57
|
Martinez MF, Medrano S, Brown RI, Tufan T, Shang S, Bertoncello N, Guessoum O, Adli M, Belyea BC, Sequeira-Lopez MLS, Gomez RA. Super-enhancers maintain renin-expressing cell identity and memory to preserve multi-system homeostasis. J Clin Invest 2018; 128:4787-4803. [PMID: 30130256 PMCID: PMC6205391 DOI: 10.1172/jci121361] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Renin cells are crucial for survival - they control fluid-electrolyte and blood pressure homeostasis, vascular development, regeneration, and oxygen delivery to tissues. During embryonic development, renin cells are progenitors for multiple cell types that retain the memory of the renin phenotype. When there is a threat to survival, those descendants are transformed and reenact the renin phenotype to restore homeostasis. We tested the hypothesis that the molecular memory of the renin phenotype resides in unique regions and states of these cells' chromatin. Using renin cells at various stages of stimulation, we identified regions in the genome where the chromatin is open for transcription, mapped histone modifications characteristic of active enhancers such as H3K27ac, and tracked deposition of transcriptional activators such as Med1, whose deletion results in ablation of renin expression and low blood pressure. Using the rank ordering of super-enhancers, epigenetic rewriting, and enhancer deletion analysis, we found that renin cells harbor a unique set of super-enhancers that determine their identity. The most prominent renin super-enhancer may act as a chromatin sensor of signals that convey the physiologic status of the organism, and is responsible for the transformation of renin cell descendants to the renin phenotype, a fundamental process to ensure homeostasis.
Collapse
Affiliation(s)
| | | | | | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Omar Guessoum
- Child Health Research Center
- Department of Pediatrics
- Department of Biology, and
| | - Mazhar Adli
- Child Health Research Center
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | - R. Ariel Gomez
- Child Health Research Center
- Department of Pediatrics
- Department of Biology, and
| |
Collapse
|
58
|
Sun Y, Zhou B, Mao F, Xu J, Miao H, Zou Z, Phuc Khoa LT, Jang Y, Cai S, Witkin M, Koche R, Ge K, Dressler GR, Levine RL, Armstrong SA, Dou Y, Hess JL. HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell 2018; 34:643-658.e5. [PMID: 30270123 PMCID: PMC6179449 DOI: 10.1016/j.ccell.2018.08.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/07/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Abstract
Aberrant expression of HOXA9 is a prominent feature of acute leukemia driven by diverse oncogenes. Here we show that HOXA9 overexpression in myeloid and B progenitor cells leads to significant enhancer reorganizations with prominent emergence of leukemia-specific de novo enhancers. Alterations in the enhancer landscape lead to activation of an ectopic embryonic gene program. We show that HOXA9 functions as a pioneer factor at de novo enhancers and recruits CEBPα and the MLL3/MLL4 complex. Genetic deletion of MLL3/MLL4 blocks histone H3K4 methylation at de novo enhancers and inhibits HOXA9/MEIS1-mediated leukemogenesis in vivo. These results suggest that therapeutic targeting of HOXA9-dependent enhancer reorganization can be an effective therapeutic strategy in acute leukemia with HOXA9 overexpression.
Collapse
Affiliation(s)
- Yuqing Sun
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Fengbiao Mao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jing Xu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhenhua Zou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Le Tran Phuc Khoa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Younghoon Jang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sheng Cai
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew Witkin
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory R Dressler
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ross L Levine
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Scott A Armstrong
- Dana Farber Cancer Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Jay L Hess
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
59
|
Wlodarski MW, Sahoo SS, Niemeyer CM. Monosomy 7 in Pediatric Myelodysplastic Syndromes. Hematol Oncol Clin North Am 2018; 32:729-743. [DOI: 10.1016/j.hoc.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
60
|
Mahotka C, Bhatia S, Kollet J, Grinstein E. Nucleolin promotes execution of the hematopoietic stem cell gene expression program. Leukemia 2018; 32:1865-1868. [PMID: 29572507 DOI: 10.1038/s41375-018-0090-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Csaba Mahotka
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sanil Bhatia
- Institute of Pathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jutta Kollet
- Bioinformatics, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Edgar Grinstein
- Institute of Pathology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
61
|
Benetatos L, Vartholomatos G. Enhancer DNA methylation in acute myeloid leukemia and myelodysplastic syndromes. Cell Mol Life Sci 2018; 75:1999-2009. [PMID: 29484447 PMCID: PMC11105366 DOI: 10.1007/s00018-018-2783-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation (CpG methylation) exerts an important role in normal differentiation and proliferation of hematopoietic stem cells and their differentiated progeny, while it has also the ability to regulate myeloid versus lymphoid fate. Mutations of the epigenetic machinery are observed in hematological malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) resulting in hyper- or hypo-methylation affecting several different pathways. Enhancers are cis-regulatory elements which promote transcription activation and are characterized by histone marks including H3K27ac and H3K4me1/2. These gene subunits are target gene expression 'fine-tuners', are differentially used during the hematopoietic differentiation, and, in contrast to promoters, are not shared by the different hematopoietic cell types. Although the interaction between gene promoters and DNA methylation has extensively been studied, much less is known about the interplay between enhancers and DNA methylation. In hematopoiesis, DNA methylation at enhancers has the potential to discriminate between fetal and adult erythropoiesis, and also is a regulatory mechanism in granulopoiesis through repression of neutrophil-specific enhancers in progenitor cells during maturation. The interplay between DNA methylation at enhancers is disrupted in AML and MDS and mainly hyper-methylation at enhancers raising early during myeloid lineage commitment is acquired during malignant transformation. Interactions between mutated epigenetic drivers and other oncogenic mutations also affect enhancers' activity with final result, myeloid differentiation block. In this review, we have assembled recent data regarding DNA methylation and enhancers' activity in normal and mainly myeloid malignancies.
Collapse
|
62
|
Rzymski T, Mikula M, Żyłkiewicz E, Dreas A, Wiklik K, Gołas A, Wójcik K, Masiejczyk M, Wróbel A, Dolata I, Kitlińska A, Statkiewicz M, Kuklinska U, Goryca K, Sapała Ł, Grochowska A, Cabaj A, Szajewska-Skuta M, Gabor-Worwa E, Kucwaj K, Białas A, Radzimierski A, Combik M, Woyciechowski J, Mikulski M, Windak R, Ostrowski J, Brzózka K. SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains. Oncotarget 2018; 8:33779-33795. [PMID: 28422713 PMCID: PMC5464911 DOI: 10.18632/oncotarget.16810] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/09/2017] [Indexed: 11/25/2022] Open
Abstract
Inhibition of oncogenic transcriptional programs is a promising therapeutic strategy. A substituted tricyclic benzimidazole, SEL120-34A, is a novel inhibitor of Cyclin-dependent kinase 8 (CDK8), which regulates transcription by associating with the Mediator complex. X-ray crystallography has shown SEL120-34A to be a type I inhibitor forming halogen bonds with the protein's hinge region and hydrophobic complementarities within its front pocket. SEL120-34A inhibits phosphorylation of STAT1 S727 and STAT5 S726 in cancer cells in vitro. Consistently, regulation of STATs- and NUP98-HOXA9- dependent transcription has been observed as a dominant mechanism of action in vivo. Treatment with the compound resulted in a differential efficacy on AML cells with elevated STAT5 S726 levels and stem cell characteristics. In contrast, resistant cells were negative for activated STAT5 and revealed lineage commitment. In vivo efficacy in xenotransplanted AML models correlated with significant repression of STAT5 S726. Favorable pharmacokinetics, confirmed safety and in vivo efficacy provide a rationale for the further clinical development of SEL120-34A as a personalized therapeutic approach in AML.
Collapse
Affiliation(s)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland
| | | | | | | | | | | | | | - Anna Wróbel
- R&D Department, Selvita S.A., Kraków, Poland
| | | | | | | | - Urszula Kuklinska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland
| | | | - Aleksandra Grochowska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Aleksandra Cabaj
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland.,Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | | |
Collapse
|
63
|
de Bock CE, Demeyer S, Degryse S, Verbeke D, Sweron B, Gielen O, Vandepoel R, Vicente C, Vanden Bempt M, Dagklis A, Geerdens E, Bornschein S, Gijsbers R, Soulier J, Meijerink JP, Heinäniemi M, Teppo S, Bouvy-Liivrand M, Lohi O, Radaelli E, Cools J. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discov 2018; 8:616-631. [PMID: 29496663 DOI: 10.1158/2159-8290.cd-17-0583] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022]
Abstract
Leukemia is caused by the accumulation of multiple genomic lesions in hematopoietic precursor cells. However, how these events cooperate during oncogenic transformation remains poorly understood. We studied the cooperation between activated JAK3/STAT5 signaling and HOXA9 overexpression, two events identified as significantly co-occurring in T-cell acute lymphoblastic leukemia. Expression of mutant JAK3 and HOXA9 led to a rapid development of leukemia originating from multipotent or lymphoid-committed progenitors, with a significant decrease in disease latency compared with JAK3 or HOXA9 alone. Integrated RNA sequencing, chromatin immunoprecipitation sequencing, and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) revealed that STAT5 and HOXA9 have co-occupancy across the genome, resulting in enhanced STAT5 transcriptional activity and ectopic activation of FOS/JUN (AP1). Our data suggest that oncogenic transcription factors such as HOXA9 provide a fertile ground for specific signaling pathways to thrive, explaining why JAK/STAT pathway mutations accumulate in HOXA9-expressing cells.Significance: The mechanism of oncogene cooperation in cancer development remains poorly characterized. In this study, we model the cooperation between activated JAK/STAT signaling and ectopic HOXA9 expression during T-cell leukemia development. We identify a direct cooperation between STAT5 and HOXA9 at the transcriptional level and identify PIM1 kinase as a possible drug target in mutant JAK/STAT/HOXA9-positive leukemia cases. Cancer Discov; 8(5); 616-31. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Charles E de Bock
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Sofie Demeyer
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Sandrine Degryse
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Delphine Verbeke
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Bram Sweron
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Olga Gielen
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Roel Vandepoel
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Carmen Vicente
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Marlies Vanden Bempt
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Antonis Dagklis
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Ellen Geerdens
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Simon Bornschein
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jean Soulier
- U944 INSERM and Hematology Laboratory, St-Louis Hospital, APHP, Hematology University Institute, University Paris-Diderot, Paris, France
| | - Jules P Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Susanna Teppo
- Tampere Centre for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Tampere Centre for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Enrico Radaelli
- KU Leuven, Center for Human Genetics, Leuven, Belgium.,VIB, Center for Cancer Biology, Leuven, Belgium
| | - Jan Cools
- KU Leuven, Center for Human Genetics, Leuven, Belgium. .,VIB, Center for Cancer Biology, Leuven, Belgium
| |
Collapse
|
64
|
Schneider E, Staffas A, Röhner L, Malmberg ED, Ashouri A, Krowiorz K, Pochert N, Miller C, Wei SY, Arabanian L, Buske C, Döhner H, Bullinger L, Fogelstrand L, Heuser M, Döhner K, Xiang P, Ruschmann J, Petriv OI, Heravi-Moussavi A, Hansen CL, Hirst M, Humphries RK, Rouhi A, Palmqvist L, Kuchenbauer F. Micro-ribonucleic acid-155 is a direct target of Meis1, but not a driver in acute myeloid leukemia. Haematologica 2017; 103:246-255. [PMID: 29217774 PMCID: PMC5792269 DOI: 10.3324/haematol.2017.177485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Micro-ribonucleic acid-155 (miR-155) is one of the first described oncogenic miRNAs. Although multiple direct targets of miR-155 have been identified, it is not clear how it contributes to the pathogenesis of acute myeloid leukemia. We found miR-155 to be a direct target of Meis1 in murine Hoxa9/Meis1 induced acute myeloid leukemia. The additional overexpression of miR-155 accelerated the formation of acute myeloid leukemia in Hoxa9 as well as in Hoxa9/Meis1 cells in vivo. However, in the absence or following the removal of miR-155, leukemia onset and progression were unaffected. Although miR-155 accelerated growth and homing in addition to impairing differentiation, our data underscore the pathophysiological relevance of miR-155 as an accelerator rather than a driver of leukemogenesis. This further highlights the complexity of the oncogenic program of Meis1 to compensate for the loss of a potent oncogene such as miR-155. These findings are highly relevant to current and developing approaches for targeting miR-155 in acute myeloid leukemia.
Collapse
Affiliation(s)
- Edith Schneider
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Anna Staffas
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Linda Röhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Erik D Malmberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | | | - Kathrin Krowiorz
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Nicole Pochert
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Christina Miller
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Stella Yuan Wei
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Laleh Arabanian
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Christian Buske
- Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Linda Fogelstrand
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Heuser
- Department of Hematology, Homeostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Ping Xiang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Oleh I Petriv
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Alireza Heravi-Moussavi
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Carl L Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Hirst
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada.,Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Arefeh Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Germany
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Germany .,Institute of Experimental Cancer Research, Comprehensive Cancer Centre Ulm, Germany
| |
Collapse
|
65
|
Siriboonpiputtana T, Zeisig BB, Zarowiecki M, Fung TK, Mallardo M, Tsai CT, Lau PNI, Hoang QC, Veiga P, Barnes J, Lynn C, Wilson A, Lenhard B, So CWE. Transcriptional memory of cells of origin overrides β-catenin requirement of MLL cancer stem cells. EMBO J 2017; 36:3139-3155. [PMID: 28978671 PMCID: PMC5666593 DOI: 10.15252/embj.201797994] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 01/03/2023] Open
Abstract
While β-catenin has been demonstrated as an essential molecule and therapeutic target for various cancer stem cells (CSCs) including those driven by MLL fusions, here we show that transcriptional memory from cells of origin predicts AML patient survival and allows β-catenin-independent transformation in MLL-CSCs derived from hematopoietic stem cell (HSC)-enriched LSK population but not myeloid-granulocyte progenitors. Mechanistically, β-catenin regulates expression of downstream targets of a key transcriptional memory gene, Hoxa9 that is highly enriched in LSK-derived MLL-CSCs and helps sustain leukemic self-renewal. Suppression of Hoxa9 sensitizes LSK-derived MLL-CSCs to β-catenin inhibition resulting in abolishment of CSC transcriptional program and transformation ability. In addition, further molecular and functional analyses identified Prmt1 as a key common downstream mediator for β-catenin/Hoxa9 functions in LSK-derived MLL-CSCs. Together, these findings not only uncover an unexpectedly important role of cells of origin transcriptional memory in regulating CSC self-renewal, but also reveal a novel molecular network mediated by β-catenin/Hoxa9/Prmt1 in governing leukemic self-renewal.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Cell Proliferation
- Cell Survival
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Survival Analysis
- Transcription, Genetic
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Teerapong Siriboonpiputtana
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Bernd B Zeisig
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Magdalena Zarowiecki
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Tsz Kan Fung
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Maria Mallardo
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chiou-Tsun Tsai
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Priscilla Nga Ieng Lau
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Quoc Chinh Hoang
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Pedro Veiga
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Jo Barnes
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Claire Lynn
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Amanda Wilson
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Boris Lenhard
- Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, UK
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| |
Collapse
|
66
|
Dovey OM, Cooper JL, Mupo A, Grove CS, Lynn C, Conte N, Andrews RM, Pacharne S, Tzelepis K, Vijayabaskar MS, Green P, Rad R, Arends M, Wright P, Yusa K, Bradley A, Varela I, Vassiliou GS. Molecular synergy underlies the co-occurrence patterns and phenotype of NPM1-mutant acute myeloid leukemia. Blood 2017; 130:1911-1922. [PMID: 28835438 PMCID: PMC5672315 DOI: 10.1182/blood-2017-01-760595] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
NPM1 mutations define the commonest subgroup of acute myeloid leukemia (AML) and frequently co-occur with FLT3 internal tandem duplications (ITD) or, less commonly, NRAS or KRAS mutations. Co-occurrence of mutant NPM1 with FLT3-ITD carries a significantly worse prognosis than NPM1-RAS combinations. To understand the molecular basis of these observations, we compare the effects of the 2 combinations on hematopoiesis and leukemogenesis in knock-in mice. Early effects of these mutations on hematopoiesis show that compound Npm1cA/+;NrasG12D/+ or Npm1cA;Flt3ITD share a number of features: Hox gene overexpression, enhanced self-renewal, expansion of hematopoietic progenitors, and myeloid differentiation bias. However, Npm1cA;Flt3ITD mutants displayed significantly higher peripheral leukocyte counts, early depletion of common lymphoid progenitors, and a monocytic bias in comparison with the granulocytic bias in Npm1cA/+;NrasG12D/+ mutants. Underlying this was a striking molecular synergy manifested as a dramatically altered gene expression profile in Npm1cA;Flt3ITD , but not Npm1cA/+;NrasG12D/+ , progenitors compared with wild-type. Both double-mutant models developed high-penetrance AML, although latency was significantly longer with Npm1cA/+;NrasG12D/+ During AML evolution, both models acquired additional copies of the mutant Flt3 or Nras alleles, but only Npm1cA/+;NrasG12D/+ mice showed acquisition of other human AML mutations, including IDH1 R132Q. We also find, using primary Cas9-expressing AMLs, that Hoxa genes and selected interactors or downstream targets are required for survival of both types of double-mutant AML. Our results show that molecular complementarity underlies the higher frequency and significantly worse prognosis associated with NPM1c/FLT3-ITD vs NPM1/NRAS-G12D-mutant AML and functionally confirm the role of HOXA genes in NPM1c-driven AML.
Collapse
Affiliation(s)
- Oliver M Dovey
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Jonathan L Cooper
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Annalisa Mupo
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Carolyn S Grove
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Australia
- PathWest Division of Clinical Pathology, Queen Elizabeth II Medical Centre, Nedlands, Australia
| | - Claire Lynn
- Leukemia and Stem Cell Biology Group, Division of Cancer Studies, Department of Haematological Medicine, King's College London, London, United Kingdom
| | - Nathalie Conte
- Sample Phenotype Ontology Team, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Robert M Andrews
- Institute of Translation, Innovation, Methodology, and Engagement, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Suruchi Pacharne
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Konstantinos Tzelepis
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - M S Vijayabaskar
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Paul Green
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Roland Rad
- Department of Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Mark Arends
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Penny Wright
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| | - Kosuke Yusa
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Allan Bradley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Santander, Spain
| | - George S Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, United Kingdom; and
| |
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, in which its overexpression is strongly correlated with poor prognosis. The present review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. RECENT FINDINGS A variety of genetic alterations including MLL translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high-level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 overexpression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21, and mir-196b and many others provide another avenue for potential drug development. SUMMARY HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies.
Collapse
|
68
|
McKeown MR, Corces MR, Eaton ML, Fiore C, Lee E, Lopez JT, Chen MW, Smith D, Chan SM, Koenig JL, Austgen K, Guenther MG, Orlando DA, Lovén J, Fritz CC, Majeti R. Superenhancer Analysis Defines Novel Epigenomic Subtypes of Non-APL AML, Including an RARα Dependency Targetable by SY-1425, a Potent and Selective RARα Agonist. Cancer Discov 2017; 7:1136-1153. [PMID: 28729405 PMCID: PMC5962349 DOI: 10.1158/2159-8290.cd-17-0399] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 01/11/2023]
Abstract
We characterized the enhancer landscape of 66 patients with acute myeloid leukemia (AML), identifying 6 novel subgroups and their associated regulatory loci. These subgroups are defined by their superenhancer (SE) maps, orthogonal to somatic mutations, and are associated with distinct leukemic cell states. Examination of transcriptional drivers for these epigenomic subtypes uncovers a subset of patients with a particularly strong SE at the retinoic acid receptor alpha (RARA) gene locus. The presence of a RARA SE and concomitant high levels of RARA mRNA predisposes cell lines and ex vivo models to exquisite sensitivity to a selective agonist of RARα, SY-1425 (tamibarotene). Furthermore, only AML patient-derived xenograft (PDX) models with high RARA mRNA were found to respond to SY-1425. Mechanistically, we show that the response to SY-1425 in RARA-high AML cells is similar to that of acute promyelocytic leukemia treated with retinoids, characterized by the induction of known retinoic acid response genes, increased differentiation, and loss of proliferation.Significance: We use the SE landscape of primary human AML to elucidate transcriptional circuitry and identify novel cancer vulnerabilities. A subset of patients were found to have an SE at RARA, which is predictive for response to SY-1425, a potent and selective RARα agonist, in preclinical models, forming the rationale for its clinical investigation in biomarker-selected patients. Cancer Discov; 7(10); 1136-53. ©2017 AACR.See related commentary by Wang and Aifantis, p. 1065.This article is highlighted in the In This Issue feature, p. 1047.
Collapse
Affiliation(s)
| | - M Ryan Corces
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center Stanford University School of Medicine, Stanford, California
| | | | - Chris Fiore
- Syros Pharmaceuticals, Cambridge, Massachusetts
| | - Emily Lee
- Syros Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Julie L Koenig
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center Stanford University School of Medicine, Stanford, California
| | | | | | | | - Jakob Lovén
- Syros Pharmaceuticals, Cambridge, Massachusetts
| | | | - Ravindra Majeti
- Program in Cancer Biology, Cancer Institute, Institute for Stem Cell Biology and Regenerative Medicine, and Ludwig Center Stanford University School of Medicine, Stanford, California.
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
69
|
The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia. Oncogene 2017; 37:450-460. [PMID: 28945229 PMCID: PMC5785415 DOI: 10.1038/onc.2017.337] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) is a disease associated with epigenetic dysregulation. 11q23 translocations involving the H3K4 methyltransferase MLL1 (KMT2A) generate oncogenic fusion proteins with deregulated transcriptional potential. The Polymerase Associated Factor complex (PAFc) is an epigenetic co-activator complex that makes direct contact with MLL fusion proteins and is involved in AML, however its functions are not well understood. Here, we explored the transcriptional targets regulated by the PAFc that facilitate leukemia by performing RNA-sequencing after conditional loss of the PAFc subunit Cdc73. We found Cdc73 promotes expression of an early hematopoietic progenitor gene program that prevents differentiation. Among the target genes, we confirmed the protein arginine methyltransferase Prmt5 is a direct target that is positively regulated by a transcriptional unit that includes the PAFc, MLL1, HOXA9 and STAT5 in leukemic cells. We observed reduced PRMT5-mediated H4R3me2s following excision of Cdc73 placing this histone modification downstream of the PAFc and revealing a novel mechanism between the PAFc and Prmt5. Knock down or pharmacologic inhibition of Prmt5 causes a G1 arrest and reduced proliferation resulting in extended leukemic disease latency in vivo. Overall, we demonstrate the PAFc regulates Prmt5 to facilitate leukemic progression and is a potential therapeutic target for AMLs.
Collapse
|
70
|
Ivanovs A, Rybtsov S, Ng ES, Stanley EG, Elefanty AG, Medvinsky A. Human haematopoietic stem cell development: from the embryo to the dish. Development 2017; 144:2323-2337. [PMID: 28676567 DOI: 10.1242/dev.134866] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Haematopoietic stem cells (HSCs) emerge during embryogenesis and give rise to the adult haematopoietic system. Understanding how early haematopoietic development occurs is of fundamental importance for basic biology and medical sciences, but our knowledge is still limited compared with what we know of adult HSCs and their microenvironment. This is particularly true for human haematopoiesis, and is reflected in our current inability to recapitulate the development of HSCs from pluripotent stem cells in vitro In this Review, we discuss what is known of human haematopoietic development: the anatomical sites at which it occurs, the different temporal waves of haematopoiesis, the emergence of the first HSCs and the signalling landscape of the haematopoietic niche. We also discuss the extent to which in vitro differentiation of human pluripotent stem cells recapitulates bona fide human developmental haematopoiesis, and outline some future directions in the field.
Collapse
Affiliation(s)
- Andrejs Ivanovs
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.,Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga LV-1007, Latvia
| | - Stanislav Rybtsov
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Elizabeth S Ng
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia .,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia.,Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alexander Medvinsky
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
71
|
Overexpression of SOX4 correlates with poor prognosis of acute myeloid leukemia and is leukemogenic in zebrafish. Blood Cancer J 2017; 7:e593. [PMID: 28841206 PMCID: PMC5596385 DOI: 10.1038/bcj.2017.74] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
The SOX4 transcription factor is a key regulator of embryonic development, cell-fate decision, cellular differentiation and oncogenesis. Abnormal expression of SOX4 is related to malignant tumor transformation and cancer metastasis. However, no reports are available regarding the clinical significance of SOX4 in acute myeloid leukemia (AML) and the role of SOX4 in leukemogenesis. In the current study, we found that AML patients with low bone marrow (BM) SOX4 expression had higher remission rates and longer overall survival than those with high SOX4 expression, regardless of age, white blood cell count at diagnosis, karyotype profile and NPM1/FLT3-ITD status. To elucidate the role of SOX4 in leukemogenesis, we generated a transgenic zebrafish model that overexpressed human SOX4 in the myeloid lineage Tg(spi1-SOX4-EGFP). These transgenic zebrafish showed, at 5 months of age, increased myelopoiesis with dedifferentiation in kidney marrow. At 9 months of age, their kidney structure was significantly effaced and distorted by increased infiltration of myeloid progenitor cells. These results suggest that SOX4 is not only an independent prognostic factor of AML, but also an important molecular factor in leukemogenesis.
Collapse
|
72
|
De Kumar B, Parker HJ, Paulson A, Parrish ME, Pushel I, Singh NP, Zhang Y, Slaughter BD, Unruh JR, Florens L, Zeitlinger J, Krumlauf R. HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets. Genome Res 2017; 27:1501-1512. [PMID: 28784834 PMCID: PMC5580710 DOI: 10.1101/gr.219386.116] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/24/2017] [Indexed: 01/02/2023]
Abstract
Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins.
Collapse
Affiliation(s)
- Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Mark E Parrish
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Irina Pushel
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Brian D Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Pathology
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
73
|
Shestakova EA, Boutin M, Bourassa S, Bonneil E, Bijl JJ. Identification of proteins associated with transcription factors HOXA9 and E2A-PBX1 by tandem affinity purification. Mol Biol 2017. [DOI: 10.1134/s002689331703013x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
74
|
Rio-Machin A, Gómez-López G, Muñoz J, Garcia-Martinez F, Maiques-Diaz A, Alvarez S, Salgado RN, Shrestha M, Torres-Ruiz R, Haferlach C, Larráyoz MJ, Calasanz MJ, Fitzgibbon J, Cigudosa JC. The molecular pathogenesis of the NUP98-HOXA9 fusion protein in acute myeloid leukemia. Leukemia 2017. [PMID: 28630438 PMCID: PMC5596207 DOI: 10.1038/leu.2017.194] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- A Rio-Machin
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Centro Nacional Investigaciones Oncologicas (CNIO), Madrid, Spain.,Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - G Gómez-López
- Bioinformatics Unit, Centro Nacional Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - J Muñoz
- Proteomics Unit, Centro Nacional Investigaciones Oncologicas (CNIO), ProteoRed-ISCIII, Madrid, Spain
| | - F Garcia-Martinez
- Proteomics Unit, Centro Nacional Investigaciones Oncologicas (CNIO), ProteoRed-ISCIII, Madrid, Spain
| | - A Maiques-Diaz
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Centro Nacional Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - S Alvarez
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Centro Nacional Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - R N Salgado
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Centro Nacional Investigaciones Oncologicas (CNIO), Madrid, Spain
| | - M Shrestha
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Torres-Ruiz
- Viral Vector Facility, Fundacion Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - C Haferlach
- MLL, Münchner Leukämielabor, München, Germany
| | - M J Larráyoz
- Servicio de Citogenética, Departamento de Genética, Universidad de Navarra, Pamplona, Spain
| | - M J Calasanz
- Servicio de Citogenética, Departamento de Genética, Universidad de Navarra, Pamplona, Spain
| | - J Fitzgibbon
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - J C Cigudosa
- Molecular Cytogenetics Group, Human Cancer Genetics Programme, Centro Nacional Investigaciones Oncologicas (CNIO), Madrid, Spain
| |
Collapse
|
75
|
Chen Y, Anastassiadis K, Kranz A, Stewart AF, Arndt K, Waskow C, Yokoyama A, Jones K, Neff T, Lee Y, Ernst P. MLL2, Not MLL1, Plays a Major Role in Sustaining MLL-Rearranged Acute Myeloid Leukemia. Cancer Cell 2017; 31:755-770.e6. [PMID: 28609655 PMCID: PMC5598468 DOI: 10.1016/j.ccell.2017.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/09/2017] [Accepted: 05/05/2017] [Indexed: 01/11/2023]
Abstract
The MLL1 histone methyltransferase gene undergoes many distinct chromosomal rearrangements to yield poor-prognosis leukemia. The remaining wild-type allele is most commonly, but not always, retained. To what extent the wild-type allele contributes to leukemogenesis is unclear. Here we show, using rigorous, independent animal models, that endogenous MLL1 is dispensable for MLL-rearranged leukemia. Potential redundancy was addressed by co-deleting the closest paralog, Mll2. Surprisingly, Mll2 deletion alone had a significant impact on survival of MLL-AF9-transformed cells, and additional Mll1 loss further reduced viability and proliferation. We show that MLL1/MLL2 collaboration is not through redundancy, but regulation of distinct pathways. These findings highlight the relevance of MLL2 as a drug target in MLL-rearranged leukemia and suggest its broader significance in AML.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Konstantinos Anastassiadis
- Genomics and Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Tatzberg 47, Dresden 01307, Germany
| | - Andrea Kranz
- Genomics and Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Tatzberg 47, Dresden 01307, Germany
| | - A Francis Stewart
- Genomics and Stem Cell Engineering, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Tatzberg 47, Dresden 01307, Germany
| | - Kathrin Arndt
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Mizukami 246-2, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Kenneth Jones
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tobias Neff
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yoo Lee
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Patricia Ernst
- Department of Pediatrics, Section of Hematology/Oncology/BMT, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pharmacology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
76
|
Loke J, Assi SA, Imperato MR, Ptasinska A, Cauchy P, Grabovska Y, Soria NM, Raghavan M, Delwel HR, Cockerill PN, Heidenreich O, Bonifer C. RUNX1-ETO and RUNX1-EVI1 Differentially Reprogram the Chromatin Landscape in t(8;21) and t(3;21) AML. Cell Rep 2017; 19:1654-1668. [PMID: 28538183 PMCID: PMC5457485 DOI: 10.1016/j.celrep.2017.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease caused by mutations in transcriptional regulator genes, but how different mutant regulators shape the chromatin landscape is unclear. Here, we compared the transcriptional networks of two types of AML with chromosomal translocations of the RUNX1 locus that fuse the RUNX1 DNA-binding domain to different regulators, the t(8;21) expressing RUNX1-ETO and the t(3;21) expressing RUNX1-EVI1. Despite containing the same DNA-binding domain, the two fusion proteins display distinct binding patterns, show differences in gene expression and chromatin landscape, and are dependent on different transcription factors. RUNX1-EVI1 directs a stem cell-like transcriptional network reliant on GATA2, whereas that of RUNX1-ETO-expressing cells is more mature and depends on RUNX1. However, both types of AML are dependent on the continuous expression of the fusion proteins. Our data provide a molecular explanation for the differences in clinical prognosis for these types of AML.
Collapse
Affiliation(s)
- Justin Loke
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Salam A Assi
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Maria Rosaria Imperato
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Anetta Ptasinska
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Pierre Cauchy
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Yura Grabovska
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Martinez Soria
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Manoj Raghavan
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - H Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, the Netherlands
| | - Peter N Cockerill
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, B15 2TT Birmingham, UK.
| |
Collapse
|
77
|
Sugimura R, Jha DK, Han A, Soria-Valles C, da Rocha EL, Lu YF, Goettel JA, Serrao E, Rowe RG, Malleshaiah M, Wong I, Sousa P, Zhu TN, Ditadi A, Keller G, Engelman AN, Snapper SB, Doulatov S, Daley GQ. Haematopoietic stem and progenitor cells from human pluripotent stem cells. Nature 2017; 545:432-438. [PMID: 28514439 PMCID: PMC5872146 DOI: 10.1038/nature22370] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
Abstract
A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.
Collapse
Affiliation(s)
- Ryohichi Sugimura
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Deepak Kumar Jha
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Areum Han
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clara Soria-Valles
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Edroaldo Lummertz da Rocha
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Yi-Fen Lu
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Jeremy A Goettel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - R Grant Rowe
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Mohan Malleshaiah
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Irene Wong
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Patricia Sousa
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - Ted N Zhu
- Program in Computer Science, Harvard University, Cambridge, Massachusetts, USA
| | - Andrea Ditadi
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Gordon Keller
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02215, USA
| | - Scott B Snapper
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Division of Gastroenterology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sergei Doulatov
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA
| | - George Q Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Manton Center for Orphan Disease Research, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
78
|
Mohr S, Doebele C, Comoglio F, Berg T, Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, Beissbarth T, Schnütgen F, Cremer A, Haetscher N, Göllner S, Rouhi A, Palmqvist L, Rieger MA, Schroeder T, Bönig H, Müller-Tidow C, Kuchenbauer F, Schütz E, Green AR, Urlaub H, Stegmaier K, Humphries RK, Serve H, Oellerich T. Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia. Cancer Cell 2017; 31:549-562.e11. [PMID: 28399410 PMCID: PMC5389883 DOI: 10.1016/j.ccell.2017.03.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/09/2017] [Accepted: 03/03/2017] [Indexed: 01/02/2023]
Abstract
The transcription factor Meis1 drives myeloid leukemogenesis in the context of Hox gene overexpression but is currently considered undruggable. We therefore investigated whether myeloid progenitor cells transformed by Hoxa9 and Meis1 become addicted to targetable signaling pathways. A comprehensive (phospho)proteomic analysis revealed that Meis1 increased Syk protein expression and activity. Syk upregulation occurs through a Meis1-dependent feedback loop. By dissecting this loop, we show that Syk is a direct target of miR-146a, whose expression is indirectly regulated by Meis1 through the transcription factor PU.1. In the context of Hoxa9 overexpression, Syk signaling induces Meis1, recapitulating several leukemogenic features of Hoxa9/Meis1-driven leukemia. Finally, Syk inhibition disrupts the identified regulatory loop, prolonging survival of mice with Hoxa9/Meis1-driven leukemia.
Collapse
Affiliation(s)
- Sebastian Mohr
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Carmen Doebele
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Federico Comoglio
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Tobias Berg
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Julia Beck
- Chronix Biomedical, Goetheallee 8, 37073 Göttingen, Germany
| | - Hanibal Bohnenberger
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - Jasmin Corso
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Astrid Wachter
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Tim Beissbarth
- Institute of Medical Statistics, University Medical Center Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Frank Schnütgen
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Anjali Cremer
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Nadine Haetscher
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Stefanie Göllner
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Arefeh Rouhi
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Su sahlgrenska, 41345 Gothenburg, Sweden
| | - Michael A Rieger
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, 4058 Basel, Switzerland
| | - Halvard Bönig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Sandhofstraße 1, 60590 Frankfurt, Germany
| | - Carsten Müller-Tidow
- Department of Hematology and Oncology, University of Halle, Ernst-Grube-Street 40, 06120 Halle, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Anthony R Green
- Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Georg August University, Robert-Koch-Straße 40, 37073 Göttingen, Germany
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute, Cambridge, MA 02142, USA
| | - R Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hubert Serve
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Cambridge Institute for Medical Research, Wellcome Trust/MRC Stem Cell Institute, Cambridge CB2 0XY, UK; German Cancer Research Center and German Cancer Consortium, 69120 Heidelberg, Germany.
| |
Collapse
|
79
|
Blasi F, Bruckmann C, Penkov D, Dardaei L. A tale of TALE, PREP1, PBX1, and MEIS1: Interconnections and competition in cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201600245] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Francesco Blasi
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Chiara Bruckmann
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Dmitry Penkov
- IFOM, Foundation FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology; Milan Italy
| | - Leila Dardaei
- Massachusetts General Hospital Cancer Center; Charlestown MA USA
- Department of Medicine; Harvard Medical School; Boston MA USA
| |
Collapse
|
80
|
Mehta S, Cronkite DA, Basavappa M, Saunders TL, Adiliaghdam F, Amatullah H, Morrison SA, Pagan JD, Anthony RM, Tonnerre P, Lauer GM, Lee JC, Digumarthi S, Pantano L, Ho Sui SJ, Ji F, Sadreyev R, Zhou C, Mullen AC, Kumar V, Li Y, Wijmenga C, Xavier RJ, Means TK, Jeffrey KL. Maintenance of macrophage transcriptional programs and intestinal homeostasis by epigenetic reader SP140. Sci Immunol 2017; 2:eaag3160. [PMID: 28783698 PMCID: PMC5549562 DOI: 10.1126/sciimmunol.aag3160] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/08/2017] [Indexed: 12/29/2022]
Abstract
Epigenetic "readers" that recognize defined posttranslational modifications on histones have become desirable therapeutic targets for cancer and inflammation. SP140 is one such bromodomain- and plant homeodomain (PHD)-containing reader with immune-restricted expression, and single-nucleotide polymorphisms (SNPs) within SP140 associate with Crohn's disease (CD). However, the function of SP140 and the consequences of disease-associated SP140 SNPs have remained unclear. We show that SP140 is critical for transcriptional programs that uphold the macrophage state. SP140 preferentially occupies promoters of silenced, lineage-inappropriate genes bearing the histone modification H3K27me3, such as the HOXA cluster in human macrophages, and ensures their repression. Depletion of SP140 in mouse or human macrophages resulted in severely compromised microbe-induced activation. We reveal that peripheral blood mononuclear cells (PBMCs) or B cells from individuals carrying CD-associated SNPs within SP140 have defective SP140 messenger RNA splicing and diminished SP140 protein levels. Moreover, CD patients carrying SP140 SNPs displayed suppressed innate immune gene signatures in a mixed population of PBMCs that stratified them from other CD patients. Hematopoietic-specific knockdown of Sp140 in mice resulted in exacerbated dextran sulfate sodium (DSS)-induced colitis, and low SP140 levels in human CD intestinal biopsies correlated with relatively lower intestinal innate cytokine levels and improved response to anti-tumor necrosis factor (TNF) therapy. Thus, the epigenetic reader SP140 is a key regulator of macrophage transcriptional programs for cellular state, and a loss of SP140 due to genetic variation contributes to a molecularly defined subset of CD characterized by ineffective innate immunity, normally critical for intestinal homeostasis.
Collapse
Affiliation(s)
- Stuti Mehta
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - D Alexander Cronkite
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Megha Basavappa
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Tahnee L Saunders
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Fatemeh Adiliaghdam
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hajera Amatullah
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sara A Morrison
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jose D Pagan
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Robert M Anthony
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Pierre Tonnerre
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Georg M Lauer
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James C Lee
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, U.K
| | - Sreehaas Digumarthi
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lorena Pantano
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shannan J Ho Sui
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chan Zhou
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alan C Mullen
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Terry K Means
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kate L Jeffrey
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
81
|
RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leuk Res 2017; 54:47-54. [PMID: 28107692 DOI: 10.1016/j.leukres.2017.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 11/24/2022]
Abstract
FLT3 is frequently mutated and overexpressed in acute myelogenous leukemia (AML) and other hematologic malignancies. Although signaling events downstream of FLT3 receptor tyrosine kinase have been studied in depth, molecular mechanisms of how FLT3 expression is regulated at the post-transcriptional level in particular remain elusive. In this study, we investigated the roles of an RNA binding protein MSI2 as a regulator of FLT3 expression. MSI2 and FLT3 are significantly co-regulated in human AML and chronic myelogenous leukemia in blast crisis (BC-CML). Genetic loss of MSI2 leads to down-regulation of the FLT3 receptor in both AML and BC-CML cells and concomitant impairment of clonogenic growth potential. Furthermore, we demonstrate that MSI2 protein is physically bound to FLT3 mRNA transcripts, suggesting post-transcriptional control of FLT3 expression. Collectively, these results reveal a novel mode of FLT3 regulation essential for leukemia growth, which may aid in designing a targeted therapy to treat human myeloid leukemia.
Collapse
|
82
|
Uttarkar S, Frampton J, Klempnauer KH. Targeting the transcription factor Myb by small-molecule inhibitors. Exp Hematol 2016; 47:31-35. [PMID: 28017646 DOI: 10.1016/j.exphem.2016.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 11/18/2022]
Abstract
The transcription factor Myb is a key regulator of hematopoietic cell proliferation, differentiation, and survival and has been implicated in the development of leukemia and several other human cancers. Pharmacological inhibition of Myb is therefore emerging as a potential therapeutic strategy. Recently, the first low-molecular-weight compounds that show Myb inhibitory activity have been identified. Characterization of these compounds suggests disruption of the protein-protein-interaction of Myb and the coactivator p300 as a suitable strategy to inhibit Myb.
Collapse
Affiliation(s)
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
83
|
Schwoerer S, Becker F, Feller C, Baig AH, Koeber U, Henze H, Kraus JM, Xin B, Lechel A, Lipka DB, Varghese CS, Schmidt M, Rohs R, Aebersold R, Medina KL, Kestler HA, Neri F, von Maltzahn J, Tuempel S, Rudolph KL. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature 2016; 540:428-432. [PMID: 27919074 PMCID: PMC5415306 DOI: 10.1038/nature20603] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.
Collapse
Affiliation(s)
- Simon Schwoerer
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Friedrich Becker
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Christian Feller
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland
| | - Ali H. Baig
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Ute Koeber
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Henriette Henze
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - Beibei Xin
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - André Lechel
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Daniel B. Lipka
- Division of Epigenomics and Cancer Risk Factors, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Christy S. Varghese
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Manuel Schmidt
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Remo Rohs
- Molecular and Computational Biology Program, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Auguste-Piccard-Hof 1, 8093 Zürich, Switzerland
- Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Hans A. Kestler
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
- Institute of Medical Systems Biology, Ulm University, James-Franck-Ring, 89081 Ulm, Germany
| | - Francesco Neri
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Julia von Maltzahn
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Stefan Tuempel
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
| | - K. Lenhard Rudolph
- Fritz-Lipmann-Institute – Leibniz-Institute on Aging, Beutenbergstrasse 11, 07745 Jena, Germany
- Faculty of Medicine, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
84
|
Controlled stem cell amplification by HOXB4 depends on its unique proline-rich region near the N terminus. Blood 2016; 129:319-323. [PMID: 27827825 DOI: 10.1182/blood-2016-04-706978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/29/2016] [Indexed: 01/09/2023] Open
Abstract
There is high interest in understanding the mechanisms that drive self-renewal of stem cells. HOXB4 is one of the few transcription factors that can amplify long-term repopulating hematopoietic stem cells in a controlled way. Here we show in mice that this characteristic of HOXB4 depends on a proline-rich sequence near the N terminus, which is unique among HOX genes and highly conserved in higher mammals. Deletion of this domain substantially enhanced the oncogenicity of HOXB4, inducing acute leukemia in mice. Conversely, insertion of the domain into Hoxa9 impaired leukemogenicity of this homeobox gene. These results indicate that proline-rich stretches attenuate the potential of stem cell active homeobox genes to acquire oncogenic properties.
Collapse
|
85
|
Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia. Leukemia 2016; 31:808-820. [PMID: 27740637 DOI: 10.1038/leu.2016.279] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
Enforced expression of microRNA-155 (miR-155) in myeloid cells has been shown to have both oncogenic or tumour-suppressor functions in acute myeloid leukaemia (AML). We sought to resolve these contrasting effects of miR-155 overexpression using murine models of AML and human paediatric AML data sets. We show that the highest miR-155 expression levels inhibited proliferation in murine AML models. Over time, enforced miR-155 expression in AML in vitro and in vivo, however, favours selection of intermediate miR-155 expression levels that results in increased tumour burden in mice, without accelerating the onset of disease. Strikingly, we show that intermediate and high miR-155 expression also regulate very different subsets of miR-155 targets and have contrasting downstream effects on the transcriptional environments of AML cells, including genes involved in haematopoiesis and leukaemia. Furthermore, we show that elevated miR-155 expression detected in paediatric AML correlates with intermediate and not high miR-155 expression identified in our experimental models. These findings collectively describe a novel dose-dependent role for miR-155 in the regulation of AML, which may have important therapeutic implications.
Collapse
|
86
|
von Burstin J, Bachhuber F, Paul M, Schmid RM, Rustgi AK. The TALE homeodomain transcription factor MEIS1 activates the pro-metastatic melanoma cell adhesion moleculeMcamto promote migration of pancreatic cancer cells. Mol Carcinog 2016; 56:936-944. [DOI: 10.1002/mc.22547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/12/2016] [Accepted: 08/29/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Johannes von Burstin
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center; University of Pennsylvania; Philadelphia Pennsylvania
- I. Medizinische Klinik; Technische Universität München; Munich Germany
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | | | - Mariel Paul
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | - Roland M. Schmid
- II. Medizinische Klinik; Technische Universität München; Munich Germany
| | - Anil K. Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
87
|
Upregulation of Flt3 is a passive event in Hoxa9/Meis1-induced acute myeloid leukemia in mice. Oncogene 2016; 36:1516-1524. [PMID: 27617578 DOI: 10.1038/onc.2016.318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/14/2016] [Accepted: 07/17/2016] [Indexed: 11/08/2022]
Abstract
HOXA9, MEIS1 and FLT3 are genes frequently upregulated in human acute myeloid leukemia. Hoxa9 and Meis1 also cooperate to induce aggressive AML with high Flt3 expression in mice, suggesting an important role for Flt3 in Hoxa9/Meis1-induced leukemogenesis. To define the role of Flt3 in AML with high Hoxa9/Meis1, we treated mice with Hoxa9/Meis1-induced AML with the Flt3 inhibitor AC220, used an Flt3-ligand (FL-/-) knockout model, and investigated whether overexpression of Flt3 could induce leukemia together with overexpression of Hoxa9. Flt3 inhibition by AC220 did not delay AML development in mice transplanted with bone marrow cells overexpressing Hoxa9 and Meis1. In addition, Hoxa9/Meis1 cells induced AML in FL-/- mice as rapid as in wild-type mice. However, FL-/- mice had reduced organ infiltration compared with wild-type mice, suggesting some Flt3-dependent effect on leukemic invasiveness. Interestingly, leukemic Hoxa9/Meis1 cells from sick mice expressed high levels of Flt3 regardless of presence of its ligand, showing that Flt3 is a passive marker on these cells. In line with this, combined engineered overexpression of Flt3 and Hoxa9 did not accelerate the progression to AML. We conclude that the Hoxa9- and Meis1-associated upregulation of Flt3 is not a requirement for leukemic progression induced by Hoxa9 and Meis1.
Collapse
|
88
|
Zhang J, Han B, Li X, Bies J, Jiang P, Koller RP, Wolff L. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells. Cell Death Dis 2016; 7:e2364. [PMID: 27607579 PMCID: PMC5059869 DOI: 10.1038/cddis.2016.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/31/2022]
Abstract
The c-Myb transcription factor is a major regulator that controls differentiation and proliferation of hematopoietic progenitor cells, which is frequently deregulated in hematological diseases, such as lymphoma and leukemia. Understanding of the mechanisms regulating the transcription of c-myb gene is challenging as it lacks a typical promoter and multiple factors are involved. Our previous studies identified some distal regulatory elements in the upstream regions of c-myb gene in murine myeloid progenitor M1 cells, but the detailed mechanisms still remain unclear. In the present study, we found that a cell differentiation-related DNase1 hypersensitive site is located at a -28k region upstream of c-myb gene and that transcription factors Hoxa9, Meis1 and PU.1 bind to the -28k region. Circular chromosome conformation capture (4C) assay confirmed the interaction between the -28k region and the c-myb promoter, which is supported by the enrichment of CTCF and Cohesin. Our analysis also points to a critical role for Hoxa9 and PU.1 in distal regulation of c-myb expression in murine myeloid cells and cell differentiation. Overexpression of Hoxa9 disrupted the IL-6-induced differentiation of M1 cells and upregulated c-myb expression through binding of the -28k region. Taken together, our results provide an evidence for critical role of the -28k region in distal regulatory mechanism for c-myb gene expression during differentiation of myeloid progenitor M1 cells.
Collapse
Affiliation(s)
- Junfang Zhang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Bingshe Han
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Xiaoxia Li
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Juraj Bies
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Penglei Jiang
- Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, No.999 Huchenghuan Road, Pudong New District, Shanghai 201306, China
| | - Richard P Koller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Linda Wolff
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
89
|
Ye W, Song Y, Huang Z, Osterwalder M, Ljubojevic A, Xu J, Bobick B, Abassah-Oppong S, Ruan N, Shamby R, Yu D, Zhang L, Cai CL, Visel A, Zhang Y, Cobb J, Chen Y. A unique stylopod patterning mechanism by Shox2-controlled osteogenesis. Development 2016; 143:2548-2560. [PMID: 27287812 PMCID: PMC4958343 DOI: 10.1242/dev.138750] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023]
Abstract
Vertebrate appendage patterning is programmed by Hox-TALE factor-bound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clustering around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis.
Collapse
Affiliation(s)
- Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | - Zhen Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | | | - Anja Ljubojevic
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Jue Xu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Brent Bobick
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Ningsheng Ruan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ross Shamby
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Diankun Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
90
|
Lu R, Wang P, Parton T, Zhou Y, Chrysovergis K, Rockowitz S, Chen WY, Abdel-Wahab O, Wade PA, Zheng D, Wang GG. Epigenetic Perturbations by Arg882-Mutated DNMT3A Potentiate Aberrant Stem Cell Gene-Expression Program and Acute Leukemia Development. Cancer Cell 2016; 30:92-107. [PMID: 27344947 PMCID: PMC4945461 DOI: 10.1016/j.ccell.2016.05.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 03/03/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
Abstract
DNA methyltransferase 3A (DNMT3A) is frequently mutated in hematological cancers; however, the underlying oncogenic mechanism remains elusive. Here, we report that the DNMT3A mutational hotspot at Arg882 (DNMT3A(R882H)) cooperates with NRAS mutation to transform hematopoietic stem/progenitor cells and induce acute leukemia development. Mechanistically, DNMT3A(R882H) directly binds to and potentiates transactivation of stemness genes critical for leukemogenicity including Meis1, Mn1, and Hoxa gene cluster. DNMT3A(R882H) induces focal epigenetic alterations, including CpG hypomethylation and concurrent gain of active histone modifications, at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR/Cas9-mediated ablation of a putative Meis1 enhancer carrying DNMT3A(R882H)-induced DNA hypomethylation impairs Meis1 expression. Importantly, DNMT3A(R882H)-induced gene-expression programs can be repressed through Dot1l inhibition, providing an attractive therapeutic strategy for DNMT3A-mutated leukemias.
Collapse
MESH Headings
- Animals
- Arginine/genetics
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA Methylation
- DNA Methyltransferase 3A
- Epigenesis, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Genes, ras
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Methyltransferases/antagonists & inhibitors
- Mice
- Mutation
- Myeloid Ecotropic Viral Integration Site 1 Protein
- Neoplasm Proteins/genetics
- Neoplasms, Experimental
- Promoter Regions, Genetic
- Stem Cells/cytology
- Stem Cells/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rui Lu
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Trevor Parton
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Yang Zhou
- Department of Pathology and Laboratory Medicine, McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Kaliopi Chrysovergis
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Shira Rockowitz
- Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei-Yi Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Paul A Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
91
|
Abstract
Metazoans encode clusters of paralogous Hox genes that are critical for proper development of the body plan. However, there are a number of unresolved issues regarding how paralogous Hox factors achieve specificity to control distinct cell fates. First, how do Hox paralogs, which have very similar DNA binding preferences in vitro, drive different transcriptional programs in vivo? Second, the number of potential Hox binding sites within the genome is vast compared to the number of sites bound. Hence, what determines where in the genome Hox factors bind? Third, what determines whether a Hox factor will activate or repress a specific target gene? Here, we review the current evidence that is beginning to shed light onto these questions. In particular, we highlight how cooperative interactions with other transcription factors (especially PBC and HMP proteins) and the sequences of cis-regulatory modules provide a basis for the mechanisms of Hox specificity. We conclude by integrating a number of the concepts described throughout the review in a case study of a highly interrogated Drosophila cis-regulatory module named “The Distal-less Conserved Regulatory Element” (DCRE).
Collapse
Affiliation(s)
- Arya Zandvakili
- Molecular and Developmental Biology Graduate Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical-Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-513-636-3366
| | | | | |
Collapse
|
92
|
Yokoyama T, Nakatake M, Kuwata T, Couzinet A, Goitsuka R, Tsutsumi S, Aburatani H, Valk PJM, Delwel R, Nakamura T. MEIS1-mediated transactivation of synaptotagmin-like 1 promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Invest 2016; 126:1664-78. [PMID: 27018596 DOI: 10.1172/jci81516] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
The TALE-class homeoprotein MEIS1 specifically collaborates with HOXA9 to drive myeloid leukemogenesis. Although MEIS1 alone has only a moderate effect on cell proliferation in vitro, it is essential for the development of HOXA9-induced leukemia in vivo. Here, using murine models of leukemogenesis, we have shown that MEIS1 promotes leukemic cell homing and engraftment in bone marrow and enhances cell-cell interactions and cytokine-mediated cell migration. We analyzed global DNA binding of MEIS1 in leukemic cells as well as gene expression alterations in MEIS1-deficent cells and identified synaptotagmin-like 1 (Sytl1, also known as Slp1) as the MEIS1 target gene that cooperates with Hoxa9 in leukemogenesis. Replacement of SYTL1 in MEIS1-deficent cells restored both cell migration and engraftment. Further analysis revealed that SYTL1 promotes cell migration via activation of the CXCL12/CXCR4 axis, as SYTL1 determines intracellular trafficking of CXCR4. Together, our results reveal that MEIS1, through induction of SYTL1, promotes leukemogenesis and supports leukemic cell homing and engraftment, facilitating interactions between leukemic cells and bone marrow stroma.
Collapse
|
93
|
Zhu N, Chen M, Eng R, DeJong J, Sinha AU, Rahnamay NF, Koche R, Al-Shahrour F, Minehart JC, Chen CW, Deshpande AJ, Xu H, Chu SH, Ebert BL, Roeder RG, Armstrong SA. MLL-AF9- and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. J Clin Invest 2016; 126:997-1011. [PMID: 26878175 DOI: 10.1172/jci82978] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/18/2015] [Indexed: 01/07/2023] Open
Abstract
Self-renewal is a hallmark of both hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs); therefore, the identification of mechanisms that are required for LSC, but not HSC, function could provide therapeutic opportunities that are more effective and less toxic than current treatments. Here, we employed an in vivo shRNA screen and identified jumonji domain-containing protein JMJD1C as an important driver of MLL-AF9 leukemia. Using a conditional mouse model, we showed that loss of JMJD1C substantially decreased LSC frequency and caused differentiation of MLL-AF9- and homeobox A9-driven (HOXA9-driven) leukemias. We determined that JMJD1C directly interacts with HOXA9 and modulates a HOXA9-controlled gene-expression program. In contrast, loss of JMJD1C led to only minor defects in blood homeostasis and modest effects on HSC self-renewal. Together, these data establish JMJD1C as an important mediator of MLL-AF9- and HOXA9-driven LSC function that is largely dispensable for HSC function.
Collapse
|
94
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
95
|
Thorne RMW, Milne TA. Dangerous liaisons: cooperation between Pbx3, Meis1 and Hoxa9 in leukemia. Haematologica 2016; 100:850-3. [PMID: 26130510 DOI: 10.3324/haematol.2015.129932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ross M W Thorne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| |
Collapse
|
96
|
Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 2015; 127:1173-82. [PMID: 26631113 DOI: 10.1182/blood-2015-09-668632] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.
Collapse
|
97
|
Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N, Gil J, Leung AY, Ashworth A, So CWE. Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med 2015; 21:1481-90. [PMID: 26594843 DOI: 10.1038/nm.3993] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is mostly driven by oncogenic transcription factors, which have been classically viewed as intractable targets using small-molecule inhibitor approaches. Here we demonstrate that AML driven by repressive transcription factors, including AML1-ETO (encoded by the fusion oncogene RUNX1-RUNX1T1) and PML-RARα fusion oncoproteins (encoded by PML-RARA) are extremely sensitive to poly (ADP-ribose) polymerase (PARP) inhibition, in part owing to their suppressed expression of key homologous recombination (HR)-associated genes and their compromised DNA-damage response (DDR). In contrast, leukemia driven by mixed-lineage leukemia (MLL, encoded by KMT2A) fusions with dominant transactivation ability is proficient in DDR and insensitive to PARP inhibition. Intriguingly, genetic or pharmacological inhibition of an MLL downstream target, HOXA9, which activates expression of various HR-associated genes, impairs DDR and sensitizes MLL leukemia to PARP inhibitors (PARPis). Conversely, HOXA9 overexpression confers PARPi resistance to AML1-ETO and PML-RARα transformed cells. Together, these studies describe a potential utility of PARPi-induced synthetic lethality for leukemia treatment and reveal a novel molecular mechanism governing PARPi sensitivity in AML.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Differentiation/drug effects
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Survival/drug effects
- Cellular Senescence/drug effects
- Core Binding Factor Alpha 2 Subunit/metabolism
- DNA Damage
- DNA Repair/drug effects
- Fluorescent Antibody Technique
- Gene Expression Regulation, Leukemic
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Oncogene Proteins, Fusion/metabolism
- Oncogenes
- Phthalazines/pharmacology
- Phthalazines/therapeutic use
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Poly(ADP-ribose) Polymerases/metabolism
- Protein Kinase Inhibitors/pharmacology
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Maria Teresa Esposito
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Lu Zhao
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Tsz Kan Fung
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Jayant K Rane
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Amanda Wilson
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| | - Nadine Martin
- Cell Proliferation Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| | - Jesus Gil
- Cell Proliferation Group, Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| | - Anskar Y Leung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Alan Ashworth
- University of California, San Francisco (UCSF) Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Chi Wai Eric So
- Leukemia and Stem Cell Biology Group, Department of Haematological Medicine, Division of Cancer Studies, King's College London, London, UK
| |
Collapse
|
98
|
Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, Enge M, Kivioja T, Morgunova E, Taipale J. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 2015; 527:384-8. [PMID: 26550823 DOI: 10.1038/nature15518] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/24/2015] [Indexed: 12/28/2022]
|
99
|
Kocabas F, Xie L, Xie J, Yu Z, DeBerardinis RJ, Kimura W, Thet S, Elshamy AF, Abouellail H, Muralidhar S, Liu X, Chen C, Sadek HA, Zhang CC, Zheng J. Hypoxic metabolism in human hematopoietic stem cells. Cell Biosci 2015. [PMID: 26221532 PMCID: PMC4517642 DOI: 10.1186/s13578-015-0020-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Adult hematopoietic stem cells (HSCs) are maintained in a microenvironment, known as niche in the endosteal regions of the bone marrow. This stem cell niche with low oxygen tension requires HSCs to adopt a unique metabolic profile. We have recently demonstrated that mouse long-term hematopoietic stem cells (LT-HSCs) utilize glycolysis instead of mitochondrial oxidative phosphorylation as their main energy source. However, the metabolic phenotype of human hematopoietic progenitor and stem cells (HPSCs) remains unknown. Results We show that HPSCs have a similar metabolic phenotype, as shown by high rates of glycolysis, and low rates of oxygen consumption. Fractionation of human mobilized peripheral blood cells based on their metabolic footprint shows that cells with a low mitochondrial potential are highly enriched for HPSCs. Remarkably, low MP cells had much better repopulation ability as compared to high MP cells. Moreover, similar to their murine counterparts, we show that Hif-1α is upregulated in human HPSCs, where it is transcriptionally regulated by Meis1. Finally, we show that Meis1 and its cofactors Pbx1 and HoxA9 play an important role in transcriptional activation of Hif-1α in a cooperative manner. Conclusions These findings highlight the unique metabolic properties of human HPSCs and the transcriptional network that regulates their metabolic phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0020-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fatih Kocabas
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA.,Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, 34755 Turkey
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Jingjing Xie
- Bingzhou Medical University, Taishan Scholar Program, Yantai, 264003 China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Ralph J DeBerardinis
- Departments of Pediatrics and Genetics, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Wataru Kimura
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - SuWannee Thet
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Ahmed F Elshamy
- Department of Clinical Pathology, El Galaa Hospital, Cairo, Egypt
| | | | - Shalini Muralidhar
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Xiaoye Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390 USA
| | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390 USA
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital / Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Chongqing South Road 280, Shanghai, 200025 China
| |
Collapse
|
100
|
Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2015; 35:1090-8. [PMID: 26028034 DOI: 10.1038/onc.2015.174] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/24/2015] [Accepted: 04/14/2015] [Indexed: 02/08/2023]
Abstract
HOXA9 is a homeodomain-containing transcription factor that has an important role in hematopoietic stem cell expansion and is commonly deregulated in acute leukemias. A variety of upstream genetic alterations in acute myeloid leukemia lead to overexpression of HOXA9, which is a strong predictor of poor prognosis. In many cases, HOXA9 has been shown to be necessary for maintaining leukemic transformation; however, the molecular mechanisms through which it promotes leukemogenesis remain elusive. Recent work has established that HOXA9 regulates downstream gene expression through binding at promoter distal enhancers along with a subset of cell-specific cofactor and collaborator proteins. Increasing efforts are being made to identify both the critical cofactors and target genes required for maintaining transformation in HOXA9-overexpressing leukemias. With continued advances in understanding HOXA9-mediated transformation, there is a wealth of opportunity for developing novel therapeutics that would be applicable for greater than 50% of AML with overexpression of HOXA9.
Collapse
|