51
|
Quirino-Teixeira AC, Andrade FB, Pinheiro MBM, Rozini SV, Hottz ED. Platelets in dengue infection: more than a numbers game. Platelets 2021; 33:176-183. [PMID: 34027810 DOI: 10.1080/09537104.2021.1921722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Dengue virus (DENV) infection is responsible for the development of dengue illness, which can be either asymptomatic, present mild manifestations or evolve to severe dengue. Thrombocytopenia is an important characteristic during DENV infection, being observed both in mild and severe dengue, although the lowest platelet counts are encountered during severe cases. This review gathers information regarding several mechanisms that have been related to alterations in platelet number and function, leading to thrombocytopenia but also platelet-mediated immune and inflammatory response. On this regard, we highlight that the decrease in platelet counts may be due to bone marrow suppression or consumption of platelets at the periphery. We discuss the infection of hematopoietic progenitors and stromal cells as mechanisms involved in bone marrow suppression. Concerning peripheral consumption of platelets, we addressed the direct infection of platelets by DENV, adhesion of platelets to leukocytes and vascular endothelium and platelet clearance mediated by anti-platelet antibodies. We also focused on platelet involvement on the dengue immunity and pathogenesis through translation and secretion of viral and host factors and through platelet-leukocyte aggregates formation. Hence, the present review highlights important findings related to platelet activation and thrombocytopenia during dengue infection, and also exhibits different mechanisms associated with decreased platelet counts.Graphical abstract:Schematic mechanistic representation of platelet-mediated immune responses and thrombocytopenia during dengue infection. (A) DENV-infected platelets secrete cytokines and chemokines and also adhere to activated vascular endothelium. Platelets aggregate with leukocytes, inducing the secretion of NETs and inflammatory mediators by neutrophils and monocytes, respectively. (B) DENV directly infects stromal cells and hematopoietic precursors, including megakaryocytes, which compromises megakaryopoiesis. Both central and peripheric mechanisms contribute to DENV-associated thrombocytopenia.
Collapse
Affiliation(s)
- Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz De Fora, Juiz De Fora, Brazil
| |
Collapse
|
52
|
Laxmi V, Joshi SS, Agrawal A. Biophysical Phenomenon-Based Separation of Platelet-Poor Plasma from Blood. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijai Laxmi
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Suhas S. Joshi
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Amit Agrawal
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
53
|
Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Adv 2021; 4:2018-2031. [PMID: 32396616 DOI: 10.1182/bloodadvances.2019001169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence identifies major contributions of platelets to inflammatory amplification in dengue, but the mechanisms of infection-driven platelet activation are not completely understood. Dengue virus nonstructural protein-1 (DENV NS1) is a viral protein secreted by infected cells with recognized roles in dengue pathogenesis, but it remains unknown whether NS1 contributes to the inflammatory phenotype of infected platelets. This study shows that recombinant DENV NS1 activated platelets toward an inflammatory phenotype that partially reproduced DENV infection. NS1 stimulation induced translocation of α-granules and release of stored factors, but not of newly synthesized interleukin-1β (IL-1β). Even though both NS1 and DENV were able to induce pro-IL-1β synthesis, only DENV infection triggered caspase-1 activation and IL-1β release by platelets. A more complete thromboinflammatory phenotype was achieved by synergistic activation of NS1 with classic platelet agonists, enhancing α-granule translocation and inducing thromboxane A2 synthesis (thrombin and platelet-activating factor), or activating caspase-1 for IL-1β processing and secretion (adenosine triphosphate). Also, platelet activation by NS1 partially depended on toll-like receptor-4 (TLR-4), but not TLR-2/6. Finally, the platelets sustained viral genome translation and replication, but did not support the release of viral progeny to the extracellular milieu, characterizing an abortive viral infection. Although DENV infection was not productive, translation of the DENV genome led to NS1 expression and release by platelets, contributing to the activation of infected platelets through an autocrine loop. These data reveal distinct, new mechanisms for platelet activation in dengue, involving DENV genome translation and NS1-induced platelet activation via platelet TLR4.
Collapse
|
54
|
Shevchuk O, Begonja AJ, Gambaryan S, Totzeck M, Rassaf T, Huber TB, Greinacher A, Renne T, Sickmann A. Proteomics: A Tool to Study Platelet Function. Int J Mol Sci 2021; 22:ijms22094776. [PMID: 33946341 PMCID: PMC8125008 DOI: 10.3390/ijms22094776] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Platelets are components of the blood that are highly reactive, and they quickly respond to multiple physiological and pathophysiological processes. In the last decade, it became clear that platelets are the key components of circulation, linking hemostasis, innate, and acquired immunity. Protein composition, localization, and activity are crucial for platelet function and regulation. The current state of mass spectrometry-based proteomics has tremendous potential to identify and quantify thousands of proteins from a minimal amount of material, unravel multiple post-translational modifications, and monitor platelet activity during drug treatments. This review focuses on the role of proteomics in understanding the molecular basics of the classical and newly emerging functions of platelets. including the recently described role of platelets in immunology and the development of COVID-19.The state-of-the-art proteomic technologies and their application in studying platelet biogenesis, signaling, and storage are described, and the potential of newly appeared trapped ion mobility spectrometry (TIMS) is highlighted. Additionally, implementing proteomic methods in platelet transfusion medicine, and as a diagnostic and prognostic tool, is discussed.
Collapse
Affiliation(s)
- Olga Shevchuk
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
- Correspondence: (O.S.); (A.S.)
| | - Antonija Jurak Begonja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia;
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Torez pr. 44, 194223 St. Petersburg, Russia;
| | - Matthias Totzeck
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tienush Rassaf
- West German Heart and Vascular Center, Department of Cardiology and Vascular Medicine, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany; (M.T.); (T.R.)
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Sauerbruchstraße, 17475 Greifswald, Germany;
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany;
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V, Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Medizinisches Proteom-Center (MPC), Medizinische Fakultät, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, UK
- Correspondence: (O.S.); (A.S.)
| |
Collapse
|
55
|
Sarker MMR, Khan F, Mohamed IN. Dengue Fever: Therapeutic Potential of Carica papaya L. Leaves. Front Pharmacol 2021; 12:610912. [PMID: 33981215 PMCID: PMC8109180 DOI: 10.3389/fphar.2021.610912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue, a very widespread mosquito-borne infectious disease caused by Aedes aegypti virus, has been occurring during the monsoons every year. The prevalence and incidence of dengue fever and death due to its complications have been increased drastically in these recent years in Bangladesh, Philippines, Thailand, Brazil, and India. Recently, dengue had spread in an epidemic form in Bangladesh, Thailand, and Philippines. Although the infection affected a large number of people around the world, there is no established specific and effective treatment by synthetic medicines. In this subcontinent, Malaysia could effectively control its incidences and death of patients using alternative medication treatment mainly prepared from Carica papaya L. leaves along with proper care and hospitalization. Papaya leaves, their juice or extract, as well as their different forms of preparation have long been used traditionally for treating dengue fever and its complications to save patients’ lives. Although it is recommended by traditional healers, and the general public use Papaya leaves juice or their other preparations in dengue fever, this treatment option is strictly denied by the physicians offering treatment in hospitals in Bangladesh as they do not believe in the effectiveness of papaya leaves, thus suggesting to patients that they should not use them. In Bangladesh, 1,01,354 dengue patients have been hospitalized, with 179 deaths in the year 2019 according to information from the Institute of Epidemiology, Disease Control, and Research as well as the Directorate General of Health Services of Bangladesh. Most of the patients died because of the falling down of platelets to dangerous levels and hemorrhage or serious bleeding. Therefore, this paper aims to critically review the scientific basis and effectiveness of Carica papaya L. leaves in treating dengue fever based on preclinical and clinical reports. Thrombocytopenia is one of the major conditions that is typical in cases of dengue infection. Besides, the infection and impairment of immunity are concerned with dengue patients. This review summarizes all the scientific reports on Carica papaya L. for its ability on three aspects of dengue: antiviral activities, prevention of thrombocytopenia and improvement of immunity during dengue fever.
Collapse
Affiliation(s)
- Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Farzana Khan
- Department of Pharmacy, State University of Bangladesh, Dhanmondi, Dhaka, Bangladesh.,Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (The National University of Malaysia), Cheras, Malaysia
| |
Collapse
|
56
|
Lin JJ, Chung PJ, Dai SS, Tsai WT, Lin YF, Kuo YP, Tsai KN, Chien CH, Tsai DJ, Wu MS, Shu PY, Yueh A, Chen HW, Chen CH, Yu GY. Aggressive organ penetration and high vector transmissibility of epidemic dengue virus-2 Cosmopolitan genotype in a transmission mouse model. PLoS Pathog 2021; 17:e1009480. [PMID: 33784371 PMCID: PMC8034735 DOI: 10.1371/journal.ppat.1009480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/09/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) causes dengue fever and severe hemorrhagic fever in humans and is primarily transmitted by Aedes aegypti and A. albopictus mosquitoes. The incidence of DENV infection has been gradually increasing in recent years due to global urbanization and international travel. Understanding the virulence determinants in host and vector transmissibility of emerging epidemic DENV will be critical to combat potential outbreaks. The DENV serotype 2 (DENV-2), which caused a widespread outbreak in Taiwan in 2015 (TW2015), is of the Cosmopolitan genotype and is phylogenetically related to the virus strain linked to another large outbreak in Indonesia in 2015. We found that the TW2015 virus was highly virulent in type I and type II interferon-deficient mice, with robust replication in spleen, lung, and intestine. The TW2015 virus also had high transmissibility to Aedes mosquitoes and could be effectively spread in a continuous mosquitoes-mouse-mosquitoes-mouse transmission cycle. By making 16681-based mutants carrying different segments of the TW2015 virus, we identified the structural pre-membrane (prM) and envelope (E) genes as key virulence determinants in the host, with involvement in the high transmissibility of the TW2015 virus in mosquitoes. The transmission mouse model will make a useful platform for evaluation of DENV with high epidemic potential and development of new strategies against dengue outbreaks.
Collapse
Affiliation(s)
- Jhe-Jhih Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Jung Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shih-Syong Dai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Wan-Ting Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yu-Feng Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yi-Ping Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Kuen-Nan Tsai
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Chia-Hao Chien
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - De-Jiun Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Ming-Sian Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan
| | - Andrew Yueh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (C-HC); (G-YY)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (C-HC); (G-YY)
| |
Collapse
|
57
|
Cahyati WH, Siyam N, Putriningtyas ND. The potential of red dragon fruit peel yogurt to improve platelet levels in heparin-induced thrombocytopenia in Wistar rats. POTRAVINARSTVO 2021. [DOI: 10.5219/1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Patients infected with the dengue virus will develop thrombocytopenia which can cause bleeding and complications. One of the materials that contain antioxidants and have potential as a functional food is red dragon fruit peel. This peel can be processed into yogurt as a way to increase antioxidant function which ultimately supports the immune system of its users. This study analyzed the effect of red dragon fruit peel yogurt on the platelet levels of thrombocytopenic Wistar rats. It used a pre-post-test control group design. Male Wistar rats were randomly assigned into seven groups: K-; K+; and five treatment groups that received dragon fruit peel yogurt at doses of 5% (K1); 10% (K2); 15% (K3); 20% (K4); and 25% (K5). Thrombocytopenia was induced by 0.1 mL.100g-1 BW of heparin for 3 days. The intervention was carried out for 28 days. The result showed that all groups had significant differences before and after the intervention (p <0.05). Tukey analysis showed that there were significant differences in all groups (p <0.05). Yogurt containing 25% red dragon fruit peel provides an effective dose for improving platelet levels in thrombocytopenic rats.
Collapse
|
58
|
Abstract
Platelets play an essential role in maintaining vascular integrity after injury. In addition, platelets contribute to the immune response to pathogens. For instance, they express receptors that mediate binding of viruses, and toll-like receptors that activate the cell in response to pathogen-associated molecular patterns. Platelets can be beneficial and/or detrimental during viral infections. They reduce blood-borne viruses by engulfing the free virus and presenting the virus to neutrophils. However, platelets can also enhance inflammation and tissue injury during viral infections. Here, we discuss the roles of platelets in viral infection.
Collapse
Affiliation(s)
- Silvio Antoniak
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
59
|
Raadsen M, Du Toit J, Langerak T, van Bussel B, van Gorp E, Goeijenbier M. Thrombocytopenia in Virus Infections. J Clin Med 2021; 10:877. [PMID: 33672766 PMCID: PMC7924611 DOI: 10.3390/jcm10040877] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Thrombocytopenia, which signifies a low platelet count usually below 150 × 109/L, is a common finding following or during many viral infections. In clinical medicine, mild thrombocytopenia, combined with lymphopenia in a patient with signs and symptoms of an infectious disease, raises the suspicion of a viral infection. This phenomenon is classically attributed to platelet consumption due to inflammation-induced coagulation, sequestration from the circulation by phagocytosis and hypersplenism, and impaired platelet production due to defective megakaryopoiesis or cytokine-induced myelosuppression. All these mechanisms, while plausible and supported by substantial evidence, regard platelets as passive bystanders during viral infection. However, platelets are increasingly recognized as active players in the (antiviral) immune response and have been shown to interact with cells of the innate and adaptive immune system as well as directly with viruses. These findings can be of interest both for understanding the pathogenesis of viral infectious diseases and predicting outcome. In this review, we will summarize and discuss the literature currently available on various mechanisms within the relationship between thrombocytopenia and virus infections.
Collapse
Affiliation(s)
- Matthijs Raadsen
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Justin Du Toit
- Department of Haematology, Wits University Donald Gordon Medical Centre Johannesburg, Johannesburg 2041, South Africa;
| | - Thomas Langerak
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
| | - Bas van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center Plus, 6229 HX Maastricht, The Netherlands;
- Care and Public Health Research Institute (CAPHRI), Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Marco Goeijenbier
- Department of Viroscience, Erasmus MC Rotterdam, Doctor molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.R.); (T.L.); (E.v.G.)
- Department of Internal Medicine, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
60
|
Godino C, Scotti A, Maugeri N, Mancini N, Fominskiy E, Margonato A, Landoni G. Antithrombotic therapy in patients with COVID-19? -Rationale and Evidence. Int J Cardiol 2021; 324:261-266. [PMID: 33002521 PMCID: PMC7521414 DOI: 10.1016/j.ijcard.2020.09.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022]
Abstract
In patients with severe or critical Coronavirus disease 2019 (COVID-19) manifestations, a thromboinflammatory syndrome, with diffuse microvascular thrombosis, is increasingly evident as the final step of pro-inflammatory cytokines storm. Actually, no proven effective therapies for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exist. Preliminary observations on anticoagulant therapy appear to be associated with better outcomes in moderate and severe COVID-19 patients with signs of coagulopathy and in those requiring mechanical ventilation. The pathophysiology underlying the prothrombotic state elicited by SARS-CoV-2 outlines possible protective mechanisms of antithrombotic therapy (in primis anticoagulants) for this viral illness. The indications for antiplatelet/anticoagulant use (prevention, prophylaxis, therapy) are guided by the clinical context and the COVID-19 severity. We provide a practical approach on antithrombotic therapy management for COVID-19 patients from a multidisciplinary point of view.
Collapse
Affiliation(s)
- Cosmo Godino
- Clinical Cardiology Unit, Faculty of Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Andrea Scotti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Padua, Italy
| | - Norma Maugeri
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| | - Evgeny Fominskiy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Margonato
- Clinical Cardiology Unit, Faculty of Medicine, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Faculty of Medicine, Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
61
|
Bury L, Camilloni B, Castronari R, Piselli E, Malvestiti M, Borghi M, KuchiBotla H, Falcinelli E, Petito E, Amato F, Paliani U, Vaudo G, Cerotto V, Gori F, Becattini C, De Robertis E, Lazzarini T, Castaldo G, Mencacci A, Gresele P. Search for SARS-CoV-2 RNA in platelets from COVID-19 patients. Platelets 2020; 32:284-287. [PMID: 33349108 DOI: 10.1080/09537104.2020.1859104] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The frequent finding of thrombocytopenia in patients with severe SARS-CoV-2 infection (COVID-19) and previous evidence that several viruses enter platelets suggest that SARS-CoV-2 might be internalized by platelets of COVID-19. Aim of our study was to assess the presence of SARS-CoV-2 RNA in platelets from hospitalized patients with aconfirmed diagnosis of COVID-19. RNA was extracted from platelets, leukocytes and serum from 24 COVID-19 patients and 3 healthy controls, real-time PCR and ddPCR for viral genes were carried out. SARS-CoV-2 RNA was not detected in any of the samples analyzed nor in healthy controls, by either RT-PCR or ddPCR, while RNA samples from nasopharyngeal swabs of COVID-19 patients were correctly identified. Viral RNA was not detected independently of viral load, of positive nasopharyngeal swabs, or viremia, the last detected in only one patient (4.1%). SARS-CoV-2 entry in platelets is not acommon phenomenon in COVID-19 patients, differently from other viral infections.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Barbara Camilloni
- Department of Medicine and Surgery, Microbiology Unit, University of Perugia, Perugia, Italy
| | - Roberto Castronari
- Department of Medicine and Surgery, Microbiology Unit, University of Perugia, Perugia, Italy
| | - Elisa Piselli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Marco Malvestiti
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Mariachiara Borghi
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Haripriya KuchiBotla
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Felice Amato
- Università Di Napoli Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Ugo Paliani
- Division of Internal Medicine, ASL 1 Umbria, Città Di Castello, Italy
| | - Gaetano Vaudo
- Unit of Internal Medicine, Terni University Hospital, Terni, Italy
| | - Vittorio Cerotto
- Section of Anesthesia, Intensive Care and Pain Medicine, Department of Emergency and Urgency, Città Di Castello Hospital, Città Di Castello, Italy
| | - Fabio Gori
- Section of Anesthesia, Intensive Care, and Pain Medicine, Azienda Ospedaliera-Universitaria Santa Maria Della Misericordia, Perugia, Italy
| | - Cecilia Becattini
- Internal Vascular and Emergency Medicine - Stroke Unit, University of Perugia, Perugia, Italy
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Division of Anaesthesia, Analgesia, and Intensive Care, University of Perugia, Perugia, Italy
| | - Teseo Lazzarini
- Section of Anesthesia and Intensive Care, Presidio Alto Chiascio, USL Umbria 1, Gubbio, Italy
| | | | - Antonella Mencacci
- Department of Medicine and Surgery, Microbiology Unit, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
62
|
Li XK, Dai K, Yang ZD, Yuan C, Cui N, Zhang SF, Hu YY, Wang ZB, Miao D, Zhang PH, Li H, Zhang XA, Huang YQ, Chen WW, Zhang JS, Lu QB, Liu W. Correlation between thrombocytopenia and host response in severe fever with thrombocytopenia syndrome. PLoS Negl Trop Dis 2020; 14:e0008801. [PMID: 33119592 PMCID: PMC7595704 DOI: 10.1371/journal.pntd.0008801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS) is an emerging infectious disease caused by a novel bunyavirus, SFTS virus (SFTSV), with fatal outcome developed in approximately 17% of the cases. Thrombocytopenia is a hallmark feature of SFTS, and associated with a higher risk of fatal outcome, however, the pathophysiological involvement of platelet in the clinical outcome of SFTS remained under-investigated. In the current study, by retrospectively analyzing 1538 confirmed SFTS patients, we observed that thrombocytopenia was associated with enhanced activation of the cytokine network and the vascular endothelium, also with a disturbed coagulation response. The platelet phenotypes were also extensively altered in the process of thrombocytopenia development of SFTS patients. More importantly, all these disturbed host responses were related to the severity of thrombocytopenia, thus were considered to play in a synergistic way to influence the disease outcome. Moreover, the clinical effect of platelet transfusion was assessed by comparing two groups of patients with or without receiving this therapy. As a result, we observed no therapy effect in altering frequencies of fatal outcome, clinical bleeding development, or dynamic change of platelet count during the hospitalization. It’s suggested that platelet supplementation alone acted a minor role in improving disease outcome, therefore new therapeutic intervention to regulate host response should be proposed. The current results revealed some evidence of interrelationship between platelet count and clinical outcome of SFTS disease from the perspective of activation of the cytokine network, the vascular endothelium, and the coagulation/fibrinolysis system. These evaluations might help to attain a better understanding of the pathogenesis and therapy choice in SFTS. Thrombocytopenia in SFTSV is a multifactor-process involving a combination of platelet size or morphology alterations, fibrinolysis activation and coagulation abnormalities, increased inflammatory response and endothelial injury. Platelet supplementation alone shows minor role in improving disease, therefore new therapeutic intervention to regulate host response should be proposed.
Collapse
Affiliation(s)
- Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ke Dai
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhen-Dong Yang
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Chun Yuan
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Ning Cui
- The 990 Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Shihe District, Xinyang, P. R. China
| | - Shao-Fei Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yuan-Yuan Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhi-Bo Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Dong Miao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Yan-Qin Huang
- The Shangcheng Center for Disease Control and Prevention, Shangcheng County, Xinyang, P. R. China
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Diseases, the Fifth Medical Center of Chinese PLA General Hospital, Fengtai District, Beijing, P. R. China
| | - Jiu-Song Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Haidian District, Beijing, P. R. China
- * E-mail: (Q-BL); , (WL)
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
- Key Laboratory of Vector Borne and Natural Focus Infectious Diseases, Beijing, People’s Republic of China
- * E-mail: (Q-BL); , (WL)
| |
Collapse
|
63
|
Portier I, Campbell RA. Role of Platelets in Detection and Regulation of Infection. Arterioscler Thromb Vasc Biol 2020; 41:70-78. [PMID: 33115274 DOI: 10.1161/atvbaha.120.314645] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Platelets are classically known as essential mediators of hemostasis and thrombosis. However, in recent years, platelets have gained recognition for their inflammatory functions, which modulate the immune response during infectious diseases. Platelets contain various immunoreceptors that enable them to act as sentinels to recognize intravascular pathogens. Upon activation, platelets directly limit pathogen growth through the release of AMPs (antimicrobial proteins) and ensure pathogen clearance through activation of immune cells. However, aberrant platelet activation can lead to inflammation and thrombotic events.
Collapse
Affiliation(s)
- Irina Portier
- University of Utah Molecular Medicine Program, Salt Lake City (I.P., R.A.C.)
| | - Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City (I.P., R.A.C.).,Department of Internal Medicine, University of Utah, Salt Lake City (R.A.C.)
| |
Collapse
|
64
|
Gautam I, Storad Z, Filipiak L, Huss C, Meikle CK, Worth RG, Wuescher LM. From Classical to Unconventional: The Immune Receptors Facilitating Platelet Responses to Infection and Inflammation. BIOLOGY 2020; 9:E343. [PMID: 33092021 PMCID: PMC7589078 DOI: 10.3390/biology9100343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
Platelets have long been recognized for their role in maintaining the balance between hemostasis and thrombosis. While their contributions to blood clotting have been well established, it has been increasingly evident that their roles extend to both innate and adaptive immune functions during infection and inflammation. In this comprehensive review, we describe the various ways in which platelets interact with different microbes and elicit immune responses either directly, or through modulation of leukocyte behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leah M. Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (I.G.); (Z.S.); (L.F.); (C.H.); (C.K.M.); (R.G.W.)
| |
Collapse
|
65
|
Neu CT, Gutschner T, Haemmerle M. Post-Transcriptional Expression Control in Platelet Biogenesis and Function. Int J Mol Sci 2020; 21:ijms21207614. [PMID: 33076269 PMCID: PMC7589263 DOI: 10.3390/ijms21207614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Platelets are highly abundant cell fragments of the peripheral blood that originate from megakaryocytes. Beside their well-known role in wound healing and hemostasis, they are emerging mediators of the immune response and implicated in a variety of pathophysiological conditions including cancer. Despite their anucleate nature, they harbor a diverse set of RNAs, which are subject to an active sorting mechanism from megakaryocytes into proplatelets and affect platelet biogenesis and function. However, sorting mechanisms are poorly understood, but RNA-binding proteins (RBPs) have been suggested to play a crucial role. Moreover, RBPs may regulate RNA translation and decay following platelet activation. In concert with other regulators, including microRNAs, long non-coding and circular RNAs, RBPs control multiple steps of the platelet life cycle. In this review, we will highlight the different RNA species within platelets and their impact on megakaryopoiesis, platelet biogenesis and platelet function. Additionally, we will focus on the currently known concepts of post-transcriptional control mechanisms important for RNA fate within platelets with a special emphasis on RBPs.
Collapse
Affiliation(s)
- Carolin T. Neu
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Tony Gutschner
- Junior Research Group ‘RNA Biology and Pathogenesis’, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
| | - Monika Haemmerle
- Institute of Pathology, Section for Experimental Pathology, Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany;
- Correspondence: ; Tel.: +49-345-557-3964
| |
Collapse
|
66
|
Gaudin R, Goetz JG. Tracking Mechanisms of Viral Dissemination In Vivo. Trends Cell Biol 2020; 31:17-23. [PMID: 33023793 PMCID: PMC7532808 DOI: 10.1016/j.tcb.2020.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022]
Abstract
Dissemination and replication of viruses into hosts is a multistep process where viral particles infect, navigate, and indoctrinate various cell types. Viruses can reach tissues that are distant from their infection site by subverting subcellular mechanisms in ways that are, sometimes, disruptive. Modeling these steps, at appropriate resolution and within animal models, is cumbersome. Yet, mimicking these strategies in vitro fails to recapitulate the complexity of the cellular ecosystem. Here, we will discuss relevant in vivo platforms to dissect the cellular and molecular programs governing viral dissemination and briefly discuss organoid and ex vivo alternatives. We will focus on the zebrafish model and will describe how it provides a transparent window to unravel new cellular mechanisms of viral dissemination in vivo. The zebrafish model allows in vivo investigations of virus-induced molecular processes at subcellular resolution. Viruses have evolved multiple strategies for disseminating over long distance, including by indoctrinating host cell types with high migration potential. Organoids derived from stem cells emerge as powerful alternatives to unravel new molecular mechanisms of viral dissemination.
Collapse
Affiliation(s)
- Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34293 Montpellier, France; Université de Montpellier, 34090 Montpellier, France.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
67
|
Singh A, Bisht P, Bhattacharya S, Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front Cell Infect Microbiol 2020; 10:561366. [PMID: 33102253 PMCID: PMC7554584 DOI: 10.3389/fcimb.2020.561366] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022] Open
Abstract
Platelets are anucleated blood cells derived from bone marrow megakaryocytes and play a crucial role in hemostasis and thrombosis. Platelets contain specialized storage organelles, called alpha-granules, contents of which are rich in cytokines such as C-X-C Motif Chemokine Ligand (CXCL) 1/4/7, (C-C motif) ligand (CCL) 5/3, CXCL8 (also called as interleukin 8, IL-8), and transforming growth factor β (TGF-β). Activation of platelets lead to degranulation and release of contents into the plasma. Platelet activation is a common event in many viral infections including human immunodeficiency virus (HIV), H1N1 influenza, Hepatitis C virus (HCV), Ebola virus (EBV), and Dengue virus (DENV). The cytokines CXCL8, CCL5 (also known as Regulated on Activation, Normal T Expressed and Secreted, RANTES), tumor necrosis factor α (TNF-α), CXCL1/5 and CCL3 released, promote development of a pro-inflammatory state along with the recruitment of other immune cells to the site of infection. Platelets also interact with Monocytes and Neutrophils and facilitate their activation to release different cytokines which further enhances inflammation. Upon activation, platelets also secrete factors such as CXCL4 (also known as platelet factor, PF4), CCL5 and fibrinopeptides which are critical regulators of replication and propagation of several viruses in the host. Studies suggest that CXCL4 can both inhibit as well as enhance HIV1 infection. Data from our lab show that CXCL4 inhibits interferon (IFN) pathway and promotes DENV replication in monocytes in vitro and in patients significantly. Inhibition of CXCL4 mediated signaling results in increased IFN production and suppressed DENV and JEV replication in monocytes. In this review, we discuss the role of platelets in viral disease progression with a focus on dengue infection.
Collapse
Affiliation(s)
- Anamika Singh
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Piyush Bisht
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Sulagna Bhattacharya
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Center for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
68
|
Maouia A, Rebetz J, Kapur R, Semple JW. The Immune Nature of Platelets Revisited. Transfus Med Rev 2020; 34:209-220. [PMID: 33051111 PMCID: PMC7501063 DOI: 10.1016/j.tmrv.2020.09.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Platelets are the primary cellular mediators of hemostasis and this function firmly acquaints them with a variety of inflammatory processes. For example, platelets can act as circulating sentinels by expressing Toll-like receptors (TLR) that bind pathogens and this allows platelets to effectively kill them or present them to cells of the immune system. Furthermore, activated platelets secrete and express many pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. In addition, platelets can directly influence adaptive immune responses via secretion of, for example, CD40 and CD40L molecules. Platelets are also the source of most of the microvesicles in the circulation and these miniscule elements further enhance the platelet’s ability to communicate with the immune system. More recently, it has been demonstrated that platelets and their parent cells, the megakaryocytes (MK), can also uptake, process and present both foreign and self-antigens to CD8+ T-cells conferring on them the ability to directly alter adaptive immune responses. This review will highlight several of the non-hemostatic attributes of platelets that clearly and rightfully place them as integral players in immune reactions. Platelets can act as circulating sentinels by expressing pathogen-associated molecular pattern receptors that bind pathogens and induce their killing and elimination. Activated platelets secrete and express a multitude of pro- and anti-inflammatory molecules that attract and capture circulating leukocytes and direct them to inflamed tissues. Platelets express and secrete many critical immunoregulatory molecules that significantly affect both innate and adaptive immune responses. Platelets are the primary source of microparticles in the circulation and these augment the platelet’s ability to communicate with the immune system. Platelets and megakaryocytes can act as antigen presenting cells and present both foreign- and self-peptides to T-cells.
Collapse
Affiliation(s)
- Amal Maouia
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden.
| |
Collapse
|
69
|
Zaid Y, Puhm F, Allaeys I, Naya A, Oudghiri M, Khalki L, Limami Y, Zaid N, Sadki K, Ben El Haj R, Mahir W, Belayachi L, Belefquih B, Benouda A, Cheikh A, Langlois MA, Cherrah Y, Flamand L, Guessous F, Boilard E. Platelets Can Associate with SARS-Cov-2 RNA and Are Hyperactivated in COVID-19. Circ Res 2020; 127:1404-1418. [PMID: 32938299 PMCID: PMC7641188 DOI: 10.1161/circresaha.120.317703] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Rationale: In addition to the overwhelming lung inflammation that prevails in COVID-19, hypercoagulation and thrombosis contribute to the lethality of subjects infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Platelets are chiefly implicated in thrombosis. Moreover, they can interact with viruses and are an important source of inflammatory mediators. While a lower platelet count is associated with severity and mortality, little is known about platelet function during COVID-19. Objective: To evaluate the contribution of platelets to inflammation and thrombosis in COVID-19 patients. Methods and Results: Blood was collected from 115 consecutive COVID-19 patients presenting non-severe (n=71) and severe (n=44) respiratory symptoms. We document the presence of SARS-CoV-2 RNA associated with platelets of COVID-19 patients. Exhaustive assessment of cytokines in plasma and in platelets revealed the modulation of platelet-associated cytokine levels in both non-severe and severe COVID-19 patients, pointing to a direct contribution of platelets to the plasmatic cytokine load. Moreover, we demonstrate that platelets release their alpha- and dense-granule contents in both non-severe and severe forms of COVID-19. In comparison to concentrations measured in healthy volunteers, phosphatidylserine-exposing platelet extracellular vesicles were increased in non-severe, but not in severe cases of COVID-19. Levels of D-dimers, a marker of thrombosis, failed to correlate with any measured indicators of platelet activation. Functionally, platelets were hyperactivated in COVID-19 subjects presenting non-severe and severe symptoms, with aggregation occurring at suboptimal thrombin concentrations. Furthermore, platelets adhered more efficiently onto collagen-coated surfaces under flow conditions. Conclusions: Taken together, the data suggest that platelets are at the frontline of COVID-19 pathogenesis, as they release various sets of molecules through the different stages of the disease. Platelets may thus have the potential to contribute to the overwhelming thrombo-inflammation in COVID-19, and the inhibition of pathways related to platelet activation may improve the outcomes during COVID-19.
Collapse
Affiliation(s)
- Younes Zaid
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Florian Puhm
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Isabelle Allaeys
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Abdallah Naya
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Mounia Oudghiri
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Loubna Khalki
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco (L.K., F.G.)
| | - Youness Limami
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
- Immunology and Biodiversity Laboratory, Biology, Faculty of Sciences Ain Chock, Hassan II University, Casablanca, Morocco (Y.Z., A.N., M.O., Y.L.)
| | - Nabil Zaid
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
| | - Khalid Sadki
- Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco (Y.Z., N.Z., K.S.)
| | - Rafiqua Ben El Haj
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Wissal Mahir
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Lamiae Belayachi
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Bouchra Belefquih
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Amina Benouda
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Amine Cheikh
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Marc-André Langlois
- Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Canada (M.-A.L.)
| | - Yahia Cherrah
- Research Center of Abulcasis University of Health Sciences, Cheikh Zaïd Hospital, Rabat, Morocco (Y.Z., Y.L., R.B.E.H., W.M., L.B., B.B., A.B., A.C., Y.C.)
| | - Louis Flamand
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| | - Fadila Guessous
- Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco (L.K., F.G.)
- Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville (F.G.)
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Canada (F.P., I.A., L.F., E.B.)
- Département de microbiologie-infectiologie et d’immunologie, Université Laval, QC, Canada (F.P., I.A., L.F., E.B.)
| |
Collapse
|
70
|
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, Zhang S, Fan Z, Dong J, Yuan Z, Ding Z, Zhang Y, Hu L. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020; 13:120. [PMID: 32887634 PMCID: PMC7471641 DOI: 10.1186/s13045-020-00954-7] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.
Collapse
Affiliation(s)
- Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yangyang Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaofang Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Li Yang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Haishan Li
- Department of Emergency, Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengduan Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaoyan Zhao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shenghui Zhang
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, 06030, USA
| | - Jianzeng Dong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongren Ding
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Liang Hu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Cardiovascular Institute of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
71
|
Hunsberger S, Ortega-Villa AM, Powers JH, Rincón León HA, Caballero Sosa S, Ruiz Hernández E, Nájera Cancino JG, Nason M, Lumbard K, Sepulveda J, Guerra de Blas PDC, Ruiz-Palacios G, Belaunzarán-Zamudio PF. Patterns of signs, symptoms, and laboratory values associated with Zika, dengue, and undefined acute illnesses in a dengue endemic region: Secondary analysis of a prospective cohort study in southern Mexico. Int J Infect Dis 2020; 98:241-249. [PMID: 32593623 PMCID: PMC9403947 DOI: 10.1016/j.ijid.2020.06.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Dengue and Zika infections cause illnesses with overlapping clinical manifestations. The aim of this study was to explore the association of each of these infections with single or grouped clinical and laboratory parameters. METHODS Clinical and laboratory data were collected prospectively from a cohort of patients seeking care for symptoms meeting the Pan American Health Organization's modified case-definition criteria for probable Zika virus infection. Zika and dengue were diagnosed with RT-PCR. The relationship of clinical characteristics and laboratory data with Zika, dengue, and undefined acute illness (UAI) was examined. RESULTS In the univariate models, localized rash and maculopapular exanthema were associated with Zika infection. Generalized rash, petechiae, and petechial purpuric rash were associated with dengue. Cough and confusion/disorientation were associated with UAI. Platelets were significantly lower in the dengue group. A conditional inference tree model showed poor sensitivity and positive predictive value for individual viral diagnoses. CONCLUSIONS Clusters of signs, symptoms, and laboratory values evaluated in this study could not consistently differentiate Zika or dengue cases from UAI in the clinical setting at the individual patient level. We identified symptoms that are important to Zika and dengue in the univariate analyses, but predictive models were unreliable. Low platelet count was a distinctive feature of dengue.
Collapse
Affiliation(s)
- Sally Hunsberger
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Ana M Ortega-Villa
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John H Powers
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Sandra Caballero Sosa
- Clínica Hospital Dr. Roberto Nettel Flores, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Tapachula, Chiapas, Mexico
| | | | | | - Martha Nason
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Keith Lumbard
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jesús Sepulveda
- Hospital Regional de Alta Especialidad Ciudad Salud, Tapachula, Mexico
| | | | - Guillermo Ruiz-Palacios
- Departamento de Infectologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| | - Pablo F Belaunzarán-Zamudio
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Departamento de Infectologia, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
72
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
73
|
Abstract
Platelets, small anucleate cells circulating in the blood, are critical mediators in haemostasis and thrombosis. Interestingly, recent studies demonstrated that platelets contain both pro-inflammatory and anti-inflammatory molecules, equipping platelets with immunoregulatory function in both innate and adaptive immunity. In the context of infectious diseases, platelets are involved in early detection of invading microorganisms and are actively recruited to sites of infection. Platelets exert their effects on microbial pathogens either by direct binding to eliminate or restrict dissemination, or by shaping the subsequent host immune response. Reciprocally, many invading microbial pathogens can directly or indirectly target host platelets, altering platelet count or/and function. In addition, microbial pathogens can impact the host auto- and alloimmune responses to platelet antigens in several immune-mediated diseases, such as immune thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. In this review, we discuss the mechanisms that contribute to the bidirectional interactions between platelets and various microbial pathogens, and how these interactions hold relevant implications in the pathogenesis of many infectious diseases. The knowledge obtained from "well-studied" microbes may also help us understand the pathogenesis of emerging microbes, such as SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Conglei Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
| | - June Li
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
74
|
Chen Y, Zhong H, Zhao Y, Luo X, Gao W. Role of platelet biomarkers in inflammatory response. Biomark Res 2020; 8:28. [PMID: 32774856 PMCID: PMC7397646 DOI: 10.1186/s40364-020-00207-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond hemostasis, thrombosis and wound healing, it is becoming increasingly clear that platelets play an integral role in inflammatory response and immune regulation. Platelets recognize pathogenic microorganisms and secrete various immunoregulatory cytokines and chemokines, thus facilitating a variety of immune effects and regulatory functions. In this review, we discuss recent advances in signaling of platelet activation-related biomarkers in inflammatory settings and application prospects to apply for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Haoxuan Zhong
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Yikai Zhao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| |
Collapse
|
75
|
Risk factors and biomarkers of severe dengue. Curr Opin Virol 2020; 43:1-8. [PMID: 32688269 DOI: 10.1016/j.coviro.2020.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
Dengue virus infects several million people each year. Although usually a self-limiting disease, some patients can develop life-threatening severe complications, characterized by plasma leakage, hemorrhaging, and shock. The signs and symptoms of severe disease usually arise late in the disease course when patients are recovering and fever has subsided, making it difficult to predict. Efforts are underway to identify risk factors and biomarkers that can accurately predict disease severity in the acute febrile phase of the disease, facilitating early intervention and treatment strategies for those at greatest risk. In this review we discuss recent advancements in identifying risk factors and biomarkers for the prognosis of severe dengue.
Collapse
|
76
|
Jansen AJG, Spaan T, Low HZ, Di Iorio D, van den Brand J, Tieke M, Barendrecht A, Rohn K, van Amerongen G, Stittelaar K, Baumgärtner W, Osterhaus A, Kuiken T, Boons GJ, Huskens J, Boes M, Maas C, van der Vries E. Influenza-induced thrombocytopenia is dependent on the subtype and sialoglycan receptor and increases with virus pathogenicity. Blood Adv 2020; 4:2967-2978. [PMID: 32609845 PMCID: PMC7362372 DOI: 10.1182/bloodadvances.2020001640] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Thrombocytopenia is a common complication of influenza virus infection, and its severity predicts the clinical outcome of critically ill patients. The underlying cause(s) remain incompletely understood. In this study, in patients with an influenza A/H1N1 virus infection, viral load and platelet count correlated inversely during the acute infection phase. We confirmed this finding in a ferret model of influenza virus infection. In these animals, platelet count decreased with the degree of virus pathogenicity varying from 0% in animals infected with the influenza A/H3N2 virus, to 22% in those with the pandemic influenza A/H1N1 virus, up to 62% in animals with a highly pathogenic A/H5N1 virus infection. This thrombocytopenia is associated with virus-containing platelets that circulate in the blood. Uptake of influenza virus particles by platelets requires binding to sialoglycans and results in the removal of sialic acids by the virus neuraminidase, a trigger for hepatic clearance of platelets. We propose the clearance of influenza virus by platelets as a paradigm. These insights clarify the pathophysiology of influenza virus infection and show how severe respiratory infections, including COVID-19, may propagate thrombocytopenia and/or thromboembolic complications.
Collapse
MESH Headings
- Animals
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Blood Platelets/virology
- Disease Models, Animal
- Ferrets
- Host-Pathogen Interactions
- Humans
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza A Virus, H3N2 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/physiology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza A virus/pathogenicity
- Influenza A virus/physiology
- Influenza, Human/complications
- Influenza, Human/metabolism
- Influenza, Human/pathology
- Influenza, Human/virology
- N-Acetylneuraminic Acid/metabolism
- Orthomyxoviridae Infections/complications
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- Polysaccharides/metabolism
- Thrombocytopenia/etiology
- Thrombocytopenia/metabolism
- Thrombocytopenia/pathology
- Thrombocytopenia/virology
- Virus Internalization
Collapse
Affiliation(s)
- A J Gerard Jansen
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
- Department of Hematology, Erasmus MC, Cancer Institute, Rotterdam, The Netherlands
| | - Thom Spaan
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
| | - Hui Zhi Low
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Daniele Di Iorio
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | - Malte Tieke
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Arjan Barendrecht
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kerstin Rohn
- Department of Pathology, University of Veterinary Medicine, Hannover, Germany
| | | | | | | | - Albert Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine, Hannover, Germany
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Pharmacy, University of Utrecht, Utrecht, The Netherlands; and
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erhard van der Vries
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases and Immunology, University of Utrecht, Utrecht, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
77
|
Chen W, Li Z, Yang B, Wang P, Zhou Q, Zhang Z, Zhu J, Chen X, Yang P, Zhou H. Delayed-phase thrombocytopenia in patients with coronavirus disease 2019 (COVID-19). Br J Haematol 2020; 190:179-184. [PMID: 32453877 PMCID: PMC7283673 DOI: 10.1111/bjh.16885] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
Coronavirus disease 2019 (COVID-19) can affect the haematopoietic system. Thrombocytopenia at admission was prevalent, while late-phase or delayed-phase thrombocytopenia (occurred 14 days after symptom onset) is rare. This retrospective, single-centre study screened 450 COVID-19 patients and enrolled 271 patients at the Union Hospital, Wuhan, China, from January 25 to March 9, 2020. COVID-19-associated delayed-phase thrombocytopenia occurred in 11·8% of enrolling patients. The delayed-phase thrombocytopenia in COVID-19 is prone to develop in elderly patients or patients with low lymphocyte count on admission. The delayed-phase thrombocytopenia is significantly associated with increased length of hospital stay and higher mortality rate. Delayed-phase nadir platelet counts demonstrated a significantly negative correlation with B cell percentages. We also provided and described bone marrow aspiration pathology of three patients with delayed-phase thrombocytopenia, showing impaired maturation of megakaryocytes. We speculated that immune-mediated platelet destruction might account for the delayed-phase thrombocytopenia in a group of patients. In addition, clinicians need to pay attention to the delayed-phase thrombocytopenia especially at 3-4 weeks after symptom onset.
Collapse
Affiliation(s)
- Wanxin Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ziping Li
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Bohan Yang
- Department of Respiratory and Critical Care MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ping Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Qiong Zhou
- Department of Respiratory and Critical Care MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhiguo Zhang
- School of Medicine and Health ManagementTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianhua Zhu
- Laboratory of Clinical ImmunologyWuhan No. 1 HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xuexing Chen
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Peng Yang
- Department of Breast and Thyroid SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Hao Zhou
- Institute of HematologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
78
|
Pryzdial ELG, Sutherland MR, Lin BH, Horwitz M. Antiviral anticoagulation. Res Pract Thromb Haemost 2020; 4:774-788. [PMID: 32685886 PMCID: PMC7354393 DOI: 10.1002/rth2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are a puzzling form of thrombophilia that has elevated D-dimer but only modest effects on other parameters of coagulopathy. This is combined with severe inflammation, often leading to acute respiratory distress and possible lethality. Coagulopathy and inflammation are interconnected by the transmembrane receptor, tissue factor (TF), which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa (FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to trigger profound changes via protease-activated receptors (PARs) in many cell types, including SARS-CoV-2-trophic cells. Therefore, aberrant expression of TF may be the underlying basis of COVID-19 symptoms. Evidence suggests a correlation between infection with many virus types and development of clotting-related symptoms, ranging from heart disease to bleeding, depending on the virus. Since numerous cell types express TF and can act as sites for virus replication, a model envelope virus, herpes simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 infection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells and may stimulate and integrate host cell TF, like HSV1 and other known coagulopathic viruses. Combined with this possibility, the features of COVID-19 suggest that it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Michael R. Sutherland
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Bryan H. Lin
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Marc Horwitz
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
79
|
Marcoux G, Laroche A, Espinoza Romero J, Boilard E. Role of platelets and megakaryocytes in adaptive immunity. Platelets 2020; 32:340-351. [PMID: 32597341 DOI: 10.1080/09537104.2020.1786043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system is comprised of two principal interconnected components called innate and adaptive immunity. While the innate immune system mounts a nonspecific response that provides protection against the spread of foreign pathogens, the adaptive immune system has developed to specifically recognize a given pathogen and lead to immunological memory. Platelets are small fragments produced from megakaryocytes in bone marrow and lungs. They circulate throughout the blood to monitor the integrity of the vasculature and to prevent bleeding. Given their large repertoire of immune receptors and inflammatory molecules, platelets and megakaryocytes can contribute to both innate and adaptive immunity. In adaptive immunity, platelets and megakaryocytes can process and present antigens to lymphocytes. Moreover, platelets, via FcγRIIA, rapidly respond to pathogens in an immune host when antibodies are present. This manuscript reviews the reported contributions of platelets and megakaryocytes with emphasis on antigen presentation and antibody response in adaptive immunity.
Collapse
Affiliation(s)
- Genevieve Marcoux
- Axe Maladies Infectieuses et Inflammatoires, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Département de Microbiologie-infectiologie et D'immunologie and Centre ARThrite, Université Laval, Québec, QC, Canada.,Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec, Québec, QC, Canada
| | - Audrée Laroche
- Axe Maladies Infectieuses et Inflammatoires, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Département de Microbiologie-infectiologie et D'immunologie and Centre ARThrite, Université Laval, Québec, QC, Canada.,Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec, Québec, QC, Canada
| | - Jenifer Espinoza Romero
- Axe Maladies Infectieuses et Inflammatoires, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Département de Microbiologie-infectiologie et D'immunologie and Centre ARThrite, Université Laval, Québec, QC, Canada.,Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec, Québec, QC, Canada
| | - Eric Boilard
- Axe Maladies Infectieuses et Inflammatoires, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada.,Département de Microbiologie-infectiologie et D'immunologie and Centre ARThrite, Université Laval, Québec, QC, Canada.,Department of Infectious Diseases and Immunity, Centre de Recherche du CHU de Québec, Québec, QC, Canada
| |
Collapse
|
80
|
Perez-Toledo M, Beristain-Covarrubias N. A new player in the game: platelet-derived extracellular vesicles in dengue hemorrhagic fever. Platelets 2020; 31:412-414. [PMID: 32310724 DOI: 10.1080/09537104.2020.1755031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Thrombocytopenia and vascular leakage are clinical hallmarks in dengue hemorrhagic fever. Sung et al. present a new mechanism where platelet-derived extracellular vesicles participate in increasing vascular permeability during dengue virus infection in mice.
Collapse
Affiliation(s)
- Marisol Perez-Toledo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | | |
Collapse
|
81
|
Page MJ, Pretorius E. A Champion of Host Defense: A Generic Large-Scale Cause for Platelet Dysfunction and Depletion in Infection. Semin Thromb Hemost 2020; 46:302-319. [PMID: 32279287 PMCID: PMC7339151 DOI: 10.1055/s-0040-1708827] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thrombocytopenia is commonly associated with sepsis and infections, which in turn are characterized by a profound immune reaction to the invading pathogen. Platelets are one of the cellular entities that exert considerable immune, antibacterial, and antiviral actions, and are therefore active participants in the host response. Platelets are sensitive to surrounding inflammatory stimuli and contribute to the immune response by multiple mechanisms, including endowing the endothelium with a proinflammatory phenotype, enhancing and amplifying leukocyte recruitment and inflammation, promoting the effector functions of immune cells, and ensuring an optimal adaptive immune response. During infection, pathogens and their products influence the platelet response and can even be toxic. However, platelets are able to sense and engage bacteria and viruses to assist in their removal and destruction. Platelets greatly contribute to host defense by multiple mechanisms, including forming immune complexes and aggregates, shedding their granular content, and internalizing pathogens and subsequently being marked for removal. These processes, and the nature of platelet function in general, cause the platelet to be irreversibly consumed in the execution of its duty. An exaggerated systemic inflammatory response to infection can drive platelet dysfunction, where platelets are inappropriately activated and face immunological destruction. While thrombocytopenia may arise by condition-specific mechanisms that cause an imbalance between platelet production and removal, this review evaluates a generic large-scale mechanism for platelet depletion as a repercussion of its involvement at the nexus of responses to infection.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
82
|
Real F, Capron C, Sennepin A, Arrigucci R, Zhu A, Sannier G, Zheng J, Xu L, Massé JM, Greffe S, Cazabat M, Donoso M, Delobel P, Izopet J, Eugenin E, Gennaro ML, Rouveix E, Cramer Bordé E, Bomsel M. Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4+ T cell recovery can harbor replication-competent HIV despite viral suppression. Sci Transl Med 2020; 12:12/535/eaat6263. [DOI: 10.1126/scitranslmed.aat6263] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
In addition to hemostasis, human platelets have several immune functions and interact with infectious pathogens including HIV in vitro. Here, we report that platelets from HIV-infected individuals on combined antiretroviral drug therapy (ART) with low blood CD4+ T cell counts (<350 cells/μl) contained replication-competent HIV despite viral suppression. In vitro, human platelets harboring HIV propagated the virus to macrophages, a process that could be prevented with the biologic abciximab, an anti–integrin αIIb/β3 Fab. Furthermore, in our cohort, 88% of HIV-infected individuals on ART with viral suppression and with platelets containing HIV were poor immunological responders with CD4+ T cell counts remaining below <350 cells/μl for more than one year. Our study suggests that platelets may be transient carriers of HIV and may provide an alternative pathway for HIV dissemination in HIV-infected individuals on ART with viral suppression and poor CD4+ T cell recovery.
Collapse
Affiliation(s)
- Fernando Real
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | | | - Alexis Sennepin
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Riccardo Arrigucci
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Aiwei Zhu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Gérémy Sannier
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jonathan Zheng
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Lin Xu
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| | - Jean-Marc Massé
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
- Electron Microscopy Platform, Institut Cochin, Université de Paris, Paris, France
| | - Ségolène Greffe
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Michelle Cazabat
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
| | - Maribel Donoso
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Pierre Delobel
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
- CHU de Toulouse, Hôpital Purpan, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- CHU de Toulouse, Hôpital Purpan, Laboratoire de Virologie, Toulouse, France
- INSERM U1043, Toulouse, France
- Université Toulouse III Paul-Sabatier, Faculté de Médecine Toulouse-Purpan, Toulouse, France
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Elisabeth Rouveix
- Department of Internal Medicine, Hôpital Ambroise Paré, Boulogne, France
| | - Elisabeth Cramer Bordé
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Morgane Bomsel
- Mucosal Entry of HIV and Mucosal Immunity, Institut Cochin, Université de Paris, Paris, France
- INSERM U1016, Paris, France
- CNRS UMR8104, Paris, France
| |
Collapse
|
83
|
Kim CJ, Ki DY, Park J, Sunkara V, Kim TH, Min Y, Cho YK. Fully automated platelet isolation on a centrifugal microfluidic device for molecular diagnostics. LAB ON A CHIP 2020; 20:949-957. [PMID: 31989123 DOI: 10.1039/c9lc01140d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Platelets play crucial roles in hemostasis and immunity. Over the last decades, clinical evidence has revealed the significance of platelets as complementary biomarkers for the detection and treatment of various diseases, including cancer. Due to a lack of well standardized convenient isolation methods for platelets, pre-analytical factors such as complex handling procedures negatively impact the quality of the platelet samples, including overactivation, low purity, and poor reproducibility. This may lead to biased interpretation of various downstream analyses, such as proteomic and genomic analyses. Herein, we describe a fully automated lab-on-a-disc-based method of platelet isolation from a small volume of blood (<1 mL). This method provides higher yields (>4 folds) and purity (>99%) and lower platelet activation than the conventional method. Moreover, it was also superior in the detection of platelet-related RNAs CD41, PF4, and P2Y12 due to lower contamination with white blood cells.
Collapse
Affiliation(s)
- Chi-Ju Kim
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. and Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dong Yeob Ki
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. and Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Juhee Park
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Vijaya Sunkara
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Tae-Hyeong Kim
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - YooHong Min
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea. and Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
84
|
Meena AA, Murugesan A, Sopnajothi S, Yong YK, Ganesh PS, Vimali IJ, Vignesh R, Elanchezhiyan M, Kannan M, Dash AP, Shankar EM. Increase of Plasma TNF-α Is Associated with Decreased Levels of Blood Platelets in Clinical Dengue Infection. Viral Immunol 2020; 33:54-60. [DOI: 10.1089/vim.2019.0100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anbalagan A. Meena
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Amudhan Murugesan
- Department of Medicine, Government Theni Medical College & Hospital, Theni, India
- Department of Microbiology, University of Madras, Taramani Campus, Chennai, India
| | | | - Yean K. Yong
- Laboratory Center, Department of Preclinical, Xiamen University Malaysia, Sepang, Malaysia
| | - P. Sankar Ganesh
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Irudhayaraj J. Vimali
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Ramachandran Vignesh
- Department of Paraclinical Medicine, University of Kuala Lumpur Royal College of Medicine, Perak, Ipoh, Malaysia
| | | | - Meganathan Kannan
- Division of Blood and Vascular Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Aditya P. Dash
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Esaki M. Shankar
- Division of Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
85
|
Li JL, Zarbock A, Hidalgo A. Platelets as autonomous drones for hemostatic and immune surveillance. J Exp Med 2020; 214:2193-2204. [PMID: 28720569 PMCID: PMC5551582 DOI: 10.1084/jem.20170879] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Platelets participate in many important physiological processes, including hemostasis and immunity. However, despite their broad participation in these evolutionarily critical roles, the anucleate platelet is uniquely mammalian. In contrast with the large nucleated equivalents in lower vertebrates, we find that the design template for the evolutionary specialization of platelets shares remarkable similarities with human-engineered unmanned aerial vehicles in terms of overall autonomy, maneuverability, and expendability. Here, we review evidence illustrating how platelets are uniquely suited for surveillance and the manner in which they consequently provide various types of support to other cell types.
Collapse
Affiliation(s)
- Jackson LiangYao Li
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Münster, Germany
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximillians-University, Munich, Germany
| |
Collapse
|
86
|
|
87
|
Sung PS, Hsieh SL. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front Immunol 2019; 10:2867. [PMID: 31867016 PMCID: PMC6909378 DOI: 10.3389/fimmu.2019.02867] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
The protective roles of endosomal toll-like receptors (TLRs) and cytosolic nucleic acid sensors are well elucidated, but the pathogenic host factors during viral infections remain unclear. Spleen tyrosine kinase (Syk)-coupled C-type lectins (CLECs) CLEC2 and CLEC5A are highly expressed on platelets and myeloid cells, respectively. CLEC2 has been shown to recognize snake venom aggretin and the endogenous ligand podoplanin and acts as a critical regulator in the development and immunothrombosis. Although CLEC2 has been reported to interact with type I immunodeficiency virus (HIV-1), its role in viral infections is still unclear. CLEC5A binds to fucose and mannose moieties of dengue virus membrane glycans, as well as to N-acetylglucosamine (GlcNAc)/N-acetylmuramic acid (MurNAc) disaccharides that form the backbone of L. monocytogenes peptidoglycans. Recently, we demonstrated that both CLEC2 and CLEC5A are critical in microbe-induced “neutrophil extracellular trap” (NET) formation and proinflammatory cytokine production. Moreover, activation of CLEC2 by dengue virus (DV) and H5N1 influenza virus (IAV) induces the release of extracellular vesicles (EVs), which further enhance NETosis and proinflammatory cytokine production via CLEC5A and Toll-like receptor 2 (TLR2). These findings not only illustrate the immunomodulatory effects of EVs during platelet-leukocyte interactions, but also demonstrate the critical roles of CLEC2 and CLEC5A in acute viral infections.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
88
|
Guo L, Rondina MT. The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells During Infectious Diseases. Front Immunol 2019; 10:2204. [PMID: 31572400 PMCID: PMC6753373 DOI: 10.3389/fimmu.2019.02204] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets are anucleate cells produced by megakaryocytes. In recent years, a robust body of literature supports the evolving role of platelets as key sentinel and effector cells in infectious diseases, especially critical in bridging hemostatic, inflammatory, and immune continuums. Upon intravascular pathogen invasion, platelets can directly sense viral, parasitic, and bacterial infections through pattern recognition receptors and integrin receptors or pathogen: immunoglobulin complexes through Fc and complement receptors—although our understanding of these interactions remains incomplete. Constantly scanning for areas of injury or inflammation as they circulate in the vasculature, platelets also indirectly respond to pathogen invasion through interactions with leukocytes and the endothelium. Following antigen recognition, platelets often become activated. Through a diverse repertoire of mechanisms, activated platelets can directly sequester or kill pathogens, or facilitate pathogen clearance by activating macrophages and neutrophils, promoting neutrophil extracellular traps (NETs) formation, forming platelet aggregates and microthrombi. At times, however, platelet activation may also be injurious to the host, exacerbating inflammation and promoting endothelial damage and thrombosis. There are many gaps in our understandings of the role of platelets in infectious diseases. However, with the emergence of advanced technologies, our knowledge is increasing. In the current review, we mainly discuss these evolving roles of platelets under four different infectious pathogen infections, of which are dengue, malaria, Esterichia coli (E. coli) and staphylococcus aureus S. aureus, highlighting the complex interplay of these processes with hemostatic and thrombotic pathways.
Collapse
Affiliation(s)
- Li Guo
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT, United States.,Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States.,Department of Pathology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, UT, United States
| |
Collapse
|
89
|
Luo XL, Jiang JY, Huang Z, Chen LX. Autophagic regulation of platelet biology. J Cell Physiol 2019; 234:14483-14488. [PMID: 30714132 DOI: 10.1002/jcp.28243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/25/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Platelets, developed from megakaryocytes, are characterized by anucleate and short-life span hemocyte in mammal vessel. Platelets are very important in the cardiovascular system. Studies indicate the occurrence of autophagy platelets and megakaryocytes. Moreover, abnormal autophagy decreases the number of platelets and suppresses platelet aggregation. In addition, mitophagy, as a kind of selective autophagy, could inhibit platelet aggregation under oxidative stress or hypoxic, whereas promote platelet aggregation after reperfusion. Finally, autophagy regulates hemorrhagic and thrombosis diseases by influencing the number and function of platelets. In this paper, the role of autophagy in platelets and megakaryocytes, as well as coupled with the promotive or inhibitory role of hemorrhagic and thrombosis diseases are elucidated. Therefore, autophagy may be a potentially therapeutic target in modulating the platelet-related diseases.
Collapse
Affiliation(s)
- Xu-Ling Luo
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Jin-Yong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lin-Xi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
90
|
Samadanam DM, Muthuraman KR, Mariappan V, Kadhiravan T, Parameswaran N, Balakrishna Pillai AK, Rajendiran S. Altered Platelet Fatty Acids in Dengue Cases by Gas Chromatography-Mass Spectrometry Analysis. Intervirology 2019; 62:57-64. [PMID: 31357191 DOI: 10.1159/000501015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/14/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The role of dengue virus in altering the functional properties of platelets remains poorly understood. Few studies have observed that changes in fatty acids are found to have an effect on platelet activation and aggregation. Also, platelet fatty acids have not been extensively studied in dengue so far. So, we aimed to study the fatty acids of platelet membranes in patients with dengue. METHODS Gas chromatography-mass spectrometry (GC-MS) method was used to analyze fatty acids in the lipid extracts of platelets isolated from the study participants. RESULTS GC-MS analysis of platelet lipids identified and quantified nearly 23 unique lipid molecules on platelet membrane. We observed significant alterations with some of the fatty acids in patients with dengue compared to controls. Within dengue cases, increase in unsaturated fatty acids in severe dengue was observed compared to non-severe dengue. From baseline to defervescence, no difference in fatty acids was observed in dengue platelets. This indicates that in dengue, platelet physiology remains altered even after the febrile phase. CONCLUSION To the best of our knowledge, this is the first study characterizing the differential expression of platelet fatty acids in dengue infection. However, further studies are warranted to expound the underlying cause for thrombocytopenia and platelet dysfunction in dengue.
Collapse
Affiliation(s)
- Daisy Mariya Samadanam
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Krishna Raja Muthuraman
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth Deemed To Be University, Puducherry, India
| | - Tamilarasu Kadhiravan
- Department of Medicine,Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Narayanan Parameswaran
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Soundravally Rajendiran
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India,
| |
Collapse
|
91
|
Sung PS, Huang TF, Hsieh SL. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat Commun 2019; 10:2402. [PMID: 31160588 PMCID: PMC6546763 DOI: 10.1038/s41467-019-10360-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/08/2019] [Indexed: 01/08/2023] Open
Abstract
Platelet-leukocyte interactions amplify inflammatory reactions, but the underlying mechanism is still unclear. CLEC5A and CLEC2 are spleen tyrosine kinase (Syk)-coupled C-type lectin receptors, abundantly expressed by leukocytes and platelets, respectively. Whereas CLEC5A is a pattern recognition receptor (PRR) to flaviviruses and bacteria, CLEC2 is the receptor for platelet-activating snake venom aggretin. Here we show that dengue virus (DV) activates platelets via CLEC2 to release extracellular vesicles (EVs), including exosomes (EXOs) and microvesicles (MVs). DV-induced EXOs (DV-EXOs) and MVs (DV-MVs) further activate CLEC5A and TLR2 on neutrophils and macrophages, thereby induce neutrophil extracellular trap (NET) formation and proinflammatory cytokine release. Compared to stat1-/- mice, simultaneous blockade of CLEC5A and TLR2 effectively attenuates DV-induced inflammatory response and increases survival rate from 30 to 90%. The identification of critical roles of CLEC2 and CLEC5A/TLR2 in platelet-leukocyte interactions will support the development of novel strategies to treat acute viral infection in the future.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Institute of Clinical Medicine, National Yang-Ming University, 11221, Taipei, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, 25245, New Taipei City, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, 10051, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University, 11221, Taipei, Taiwan. .,Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, 11217, Taipei, Taiwan.
| |
Collapse
|
92
|
Campbell RA, Schwertz H, Hottz ED, Rowley JW, Manne BK, Washington AV, Hunter-Mellado R, Tolley ND, Christensen M, Eustes AS, Montenont E, Bhatlekar S, Ventrone CH, Kirkpatrick BD, Pierce KK, Whitehead SS, Diehl SA, Bray PF, Zimmerman GA, Kosaka Y, Bozza PT, Bozza FA, Weyrich AS, Rondina MT. Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood 2019; 133:2013-2026. [PMID: 30723081 PMCID: PMC6509546 DOI: 10.1182/blood-2018-09-873984] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Evolving evidence indicates that platelets and megakaryocytes (MKs) have unexpected activities in inflammation and infection; whether viral infections upregulate biologically active, antiviral immune genes in platelets and MKs is unknown, however. We examined antiviral immune genes in these cells in dengue and influenza infections, viruses that are global public health threats. Using complementary biochemical, pharmacological, and genetic approaches, we examined the regulation and function of interferon-induced transmembrane protein 3 (IFITM3), an antiviral immune effector gene not previously studied in human platelets and MKs. IFITM3 was markedly upregulated in platelets isolated from patients during clinical influenza and dengue virus (DENV) infections. Lower IFITM3 expression in platelets correlated with increased illness severity and mortality in patients. Administering a live, attenuated DENV vaccine to healthy subjects significantly increased platelet IFITM3 expression. Infecting human MKs with DENV selectively increased type I interferons and IFITM3. Overexpression of IFITM3 in MKs was sufficient to prevent DENV infection. In naturally occurring, genetic loss-of-function studies, MKs from healthy subjects harboring a homozygous mutation in IFITM3 (rs12252-C, a common single-nucleotide polymorphism in areas of the world where DENV is endemic) were significantly more susceptible to DENV infection. DENV-induced MK secretion of interferons prevented infection of bystander MKs and hematopoietic stem cells. Thus, viral infections upregulate IFITM3 in human platelets and MKs, and IFITM3 expression is associated with adverse clinical outcomes. These observations establish, for the first time, that human MKs possess antiviral functions, preventing DENV infection of MKs and hematopoietic stem cells after local immune signaling.
Collapse
Affiliation(s)
- Robert A Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Hansjorg Schwertz
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, UT
| | - Eugenio D Hottz
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Instituto Nacional de Infectologia Evandro Chagas and
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Jesse W Rowley
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | | | - A Valance Washington
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Department of Internal Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Robert Hunter-Mellado
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
- Department of Internal Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Neal D Tolley
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | | | - Alicia S Eustes
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Emilie Montenont
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Seema Bhatlekar
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Cassandra H Ventrone
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Beth D Kirkpatrick
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Kristen K Pierce
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Stephen S Whitehead
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sean A Diehl
- Vaccine Testing Center, Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, VT
| | - Paul F Bray
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Guy A Zimmerman
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Yasuhiro Kosaka
- University of Utah Molecular Medicine Program, Salt Lake City, UT
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- Instituto Nacional de Infectologia Evandro Chagas and
- Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil; and
| | - Andrew S Weyrich
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, UT
- Department of Internal Medicine and
- Department of Internal Medicine, George E. Wahlen Veterans Affairs Medical Center and Geriatric Research, Education, and Clinical Center, Salt Lake City, UT
| |
Collapse
|
93
|
Ren J, Wang Z, Chen E. Different Associations between DC-SIGN Promoter-336G/A ( rs4804803) Polymorphism with Severe Dengue in Asians and South-Central Americans: a Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16081475. [PMID: 31027310 PMCID: PMC6518176 DOI: 10.3390/ijerph16081475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022]
Abstract
Objective: This study was conducted to identify the association between rs4804803 polymorphism in DC-SIGN with the susceptibility of severe dengue. Methods: A comprehensive search was conducted to identify all eligible papers in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Google Scholar. Odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were used to assess the association. Subgroup analyses were performed by ethnicity. Sensitivity analyses were performed through employing different statistical models (fixed versus random effect model). Results: A total of nine papers and 12 studies, with 1520 severe dengue and 1496 clinical dengue infection were included. The overall meta-analysis revealed significant associations between rs4804803 and severe dengue under the recession (GG versus GA/AA: OR = 0.44, 95%CI, 0.23–0.82) and a codominant model (GG versus AA: OR = 0.43, 95%CI, 0.23–0.81), but sensitivity analysis indicated that the significant pooled ORs were not robust. The subgroup analysis suggested that the carrier of G in rs4804803 was a risk factor for severe dengue under dominant (GG/GA versus AA: OR = 1.86,95%CI, 1.01–3.45), superdominant (GA versus GG/AA: OR = 1.81,95%CI, 1.02–3.21) and a codominant (GA versus AA: OR=1.82,95%CI, 1.02–3.26) models in Asians, while it was a protective factor for severe dengue in South-central Americans under recessive (GG versus GA/AA: OR = 0.27,95%CI, 0.10–0.70) and codominant (GG versus AA: OR=0.24,95%CI, 0.09–0.64) models. The results from subgroup analysis were robust. Conclusions: Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) promoter-336G/A (rs4804803) polymorphism is association with severe dengue, and it acts in different directions for Asians and South-central Americans.
Collapse
Affiliation(s)
- Jiangping Ren
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China.
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou 310051, China.
- Field Epidemiology Training Program of Zhejiang Province, Hangzhou 310051, China.
| | - Zhengting Wang
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China.
| | - Enfu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou 310051, China.
- Key Laboratory of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Hangzhou 310051, China.
| |
Collapse
|
94
|
Phuong NTN, Manh DH, Dumre SP, Mizukami S, Weiss LN, Van Thuong N, Ha TTN, Phuc LH, Van An T, Tieu TM, Kamel MG, Morra ME, Huong VTQ, Huy NT, Hirayama K. Plasma cell-free DNA: a potential biomarker for early prediction of severe dengue. Ann Clin Microbiol Antimicrob 2019; 18:10. [PMID: 30871553 PMCID: PMC6419393 DOI: 10.1186/s12941-019-0309-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
Background Considerable progress has been made in dengue management, however the lack of appropriate predictors of severity has led to huge number of unwanted admissions mostly decided on the grounds of warning signs. Apoptosis related mediators, among others, are known to correlate with severe dengue (SD) although no predictive validity is established. The objective of this study was to investigate the association of plasma cell-free DNA (cfDNA) with SD, and evaluate its prognostic value in SD prediction at acute phase. Methods This was a hospital-based prospective cohort study conducted in Vietnam. All the recruited patients were required to be admitted to the hospital and were strictly monitored for various laboratory and clinical parameters (including progression to SD) until discharged. Plasma samples collected during acute phase (6–48 h before defervescence) were used to estimate the level of cfDNA. Results Of the 61 dengue patients, SD patients (n = 8) developed shock syndrome in 4.8 days (95% CI 3.7–5.4) after the fever onset. Plasma cfDNA levels before the defervescence of SD patients were significantly higher than the non-SD group (p = 0.0493). From the receiver operating characteristic (ROC) curve analysis, a cut-off of > 36.9 ng/mL was able to predict SD with a good sensitivity (87.5%), specificity (54.7%), and area under the curve (AUC) (0.72, 95% CI 0.55–0.88; p = 0.0493). Conclusions Taken together, these findings suggest that cfDNA could serve as a potential prognostic biomarker of SD. Studies with cfDNA kinetics and its combination with other biomarkers and clinical parameters would further improve the diagnostic ability for SD. Electronic supplementary material The online version of this article (10.1186/s12941-019-0309-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen Thi Ngoc Phuong
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Health Innovation Course, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Dao Huy Manh
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.,Global Leader Nurturing Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shyam Prakash Dumre
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Lan Nguyen Weiss
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Van Thuong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Tran Thi Ngoc Ha
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Le Hong Phuc
- Nguyen Dinh Chieu Hospital, Ben Tre Province, Vietnam
| | - Tran Van An
- Nguyen Dinh Chieu Hospital, Ben Tre Province, Vietnam
| | - Thuan Minh Tieu
- Online research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Mohamed Gomaa Kamel
- Online research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Medicine, Minia University, Minia, Egypt
| | - Mostafa Ebraheem Morra
- Online research Club (www.onlineresearchclub.org/), Nagasaki, Japan.,Faculty of Medicine, Alazhar University, Cairo, 11884, Egypt
| | - Vu Thi Que Huong
- Department of Immunology and Microbiology, Pasteur Institute, Ho Chi Minh City, Vietnam
| | - Nguyen Tien Huy
- Evidence Based Medicine Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam. .,Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan. .,Global Leader Nurturing Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
95
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
96
|
Ojha A, Bhasym A, Mukherjee S, Annarapu GK, Bhakuni T, Akbar I, Seth T, Vikram NK, Vrati S, Basu A, Bhattacharyya S, Guchhait P. Platelet factor 4 promotes rapid replication and propagation of Dengue and Japanese encephalitis viruses. EBioMedicine 2018; 39:332-347. [PMID: 30527622 PMCID: PMC6354622 DOI: 10.1016/j.ebiom.2018.11.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/11/2018] [Accepted: 11/23/2018] [Indexed: 11/25/2022] Open
Abstract
Background Activated platelets release cytokines/proteins including CXCL4 (PF4), CCL5 and fibrinopeptides, which regulate infection of several pathogenic viruses such as HIV, H1N1 and HCV in human. Since platelet activation is the hallmark of Dengue virus (DV) infection, we investigated the role of platelets in DV replication and also in a closely related Japanese Encephalitis virus (JEV). Methods and findings Microscopy and PCR analysis revealed a 4-fold increase in DV replication in primary monocytes or monocytic THP-1 cells in vitro upon incubation with either DV-activated platelets or supernatant from DV-activated platelets. The mass spectrometry based proteomic data from extra-nuclear fraction of above THP-1 lysate showed the crucial association of PF4 with enhanced DV replication. Our cytokine analysis and immunoblot assay showed significant inhibition of IFN-α production in monocytes via p38MAPK-STAT2-IRF9 axis. Blocking PF4 through antibodies or its receptor CXCR3 through inhibitor i.e. AMG487, significantly rescued production of IFN-α resulting in potent inhibition of DV replication in monocytes. Further, flow cytometry and ELISA data showed the direct correlation between elevated plasma PF4 with increased viral NS1 in circulating monocytes in febrile DV patients at day-3 of fever than day-9. Similarly, PF4 also showed direct effects in promoting the JEV replication in monocytes and microglia cells in vitro. The in vitro results were also validated in mice, where AMG487 treatment significantly improved the survival of JEV infected animals. Interpretation: Our study suggests that PF4-CXCR3-IFN axis is a potential target for developing treatment regimen against viral infections including JEV and DV.
Collapse
Affiliation(s)
- Amrita Ojha
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | - Angika Bhasym
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal Academy of Higher Education, Manipal, India
| | | | - Gowtham K Annarapu
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Teena Bhakuni
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Tulika Seth
- All India Institute of Medical Sciences, New Delhi, India
| | - Naval K Vikram
- All India Institute of Medical Sciences, New Delhi, India
| | - Sudhanshu Vrati
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | | | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
97
|
Tomo S, Mohan S, Ramachandrappa VS, Samadanam DM, Suresh S, Pillai AB, Tamilarasu K, Ramachandran R, Rajendiran S. Dynamic modulation of DC-SIGN and FcΥR2A receptors expression on platelets in dengue. PLoS One 2018; 13:e0206346. [PMID: 30412591 PMCID: PMC6226166 DOI: 10.1371/journal.pone.0206346] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
Platelet activation has been reported to play a major role in inflammatory response and thrombocytopenia during dengue viral infection. Cells expressing FcϒR2Aand DC-SIGN receptors are reported to be involved in dengue virulence. The present study is designed to assess the expression level of these two receptors on platelet surface collected from dengue patients and to study its association in patients with platelet RNA positive for dengue virus. This was an analytical cross-sectional study carried out in JIPMER hospital, Puducherry. Forty-four patients with dengue infection as cases and 44 patients with non dengue acute other febrile illness(OFI) as controls were recruited. Peripheral venous blood was withdrawn on day of admission, day 3 post admission and day of discharge and serological tests for NS1 dengue antigen and anti IgM antibody were analyzed for diagnosis of dengue infection. Platelet rich plasma was assessed for DC SIGN, FcϒR2A levels and platelets separated from dengue patients were subjected to RNA extraction and detection of presence of viral RNA. The study observed a decreased expression of DC-SIGN and FcϒR2A on platelets in dengue patients compared to OFI group on all the time points. Further, cells expressing DC-SIGN and FcϒR2A were found to be decreased on platelets in dengue patients who were positive for NS1 antigen. DC-SIGN and FcϒR2A expression was also found to be notably decreased in patients positive for platelet DENV RNA when compared with patients negative for platelet DENV RNA. Our results suggest that DC-SIGN and FcϒR2A, which are receptors for viral capture and immune mediated clearance respectively, might be down regulated on platelets in patients with dengue infection. The decreased receptor expression diminishes platelet activation and subsequently has protective action on the host from the ongoing conflict between immune system and dengue virus.
Collapse
Affiliation(s)
- Sojit Tomo
- Department of Biochemistry, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sindhujadevi Mohan
- Department of Biochemistry, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Daisy Mariya Samadanam
- Department of Biochemistry, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Sevanthy Suresh
- Department of Biochemistry, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Kadhiravan Tamilarasu
- Department of Medicine, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Rameshkumar Ramachandran
- Department of Paediatrics, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
| | - Soundravally Rajendiran
- Department of Biochemistry, Jawaharlal Institute of Post-graduate Medical Education and Research (JIPMER), Puducherry, India
- * E-mail:
| |
Collapse
|
98
|
Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol 2018; 5:227-253. [PMID: 30044715 DOI: 10.1146/annurev-virology-101416-041848] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dengue virus (DENV) is the most prevalent medically important mosquito-borne virus in the world. Upon DENV infection of a host cell, DENV nonstructural protein 1 (NS1) can be found intracellularly as a monomer, associated with the cell surface as a dimer, and secreted as a hexamer into the bloodstream. NS1 plays a variety of roles in the viral life cycle, particularly in RNA replication and immune evasion of the complement pathway. Over the past several years, key roles for NS1 in the pathogenesis of severe dengue disease have emerged, including direct action of the protein on the vascular endothelium and triggering release of vasoactive cytokines from immune cells, both of which result in endothelial hyperpermeability and vascular leak. Importantly, the adaptive immune response generates a robust response against NS1, and its potential contribution to dengue vaccines is also discussed.
Collapse
Affiliation(s)
- Dustin R Glasner
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Henry Puerta-Guardo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720-3370, USA; , , ,
| |
Collapse
|
99
|
Seyoum M, Enawgaw B, Melku M. Human blood platelets and viruses: defense mechanism and role in the removal of viral pathogens. Thromb J 2018; 16:16. [PMID: 30026673 PMCID: PMC6048695 DOI: 10.1186/s12959-018-0170-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets are small non-nucleated cell fragments and the second most abundant cell that play crucial role in managing vascular integrity and regulating hemostasis. Recent finding shows, beyond its hemostatic function platelets also play a main role in fighting against pathogen including viruses. With their receptors, platelet interacts with viral pathogen and this interaction between platelets and viral pathogens result in activation of platelets. Activated platelet releases different molecules that have antiviral activity including kinocidins and other platelet microbicidal peptides. In addition, activated platelet has antiviral role by different mechanism including; phagocytosis of viral pathogen, produce reactive oxygen species and interact with and activate other immune cells. In other side, antiplatelet treatments are one of defending mechanism of viral pathogen. This narrative review summarizes what is known regarding the role of human platelets in fighting viral pathogen.
Collapse
Affiliation(s)
- Masresha Seyoum
- University of Gondar hospital, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bamlaku Enawgaw
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology & Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
100
|
Hottz ED, Bozza FA, Bozza PT. Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Front Med (Lausanne) 2018; 5:121. [PMID: 29761104 PMCID: PMC5936789 DOI: 10.3389/fmed.2018.00121] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/12/2018] [Indexed: 01/04/2023] Open
Abstract
Platelets are essential effector cells in hemostasis. Aside from their role in coagulation, platelets are now recognized as major inflammatory cells with key roles in the innate and adaptive arms of the immune system. Activated platelets have key thromboinflammatory functions linking coagulation to immune responses in various infections, including in response to virus. Recent studies have revealed that platelets exhibit several pattern recognition receptors (PRR) including those from the toll-like receptor, NOD-like receptor, and C-type lectin receptor family and are first-line sentinels in detecting and responding to pathogens in the vasculature. Here, we review the main mechanisms of platelets interaction with viruses, including their ability to sustain viral infection and replication, their expression of specialized PRR, and activation of thromboinflammatory responses against viruses. Finally, we discuss the role of platelet-derived mediators and platelet interaction with vascular and immune cells in protective and pathophysiologic responses to dengue, influenza, and human immunodeficiency virus 1 infections.
Collapse
Affiliation(s)
- Eugenio D Hottz
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Departamento de Bioquimica, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Fernando A Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|