51
|
Valentino SA, Seidel C, Lorcin M, Sébillaud S, Wolff H, Grossmann S, Viton S, Nunge H, Saarimäki LA, Greco D, Cosnier F, Gaté L. Identification of a Gene Signature Predicting (Nano)Particle-Induced Adverse Lung Outcome in Rats. Int J Mol Sci 2023; 24:10890. [PMID: 37446067 DOI: 10.3390/ijms241310890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs. Female Sprague Dawley rats were either exposed to crystalline silica DQ-12 with instillation, or to titanium dioxide P25, carbon black Printex-90, or multi-walled carbon nanotube Mitsui-7 with nose-only inhalation. Tissues were collected at three post-exposure time points to assess short- and long-term effects. All particles induced lung inflammation. Histopathological and biochemical analyses revealed phospholipid accumulation, lipoproteinosis, and interstitial thickening with collagen deposition after exposure to DQ-12. Exposure to the highest dose of Printex-90 and Mitsui-7, but not P25, induced some phospholipid accumulation. Comparable histopathological changes were observed following exposure to P25, Printex-90, and Mitsui-7. Comparison of overall gene expression profiles identified 15 potential early markers of adverse lung outcomes induced by spherical particles. With Mitsui-7, a distinct gene expression signature was observed, suggesting that carbon nanotubes trigger different toxicity mechanisms to spherical particles.
Collapse
Affiliation(s)
- Sarah Amandine Valentino
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Carole Seidel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Mylène Lorcin
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Sylvie Sébillaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Henrik Wolff
- Finnish Institute of Occupational Health, FI-00251 Helsinki, Finland
| | - Stéphane Grossmann
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Stéphane Viton
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Hervé Nunge
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00100 Helsinki, Finland
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
52
|
Das S, Chakraborty K, Ghosh D, Pulimi M, Chandrasekaran N, Anand S, Rai PK, Mukherjee A. Systematic assessment of f-MWCNT transport in aqueous medium: the effect of shear and non-shear forces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2023; 20:6291-6306. [DOI: 10.1007/s13762-022-04295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 10/26/2023]
|
53
|
Maksimova Y, Zorina A, Nesterova L. Oxidative Stress Response and E. coli Biofilm Formation under the Effect of Pristine and Modified Carbon Nanotubes. Microorganisms 2023; 11:1221. [PMID: 37317195 DOI: 10.3390/microorganisms11051221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The article investigates the expression of oxyR and soxS oxidative stress genes in E. coli under the effect of pristine multi-walled carbon nanotubes (MWCNTs) and pristine single-walled carbon nanotubes (SWCNTs), MWCNTs and SWCNTs functionalized with carboxyl groups (MWCNTs-COOH and SWCNTs-COOH, respectively), SWCNTs functionalized with amino groups (SWCNTs-NH2) and SWCNTs functionalized with octadecylamine (SWCNTs-ODA). Significant differences were found in the expression of the soxS gene, while no changes were observed in the expression level of the oxyR gene. The pro-oxidant effect of SWCNTs, SWCNTs-COOH, SWCNTs-NH2, and SWCNTs-ODA is presented, and the contrary antioxidant effect of pristine MWCNTs and MWCNTs-COOH in the presence of methyl viologen hydrate (paraquat) is shown. The article shows that SWCNTs-COOH, SWCNTs-NH2, and SWCNTs-ODA added to the medium generate the production of reactive oxygen species (ROS) in bacterial cells. SWCNTs-COOH intensified the E. coli biofilm formation, and the biofilm biomass exceeded the control by 25 times. Additionally, it is shown that the rpoS expression increased in response to MWCNTs-COOH and SWCNTs-COOH, and the effect of SWCNTs-COOH was more significant. SWCNTs-COOH and SWCNTs-NH2 initiated an increase in ATP concentration in the planktonic cells and a decrease in the biofilm cells. The atomic force microscopy (AFM) method showed that the volume of E. coli planktonic cells after the exposure to carbon nanotubes (CNTs) decreased compared to that without exposure, mainly due to a decrease in cell height. The absence of a strong damaging effect of functionalized SWCNTs on E. coli K12 cells, both in suspension and in biofilms, is shown. Contact with functionalized SWCNTs initiated the aggregation of the polymeric substances of the biofilms; however, the cells did not lyse. Among the studied CNTs, SWCNTs-COOH caused an increased expression of the soxS and rpoS, the formation of ROS, and stimulation of the biofilm formation.
Collapse
Affiliation(s)
- Yuliya Maksimova
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, 614081 Perm, Russia
- Department of Microbiology and Immunology, Perm State University, 614990 Perm, Russia
| | - Anastasiya Zorina
- Laboratory of Molecular Biotechnology, Institute of Ecology and Genetics of Microorganisms UB RAS, 614081 Perm, Russia
| | - Larisa Nesterova
- Laboratory of Adaptation of Microorganisms, Institute of Ecology and Genetics of Microorganisms UB RAS, 614081 Perm, Russia
- Department of Plant Physiology and Soil Ecology, Perm State University, 614990 Perm, Russia
| |
Collapse
|
54
|
Barthel H, Sébillaud S, Lorcin M, Wolff H, Viton S, Cosnier F, Gaté L, Seidel C. Needlelike, short and thin multi-walled carbon nanotubes: comparison of effects on wild type and p53 +/- rat lungs. Nanotoxicology 2023; 17:270-288. [PMID: 37126100 DOI: 10.1080/17435390.2023.2204933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbon nanotubes (CNTs) are nanomaterials presenting an occupational inhalation risk during production or handling. The International Agency for Research on Cancer classified one CNT, Mitsui-7 (MWNT-7), as 'possibly carcinogenic to humans'. In recognition of their similarities, a proposal has been submitted to the risk assessment committee of ECHA to classify all fibers with 'Fibre Paradigm' (FP)-compatible dimensions as carcinogenic. However, there is a lack of clarity surrounding the toxicity of fibers that do not fit the FP criteria. In this study, we compared the effects of the FP-compatible Mitsui-7, to those of NM-403, a CNT that is too short and thin to fit the paradigm. Female Sprague Dawley rats deficient for p53 (GMO) and wild type (WT) rats were exposed to the two CNTs (0.25 mg/rat/week) by intratracheal instillation. Animals (GMO and WT) were exposed weekly for four consecutive weeks and were sacrificed 3 days or 8 months after the last instillation. Exposure to both CNTs induced acute lung inflammation. However, persistent inflammation at 8 months was only observed in the lungs of rats exposed to NM-403. In addition to the persistent inflammation, NM-403 stimulated hyperplasic changes in rat lungs, and no adenomas or carcinomas were detected. The degree and extent of hyperplasia was significantly more pronounced in GMO rats. These results suggest that CNT not meeting the FP criteria can cause persistent inflammation and hyperplasia. Consequently, their health effects should be carefully assessed.
Collapse
Affiliation(s)
- Hélène Barthel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
- Ingénierie Moléculaire et Physiophatologie Articulaire (IMoPA), Biopôle, Campus Biologie Santé, UMR 7365 CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Sylvie Sébillaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Mylène Lorcin
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Stéphane Viton
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| | - Carole Seidel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
55
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
56
|
Patrick B, Akhtar T, Kousar R, Huang CC, Li XG. Carbon Nanomaterials: Emerging Roles in Immuno-Oncology. Int J Mol Sci 2023; 24:ijms24076600. [PMID: 37047572 PMCID: PMC10095276 DOI: 10.3390/ijms24076600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer immunotherapy has made breakthrough progress in cancer treatment. However, only a subset of patients benefits from immunotherapy. Given their unique structure, composition, and interactions with the immune system, carbon nanomaterials have recently attracted tremendous interest in their roles as modulators of antitumor immunity. Here, we focused on the latest advances in the immunological effects of carbon nanomaterials. We also reviewed the current preclinical applications of these materials in cancer therapy. Finally, we discussed the challenges to be overcome before the full potential of carbon nanomaterials can be utilized in cancer therapies to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Tahira Akhtar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 406040, Taiwan
| | - Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
57
|
Ali I, Alyona S, Tatiana K, Anastasiya G, Albishri HM, Alshitari WH. Facile adsorption-electroflotation method for the removal of heavy metal ions from water using carbon nanomaterials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38970-38981. [PMID: 36593318 DOI: 10.1007/s11356-022-24509-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Due to the none-biodegradable and carcinogenic nature of toxic metal ions, a novel sorption-electroflotation method was developed using carbon nanomaterials. The metal ions removed were Ni(II), Co(II), Zn(II), Fe(II), and Cu(II) using carbon nanotubes (CNTs) and carbon nanoshells (CNSs). The porous structure, morphology, composition, and surface properties of carbon nanomaterials, viz. the presence and number of functional groups are characterized by methods of low-temperature nitrogen adsorption, scanning electron microscopy, Boem, X-ray photoelectron spectroscopy. The surface of the materials was rough with varied particle sizes. Regardless of the sorbed ion and the nature of the nanomaterial, the Langmuir, Temkin, Dubinin-Radushkevich, and Flory-Higgins models were applied to the data. The maximum sorption removal on CNTs were 15.0-69.0, 36.0-75.0, 33.0-72.0, 18.0-70.0, 29.0-69.0% for Fe(II), Zn(II), Co(II), Cu(II), and Ni(II) while these values on CNSs were 19.0-53, 23.0-58.0, 30.0-79.0, 12.0-46.0, and 41.0-86%. But after simultaneous sorption-electroflotation, the percentage removal was 99.0, 97.0, 95.0, 99.0, and 52% for these metal ions, indicating an excellent combination of sorption-electro flotation. The method is highly beneficial to work in varied pH ranges as sorption and electroflotation gave the best results in acidic and basic mediums. The method is very effective, efficient, and inexpensive and can be used for the removal of the reported metal ions in water.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, Jamia Millia Islamia (Central University), Jamia Nagar, New Delhi, 110025, India.
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Stoyanova Alyona
- Department of Inorganic Substances Technology and Electrochemical Processes, Mendeleev University of Chemical Technology, 9 Miusskaya Sq, Moscow, 125047, Russian Federation
| | - Kon'kova Tatiana
- Department of Inorganic Substances Technology and Electrochemical Processes, Mendeleev University of Chemical Technology, 9 Miusskaya Sq, Moscow, 125047, Russian Federation
| | - Gaydukova Anastasiya
- Department of Inorganic Substances Technology and Electrochemical Processes, Mendeleev University of Chemical Technology, 9 Miusskaya Sq, Moscow, 125047, Russian Federation
| | - Hassan M Albishri
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wael Hamad Alshitari
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
58
|
Vardakas P, Kartsonakis IA, Kyriazis ID, Kainourgios P, Trompeta AFA, Charitidis CA, Kouretas D. Pristine, carboxylated, and hybrid multi-walled carbon nanotubes exert potent antioxidant activities in in vitro-cell free systems. ENVIRONMENTAL RESEARCH 2023; 220:115156. [PMID: 36574796 DOI: 10.1016/j.envres.2022.115156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are tubular-shaped carbon allotropes, composed of multiple concentric graphene cylinders. The extended systems of conjugated double bonds, that MWCNTs are constituted by, provide them with high electron affinities, enabling them to act as electron donors or acceptors. Consequently, their potential biomedical applications, as synthetic antioxidant agents, are of particular interest. Based on the above, the purpose of the present study was to evaluate the intrinsic antioxidant properties of pristine and carboxylated MWCNTs, as well as of novel hybrid nanocomposites of MWCNTs and inorganic nanoparticles. To this end, after the synthesis and characterization of MWCNTs, their antiradical, reducing, and antigenotoxic properties were assessed in cell-free assays, using a methodological approach that has been recently proposed by our research group. According to our results, most of the tested MWCNTs exhibited strong antioxidant activities. More elaborately, the hybrid material of MWCNTs and ferrous oxide nanoparticles, i.e., CNTs@Fe3O4, showed robust scavenging capacities in all free-radical scavenging assays examined. As regards reducing properties, the pristine MWCNTs, i.e., CNTs-Ref, exhibited the greater electron donating capacity. Finally, in terms of antigenotoxic properties, the hybrid material of MWCNTs and silicon carbide nanoparticles, i.e., CNTs@SiC, exhibited potent ability to inhibit the formation of peroxyl radicals, thus preventing from the oxidative DNA damage. Conclusively, our findings suggest that the MWCNTs of the study could be considered as promising broad-spectrum antioxidants, however, further investigations are required to evaluate their toxicological profile in cell-based and in vivo systems.
Collapse
Affiliation(s)
- Periklis Vardakas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Ioannis A Kartsonakis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Ioannis D Kyriazis
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece
| | - Panagiotis Kainourgios
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Aikaterini Flora A Trompeta
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Constantinos A Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St. Zografos, 15780, Athens, Greece
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500, Larissa, Greece.
| |
Collapse
|
59
|
Sadek EM, Ahmed SM, Mansour NA, Abd-El-Messieh SL, El-Komy D. Synthesis, characterization and properties of nanocomposites based on poly(vinyl chloride)/carbon nanotubes–silver nanoparticles. BULLETIN OF MATERIALS SCIENCE 2023; 46:30. [DOI: 10.1007/s12034-022-02858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2022] [Indexed: 09/02/2023]
|
60
|
Karmakar S, Taqy S, Droopad R, Trivedi RK, Chakraborty B, Haque A. Highly Stable Electrochemical Supercapacitor Performance of Self-Assembled Ferromagnetic Q-Carbon. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8305-8318. [PMID: 36735879 DOI: 10.1021/acsami.2c20202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Novel phase Q-carbon thin films exhibit some intriguing features and have been explored for various potential applications. Herein, we report the growth of different Q-carbon structures (i.e., filaments, clusters, and microdots) by varying the laser energy density from 0.5 to 1.0 J/cm2 during pulsed laser annealing of amorphous diamond-like carbon films with different sp3-sp2 carbon compositions. These unique nano- and microstructures of Q-carbon demonstrate exceptionally stable electrochemical performance by cyclic voltammetry, galvanostatic charging-discharging, and electrochemical impedance spectroscopy for energy applications. The temperature-dependent magnetic studies (magnetization vs magnetic field and temperature) reveal the ferromagnetic nature of the Q-carbon microdots. The saturation magnetization and coercive field values decrease from 132 to 14 emu/cc and 155 to 92 Oe by increasing the temperature from 2 to 300 K, respectively. The electrochemical performances of Q-carbon filament, cluster, and microdot thin-film supercapacitors were investigated by two-electrode configurations, and the highest areal specific capacitance of ∼156 mF/cm2 was observed at a current density of 0.15 mA/cm2 in the Q-carbon microdot thin film. The Q-carbon microdot electrodes demonstrate an exceptional capacitance retention performance of ∼97.2% and Coulombic efficiency of ∼96.5% after 3000 cycles due to their expectational reversibility in the charging-discharging process. The kinetic feature of the ion diffusion associated with the charge storage property is also investigated, and small changes in equivalent series resistance of ∼9.5% and contact resistance of ∼9.1% confirm outstanding stability with active charge kinetics during the stability test. A high areal power density of ∼5.84 W/cm2 was obtained at an areal energy density of ∼0.058 W h/cm2 for the Q-carbon microdot structure. The theoretical quantum capacitance was obtained at ∼400 mF/cm2 by density functional theory calculation, which gives an idea about the overall capacitance value. The obtained areal specific capacitance, power density, and impressive long-term cyclic stability of Q-carbon thin-film microdot electrodes endorse substantial promise in high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Subrata Karmakar
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Saif Taqy
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Droopad
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Kumar Trivedi
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - Ariful Haque
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| |
Collapse
|
61
|
Pawar S, Duadi H, Fixler D. Recent Advances in the Spintronic Application of Carbon-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:598. [PMID: 36770559 PMCID: PMC9919822 DOI: 10.3390/nano13030598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The term "carbon-based spintronics" mostly refers to the spin applications in carbon materials such as graphene, fullerene, carbon nitride, and carbon nanotubes. Carbon-based spintronics and their devices have undergone extraordinary development recently. The causes of spin relaxation and the characteristics of spin transport in carbon materials, namely for graphene and carbon nanotubes, have been the subject of several theoretical and experimental studies. This article gives a summary of the present state of research and technological advancements for spintronic applications in carbon-based materials. We discuss the benefits and challenges of several spin-enabled, carbon-based applications. The advantages include the fact that they are significantly less volatile than charge-based electronics. The challenge is in being able to scale up to mass production.
Collapse
Affiliation(s)
- Shweta Pawar
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Hamootal Duadi
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
62
|
Analytical forms of the coefficients of the factored characteristic polynomials for zigzag SWCNT graphs. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
63
|
Cai J, Yan Y, Wang W, Ma Y, Cai L, Wu L, Zhou H. Detection of formic acid and acetic acid gases by a QCM sensor coated with an acidified multi-walled carbon nanotube membrane. ENVIRONMENTAL TECHNOLOGY 2023; 44:751-761. [PMID: 34582318 DOI: 10.1080/09593330.2021.1983025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the acidified multi-walled carbon nanotubes (MWCNTs) film was coated on the quartz crystal microbalance (QCM) to prepare a high-performance sensor for the real-time detection of organic acid gases. The material characteristics of the thin films were analysed by field emission scanning electro microscopy (FESEM), Raman spectra and X-ray photoelectron spectroscopy (XPS). The organic acid vapours' sensing results indicated that acidized-MWCNTs thin film exhibited good frequency response, repeatability, reversibility and stability. There is a clear linear relationship between the frequency offset and the organic acid vapours with concentration below 5.0 ppm, and the detection limit of 0.77 and 0.73 ppm for formic and acetic acid vapours, respectively. The sensor shows the highest response to formic acid vapour than acetic acid vapour which may be ascribed to molecular polarity. Furthermore, a sensing mechanism model was introduced to understand the adsorption reaction between organic acid molecules and acidized-MWCNTs. This paper proves that acidized-MWCNTs is a potential and suitable material for organic acid vapour detection when combined with a QCM sensor.
Collapse
Affiliation(s)
- Jingfang Cai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ying Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
- Shandong Key Laboratory of Corrosion Science, Institute of Oceanology, Chinese Academy of Science, Shandong, People's Republic of China
| | - Weiwei Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yuanyuan Ma
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lankun Cai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Laiming Wu
- Shanghai Museum, Shanghai, People's Republic of China
| | - Hao Zhou
- Shanghai Museum, Shanghai, People's Republic of China
| |
Collapse
|
64
|
The effect of Co-encapsulated GNPs-CNTs nanofillers on mechanical properties, degradation and antibacterial behavior of Mg-based composite. J Mech Behav Biomed Mater 2023; 138:105601. [PMID: 36493612 DOI: 10.1016/j.jmbbm.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Magnesium (Mg)-based composites, as one group of the biodegradable materials, enjoy high biodegradability, biocompatibility, and non-toxicity making them a great option for implant applications. In this paper, by the semi powder metallurgy (SPM) technique, the graphene nano-platelets (GNPs) and carbon nanotubes (CNTs) nanosystems, as reinforcements, are dispersed homogenously in the Mg-Zn (MZ) alloy matrix. Subsequently, the composite is successfully produced employing the spark plasma sintering (SPS) process. Compared to the unreinforced MZ sample, GNPs + CNTs mixture reinforced composite exhibits higher compressive strength (∼75%). Notably, adding only 1 wt % of GNPs + CNTs to the MZ matrix reduces the rate of the degradation in the Mg-based composite by almost 2- fold. Examining the antibacterial activity demonstrate that the incorporation of GNPs + CNTs into the Mg-based matrix is likely to prevent the infiltration and development of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) significantly. While the MTT with 0.5 and 1 wt % GNPs + CNTs does not demonstrate cytotoxicity to the MG63 cells, the excessive GNPs + CNTs results in a certain degree of poisonousness. In general, the findings of the present research attest to the viable application of MZ/GNPs + CNTs composites for implants as well as bone infection treatment.
Collapse
|
65
|
Upama S, Mikhalchan A, Arévalo L, Rana M, Pendashteh A, Green MJ, Vilatela JJ. Processing of Composite Electrodes of Carbon Nanotube Fabrics and Inorganic Matrices via Rapid Joule Heating. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5590-5599. [PMID: 36648936 PMCID: PMC10848196 DOI: 10.1021/acsami.2c17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Composites of nanocarbon network structures are interesting materials, combining mechanical properties and electrical conductivity superior to those of granular systems. Hence, they are envisaged to have applications as electrodes for energy storage and transfer. Here, we show a new processing route using Joule heating for a nanostructured network composite of carbon nanotube (CNT) fabrics and an inorganic phase (namely, MoS2), and then study the resulting structure and properties. To this end, first, a unidirectional fabric of conductive CNT bundles is electrochemically coated with MoS2. Afterward, the conformally coated inorganic phase is crystallized via heat generated by direct current passing through the CNT ensemble. The Joule heating process is rapid (maximum heating rate up to 31.7 °C/s), enables accurate temperature control, and takes only a few minutes. The resulting composite material combines a high electrical conductivity of up to 1.72 (±0.25) × 105 S/m, tensile modulus as high as 8.82 ± 5.5 GPa/SG, and an axial tensile strength up to 200 ± 58 MPa/SG. Both electrical and mechanical properties are orders of magnitude above those of wet-processed nanocomposites of similar composition. The extraordinary longitudinal properties stem from the network of interconnected and highly aligned CNT bundles. Conductivity and modulus follow approximately a rule of mixtures, similar to a continuous fiber composite, whereas strength scales almost quadratically with the mass fraction of the inorganic phase due to the inorganic constraining realignment of CNTs upon stretching. This processing route is applicable to a wide range of nanocarbon-based composites with inorganic phases, leading to composites with specific strength above steel and electrical conductivity beyond the threshold for electronic limitations in battery electrodes.
Collapse
Affiliation(s)
- Shegufta Upama
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas77843, United States
- IMDEA
Materials Institute, Getafe, Madrid28906, Spain
| | | | - Luis Arévalo
- IMDEA
Materials Institute, Getafe, Madrid28906, Spain
| | - Moumita Rana
- Institut
für Anorganische und Analytische Chemie, University of Münster, Münster48149, Germany
| | | | - Micah J. Green
- Department
of Materials Science & Engineering, Texas A&M University, College
Station, Texas77843, United States
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College
Station, Texas77843, United States
| | | |
Collapse
|
66
|
Hurtuková K, Slepičková Kasálková N, Fajstavr D, Lapčák L, Švorčík V, Slepička P. High-Energy Excimer Annealing of Nanodiamond Layers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:557. [PMID: 36770517 PMCID: PMC9921808 DOI: 10.3390/nano13030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Here, we aimed to achieve exposure of a nanodiamond layer to a high-energy excimer laser. The treatment was realized in high-vacuum conditions. The carbon, in the form of nanodiamonds (NDs), underwent high-temperature changes. The induced changes in carbon form were studied with Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction (XRD) and we searched for the Q-carbon phase in the prepared structure. Surface morphology changes were detected by atomic force microscopy (AFM) and scanning electron microscopy (SEM). NDs were exposed to different laser energy values, from 1600 to 3000 mJ cm-2. Using the AFM and SEM methods, we found that the NDs layer was disrupted with increasing beam energy, to create a fibrous structure resembling Q-carbon fibers. Layered micro-/nano-spheres, representing the role of diamonds, were created at the junction of the fibers. A Q-carbon structure (fibers) consisting of 80% sp3 hybridization was prepared by melting and quenching the nanodiamond film. Higher energy values of the laser beam (2000 and 3000 mJ cm-2), in addition to oxygen bonds, also induced carbide bonds characteristic of Q-carbon. Raman spectroscopy confirmed the presence of a diamond (sp3) phase and a low-intensity graphitic (G) peak occurring in the Q-carbon form samples.
Collapse
Affiliation(s)
- Klaudia Hurtuková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Ladislav Lapčák
- Central Laboratories, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic
| |
Collapse
|
67
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
68
|
Aljabali AA, Obeid MA, Bashatwah RM, Serrano-Aroca Á, Mishra V, Mishra Y, El-Tanani M, Hromić-Jahjefendić A, Kapoor DN, Goyal R, Naikoo GA, Tambuwala MM. Nanomaterials and Their Impact on the Immune System. Int J Mol Sci 2023; 24:2008. [PMID: 36768330 PMCID: PMC9917130 DOI: 10.3390/ijms24032008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.
Collapse
Affiliation(s)
- Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Rasha M. Bashatwah
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, P.O. Box 566, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab., Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001 Valencia, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Bioscience, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Gowhar A. Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
69
|
Fu T, Zhang B, Gao X, Cui S, Guan CY, Zhang Y, Zhang B, Peng Y. Recent progresses, challenges, and opportunities of carbon-based materials applied in heavy metal polluted soil remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158810. [PMID: 36162572 DOI: 10.1016/j.scitotenv.2022.158810] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The application of carbon-based materials (CBMs) for heavy metal polluted soil remediation has gained growing interest due to their versatile properties and excellent remediation performance. Although the progresses on applications of CBMs in removing heavy metal from aqueous solution and their corresponding mechanisms were well known, comprehensive review on applications of CBMs in heavy metal polluted soil remediation were less identified. Therefore, this review provided insights into advanced progresses on utilization of typical CBMs including biochar, activated carbon, graphene, graphene oxide, carbon nanotubes, and carbon black for heavy metal polluted soil remediation. The mechanisms of CBM remediation of heavy metals in soil were summarized, mainly including physical adsorption, precipitation, complexation, electrostatic interaction, and cationic-π coordination. The key factors affecting the remediation effect include soil pH, organic matter, minerals, microorganisms, coexisting ions, moisture, and material size. Disadvantages of CBMs were also included, such as: potential health risks, high cost, and difficulty in achieving co-passivation of anions and cations. This work will contribute to our understanding of current research advances, challenges, and opportunities for CBMs remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Tianhong Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China; Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xing Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Shihao Cui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Yujin Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Bangxi Zhang
- Soil and Fertilizer Research Institute, Guizhou Academy of Agricultural Sciences, Guizhou, Guiyang 550006, China.
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
70
|
Ruiu A, González-Méndez I, Sorroza-Martínez K, Rivera E. Drug delivery aspects of carbon nanotubes. EMERGING APPLICATIONS OF CARBON NANOTUBES IN DRUG AND GENE DELIVERY 2023:119-155. [DOI: 10.1016/b978-0-323-85199-2.00008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
71
|
Biomass-derived carbon nanomaterials for sensor applications. J Pharm Biomed Anal 2023; 222:115102. [DOI: 10.1016/j.jpba.2022.115102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
72
|
Shilpi S, Gulbake AS, Chouhan S, Kumar P. Functionalized Carbon Nanotubes, Graphene Oxide, Fullerenes, and Nanodiamonds: Emerging Theranostic Nanomedicines. MULTIFUNCTIONAL AND TARGETED THERANOSTIC NANOMEDICINES 2023:187-213. [DOI: 10.1007/978-981-99-0538-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
73
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
74
|
Huang Y, Zhang L, Ji Y, Deng H, Long M, Ge S, Su Y, Chan SY, Loh XJ, Zhuang A, Ruan J. A non-invasive smart scaffold for bone repair and monitoring. Bioact Mater 2023; 19:499-510. [PMID: 35600976 PMCID: PMC9097555 DOI: 10.1016/j.bioactmat.2022.04.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022] Open
Abstract
Existing strategies for bone defect repair are difficult to monitor. Smart scaffold materials that can quantify the efficiency of new bone formation are important for bone regeneration and monitoring. Carbon nanotubes (CNT) have promising bioactivity and electrical conductivity. In this study, a noninvasive and intelligent monitoring scaffold was prepared for bone regeneration and monitoring by integrating carboxylated CNT into chemically cross-linked carboxymethyl chitosan hydrogel. CNT scaffold (0.5% w/v) demonstrated improved mechanical properties with good biocompatibility and electrochemical responsiveness. Cyclic voltammetry and electrochemical impedance spectroscopy of CNT scaffold responded sensitively to seed cell differentiation degree in both cellular and animal levels. Interestingly, the CNT scaffold could make up the easy deactivation shortfall of bone morphogenetic protein 2 by sustainably enhancing stem cell osteogenic differentiation and new bone tissue formation through CNT roles. This research provides new ideas for the development of noninvasive and electrochemically responsive bioactive scaffolds, marking an important step in the development of intelligent tissue engineering. Existing strategies for bone defect repair are difficult to monitor. In this study, a noninvasive and intelligent monitoring scaffold was prepared for bone regeneration and monitoring. This scaffold was a combination of CNT integrated into a chemically cross-linked carboxymethyl chitosan hydrogel. CNT scaffold showed improved mechanical properties with biocompatibility and electrochemical responsiveness.
Collapse
|
75
|
Vijayakanth V, Vinodhini V, Chintagumpala K. Biocompatible Carbon-Coated Magnetic Nanoparticles for Biomedical Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2023:955-986. [DOI: 10.1007/978-981-19-7188-4_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
76
|
Unnisa A, Greig NH, Kamal MA. Nanotechnology: A Promising Targeted Drug Delivery System for Brain Tumours and Alzheimer's Disease. Curr Med Chem 2023; 30:255-270. [PMID: 35345990 PMCID: PMC11335033 DOI: 10.2174/0929867329666220328125206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Nanotechnology is the process of modulating shape and size at the nanoscale to design and manufacture structures, devices, and systems. Nanotechnology's prospective breakthroughs are incredible, and some cannot even be comprehended right now. The blood-brain barrier, which is a prominent physiological barrier in the brain, limits the adequate elimination of malignant cells by changing the concentration of therapeutic agents at the target tissue. Nanotechnology has sparked interest in recent years as a way to solve these issues and improve drug delivery. Inorganic and organic nanomaterials have been found to be beneficial for bioimaging approaches and controlled drug delivery systems. Brain cancer (BC) and Alzheimer's disease (AD) are two of the prominent disorders of the brain. Even though the pathophysiology and pathways for both disorders are different, nanotechnology with common features can deliver drugs over the BBB, advancing the treatment of both disorders. This innovative technology could provide a foundation for combining diagnostics, treatments, and delivery of targeted drugs to the tumour site, further supervising the response and designing and delivering materials by employing atomic and molecular elements. There is currently limited treatment for Alzheimer's disease, and reversing further progression is difficult. Recently, various nanocarriers have been investigated to improve the bioavailability and efficacy of many AD treatment drugs. Nanotechnology-assisted drugs can penetrate the BBB and reach the target tissue. However, further research is required in this field to ensure the safety and efficacy of drug-loaded nanoparticles. The application of nanotechnology in the diagnosis and treatment of brain tumours and Alzheimer's disease is briefly discussed in this review.
Collapse
Affiliation(s)
- Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, KSA
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad A. Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- Novel Global Community Educational Foundation, Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
77
|
Randive DS, Bhinge SD, Bhutkar MA, Jadhav NR, Shirsat MK. Single walled Carbon nanotube: Chitosan conjugate for sustained ophthalmic delivery of Ciprofloxacin from ointment; its evaluation and in vivo eye irritation study. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2160349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dheeraj S. Randive
- Department of Pharmaceutics, Rajarambapu College of Pharmacy, Sangli, India
| | - Somnath D. Bhinge
- Department of Chemistry, Rajarambapu College of Pharmacy, Sangli, India
| | - Mangesh A. Bhutkar
- Department of Pharmaceutics, Rajarambapu College of Pharmacy, Sangli, India
| | - Namdeo R. Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | | |
Collapse
|
78
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
79
|
Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery. Sci Rep 2022; 12:21114. [PMID: 36476955 PMCID: PMC9729229 DOI: 10.1038/s41598-022-25222-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
In the present work, single wall carbon nanotubes (SWCNT) were successively functionalized with phospholipid DSPE-PEG carboxylic acid, and then, with ethylenediamine (EDA), to obtain double functionalized single wall carbon nanotube (DFSWCNT). Then, DFSWCNT was applied as a carrier for delivering amphotericin B (Amb) and EGFP plasmid. FSWCNT's concentration obtained via UV-visible analysis was 0.99 mg/mL. The TGA analysis results provided the lost weights of DSPE-PEG-COOH, EDA, Amb and SWCNT impurities. XPS results showed that carbon atoms' percentage decreased during the functionalization processes from 97.2% (SWCNT) to 76.4% (FSWCNT) and 69.9% (DFSWNCT). Additionally, the oxygen atoms' percentage increased from 2.3% (SWCNT) to 21% and 22.5% for FSWCNT and DFSWCNT, respectively. New bonds such as C-N and N-C=O appeared in the synthesized nanocarrier. The IG/ID ratio in Raman analysis decreased from 7.15 (SWCNT) to 4.08 (FSWCNT). The amount of Amb released to phosphate buffer saline medium was about 33% at pH = 5.5 and 75% at pH = 7.4 after 48 h. CCK8 results confirmed that the toxicity of functionalized SWCNT had decreased. In a 2:1 ratio of DFSWCNT/EGFP plasmid, the cell viability (87%) and live transfected cells (56%) were at their maximum values. The results indicate that carbon nanotubes have the potential to be applied as drug/gene delivery systems with outstanding properties such as high loading capacity and easy penetration to cell membrane.
Collapse
|
80
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
81
|
Gholizadeh O, Yasamineh S, Amini P, Afkhami H, Delarampour A, Akbarzadeh S, Karimi Matloub R, Zahedi M, Hosseini P, Hajiesmaeili M, Poortahmasebi V. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 2022; 19:206. [PMID: 36463213 PMCID: PMC9719161 DOI: 10.1186/s12985-022-01935-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In December 2019, Coronavirus Disease 2019 (COVID-19) was reported in Wuhan, China. Comprehensive strategies for quick identification, prevention, control, and remedy of COVID-19 have been implemented until today. Advances in various nanoparticle-based technologies, including organic and inorganic nanoparticles, have created new perspectives in this field. These materials were extensively used to control COVID-19 because of their specific attribution to preparing antiviral face masks, various safety sensors, etc. In this review, the most current nanoparticle-based technologies, applications, and achievements against the coronavirus were summarized and highlighted. This paper also offers nanoparticle preventive, diagnostic, and treatment options to combat this pandemic.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Parya Amini
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Abbasali Delarampour
- Microbiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parastoo Hosseini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Hajiesmaeili
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
82
|
Barbosa R, Gonçalves R, Blanco GEDO, Saccardo MC, Tozzi KA, Zuquello AG, Scuracchio CH. Multi-sensing properties of hybrid filled natural rubber nanocomposites using impedance spectroscopy. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
83
|
Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 16:100168. [DOI: 10.1016/j.medntd.2022.100168] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
84
|
Islam MR, Afroj S, Novoselov KS, Karim N. Smart Electronic Textile-Based Wearable Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203856. [PMID: 36192164 PMCID: PMC9631069 DOI: 10.1002/advs.202203856] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Indexed: 05/05/2023]
Abstract
Electronic textiles (e-textiles) have drawn significant attention from the scientific and engineering community as lightweight and comfortable next-generation wearable devices due to their ability to interface with the human body, and continuously monitor, collect, and communicate various physiological parameters. However, one of the major challenges for the commercialization and further growth of e-textiles is the lack of compatible power supply units. Thin and flexible supercapacitors (SCs), among various energy storage systems, are gaining consideration due to their salient features including excellent lifetime, lightweight, and high-power density. Textile-based SCs are thus an exciting energy storage solution to power smart gadgets integrated into clothing. Here, materials, fabrications, and characterization strategies for textile-based SCs are reviewed. The recent progress of textile-based SCs is then summarized in terms of their electrochemical performances, followed by the discussion on key parameters for their wearable electronics applications, including washability, flexibility, and scalability. Finally, the perspectives on their research and technological prospects to facilitate an essential step towards moving from laboratory-based flexible and wearable SCs to industrial-scale mass production are presented.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| |
Collapse
|
85
|
Deepa S, Mamta SK, Anitha A, Senthilkumaran B. Exposure of carbon nanotubes affects testis and brain of common carp. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103957. [PMID: 35963554 DOI: 10.1016/j.etap.2022.103957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes production has been rapidly increasing for many potential applications, however, the environmental impact of this nanomaterial needs to be comprehended. The present work focused on unraveling the effects of single-walled carbon nanotubes (SWCNT) in the common carp, Cyprinus carpio. The physicochemical properties of SWCNT were analyzed with X-ray diffraction, Fourier transforms infra-red, UV-Vis absorption, transmission electron microscopy (TEM), and Raman spectroscopy before testing for exposure impact. The effects of SWCNT, were investigated by exposing to two doses viz., 10 and 50 μg/L, for 7 days in adult common carp, in vivo. Expression of key steroidogenic and transcription factor genes related to testis and brain were downregulated after the treatment. The concomitant decreases in serum testosterone and 11-ketotestosterone levels revealed the impact of SWCNT after exposure. Further, SWCNT exposure induced antioxidant enzymes namely glutathione-S-transferases, superoxide dismutase, and catalase in both testis and brain. Concurrently, histological and TEM analysis of testis revealed structural disarray. In addition, SWCNT treatment, in testicular and brain primary cell cultures decreased cell viability with an increase of reactive oxygen species levels, leading to a significant elevation of apoptotic cells. In line with this, low mitochondrial membrane potential and DNA damage were also observed during post SWCNT treatment. Taken together, transient exposure of SWCNT causes toxic effects and alters testicular and brain function in the common carp. Thus, the discharge of carbon nanotubes poses a greater risk to the aquatic environment warranting regulatory measures.
Collapse
Affiliation(s)
- Seetharam Deepa
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Sajwan-Khatri Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
86
|
Kalave S, Hegde N, Juvale K. Applications of Nanotechnology-based Approaches to Overcome Multi-drug Resistance in Cancer. Curr Pharm Des 2022; 28:3140-3157. [PMID: 35366765 DOI: 10.2174/1381612828666220401142300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/27/2022] [Indexed: 01/28/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Chemotherapy and radiation therapy are the major treatments used for the management of cancer. Multidrug resistance (MDR) is a major hindrance faced in the treatment of cancer and is also responsible for cancer relapse. To date, several studies have been carried out on strategies to overcome or reverse MDR in cancer. Unfortunately, the MDR reversing agents have been proven to have minimal clinical benefits, and eventually, no improvement has been made in therapeutic efficacy to date. Thus, several investigational studies have also focused on overcoming drug resistance rather than reversing the MDR. In this review, we focus primarily on nanoformulations regarded as a novel approach to overcome or bypass the MDR in cancer. The nanoformulation systems serve as an attractive strategy as these nanosized materials selectively get accumulated in tumor tissues, thereby improving the clinical outcomes of patients suffering from MDR cancer. In the current work, we present an overview of recent trends in the application of various nano-formulations, belonging to different mechanistic classes and functionalization like carbon nanotubes, carbon nanohorns, carbon nanospheres, liposomes, dendrimers, etc., to overcome MDR in cancer. A detailed overview of these techniques will help researchers in exploring the applicability of nanotechnologybased approaches to treat MDR.
Collapse
Affiliation(s)
- Sana Kalave
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle [W], Mumbai, India
| | - Namita Hegde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle [W], Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle [W], Mumbai, India
| |
Collapse
|
87
|
de Carvalho Lima EN, Barros Martins GL, Diaz RS, Schechter M, Piqueira JRC, Justo JF. Effects of Carbon Nanomaterials and Aloe vera on Melanomas-Where Are We? Recent Updates. Pharmaceutics 2022; 14:2004. [PMID: 36297440 PMCID: PMC9607275 DOI: 10.3390/pharmaceutics14102004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive skin cancer that affects approximately 140,000 people worldwide each year, with a high fatality rate. Available treatment modalities show limited efficacy in more severe cases. Hence, the search for new treatment modalities, including immunotherapies, for curing, mitigating, and/or preventing cancer is important and urgently needed. Carbon nanoparticles associated with some plant materials, such as Aloe vera, have shown appealing antineoplastic activity, derived mainly from the compounds aloin, aloe-emodin, barbaloin acemannan, and octapeptide, thus representing new possibilities as antitumor agents. This systematic review aims to arouse interest and present the possibilities of using Aloe vera combined with carbon-based nanomaterials as an antineoplastic agent in the treatment and prevention of melanoma. Limitations and advances in melanoma treatment using functionalized carbon nanomaterials are discussed here. Moreover, this review provides the basis for further studies designed to fully explore the potential of carbon nanomaterials associated with Aloe vera in the treatment of various cancers, with a focus on melanoma.
Collapse
Affiliation(s)
- Elidamar Nunes de Carvalho Lima
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| | - Guilherme Leão Barros Martins
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - Ricardo Sobhie Diaz
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Mauro Schechter
- Infectious Diseases Division, Department of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Roberto Castilho Piqueira
- Telecommunication and Control Engineering Department, Polytechnic School of the University of São Paulo, Avenida Prof. Luciano Gualberto, Travessa 3, 158, São Paulo 05508-010, Brazil
| | - João Francisco Justo
- Electronic Systems Engineering Department, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
| |
Collapse
|
88
|
Alp FN, Arikan B, Ozfidan-Konakci C, Balci M, Yildiztugay E, Cavusoglu H. Multiwalled Carbon Nanotubes Alter the PSII Photochemistry, Photosystem-Related Gene Expressions, and Chloroplastic Antioxidant System in Zea mays under Copper Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11154-11168. [PMID: 36048567 DOI: 10.1021/acs.jafc.2c02608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A critical approach against copper (Cu) toxicity is the use of carbon nanomaterials (CNMs). However, the effect of CNMs on Cu toxicity-exposed chloroplasts is not clear. The photosynthetic, genetic, and biochemical effects of multiwalled carbon nanotubes (50-100-250 mg L-1 CNT) were investigated under Cu stress (50-100 μM CuSO4) in Zea mays chloroplasts. Fv/Fm and Fv/Fo were suppressed under stress. Stress altered the antioxidant system and the expression of psaA, psaB, psbA, and psbD. The chloroplastic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione S-transferase (GST), and glutathione peroxidase (GPX) increased under CNT + stress, and those of hydrogen peroxide (H2O2) and lipid peroxidation decreased. CNTs were promoted to the maintenance of the redox state by regulating enzyme/non-enzyme activity/contents involved in the AsA-GSH cycle. Furthermore, CNTs inverted the negative effects of Cu by upregulating the transcriptions of photosystem-related genes. However, the high CNT concentration had adverse effects on the antioxidant capacity. CNT has great potential to confer tolerance by reducing Cu-induced damage and protecting the biochemical reactions of photosynthesis.
Collapse
Affiliation(s)
- Fatma Nur Alp
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090 Konya, Turkey
| | - Melike Balci
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, 42130 Konya, Turkey
| |
Collapse
|
89
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
90
|
Sahoo P, Dey J, Mahapatra SR, Ghosh A, Jaiswal A, Padhi S, Prabhuswamimath SC, Misra N, Suar M. Nanotechnology and COVID-19 Convergence: Toward New Planetary Health Interventions Against the Pandemic. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:473-488. [PMID: 36040392 DOI: 10.1089/omi.2022.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 is a systemic disease affecting multiple organ systems and caused by infection with the SARS-CoV-2 virus. Two years into the COVID-19 pandemic and after the introduction of several vaccines, the pandemic continues to evolve in part owing to global inequities in access to preventive and therapeutic measures. We are also witnessing the introduction of antivirals against COVID-19. Against this current background, we review the progress made with nanotechnology-based approaches such as nanoformulations to combat the multiorgan effects of SARS-CoV-2 infection from a systems medicine lens. While nanotechnology has previously been widely utilized in the antiviral research domain, it has not yet received the commensurate interest in the case of COVID-19 pandemic response strategies. Notably, SARS-CoV-2 and nanomaterials are similar in size ranging from 50 to 200 nm. Nanomaterials offer the promise to reduce the side effects of antiviral drugs, codeliver multiple drugs while maintaining stability in the biological milieu, and sustain the release of entrapped drug(s) for a predetermined time period, to name but a few conceivable scenarios, wherein nanotechnology can enable and empower preventive medicine and therapeutic innovations against SARS-CoV-2. We conclude the article by underlining that nanotechnology-based interventions warrant further consideration to enable precision planetary health responses against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Panchanan Sahoo
- Kalinga Institute of Medical Sciences, Kalinga Institute of Industrial Technology (KIIT) Deemed to Be University, Bhubaneswar, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Arpan Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Aryan Jaiswal
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Santwana Padhi
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Samudyata C Prabhuswamimath
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, India
| |
Collapse
|
91
|
Mohamed Ashfaque P, Nafeez Ahmed A, Mohammed Safiullah S, Taju G, Abdul Majeed S, Sahul Hameed AS, Anver Basha K. Toxicological assessment of functional polymer with single-walled carbon nanotubes in zebrafish embryos and its gill cell line. CHEMOSPHERE 2022; 303:134891. [PMID: 35569631 DOI: 10.1016/j.chemosphere.2022.134891] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNTs) have been widely used in developing polymer hybrid coatings for anticorrosive application. In the present study, poly [(3,5-dimethyl-lH-pyrazole-1-yl) methyl methacrylate-co-glycidyl methacrylate] (PyM) was prepared by solution polymerization. Single-wall carbon nanotubes (SWCNT) were incorporated in the PyM by solution blending technique at different proportions. The PyM and its SWCNT (PyM-SWCNT) nanocomposites were characterized by FT-IR spectroscopy, X-Ray Diffraction, FE-SEM and HR-TEM. Different concentrations of PyM or PyM-SWCNT prepared in the present study were assessed separately for their toxicity by in vivo and in vitro assays using zebrafish embryos and gill cell line of zebrafish (DrG), respectively. The nanocomposites at the concentration of 400 μg ml-1 of PyM in 1.0% of SWCNT was found to be non-toxic and recommended for anticorrosive application whereas the nanocomposites with above 1% of SWCNT was found to be toxic. The nanocomposites with 1.5% of SWCNT delayed the hatching rate of eggs, decreased survival rate and heart beat in zebrafish embryos, and induced the morphological changes in DrG cells. Gene expression studies revealed that PyM-SWCNT with high concentration of SWCNT induced oxidative stress by activating ROS generations in zebrafish embryos and DrG cells. The immersion study of uncoated and coated with recommended concentration of PyM-SWCNT on mild steel (MS) in sea water was studied using FE-SEM and EDS, and the results showed effective corrosion protection without leaching behaviour. The nanocomposites with novel polymer in the present study may be used in the industry for anticorrosive purpose.
Collapse
Affiliation(s)
- P Mohamed Ashfaque
- PG & Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Affiliated to Thiruvalluvar University, Melvisharam, Tamil Nadu, India
| | - A Nafeez Ahmed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Affiliated to Thiruvalluvar University, Melvisharam, Tamil Nadu, India
| | - S Mohammed Safiullah
- PG & Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Affiliated to Thiruvalluvar University, Melvisharam, Tamil Nadu, India
| | - G Taju
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Affiliated to Thiruvalluvar University, Melvisharam, Tamil Nadu, India
| | - S Abdul Majeed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Affiliated to Thiruvalluvar University, Melvisharam, Tamil Nadu, India
| | - A S Sahul Hameed
- Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Affiliated to Thiruvalluvar University, Melvisharam, Tamil Nadu, India.
| | - K Anver Basha
- PG & Research Department of Chemistry, C. Abdul Hakeem College (Autonomous), Affiliated to Thiruvalluvar University, Melvisharam, Tamil Nadu, India.
| |
Collapse
|
92
|
Khaidir REM, Nordin NA, Mazlan SA, Abd Rahman H, Ubaidillah, Abdul Aziz SA, Nazmi N. Stiffness enhancement of magnetorheological foam by structural modification using silica nanoparticles additive. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.959489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Magnetorheological (MR) foam is a newly developed porous smart material that is able to change its properties continuously, actively, and reversibly in response to controllable external magnetic stimuli. Unfortunately, the stiffness or also known as storage modulus of MR foam is still rather low and insufficient, in the range of below 100 kPa only, due to weak interparticle interaction between CIPs and the foam matrix, which consequently restricts the potential of MR foam to be used in future sensor applications or in other semi-active devices. Therefore, the aim of this research is to enhance the structural and storage modulus of MR foam by adding silica nanoparticles as an additive. Consequently, MR foam samples with different compositions of silica nanoparticles in the range of 0–5 wt% were prepared via an in situ method. The rheological properties were tested under an oscillatory shear mode with the absence and presence of magnetic fields using a rheometer, with the input parameters of strains between 0.001% and 10% and range of magnetic flux density between 0 and 0.73 T for a magnetic field sweep test. The rheological findings show that with the addition of silica nanoparticles, particularly at 4 wt%, have enhanced the storage modulus of MR foam by 260%, which attributed to the highest stiffness from 45 to 162 kPa. Meanwhile, the change of storage modulus under the influence of magnetic fields (0 T–0.73 T) somehow showed small increment, about ∆1 kPa for each concentration of silica nanoparticles in MR foams, due to non-magnetic behavior of silica. The morphological characteristics of MR foams were described by an elemental analysis carried out by a using variable pressure scanning electron microscope (VPSEM) equipped with energy dispersive x-ray spectroscopy (EDX). The micrographs demonstrated large open-cell pores for MR foam, while MR foam with silica nanoparticles exhibited more closed-cell pores, associated with the enhancement of its storage modulus. It indicates that the silica nanoparticles have encouraged well dispersion of the particles in the foam matrix, which improved and strengthened the microstructure of MR foams through formation of silane coupling bonds of silica in the filler-matrix structure. Overall, incorporation of silica nanoparticles as an additive in the MR foam could provide advantage in enhancing the structure and mechanical properties of MR foam, for various future smart devices.
Collapse
|
93
|
Panigrahi LL, Sahoo B, Arakha M. Nanotheranostics and its role in diagnosis, treatment and prevention of COVID-19. FRONTIERS OF MATERIALS SCIENCE 2022; 16:220611. [PMID: 35966717 PMCID: PMC9362558 DOI: 10.1007/s11706-022-0611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Microbe-related, especially viral-related pandemics have currently paralyzed the world and such pathogenesis is expected to rise in the upcoming years. Although tremendous efforts are being made to develop antiviral drugs, very limited progress has been made in this direction. The nanotheranostic approach can be a highly potential rescue to combat this pandemic. Nanoparticles (NPs) due to their high specificity and biofunctionalization ability could be utilized efficiently for prophylaxis, diagnosis and treatment against microbial infections. In this context, titanium oxide, silver, gold NPs, etc. have already been utilized against deadly viruses like influenza, Ebola, HIV, and HBV. The discovery of sophisticated nanovaccines is under investigation and of prime importance to induce reproducible and strong immune responses against difficult pathogens. This review focuses on highlighting the role of various nano-domain materials such as metallic NPs, magnetic NPs, and quantum dots in the biomedical applications to combat the deadly microbial infections. Further, it also discusses the nanovaccines those are already available for various microbial diseases or are in clinical trials. Finally, it gives a perspective on the various nanotechnologies presently employed for efficient diagnosis and therapy against disease causing microbial infections, and how advancement in this field can benefit the health sector remarkably.
Collapse
Affiliation(s)
- Lipsa Leena Panigrahi
- Center for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003 India
| | - Banishree Sahoo
- Center for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003 India
| | - Manoranjan Arakha
- Center for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003 India
| |
Collapse
|
94
|
Younis NK, Roumieh R, Bassil EP, Ghoubaira JA, Kobeissy F, Eid AH. Nanoparticles: attractive tools to treat colorectal cancer. Semin Cancer Biol 2022; 86:1-13. [DOI: 10.1016/j.semcancer.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 10/31/2022]
|
95
|
Aude Luppi VE, Oppezzo OJ, Fidalgo de Cortalezzi MM. Comparative assessment of oxygen uptake rate of activated sludge and Escherichia coli exposed to nanomaterials. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
96
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
97
|
Ruhunage CK, Dhawan V, McKenzie TJ, Hoque A, Rahm CE, Nawarathne CP, Ayres N, Cui XT, Alvarez NT. Hydrophilic Micro- and Macroelectrodes with Antibiofouling Properties for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:2920-2931. [PMID: 35710337 PMCID: PMC10080669 DOI: 10.1021/acsbiomaterials.2c00173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Implantable neural electrodes are generally used to record the electrical activity of neurons and to stimulate neurons in the nervous system. Biofouling triggered by inflammatory responses can dramatically affect the performance of neural electrodes, resulting in decreased signal sensitivity and consistency over time. Thus, long-term clinical applications require electrically conducting electrode materials with reduced dimensions, high flexibility, and antibiofouling properties that can reduce the degree of inflammatory reactions and increase the lifetime of neural electrodes. Carbon nanotubes (CNTs) are well known to form flexible assemblies such as CNT fibers. Herein, we report the covalent functionalization of predefined CNT fiber and film surfaces with hydrophilic, antibiofouling phosphorylcholine (PC) molecules. The electrochemical and spectroscopic characteristics, impedance properties, hydrophilicity, and in vitro antifouling nature of the functionalized CNT surfaces were evaluated. The hydrophilicity of the functionalized CNT films was demonstrated by a decrease in the static contact angle from 134.4° ± 3.9° before to 15.7° ± 1.5° after one and fully wetting after three functionalization cycles, respectively. In addition, the extent of protein absorption on the functionalized CNT films was significantly lower than that on the nonfunctionalized CNT film. Surprisingly, the faradic charge-transfer properties and impedance of the CNT assemblies were preserved after functionalization with PC molecules. These functionalized CNT assemblies are promising for the development of low-impedance neural electrodes with higher hydrophilicity and protein-fouling resistance to inhibit inflammatory responses.
Collapse
Affiliation(s)
- Chethani K Ruhunage
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tucker J McKenzie
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Abdul Hoque
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Connor E Rahm
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Chaminda P Nawarathne
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Neil Ayres
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Noe T Alvarez
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
98
|
Zeng K, Chen B, Li Y, Meng H, Wu Q, Yang J, Liang H. Gold nanoparticle‐carbon nanotube nanohybrids with peroxidase‐like activity for the highly‐sensitive immunoassay of kanamycin in milk. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kun Zeng
- School of the Environment and Safety Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Bin Chen
- School of the Environment and Safety Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Yuxin Li
- School of the Environment and Safety Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Hui Meng
- School of the Environment and Safety Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Qinyan Wu
- Zhenjiang Academy of Agricultural Sciences Zhenjiang Jiangsu 212013 China
| | - Jian Yang
- School of the Environment and Safety Engineering Jiangsu University Zhenjiang Jiangsu 212013 China
| | - Hongfang Liang
- Zhenjiang Academy of Agricultural Sciences Zhenjiang Jiangsu 212013 China
| |
Collapse
|
99
|
Gulati S, Lingam B HN, Kumar S, Goyal K, Arora A, Varma RS. Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world. CHEMOSPHERE 2022; 299:134468. [PMID: 35364076 DOI: 10.1016/j.chemosphere.2022.134468] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
With the world developing exponentially every day, the collateral damage to air is incessant. There are many methods to purify the air but using carbon nanotubes (CNTs) as adsorbents remains one of the most efficient and reliable methods, due to their high maximum adsorption capacity which renders them extremely useful for removing pollutants from the air. The different types of CNTs, their synthesis, functionalization, purification, functioning, and advantages over conventional filters are deliberated along with diverse types of CNTs like single-walled (SWCNTs), multiwalled (MWCNTs), and others, which can be functionalized and deployed for the removal of harmful gases like oxides of nitrogen and sulphur, and ozone, and volatile organic compounds (VOCs), among others. A comprehensive description of CNTs is provided in this overview with illustrative examples from the past five years. The fabrication methods and target gases of many CNTs-based gas sensors are highlighted, in addition to the comparison of their properties, mainly sensitivity. The effect of functionalization on sensors has been discussed in detail for various composites targeting specific gases, including the future outlook of functionalized CNTs in assorted practical applications.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India.
| | - Harish Neela Lingam B
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Kartika Goyal
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Aryan Arora
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, 110021, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
100
|
Sharma A, Kumar N, Sillanpää M, Makgwane PR, Kumar S, Kumari K. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|