51
|
Zhang X, Song Y, Gong H, Wu C, Wang B, Chen W, Hu J, Xiang H, Zhang K, Sun M. Neurotoxicity of Titanium Dioxide Nanoparticles: A Comprehensive Review. Int J Nanomedicine 2023; 18:7183-7204. [PMID: 38076727 PMCID: PMC10710240 DOI: 10.2147/ijn.s442801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanyuan Song
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongyang Gong
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunyan Wu
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Binquan Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenxuan Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiawei Hu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanhui Xiang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingkuan Sun
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
52
|
Krsmanovic M, Ghosh R, Dickerson AK. Fur flutter in fluid flow fends off foulers. J R Soc Interface 2023; 20:20230485. [PMID: 38053385 PMCID: PMC10698484 DOI: 10.1098/rsif.2023.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces.
Collapse
Affiliation(s)
- Milos Krsmanovic
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Andrew K. Dickerson
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
53
|
Falkiewicz K, Fryca I, Ciura K, Mikolajczyk A, Jagiello K, Puzyn T. A bibliometric analysis of the recent achievements in pulmonary safety of nanoparticles. Nanotoxicology 2023; 17:547-561. [PMID: 37968932 DOI: 10.1080/17435390.2023.2276411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
Assessing research activity is an important step for planning future initiatives oriented toward filling the remaining gaps in a field. Therefore, the objective of the current study was to review recently published research on pulmonary toxicity caused by nanomaterials. However, here, instead of reviewing possible toxic effects and discussing their mode of action, the goal was to establish trends considering for example examined so far nanomaterials or used testing strategies. A total of 2316 related articles retrieved from the three most cited databases (PubMed Scopus, Web of Science), selected based on the title and abstract requirements, were used as the source of the review. Based on the bibliometric analysis, the nano-meter metal oxides, and carbon-based nanotubes were identified as the most frequently studied nanomaterials, while quantum dots, which might induce possible harmful effects, were not considered so far. The majority of testing of pulmonary safety is based on in vitro studies with observed growth of the contribution of novel testing strategies, such as 3D lung model, air-liquid interface system, or omic analysis.
Collapse
Affiliation(s)
| | | | - Krzesimir Ciura
- QSAR Lab Ltd., Gdansk, Poland
- Department of Physical Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Mikolajczyk
- QSAR Lab Ltd., Gdansk, Poland
- Laboratory of Environmental Chemoinformatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Karolina Jagiello
- QSAR Lab Ltd., Gdansk, Poland
- Laboratory of Environmental Chemoinformatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd., Gdansk, Poland
- Laboratory of Environmental Chemoinformatics, Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
54
|
Park K, Frey MW. Designing an Effective and Scalable UV-Protective Cooling Textile with Nanoporous Fibers. NANO LETTERS 2023; 23:10398-10405. [PMID: 37931913 PMCID: PMC10683759 DOI: 10.1021/acs.nanolett.3c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Although radiative cooling concepts guarantee reduction of air conditioning energy consumption by maximizing the scattering of solar radiation and dissipation of thermal radiation of a human body or building, large-scale implementation is challenging due to the need of radical adaptation in manufacturing processes, materials, and design. Here, we introduce an extremely thin layer of nanoporous microfibers without any additional materials or post-treatments. The optical and thermal effectiveness of porous fibers are presented to report a nondisruptive method of preventing the transmission of energy-intensive radiation such as ultraviolet radiation (UV) through textiles. Results show ∼1.4 °C cooling by adding 1 g/m2 (GSM) of porous fibers on a 160 GSM cotton t-shirt, and 91% of UV was prevented with 7.5 GSM of a porous fiber mat. This minimalistic additive approach would widen the scope of optical and radiative cooling research and accelerate both functional and sustainable materials research to be more accessible.
Collapse
Affiliation(s)
- Kyuin Park
- Department of Human Centered
Design, College of Human Ecology, Cornell
University, Ithaca, New York 14850, United States
| | - Margaret W. Frey
- Department of Human Centered
Design, College of Human Ecology, Cornell
University, Ithaca, New York 14850, United States
| |
Collapse
|
55
|
Hazelhoff MH, Bulacio RP, Torres AM. Renal tubular response to titanium dioxide nanoparticles exposure. Drug Chem Toxicol 2023; 46:1130-1137. [PMID: 36254786 DOI: 10.1080/01480545.2022.2134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/03/2022]
Abstract
Titatinum dioxide nanoparticles (TiO2-NPs) are frequently used in several areas. Titanium alloys are employed in orthopedic and odontological surgery (such as hip, knee, and teeth implants). To evaluate the potential acute toxic effects of titanium pieces implantations and in other sources that allow the systemic delivery of titanium, parenteral routes of TiO2-NPs administration should be taken into account. The present study evaluated the impact of subcutaneous administration of TiO2-NPs on renal function and structure in rats. Animals were exposed to a dose of 50 mg/kg b.w., s.c. and sacrificed after 48 h. Titanium levels were detected in urine (135 ± 6 ηg/mL) and in renal tissue (502 ± 40 ηg/g) employing inductively coupled plasma mass spectrometry. An increase in alkaline phosphatase activity, total protein levels, and glucose concentrations was observed in urine from treated rats suggesting injury in proximal tubule cells. In parallel, histopathological studies showed tubular dilatation and cellular desquamation in these nephron segments. In summary, this study demonstrates that subcutaneous administration of TiO2-NPs causes acute nephrotoxicity evidenced by functional and histological alterations in proximal tubule cells. This fact deserves to be mainly considered when humans are exposed directly or indirectly to TiO2-NPs sources that cause the systemic delivery of titanium.
Collapse
Affiliation(s)
- María H Hazelhoff
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Romina P Bulacio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Adriana M Torres
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
56
|
Koňáriková K, Girašková GM, Žitňanová I, Dvořáková M, Rollerová E, Scsuková S, Bizik J, Janubová M, Muchová J. Biological analyses of the effects of TiO2 and PEG-b-PLA nanoparticles on three-dimensional spheroid-based tumor. Physiol Res 2023; 72:S257-S266. [PMID: 37888969 PMCID: PMC10669953 DOI: 10.33549/physiolres.935152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of our study was to monitor the antiproliferative/ cytotoxic and genotoxic effects of both, poly(ethylene glycol)-block-poly(lactic acid) (PEG-b-PLA) and titanium dioxide (TiO2) nanoparticles on the tumor (HT-29, MCF-7, U118MG) and healthy (HEK-293T) cell lines during 2D cultivation and during cultivation in the spheroid form (3D cultivation). Cells or spheroids were cultivated with nanoparticles (0.01, 0.1, 1, 10, 50, and 100 ?g/ml) for 72 hours. The cytotoxic effect was determined by the MTT test and the genotoxic effect by the comet assay. We found that 2D cultivation of tumor cell lines with PEG-b-PLA and TiO2 nanoparticles had an anti-proliferative effect on human colon cancer cell line HT-29, human breast cancer cell line MCF-7, human glioma cell line U-118MG during 72h cultivation, but not on control/healthy HEK-293T cells. At the concentrations used, the tested nanoparticles caused no cytotoxic effect on tumor cell lines. Nanoparticles PEG-b-PLA induced significant damage to DNA in HT-29 and MCF-7 cells, while TiO2 nanoparticles in MCF-7 and U-118MG cells. Only PEG-b-PLA nanoparticles caused cytotoxic (IC50 = 7 mikrog/ml) and genotoxic effects on the healthy cell line HEK-293T after 72h cultivation. The cells which were cultivated in spheroid forms were more sensitive to both types of nanoparticles. After 72h cultivation, we observed the cytotoxic effect on both, the tumor and healthy cell lines.
Collapse
Affiliation(s)
- K Koňáriková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Mu X, Hu K, Wei A, Bai J, Feng L, Jiang J. TiO 2 nanoparticles promote tumor metastasis by eliciting pro-metastatic extracellular vesicles. J Nanobiotechnology 2023; 21:392. [PMID: 37891598 PMCID: PMC10604521 DOI: 10.1186/s12951-023-02142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
The development of nanotechnology has provided numerous possibilities for the diagnosis and treatment of cancer. Paradoxically, some in vivo experimental studies have also shown that nanoparticles (NPs) could promote tumor progression, but the specific mechanism is not yet clear. Primary tumors can release extracellular vesicles (EVs) which can promote the inoculation and growth of tumor cells that have metastasized to distant organs. So, whether nanomaterials can promote tumor progression through tumor-derived EVs deserves further research. Here, we showed that TiO2 NPs, widely used in nanomedicine, could trigger tumor-derived EVs with enhanced pro-metastatic capacity in vitro and in vivo. Mechanically, miR-301a-3p derived from NPs-elicited EVs could be delivered into vascular endothelial cells, which inhibited the expression of VEGFR2 and VE-cadherin by targeting S1PR1, leading to disrupt the tight junctions of vascular endothelial cells, thus to promote vascular permeability and angiogenesis, and induce the formation of pre-metastasis niches in vivo. This study emphasizes that it is urgent to consider the effect of NPs on EVs under long-term use conditions when designing nanodrugs for cancer treatment.
Collapse
Affiliation(s)
- Xupeng Mu
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Kebang Hu
- Department of Urology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China
| | - Anhui Wei
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Jinping Bai
- Department of Chronic Disease, Jilin Province FAW General Hospital, Changchun, 130013, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Jinlan Jiang
- Scientifc Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
58
|
Mäenpää K, Ilves M, Zhao L, Alenius H, Sinkko H, Karisola P. Effects of Superficial Scratching and Engineered Nanomaterials on Skin Gene Profiles and Microbiota in SKH-1 Mice. Int J Mol Sci 2023; 24:15629. [PMID: 37958613 PMCID: PMC10649582 DOI: 10.3390/ijms242115629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Scratching damages upper layers of the skin, breaks this first line of immune defence, and leads to inflammation response, which often also modifies the microbiota of the skin. Although the healing of incision wounds is well-described, there are fewer studies on superficial wounds. We used a simulated model of skin scratching to study changes in the host transcriptome, skin microbiota, and their relationship. Additionally, we examined the effect of nanosized ZnO, TiO2, and Ag on both intact and damaged skin. At 24 h after exposure, the number of neutrophils was increased, 396 genes were differentially expressed, and microbiota compositions changed between scratched and intact control skin. At 7 d, the skin was still colonised by gut-associated microbes, including Lachnospiraceae, present in the cage environment, while the transcriptomic responses decreased. To sum up, the nanomaterial exposures reduced the relative abundance of cutaneous microbes on healthy skin, but the effect of scratching was more significant for the transcriptome than the nanomaterial exposure both at 24 h and 7 d. We conclude that superficial skin scratching induces inflammatory cell accumulation and changes in gene expression especially at 24 h, while the changes in the microbiota last at least 7 days.
Collapse
Affiliation(s)
- Kuunsäde Mäenpää
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.M.); (M.I.); (L.Z.); (H.A.); (H.S.)
| | - Marit Ilves
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.M.); (M.I.); (L.Z.); (H.A.); (H.S.)
| | - Lan Zhao
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.M.); (M.I.); (L.Z.); (H.A.); (H.S.)
| | - Harri Alenius
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.M.); (M.I.); (L.Z.); (H.A.); (H.S.)
- Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hanna Sinkko
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.M.); (M.I.); (L.Z.); (H.A.); (H.S.)
| | - Piia Karisola
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (K.M.); (M.I.); (L.Z.); (H.A.); (H.S.)
| |
Collapse
|
59
|
Ejaz M, Gul A, Ozturk M, Hafeez A, Turkyilmaz Unal B, Jan SU, Siddique MT. Nanotechnologies for environmental remediation and their ecotoxicological impacts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1368. [PMID: 37875634 DOI: 10.1007/s10661-023-11661-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/01/2023] [Indexed: 10/26/2023]
Abstract
Environmental nanoremediation is an emerging technology that aims to rapidly and efficiently remove contaminants from the polluted sites using engineered nanomaterials (ENMs). Inorganic nanoparticles which are generally metallic, silica-based, carbon-based, or polymeric in nature serve to remediate through chemical reactions, filtration, or adsorption. Their greater surface area per unit mass and high reactivity enable them to treat groundwater, wastewater, oilfields, and toxic industrial contaminants. Despite the growing interest in nanotechnological solutions for bioremediation, the environmental and human hazard associated with their use is raising concerns globally. Nanoremediation techniques when compared to conventional remediation solutions show increased effectivity in terms of cost and time; however, the main challenge is the ability of ENMs to remove contaminants from different environmental mediums by safeguarding the ecosystem. ENMs improving the accretion of the pollutant and increasing their bioavailability should be rectified along with the vigilant management of their transfer to the upper levels of the food chain which subsequently causes biomagnification. The ecosystem-centered approach will help monitor the ecotoxicological impacts of nanoremediation considering the safety, sustainability, and proper disposal of ENMs. The environment and human health risk assessment of each novel engineered nanomaterial along with the regulation of life cycle assessment (LCA) tools of ENMs for nanoremediation can help investigate the possible environmental hazard. This review focuses on the currently available nanotechnological methods used for environmental remediation and their potential toxicological impacts on the ecosystem.
Collapse
Affiliation(s)
- Mahnoor Ejaz
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan.
| | - Munir Ozturk
- Botany Department and Centre for Environmental Studies, Ege University, Izmir, Türkiye.
| | - Ahmed Hafeez
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Biotechnology Department, Faculty of Arts and Science, Nigde Omer Halisdemir University, Nigde, Türkiye
| | - Sami Ullah Jan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
60
|
Bigham A, Raucci MG, Zheng K, Boccaccini AR, Ambrosio L. Oxygen-Deficient Bioceramics: Combination of Diagnosis, Therapy, and Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302858. [PMID: 37259776 DOI: 10.1002/adma.202302858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/02/2023]
Abstract
The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples, 80125, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases and Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Aldo R Boccaccini
- Institute for Biomaterials, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples, 80125, Italy
| |
Collapse
|
61
|
Fonseca E, Vázquez M, Rodriguez-Lorenzo L, Mallo N, Pinheiro I, Sousa ML, Cabaleiro S, Quarato M, Spuch-Calvar M, Correa-Duarte MA, López-Mayán JJ, Mackey M, Moreda A, Vasconcelos V, Espiña B, Campos A, Araújo MJ. Getting fat and stressed: Effects of dietary intake of titanium dioxide nanoparticles in the liver of turbot Scophthalmus maximus. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131915. [PMID: 37413800 DOI: 10.1016/j.jhazmat.2023.131915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
The extensive use of nanomaterials, including titanium dioxide nanoparticles (TiO2 NPs), raises concerns about their persistence in ecosystems. Protecting aquatic ecosystems and ensuring healthy and safe aquaculture products requires the assessment of the potential impacts of NPs on organisms. Here, we study the effects of a sublethal concentration of citrate-coated TiO2 NPs of two different primary sizes over time in flatfish turbot, Scophthalmus maximus (Linnaeus, 1758). Bioaccumulation, histology and gene expression were assessed in the liver to address morphophysiological responses to citrate-coated TiO2 NPs. Our analyses demonstrated a variable abundance of lipid droplets (LDs) in hepatocytes dependent on TiO2 NPs size, an increase in turbot exposed to smaller TiO2 NPs and a depletion with larger TiO2 NPs. The expression patterns of genes related to oxidative and immune responses and lipid metabolism (nrf2, nfκb1, and cpt1a) were dependent on the presence of TiO2 NPs and time of exposure supporting the variance in hepatic LDs distribution over time with the different NPs. The citrate coating is proposed as the likely catalyst for such effects. Thus, our findings highlight the need to scrutinize the risks associated with exposure to NPs with distinct properties, such as primary size, coatings, and crystalline forms, in aquatic organisms.
Collapse
Affiliation(s)
- Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - María Vázquez
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Natalia Mallo
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Maria Lígia Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Santiago Cabaleiro
- CETGA - Centro Técnológico del Cluster de la Acuicultura, Punta de Couso s/n, 15965 Ribeira, A Coruña, Spain
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Miguel Spuch-Calvar
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel A Correa-Duarte
- CINBIO - Centro de Investigación en Nanomateriais e Biomedicina, Universidade de Vigo, 36310 Vigo, Spain
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Mick Mackey
- IRMRC - Indigo Rock Marine Research Centre, Gearhies, Bantry, Co., Cork P75 AX07, Ireland
| | - Antonio Moreda
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute de Materiais iMATUS. Faculty of Chemistry, University of Santiago de Compostela, Av. das Ciencias s/n, 15782 Santiago de Compostela, Spain
| | - Vítor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences, University of Porto, Biology Department, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Mário Jorge Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
62
|
Tassinari R, Tammaro A, Martinelli A, Valeri M, Maranghi F. Sex-Specific Effects of Short-Term Oral Administration of Food-Grade Titanium Dioxide Nanoparticles in the Liver and Kidneys of Adult Rats. TOXICS 2023; 11:776. [PMID: 37755786 PMCID: PMC10536411 DOI: 10.3390/toxics11090776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Titanium dioxide (TiO2) nanomaterial is used in several items (implant materials, pills composition, cosmetics, etc.). Although TiO2 is no longer considered safe as a food additive, the general population is exposed daily through different routes, and information is lacking on some aspects of animal and human health. This study evaluated liver and kidney toxicity of food-grade TiO2 nanoparticles (NPs) (primary size < 25 nm) in male and female rats that were orally exposed for 5 days to 0, 1, and 2 mg/kg body weight per day (comparable with daily E171 consumption). Selected liver and kidney toxicity endpoints included serum biomarkers, histopathological analysis and expression of osteopontin (SPP1), vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), and neuropeptide Y (NPY). Although TiO2 NPs are known to affect the gastric mucosa, short-term exposure induced sex-specific effects: general toxicity parameters were predominantly altered in female rats, whereas the liver appeared to be more affected than the kidneys in male rats, which also showed overexpression of NPY and SPP1. In the kidneys, the TiO2 NP effects were quantitatively similar but qualitatively different in the two sexes. In conclusion, careful consideration should be paid to the presence of TiO2 NPs in other items that can lead to human exposure.
Collapse
Affiliation(s)
- Roberta Tassinari
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (R.T.); (A.T.)
| | - Alessia Tammaro
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (R.T.); (A.T.)
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00173 Rome, Italy
| | - Andrea Martinelli
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.V.)
| | - Mauro Valeri
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.M.); (M.V.)
| | - Francesca Maranghi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (R.T.); (A.T.)
| |
Collapse
|
63
|
Poulsen KM, Albright MC, Niemuth NJ, Tighe RM, Payne CK. Interaction of TiO 2 nanoparticles with lung fluid proteins and the resulting macrophage inflammatory response. ENVIRONMENTAL SCIENCE. NANO 2023; 10:2427-2436. [PMID: 38009084 PMCID: PMC10669912 DOI: 10.1039/d3en00179b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Inhalation is a major exposure route to nanoparticles. Following inhalation, nanoparticles first interact with the lung lining fluid, a complex mixture of proteins, lipids, and mucins. We measure the concentration and composition of lung fluid proteins adsorbed on the surface of titanium dioxide (TiO2) nanoparticles. Using proteomics, we find that lung fluid results in a unique protein corona on the surface of the TiO2 nanoparticles. We then measure the expression of three cytokines (interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and macrophage inflammatory protein 2 (MIP-2)) associated with lung inflammation. We find that the corona formed from lung fluid leads to elevated expression of these cytokines in comparison to bare TiO2 nanoparticles or coronas formed from serum or albumin. These experiments show that understanding the concentration and composition of the protein corona is essential for understanding the pulmonary response associated with human exposure to nanoparticles.
Collapse
Affiliation(s)
- Karsten M Poulsen
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
| | - Michaela C Albright
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Nicholas J Niemuth
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
- Present address: Department of Biomedical Engineering, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, 27599
| | - Robert M Tighe
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA 27710
| | - Christine K Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA 27705
| |
Collapse
|
64
|
Solanki LA, Dinesh SS, Jain RK, Balasubramaniam A. Effects of titanium oxide coating on the antimicrobial properties, surface characteristics, and cytotoxicity of orthodontic brackets - A systematic review and meta analysis of in-vitro studies. J Oral Biol Craniofac Res 2023; 13:553-562. [PMID: 37409325 PMCID: PMC10319217 DOI: 10.1016/j.jobcr.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 02/22/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023] Open
Abstract
Objective The objective of this review is to systematically analyze the available literature on the effects of titanium oxide (TiO₂) coating on the antimicrobial properties, surface characteristics, and cytotoxicity of orthodontic brackets. Methods In-vitro studies reporting on the effects of Titanium oxide (TiO₂) coatings on antimicrobial properties, surface roughness, cytotoxic activity and bacterial adhesion of orthodontic brackets were included in the review. Electronic databases such as PubMed, SCOPUS, Web of Science and Google Scholar, were searched till September 2022. Risk of Bias was analyzed by using RoBDEMAT tool. Meta-analysis using Random Effects Model was performed for assessing the antimicrobial activity against S. mutans, C. albicans and L. Acidophilus. Results A total of 11 studies were included the RoB analysis revealed sufficient reporting across all the domains and inconsistent reporting in only two of the domains. On qualitative analysis, a significant antimicrobial effect of TiO2 coating on orthodontic brackets against Streptococcus mutans, Candida albicans and Lactobacillus acidophilus was reported. The meta analysis revealed a significant overall antimicrobial effect with a high heterogeneity. (SMD: 3.5; p < 0.00001; i2 - 99.2%). Conclusion An overall significant antimicrobial effect of TiO₂ coated brackets against S. mutans, L. Acidophilus, C. Albicans was noted but with a high heterogeneity. The subgroup analysis revealed a significant antimicrobial effect on C albicans with a low heterogeneity but it was limited by a publication bias. The included studies reported reduced surface roughness, minimal bacterial adhesion and less cytotoxic activity with TiO₂ coated brackets than uncoated brackets.
Collapse
Affiliation(s)
- Lichi Ashwin Solanki
- Department of Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 162, Poonamallee High Road, Chennai, 600077, Tamil Nadu, India
| | - S.P. Saravana Dinesh
- Department of Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 162, Poonamallee High Road, Chennai, 600077, Tamil Nadu, India
| | - Ravindra Kumar Jain
- Department of Orthodontics and Dentofacial Orthopaedics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 162, Poonamallee High Road, Chennai, 600077, Tamil Nadu, India
| | - Arthi Balasubramaniam
- Department of Public Health Dentistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 162, Poonamallee High Road, Chennai, 600077, Tamil Nadu, India
| |
Collapse
|
65
|
Cavallo D, Fresegna AM, Ciervo A, Maiello R, Chiarella P, Buresti G, Del Frate V, Di Basilio M, Iavicoli S, Ursini CL. Evaluation of Systemic Genotoxic/Oxidative and Proinflammatory Effects in Workers of a Titanium Dioxide Production Plant. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7066090. [PMID: 37521120 PMCID: PMC10386898 DOI: 10.1155/2023/7066090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/08/2023] [Indexed: 08/01/2023]
Abstract
This study is aimed at evaluating whether the occupational exposure to TiO2 during the industrial production process is able to induce genotoxic, oxidative, and inflammatory effects on blood, biomonitoring the same workers that showed micronucleus induction in the exfoliated buccal cells, as previous published. The final aim was to find sensitive and suitable biomarkers to evaluate potential early toxicity of occupational exposure to TiO2. On the same 40 workers involved in the manufacture of TiO2 pigment, 5 office workers, and 18 controls previously studied, we used formamidopyrimidine glycosylase- (Fpg-) comet assay on lymphocytes to evaluate genotoxic/oxidative effects and detected cytokine (IL-6, IL-8, and TNFα) release by ELISA to evaluate proinflammation. Moreover, we studied the possible influence of single nucleotide polymorphisms of XRCC1 and hOGG1 DNA repair genes and of GST metabolism-related genes (GSTT1 and GSTM1) on the evaluated effects. We did not find statistically significant differences in the mean values of the analysed Fpg-comet assay parameters; only the percentage of DNA damaged cells appearing in the test as comets (% comets) resulted higher in the exposed workers compared to controls. Also, the data analysed taking into account the specific task (bagging, industrial cleaning, mobile operations, maintaining, and production) showed differences only for % comets which resulted higher in industrial cleaners compared to controls. We found variations of IL-6 and IL-8 levels in the exposed workers with concentrations that were lower for IL-6 and higher for IL-8 compared to the control group. XRCC1, hOGG1, and GSTT1 polymorphisms did not influence neither comet parameters nor cytokine release. These findings demonstrate that TiO2 production process is able to induce slight proinflammatory effects in terms of IL-8 increased release but not significant genotoxic/oxidative effects on lymphocytes, which do not seem to be a target of TiO2, prevalently inhalable particles, generated in the studied production site.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Anna Maria Fresegna
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Aureliano Ciervo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Raffaele Maiello
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Pieranna Chiarella
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Giuliana Buresti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Valentina Del Frate
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Marco Di Basilio
- Department of Technological Innovation and Safety of Plants, Products and Anthropic Settlements, INAIL, Monte Porzio Catone, Rome, Italy
| | - Sergio Iavicoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Cinzia Lucia Ursini
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| |
Collapse
|
66
|
López-Mayán JJ, Álvarez-Fernández B, Peña-Vázquez E, Barciela-Alonso MC, Moreda-Piñeiro A, Maguire J, Mackey M, Quarato M, Pinheiro I, Espiña B, Rodríguez-Lorenzo L, Bermejo-Barrera P. Bioaccumulation of titanium dioxide nanoparticles in green (Ulva sp.) and red (Palmaria palmata) seaweed. Mikrochim Acta 2023; 190:287. [PMID: 37420086 PMCID: PMC10329078 DOI: 10.1007/s00604-023-05849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 07/09/2023]
Abstract
A bioaccumulation study in red (Palmaria palmata) and green (Ulva sp.) seaweed has been carried out after exposure to different concentrations of citrate-coated titanium dioxide nanoparticles (5 and 25 nm) for 28 days. The concentration of total titanium and the number and size of accumulated nanoparticles in the seaweeds has been determined throughout the study by inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (SP-ICP-MS), respectively. Ammonia was used as a reaction gas to minimize the effect of the interferences in the 48Ti determination by ICP-MS. Titanium concentrations measured in Ulva sp. were higher than those found in Palmaria palmata for the same exposure conditions. The maximum concentration of titanium (61.96 ± 15.49 μg g-1) was found in Ulva sp. after 28 days of exposure to 1.0 mg L-1 of 5 nm TiO2NPs. The concentration and sizes of TiO2NPs determined by SP-ICP-MS in alkaline seaweed extracts were similar for both seaweeds exposed to 5 and 25 nm TiO2NPs, which indicates that probably the element is accumulated in Ulva sp. mainly as ionic titanium or nanoparticles smaller than the limit of detection in size (27 nm). The implementation of TiO2NPs in Ulva sp. was confirmed by electron microscopy (TEM/STEM) in combination with energy dispersive X-Ray analysis (EDX).
Collapse
Affiliation(s)
- Juan José López-Mayán
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Blanca Álvarez-Fernández
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Carmen Barciela-Alonso
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Julie Maguire
- Indigo Rock Marine Research, Gearhies, Bantry, Co. Cork, P75 AX07, Ireland
| | - Mick Mackey
- Indigo Rock Marine Research, Gearhies, Bantry, Co. Cork, P75 AX07, Ireland
| | - Monica Quarato
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Ivone Pinheiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Laura Rodríguez-Lorenzo
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
67
|
Ali F, Arif M, Faizan M, Saeed A, Seangwattana T, Kumam P, Galal AM. Darcy Forchheimer flow of CMC-water based hybrid nanofluid due to a rotating stretchable disk. Heliyon 2023; 9:e17641. [PMID: 37455960 PMCID: PMC10338362 DOI: 10.1016/j.heliyon.2023.e17641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
The flow of fluid over a spinning disk has a broad scope of numerous applications. It is employed in various things, including medical equipment, the braking system of cars, gas turbines, plastic films, and glass production. As a result of these applications, we considered the phenomena of Darcy Forchheimer's three-dimensional flow on TiO2-Fe3O4 nanoparticles suspended in based CMC-water fluid. The influence of thermal radiation and convective conditions is studied. Moreover, the Buongiorno model is utilized to compute the Brownian motion and the thermophoretic effect. To generate the non-dimensionalized governing equations, suitable alterations are put into use. These equations are then utilized with Matlab BVP4c. Graphs are used to analyze the behavior of velocity distributions, and thermal and concentration profiles at different parameter values. In addition, the solutions to the flow problem have been analyzed in terms of several other physical variables on velocity, temperature, concentration, drag force, heat, and mass transfer. According to the findings, it is clear that an escalates in the value of the rotation parameter leads to an increase in the radial velocity and axial velocity. In contrast, an opposite pattern is followed in the Forchheimer number. Finally, some engineering quantities are evaluated numerically and presented in tabular forms.
Collapse
Affiliation(s)
- Farhan Ali
- Department of Mathematical Sciences, Federal Urdu University of Arts, Sciences & Technology, Gulshan-e-Iqbal Karachi, 75300, Pakistan
| | - Muhammad Arif
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi (KMUTT), 126 PrachaUthit Rd., Bang Mod, ThungKhru, Bangkok, 10140, Thailand
| | - Muhammad Faizan
- Department of Mathematical Sciences, Federal Urdu University of Arts, Sciences & Technology, Gulshan-e-Iqbal Karachi, 75300, Pakistan
| | - Anwar Saeed
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi (KMUTT), 126 PrachaUthit Rd., Bang Mod, ThungKhru, Bangkok, 10140, Thailand
| | - Thidaporn Seangwattana
- King Mongkut's University of Technology North Bangkok, Rayong Campus (KMUTNB), 21120, Rayong, Thailand
| | - Poom Kumam
- Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi (KMUTT), 126 PrachaUthit Rd., Bang Mod, ThungKhru, Bangkok, 10140, Thailand
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Ahmed M. Galal
- Department of Mechanical Engineering, College of Engineering in WadiAlddawasir, Prince Sattam bin Abdulaziz University, Saudi Arabia
- Production Engineering and Mechanical Design Department, Mansoura University, P.O 35516, Mansoura, Egypt
| |
Collapse
|
68
|
Valentino SA, Seidel C, Lorcin M, Sébillaud S, Wolff H, Grossmann S, Viton S, Nunge H, Saarimäki LA, Greco D, Cosnier F, Gaté L. Identification of a Gene Signature Predicting (Nano)Particle-Induced Adverse Lung Outcome in Rats. Int J Mol Sci 2023; 24:10890. [PMID: 37446067 DOI: 10.3390/ijms241310890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles are extensively used in industrial products or as food additives. However, despite their contribution to improving our quality of life, concerns have been raised regarding their potential impact on occupational and public health. To speed up research assessing nanoparticle-related hazards, this study was undertaken to identify early markers of harmful effects on the lungs. Female Sprague Dawley rats were either exposed to crystalline silica DQ-12 with instillation, or to titanium dioxide P25, carbon black Printex-90, or multi-walled carbon nanotube Mitsui-7 with nose-only inhalation. Tissues were collected at three post-exposure time points to assess short- and long-term effects. All particles induced lung inflammation. Histopathological and biochemical analyses revealed phospholipid accumulation, lipoproteinosis, and interstitial thickening with collagen deposition after exposure to DQ-12. Exposure to the highest dose of Printex-90 and Mitsui-7, but not P25, induced some phospholipid accumulation. Comparable histopathological changes were observed following exposure to P25, Printex-90, and Mitsui-7. Comparison of overall gene expression profiles identified 15 potential early markers of adverse lung outcomes induced by spherical particles. With Mitsui-7, a distinct gene expression signature was observed, suggesting that carbon nanotubes trigger different toxicity mechanisms to spherical particles.
Collapse
Affiliation(s)
- Sarah Amandine Valentino
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Carole Seidel
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Mylène Lorcin
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Sylvie Sébillaud
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Henrik Wolff
- Finnish Institute of Occupational Health, FI-00251 Helsinki, Finland
| | - Stéphane Grossmann
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Stéphane Viton
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Hervé Nunge
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00100 Helsinki, Finland
| | - Frédéric Cosnier
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| | - Laurent Gaté
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue du Morvan, F-54519 Vandœuvre-lès-Nancy, France
| |
Collapse
|
69
|
Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N. Experimental animal models of chronic inflammation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100063. [PMID: 37334102 PMCID: PMC10276141 DOI: 10.1016/j.crimmu.2023.100063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Inflammation is a general term for a wide variety of both physiological and pathophysiological processes in the body which primarily prevents the body from diseases and helps to remove dead tissues. It has a crucial part in the body immune system. Tissue damage can recruit inflammatory cells and cytokines and induce inflammation. Inflammation can be classified as acute, sub-acute, and chronic. If it remained unresolved and lasted for prolonged periods, it would be considered as chronic inflammation (CI), which consequently exacerbates tissue damage in different organs. CI is the main pathophysiological cause of many disorders such as obesity, diabetes, arthritis, myocardial infarction, and cancer. Thus, it is critical to investigate different mechanisms involved in CI to understand its processes and to find proper anti-inflammatory therapeutic approaches for it. Animal models are one of the most useful tools for study about different diseases and mechanisms in the body, and are important in pharmacological studies to find proper treatments. In this study, we discussed the various experimental animal models that have been used to recreate CI which can help us to enhance the understanding of CI mechanisms in human and contribute to the development of potent new therapies.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Milad Akbarzadeh
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
70
|
Kumar N, Delu V, Shukla A, Singh RK, Ulasov I, Fayzullina D, Kuma S, Patel AK, Yadav L, Tiwari R, Rachana K, Mohanta SP, Kumar S, Kaushalendra K, Acharya A. Safety Assessment of a Nucleoside Analogue FNC (2'-deoxy-2'- β-fluoro-4'-azidocytidine ) in Balb/c Mice: Acute Toxicity Study. Asian Pac J Cancer Prev 2023; 24:2157-2170. [PMID: 37378948 PMCID: PMC10505880 DOI: 10.31557/apjcp.2023.24.6.2157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVES The present study aimed to provide an insight into the acute toxicity of a novel fluorinated nucleoside analogue (FNA), FNC (Azvudine or2'-deoxy-2'-β-fluoro-4'-azidocytidine). FNC showed potent anti-viral and anti-cancer activities and approved drug for high-load HIV patients, despite, its acute toxicity study being lacking. MATERIALS AND METHODS OECD-423 guidelines were followed during this study and the parameters were divided into four categories - behavioral parameters, physiological parameters, histopathological parameters, and supplementary tests. The behavioral parameters included feeding, body weight, belly size, organ weight and size, and mice behavior. The physiological parameters consisted of blood, liver, and kidney indicators. In histopathological parameters hematoxylin and eosin staining was performed to analyse the histological changes in the mice organs after FNC exposure. In addition, supplementary tests were conducted to assess cellular viability, DNA fragmentation and cytokine levels (IL-6 and TNF-α) in response to FNC. RESULTS In the behavioral parameters FNC induced changes in the mice-to-mice interaction and activities. Mice's body weight, belly size, organ weight, and size remained unchanged. Physiological parameters of blood showed that FNC increased the level of WBC, RBC, Hb, and neutrophils and decreased the % count of lymphocytes. Liver enzymes SGOT (AST), and ALP was increased. In the renal function test (RFT) cholesterol level was significantly decreased. Histopathological analysis of the liver, kidney, brain, heart, lungs, and spleen showed no sign of tissue damage at the highest FNC dose of 25 mg/kg b.wt. Supplementary tests for cell viability showed no change in viability footprint, through our recently developed dilution cum-trypan (DCT) assay, and Annexin/PI. No DNA damage or apoptosis was observed in DAPI or AO/EtBr studies. Pro-inflammatory cytokines IL-6 and TNF-α increased in a dose-dependent manner. CONCLUSION This study concluded that FNC is safe to use though higher concentration shows slight toxicity.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Vikram Delu
- Technical Expert (Zoology), Haryana State Biodiversity Board, Panchkula,Haryana, India.
| | - Alok Shukla
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Rishi Kant Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Daria Fayzullina
- Group of Experimental Biotherapy and Diagnostic, Department of Advanced Materials, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Sandeep Kuma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Anand Kumar Patel
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Lokesh Yadav
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Ruchi Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | - Kumari Rachana
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | | | - Sanjay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| | | | - Arbind Acharya
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| |
Collapse
|
71
|
Yuan B, Wang Y, Zong C, Sang L, Chen S, Liu C, Pan Y, Zhang H. Modeling study for predicting altered cellular activity induced by nanomaterials based on Dlk1-Dio3 gene expression and structural relationships. CHEMOSPHERE 2023; 335:139090. [PMID: 37268226 DOI: 10.1016/j.chemosphere.2023.139090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
Nanomaterials have been widely applied and developed due to its unique physicochemical characteristics, such as their small size. The environmental and biological effects caused by nanomaterials have raised concerns. In particular, some nanometal oxides have obvious biological toxicity and pose a major safety problem. The prediction model established by combining the expression levels of key genes with quantitative structure-activity relationship (QSAR) studies can predict the biotoxicity of nanomaterials by relying on both structural information and gene regulation information. This model can fill the gap of missing mechanisms in QSAR studies. In this study, we exposed A549 cells and BEAS-2B cells to 21 nanometal oxides for 24 h. Cell viability was assessed by measuring absorbance values using the CCK8 assay, and the expression levels of the Dlk1-Dio3 gene cluster were measured. By using the theoretical basis of the nano-QSAR model and the improved principles of the SMILES-based descriptors to combine specific gene expression and structural factors, new models were constructed using Monte Carlo partial least squares (MC-PLS) for the biotoxicity of the nanometal oxides on two different lung cells. The overall quality of the nano-QSAR models constructed by combining specific gene expression and structural parameters for A549 and BEAS-2B cells was better than that of the models constructed based on structural parameters only. The coefficient of determination (R2) of the A549 cell model increased from 0.9044 to 0.9969, and the Root Mean Square Error (RMSE) decreased from 0.1922 to 0.0348. The R2 of the BEAS-2B cell model increased from 0.9355 to 0.9705, and the RMSE decreased from 0.1206 to 0.0874. The model validation proved the proposed models have a good prediction, generalization ability and model stability. This study offers a new research perspective for the toxicity assessment of nanometal oxides, contributing to a more systematic safety evaluation of nanomaterials.
Collapse
Affiliation(s)
- Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Yunlin Wang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Cheng Zong
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Leqi Sang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Shuang Chen
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Chengzhi Liu
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Yong Pan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China.
| | - Huazhong Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
72
|
Yadav A, Yadav K, Ahmad R, Abd-Elsalam KA. Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects. AGROCHEMICALS 2023; 2:220-256. [DOI: 10.3390/agrochemicals2020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This review article provides an extensive overview of the emerging frontiers of nanotechnology in precision agriculture, highlighting recent advancements, hurdles, and prospects. The benefits of nanotechnology in this field include the development of advanced nanomaterials for enhanced seed germination and micronutrient supply, along with the alleviation of biotic and abiotic stress. Further, nanotechnology-based fertilizers and pesticides can be delivered in lower dosages, which reduces environmental impacts and human health hazards. Another significant advantage lies in introducing cutting-edge nanodiagnostic systems and nanobiosensors that monitor soil quality parameters, plant diseases, and stress, all of which are critical for precision agriculture. Additionally, this technology has demonstrated potential in reducing agro-waste, synthesizing high-value products, and using methods and devices for tagging, monitoring, and tracking agroproducts. Alongside these developments, cloud computing and smartphone-based biosensors have emerged as crucial data collection and analysis tools. Finally, this review delves into the economic, legal, social, and risk implications of nanotechnology in agriculture, which must be thoroughly examined for the technology’s widespread adoption.
Collapse
Affiliation(s)
- Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar, District Banaskantha, Gujarat 385506, India
| | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
| | - Rumana Ahmad
- Department of Biochemistry, Era University, Lucknow 226003, India
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
73
|
Si P, Zheng Z, Gu Y, Geng C, Guo Z, Qin J, Wen W. Nanostructured TiO 2 Arrays for Energy Storage. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103864. [PMID: 37241492 DOI: 10.3390/ma16103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Because of their extensive specific surface area, excellent charge transfer rate, superior chemical stability, low cost, and Earth abundance, nanostructured titanium dioxide (TiO2) arrays have been thoroughly explored during the past few decades. The synthesis methods for TiO2 nanoarrays, which mainly include hydrothermal/solvothermal processes, vapor-based approaches, templated growth, and top-down fabrication techniques, are summarized, and the mechanisms are also discussed. In order to improve their electrochemical performance, several attempts have been conducted to produce TiO2 nanoarrays with morphologies and sizes that show tremendous promise for energy storage. This paper provides an overview of current developments in the research of TiO2 nanostructured arrays. Initially, the morphological engineering of TiO2 materials is discussed, with an emphasis on the various synthetic techniques and associated chemical and physical characteristics. We then give a brief overview of the most recent uses of TiO2 nanoarrays in the manufacture of batteries and supercapacitors. This paper also highlights the emerging tendencies and difficulties of TiO2 nanoarrays in different applications.
Collapse
Affiliation(s)
- Pingyun Si
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Zhilong Zheng
- Zhanjiang Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhanjiang 524001, China
| | - Yijie Gu
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chao Geng
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Zhizhong Guo
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Jiayi Qin
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Wei Wen
- School of Mechanical and Electrical Engineering, Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| |
Collapse
|
74
|
Minghui F, Ran S, Yuxue J, Minjia S. Toxic effects of titanium dioxide nanoparticles on reproduction in mammals. Front Bioeng Biotechnol 2023; 11:1183592. [PMID: 37251560 PMCID: PMC10213439 DOI: 10.3389/fbioe.2023.1183592] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Titanium dioxide nanoparticles (nano-TiO2) are widely used in food, textiles, coatings and personal care products; however, they cause environmental and health concerns. Nano-TiO2 can accumulate in the reproductive organs of mammals in different ways, affect the development of the ovum and sperm, damage reproductive organs and harm the growth and development of offspring. The oxidative stress response in germ cells, irregular cell apoptosis, inflammation, genotoxicity and hormone synthesis disorder are the main mechanisms of nano-TiO2 toxicity. Possible measures to reduce the harmful effects of nano-TiO2 on humans and nontarget organisms have emerged as an underexplored topic requiring further investigation.
Collapse
|
75
|
Paz-Trejo C, Flores-Márquez AR, Gómez-Arroyo S. Nanotechnology in agriculture: a review of genotoxic studies of nanopesticides in animal cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66473-66485. [PMID: 37115444 PMCID: PMC10203029 DOI: 10.1007/s11356-023-26848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/03/2023] [Indexed: 05/25/2023]
Abstract
Agriculture has been and still is one of the most influential primary operations in economic history worldwide. Its social, cultural, and political impact allows the progression and survival of humanity. Sustaining the supply of primary resources is crucial for the future. Therefore, the development of new technologies applied to agrochemicals is growing to obtain better food quality faster. Recently, nanotechnology has gained strength in this field in the last decade, mainly because of the presumed benefits that will carry with it compared with the current commercial presentations, like the decrease of risk in non-target organisms. The harm of pesticides is commonly associated with unwanted effects on human health, some with long-term genotoxic effects. Therefore, it would be relevant to set the existence of a risk or a benefit of the nanopesticides from a genotoxic point of view, comparing against those without this technology. Although some studies are concerned with its genotoxicity in live aquatic organisms, few focus on human in vitro models. Several studies conclude that some of them can induce oxidative stress, leading to DNA damage or cell death. However, there is still much to investigate to establish an accurate and complete assessment. In this review, we aim to give an overview of the genotoxic effect caused by nanopesticides in animal cells and a guide to the evolution of this topic, offering a base and critical review to facilitate future research.
Collapse
Affiliation(s)
- Cynthia Paz-Trejo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Ana Rosa Flores-Márquez
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, México.
| |
Collapse
|
76
|
Turner A, Filella M. The role of titanium dioxide on the behaviour and fate of plastics in the aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161727. [PMID: 36702284 DOI: 10.1016/j.scitotenv.2023.161727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Although titanium dioxide (TiO2) is the most widely used pigment in plastics, there is limited quantitative information available for consumer goods and environmental samples. Moreover, and despite its photocatalytic activity, the potential impacts of TiO2 on the behaviour and fate of environmental plastics has received little attention. This paper compiles measurements of Ti in plastic samples from aquatic environments and in consumer goods that are known to make important contributions to environmental pollution. These data, along with a critical evaluation of experimental studies using TiO2-pigmented plastics, are used to formulate an understanding of how the pigment modifies the properties and persistence of environmental plastics. Titanium is heterogeneously distributed amongst different categories and sources of plastic, with concentrations ranging from <1 mg kg-1 in transparent-translucent materials to over 50,000 mg kg-1 in brightly coloured samples. Concentrations towards the higher end are sufficient to change positively buoyant polyolefins into negatively buoyant plastics, suggesting that environmental fractionation based on Ti content might occur. Accelerated leaching of TiO2 from aged plastic has been demonstrated empirically, and while mobilised particles are reported within a size range greater than biotically-active titania nanoparticles, modelling studies suggest that the latter could be derived from TiO2 pigments in the environment. Although rutile appears to be the most important polymorph of TiO2 in non-fibrous plastics, the degree and type of engineered surface modification in consumer and environmental plastics are generally unknown. Surface modification is likely to have a significant impact on the photo-oxidative degradation of plastics and the mobilisation of fine (and, possibly, nano-sized) TiO2 particles and requires further research.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| | - Montserrat Filella
- Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland
| |
Collapse
|
77
|
Vatankhah A, Aliniaeifard S, Moosavi-Nezhad M, Abdi S, Mokhtarpour Z, Reezi S, Tsaniklidis G, Fanourakis D. Plants exposed to titanium dioxide nanoparticles acquired contrasting photosynthetic and morphological strategies depending on the growing light intensity: a case study in radish. Sci Rep 2023; 13:5873. [PMID: 37041194 PMCID: PMC10090060 DOI: 10.1038/s41598-023-32466-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Due to the photocatalytic property of titanium dioxide (TiO2), its application may be dependent on the growing light environment. In this study, radish plants were cultivated under four light intensities (75, 150, 300, and 600 μmol m-2 s-1 photosynthetic photon flux density, PPFD), and were weekly sprayed (three times in total) with TiO2 nanoparticles at different concentrations (0, 50, and 100 μmol L-1). Based on the obtained results, plants used two contrasting strategies depending on the growing PPFD. In the first strategy, as a result of exposure to high PPFD, plants limited their leaf area and send the biomass towards the underground parts to limit light-absorbing surface area, which was confirmed by thicker leaves (lower specific leaf area). TiO2 further improved the allocation of biomass to the underground parts when plants were exposed to higher PPFDs. In the second strategy, plants dissipated the absorbed light energy into the heat (NPQ) to protect the photosynthetic apparatus from high energy input due to carbohydrate and carotenoid accumulation as a result of exposure to higher PPFDs or TiO2 concentrations. TiO2 nanoparticle application up-regulated photosynthetic functionality under low, while down-regulated it under high PPFD. The best light use efficiency was noted at 300 m-2 s-1 PPFD, while TiO2 nanoparticle spray stimulated light use efficiency at 75 m-2 s-1 PPFD. In conclusion, TiO2 nanoparticle spray promotes plant growth and productivity, and this response is magnified as cultivation light intensity becomes limited.
Collapse
Affiliation(s)
- Akram Vatankhah
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
- Department of Horticulture, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran.
| | - Moein Moosavi-Nezhad
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
- Department of Horticultural Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sahar Abdi
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
| | - Zakieh Mokhtarpour
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, P.O. Box 33916-53755, Tehran, Iran
| | - Saeed Reezi
- Department of Horticulture, Faculty of Agriculture, University of Shahrekord, Shahrekord, Iran
| | - Georgios Tsaniklidis
- Laboratory of Vegetable Crops, Institute of Olive Tree, Subtropical Plants and Viticulture, Hellenic Agricultural Organization 'ELGO DIMITRA', 73100, Chania, Greece
| | - Dimitrios Fanourakis
- Laboratory of Quality and Safety of Agricultural Products, Landscape and Environment, Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Estavromenos, 71004, Heraklion, Greece
| |
Collapse
|
78
|
Pai E, Nayak A, Hallikerimath RB, Ruttonji Z, Astagi P, Pokale S. Comparison of titanium dioxide nanoparticles and silver nanoparticles for flexural strength once incorporated in heat-cure acrylic denture base resin: An in vitro Study. J Indian Prosthodont Soc 2023; 23:127-134. [PMID: 37102537 PMCID: PMC10262090 DOI: 10.4103/jips.jips_354_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 04/28/2023] Open
Abstract
Aim Polymethylmethacrylate (PMMA) resin is the most by and large used denture base material. Denture fractures are sequential to the flexure or impacting forces. Different nanoparticles such as titanium dioxide and silver nanoparticles have been used to improve its antimicrobial properties. There are limited data on their effect on flexural strength. The aim of the study was to assess the effect of silver nanoparticles and titanium dioxide nanoparticles addition on flexural strength of PMMA resins. Settings and Design One hundred and thirty specimens divided into four groups: Control Group A, TiO2-reinforced Group B, silver nanoparticles reinforced Group C, and mixture of TiO2 and silver nanoparticle reinforced Group D. Each reinforced group further divided based on concentrations -0.5%, 1%, 2%, and 3%. Materials and Methods Rectangular metal models of the American Dental Association (ADA)- specified dimensions: 65 mm × 10 mm × 3 mm were used to form a mold space for the fabrication of specimens. Three-point bend test was used to determine the flexural strength of the samples after immersion in distilled water for 2 weeks. Statistical Analysis The data collected were subjected to analysis of variance followed by post hoc Tukey's test. Results The comparison of the mean flexural strengths showed a statistically significant gradual decrease on increasing the concentrations of nanoparticles. Maximal flexural strength was seen in the control group and least with 3% Ag + TiO2 Nps. The modified specimen also showed color changes. Conclusions In an in vitro environment, addition of TiO2 and silver decreases the flexural strength of the PMMA. It also causes visible color changes.
Collapse
Affiliation(s)
- Ektha Pai
- Department of Prosthodontics, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Ajaykumar Nayak
- Department of Prosthodontics, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Rajendra B. Hallikerimath
- Department of Prosthodontics, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Zarir Ruttonji
- Department of Prosthodontics, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Preeti Astagi
- Department of Prosthodontics, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Smita Pokale
- Department of Prosthodontics, Maratha Mandal’s Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| |
Collapse
|
79
|
Hirschbiegel CM, Zhang X, Huang R, Cicek YA, Fedeli S, Rotello VM. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts. Adv Drug Deliv Rev 2023; 195:114730. [PMID: 36791809 PMCID: PMC10170407 DOI: 10.1016/j.addr.2023.114730] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Bioorthogonal transition metal catalysts (TMCs) transform therapeutically inactive molecules (pro-drugs) into active drug compounds. Inorganic nanoscaffolds protect and solubilize catalysts while offering a flexible design space for decoration with targeting elements and stimuli-responsive activity. These "drug factories" can activate pro-drugs in situ, localizing treatment to the disease site and minimizing off-target effects. Inorganic nanoscaffolds provide structurally diverse scaffolds for encapsulating TMCs. This ability to define the catalyst environment can be employed to enhance the stability and selectivity of the TMC, providing access to enzyme-like bioorthogonal processes. The use of inorganic nanomaterials as scaffolds TMCs and the use of these bioorthogonal nanozymes in vitro and in vivo applications will be discussed in this review.
Collapse
Affiliation(s)
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Stefano Fedeli
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
80
|
Kamal Z, Ebnalwaled AA, Al-Amgad Z, Saied AA, Metwally AA, Said AH. Immunomodulatory and antioxidant effect of green synthesized titanium dioxide nanoparticles on pregnant female albino rats and their fetuses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55455-55470. [PMID: 36892697 DOI: 10.1007/s11356-023-26264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the various nanoparticles that have been increasingly commonly used in vital sectors. This study was aimed at evaluating the effects of prenatal exposure to the chemical TiO2 NPs (CHTiO2 NPs) and green-synthesized TiO2 NPs (GTiO2 NPs) on immunological and oxidative status as well as lungs and spleen. Fifty pregnant female albino rats were divided into five groups of ten rats each: control, CHTiO2 NPs-treated groups orally received 100 and 300 mg/kg CHTiO2 NPs, and GTiO2 NPs-treated groups received 100 and 300 mg/kg GTiO2 NPs, respectively, daily for 14 days. The serum level of proinflammatory cytokines IL-6, oxidative stress markers (MDA and NO), and antioxidant biomarkers (SOD and GSH-PX) were assayed. Spleen and lungs were collected from pregnant rats and fetuses for histopathological examinations. The results showed a significant increase in IL-6 levels in treated groups. In the CHTiO2 NPs-treated groups, there was a significant increase in MDA activity and a significant decrease in GSH-Px and SOD activities, revealing its oxidative effect, while GSH-Px and SOD activities significantly increased in the 300 GTiO2 NPs-treated group, confirming the antioxidant effect of green-synthesized TiO2 NPs. Histopathological findings of the spleen and lungs of the CHTiO2 NPs-treated group revealed severe congestion and thickening of the blood vessels, while those of the GTiO2 NPs-treated group revealed mild tissue alterations. It could be deduced that green synthesized titanium dioxide nanoparticles have immunomodulatory and antioxidant effects on pregnant female albino rats and their fetuses, with an ameliorated impact on the spleen and lung compared to chemical titanium dioxide nanoparticles.
Collapse
Affiliation(s)
- Zeinab Kamal
- Zoology Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - A A Ebnalwaled
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Zeinab Al-Amgad
- General Authority for Veterinary Services, Qena Veterinary Directorate, Qena, 83523, Egypt
| | - AbdulRahman A Saied
- National Food Safety Authority (NFSA), Aswan Branch, Aswan, 81511, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, Aswan, 81511, Egypt
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt.
| | - Alaa H Said
- Electronic and Nano Devises Lab, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
81
|
Gomes SIL, Roca CP, Pokhrel S, Mädler L, Scott-Fordsmand JJ, Amorim MJB. TiO 2 nanoparticles' library toxicity (UV and non-UV exposure) - High-throughput in vivo transcriptomics reveals mechanisms. NANOIMPACT 2023; 30:100458. [PMID: 36858316 DOI: 10.1016/j.impact.2023.100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/03/2023]
Abstract
The hazards of nanomaterials/nanoparticles (NMs/NPs) are mostly assessed using individual NMs, and a more systematic approach, using many NMs, is needed to evaluate its risks in the environment. Libraries of NMs, with a range of identified different but related characters/descriptors allow the comparison of effects across many NMs. The effects of a custom designed Fe-doped TiO2 NMs library containing 11 NMs was assessed on the soil model Enchytraeus crypticus (Oligochaeta), both with and without UV (standard fluorescent) radiation. Effects were analyzed at organism (phenotypic, survival and reproduction) and gene expression level (transcriptomics, high-throughput 4x44K microarray) to understand the underlying mechanisms. A total of 48 microarrays (20 test conditions) were done plus controls (UV and non-UV). Unique mechanisms induced by TiO2 NPs exposure included the impairment in RNA processing for TiO2_10nm, or deregulated apoptosis for 2%FeTiO2_10nm. Strikingly apparent was the size dependent effects such as induction of reproductive effects via smaller TiO2 NPs (≤12 nm) - embryo interaction, while larger particles (27 nm) caused reproductive effects through different mechanisms. Also, phagocytosis was affected by 12 and 27 nm NPs, but not by ≤11 nm. The organism level study shows the integrated response, i.e. the result after a cascade of events. While uni-cell models offer key mechanistic information, we here deliver a combined biological system level (phenotype and genotype), seldom available, especially for environmental models.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos P Roca
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, DK-8000, Aarhus, Denmark
| | - Suman Pokhrel
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Lutz Mädler
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
82
|
Wong ASH, Tiong ANT. Thermal and Flow Analysis of TiO 2 Nanofluid Flow in Circular and Square Ducts with Multiple Twisted Tape Inserts. JOURNAL OF NANOFLUIDS 2023. [DOI: 10.1166/jon.2023.1913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A numerical study is conducted to observe the thermal and flow performance of TiO2 nanofluid in the circular and square ducts with different twisted tape arrangements. The presence of the twisted tape in the tube induces swirl flow, which aids in the heat transfer, but at
the penalty of a higher friction factor. The results also reveal that the maximum Nusselt number enhancement is obtained in the circular tube when the counter-triple twisted tape arrangement (C-TTs) is adopted while it is co-triple twisted tape arrangement (Co-TTs) for the case of square duct.
Besides, the highest friction factor is observed for the Co-TTs for both circular and square ducts. The heat transfer and friction factor in the circular duct are greater than that of the square duct. The highest thermal performance factor of 1.286 is obtained when the single twisted tape
and 1.5% nanofluid are used in the circular tube. However, multiple twisted tape inserts in the square duct contributes to improved thermal performance at a relatively lower friction factor when compared to the circular tube. Therefore, it is recommended to implement the square duct with multiple
inserts for compact or microchannel heat exchanger for heat transfer application.
Collapse
Affiliation(s)
- Amelia Shi Hann Wong
- Department of Chemical and Energy Engineering, Curtin Malaysia, CDT 250, 98000, Miri, Sarawak, Malaysia
| | - Angnes Ngieng Tze Tiong
- Department of Chemical and Energy Engineering, Curtin Malaysia, CDT 250, 98000, Miri, Sarawak, Malaysia
| |
Collapse
|
83
|
Marica I, Stefan M, Boca S, Falamaş A, Farcău C. A simple approach for coffee-ring suppression yielding homogeneous drying patterns of ZnO and TiO 2 nanoparticles. J Colloid Interface Sci 2023; 635:117-127. [PMID: 36580694 DOI: 10.1016/j.jcis.2022.12.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Evaporation-induced self-assembly in colloidal droplets is a method for organising nanoparticles on substrates, with various resulting patterns. The coffee-ring pattern is among the most common ones, but its non-uniformity limits its applicability, which led to efforts for developing coffee-ring suppression strategies. Considering the wide applicability of ZnO and TiO2 nanoparticles, there is a high demand for practical means to deposit them as uniform films. Here, we present a simple approach for obtaining highly uniform thin films of ZnO and TiO2 nanoparticles by drop-coating in ambient conditions, without using surfactants or other surface chemistry modifications. Disc-like films were obtained via a restricted evaporation achieved by covering the droplets with a lid during drying, seconded by the relatively high sedimentation rate of these nanoparticles. To better understand the assembly mechanism, the influence of suspension concentration, type and temperature of the substrate, droplet volume, colloid type, and evaporation rate were studied. The method allows preparing disc-like nanoparticle films with a good control over their diameter and thickness, onto different kinds of substrates (glass, Si, polyethylene terephthalate, polystyrene). By fabricating both two-dimensional lattices and custom disc patterns we highlight the versatility of this drop-coating method and its potential for, e.g., automatized serial production processes.
Collapse
Affiliation(s)
- Ioana Marica
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria Stefan
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Sanda Boca
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, 42 T Laurian, 400271 Cluj-Napoca, Romania; Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Alexandra Falamaş
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Cosmin Farcău
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
| |
Collapse
|
84
|
Bietto F, Scardaci R, Brovia M, Kokalari I, Barbero F, Fenoglio I, Pessione E. Food-grade titanium dioxide can affect microbiota physiology, adhesion capability, and interbacterial interactions: A study onL. rhamnosus and E. faecium. Food Chem Toxicol 2023; 176:113760. [PMID: 37028743 DOI: 10.1016/j.fct.2023.113760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Food-grade titanium dioxide (TiO2-FG) is a widespread metal oxide used in the food industries. Recently, the European Food Safety Authority concluded that TiO2-FG cannot be considered safe for consumption due to its genotoxicity; however, its effect on the gut microbiota has not yet been completely unraveled. We studied the effects of TiO2-FG (0.125 mg/mL) on Lactobacillus rhamnosus GG (LGG) and Enterococcus faecium NCIMB10415 (Ent), in particular some physiological and phenotypic traits (growth kinetics, bile salts, and ampicillin resistance) and their interactions with the host (auto-aggregation, biofilm formation, and adhesion on Caco-2/TC7 monolayers) and other gut microorganisms (antimicrobial activity towards pathogens). The results obtained revealed that TiO2-FG alters both LGG and Ent growth and lowers bile resistance (62 and 34.5%, respectively) and adhesion on Caco-2/TC7 monolayers (34.8 and 14.16%, respectively). The other outcomes were strictly species-specific: Ent showed a lower ampicillin sensitivity (14.48%) and auto-aggregation (38.1%), while LGG showed a reduced biofilm formation (37%) and antimicrobial activity towards Staphylococcus aureus (35.73%). Overall, these results suggest an adverse effect of TiO2-FG on both the endogenous and exogenously administered probiotics, contributing to the argument against using TiO2-FG as a food additive.
Collapse
Affiliation(s)
- F Bietto
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - R Scardaci
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - M Brovia
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - I Kokalari
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Torino, Italy.
| | - F Barbero
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Torino, Italy.
| | - I Fenoglio
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Torino, Italy.
| | - E Pessione
- Laboratory of Microbial Biochemistry and Proteomics, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy.
| |
Collapse
|
85
|
Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS APPLIED BIO MATERIALS 2023; 6:1398-1430. [PMID: 36912908 DOI: 10.1021/acsabm.3c00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The diseases caused by microorganisms are innumerable existing on this planet. Nevertheless, increasing antimicrobial resistance has become an urgent global challenge. Thus, in recent decades, bactericidal materials have been considered promising candidates to combat bacterial pathogens. Recently, polyhydroxyalkanoates (PHAs) have been used as green and biodegradable materials in various promising alternative applications, especially in healthcare for antiviral or antiviral purposes. However, it lacks a systematic review of the recent application of this emerging material for antibacterial applications. Therefore, the ultimate goal of this review is to provide a critical review of the state of the art recent development of PHA biopolymers in terms of cutting-edge production technologies as well as promising application fields. In addition, special attention was given to collecting scientific information on antibacterial agents that can potentially be incorporated into PHA materials for biological and durable antimicrobial protection. Furthermore, the current research gaps are declared, and future research perspectives are proposed to better understand the properties of these biopolymers as well as their possible applications.
Collapse
Affiliation(s)
- Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Alireza Saidi
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
86
|
Sallam MF, Ahmed HMS, El-Nekeety AA, Diab KA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. Assessment of the Oxidative Damage and Genotoxicity of Titanium Dioxide Nanoparticles and Exploring the Protective Role of Holy Basil Oil Nanoemulsions in Rats. Biol Trace Elem Res 2023; 201:1301-1316. [PMID: 35416606 PMCID: PMC9898350 DOI: 10.1007/s12011-022-03228-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
This study was designed to evaluate the oxidative damage, genotoxicity, and DNA damage in the liver of rats treated with titanium nanoparticles (TiO2-NPs) with an average size of 28.0 nm and ξ-potential of - 33.97 mV, and to estimate the protective role of holy basil essential oil nanoemulsion (HBEON). Six groups of Male Sprague-Dawley rats were treated orally for 3 weeks as follows: the control group, HBEO or HBEON-treated groups (5 mg/kg b.w), TiO2-NPs-treated group (50 mg/kg b.w), and the groups treated with TiO2-NPs plus HBEO or HBEON. Samples of blood and tissues were collected for different analyses. The results revealed that 55 compounds were identified in HBEO, and linalool and methyl chavicol were the major compounds (53.9%, 12.63%, respectively). HBEON were semi-round with the average size and ζ-potential of 120 ± 4.5 nm and - 28 ± 1.3 mV, respectively. TiO2-NP administration increased the serum biochemical indices, oxidative stress markers, serum cytokines, DNA fragmentation, and DNA breakages; decreased the antioxidant enzymes; and induced histological alterations in the liver. Co-administration of TiO2-NPs plus HBEO or HBEON improved all the tested parameters and the liver histology, and HBEON was more effective than HBEO. Therefore, HEBON is a promising candidate able to protect against oxidative damage, disturbances in biochemical markers, gene expression, DNA damage, and histological changes resulting from exposure to TiO2-NPs and may be applicable in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Mohamed F Sallam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Helmy M S Ahmed
- Toxicology & Pharmacology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Hafiza A Sharaf
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
87
|
Coutinho Almeida-da-Silva CL, Cabido LF, Chin WC, Wang G, Ojcius DM, Li C. Interactions between silica and titanium nanoparticles and oral and gastrointestinal epithelia: Consequences for inflammatory diseases and cancer. Heliyon 2023; 9:e14022. [PMID: 36938417 PMCID: PMC10020104 DOI: 10.1016/j.heliyon.2023.e14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/21/2023] Open
Abstract
Engineered nanoparticles (NPs) composed of elements such as silica and titanium, smaller than 100 nm in diameter and their aggregates, are found in consumer products such as cosmetics, food, antimicrobials and drug delivery systems, and oral health products such as toothpaste and dental materials. They may also interact accidently with epithelial tissues in the intestines and oral cavity, where they can aggregate into larger particles and induce inflammation through pathways such as inflammasome activation. Persistent inflammation can lead to precancerous lesions. Both the particles and lesions are difficult to detect in biopsies, especially in clinical settings that screen large numbers of patients. As diagnosis of early stages of disease can be lifesaving, there is growing interest in better understanding interactions between NPs and epithelium and developing rapid imaging techniques that could detect foreign particles and markers of inflammation in epithelial tissues. NPs can be labelled with fluorescence or radioactive isotopes, but it is challenging to detect unlabeled NPs with conventional imaging techniques. Different current imaging techniques such as synchrotron radiation X-ray fluorescence spectroscopy are discussed here. Improvements in imaging techniques, coupled with the use of machine learning tools, are needed before diagnosis of particles in biopsies by automated imaging could move usefully into the clinic.
Collapse
Affiliation(s)
| | - Leticia Ferreira Cabido
- Department of Oral and Maxillofacial Surgery, University of the Pacific, San Francisco, CA, USA
| | - Wei-Chun Chin
- Department of Bioengineering, University of California, Merced, CA, USA
| | - Ge Wang
- Department of Biomedical Engineering, Biomedical Imaging Center, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, San Francisco, CA, USA
| | - Changqing Li
- Department of Bioengineering, University of California, Merced, CA, USA
| |
Collapse
|
88
|
Alves D, Grainha T, Pereira MO, Lopes SP. Antimicrobial materials for endotracheal tubes: A review on the last two decades of technological progress. Acta Biomater 2023; 158:32-55. [PMID: 36632877 DOI: 10.1016/j.actbio.2023.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Ventilator-associated pneumonia (VAP) is an unresolved problem in nosocomial settings, remaining consistently associated with a lack of treatment, high mortality, and prolonged hospital stay. The endotracheal tube (ETT) is the major culprit for VAP development owing to its early surface microbial colonization and biofilm formation by multiple pathogens, both critical events for VAP pathogenesis and relapses. To combat this matter, gradual research on antimicrobial ETT surface coating/modification approaches has been made. This review provides an overview of the relevance and implications of the ETT bioburden for VAP pathogenesis and how technological research on antimicrobial materials for ETTs has evolved. Firstly, certain main VAP attributes (definition/categorization; outcomes; economic impact) were outlined, highlighting the issues in defining/diagnosing VAP that often difficult VAP early- and late-onset differentiation, and that generate misinterpretations in VAP surveillance and discrepant outcomes. The central role of the ETT microbial colonization and subsequent biofilm formation as fundamental contributors to VAP pathogenesis was then underscored, in parallel with the uncovering of the polymicrobial ecosystem of VAP-related infections. Secondly, the latest technological developments (reported since 2002) on materials able to endow the ETT surface with active antimicrobial and/or passive antifouling properties were annotated, being further subject to critical scrutiny concerning their potentialities and/or constraints in reducing ETT bioburden and the risk of VAP while retaining/improving the safety of use. Taking those gaps/challenges into consideration, we discussed potential avenues that may assist upcoming advances in the field to tackle VAP rampant rates and improve patient care. STATEMENT OF SIGNIFICANCE: The use of the endotracheal tube (ETT) in patients requiring mechanical ventilation is associated with the development of ventilator-associated pneumonia (VAP). Its rapid surface colonization and biofilm formation are critical events for VAP pathogenesis and relapses. This review provides a comprehensive overview on the relevance/implications of the ETT biofilm in VAP, and on how research on antimicrobial ETT surface coating/modification technology has evolved over the last two decades. Despite significant technological advances, the limited number of gathered reports (46), highlights difficulty in overcoming certain hurdles associated with VAP (e.g., persistent colonization/biofilm formation; mechanical ventilation duration; hospital length of stay; VAP occurrence), which makes this an evolving, complex, and challenging matter. Challenges and opportunities in the field are discussed.
Collapse
Affiliation(s)
- Diana Alves
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Tânia Grainha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
89
|
Lehotska Mikusova M, Busova M, Tulinska J, Masanova V, Liskova A, Uhnakova I, Dusinska M, Krivosikova Z, Rollerova E, Alacova R, Wsolova L, Horvathova M, Szabova M, Lukan N, Vecera Z, Coufalik P, Krumal K, Alexa L, Thon V, Piler P, Buchtova M, Vrlikova L, Moravec P, Galanda D, Mikuska P. Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040767. [PMID: 36839135 PMCID: PMC9964099 DOI: 10.3390/nano13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/30/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.
Collapse
Affiliation(s)
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Jana Tulinska
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Moravec
- Aerosol Chemistry and Physics Research Group, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, 165 00 Prague, Czech Republic
| | - Dusan Galanda
- Public Health Authority of the Slovak Republic, Radiation Protection Department, 82645 Bratislava, Slovakia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
90
|
Krishnasamy Sekar R, Arunachalam R, Anbazhagan M, Palaniyappan S, Veeran S, Sridhar A, Ramasamy T. Accumulation, Chronicity, and Induction of Oxidative Stress Regulating Genes Through Allium cepa L. Functionalized Silver Nanoparticles in Freshwater Common Carp (Cyprinus carpio). Biol Trace Elem Res 2023; 201:904-925. [PMID: 35199287 DOI: 10.1007/s12011-022-03164-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/14/2022] [Indexed: 01/21/2023]
Abstract
Green evolutionary products such as biologically fabricated nanoparticles (NPs) pose a hazard to aquatic creatures. Herein, biogenic silver nanoparticles (AgNPs) were synthesized by the reaction between ionic silver (AgNO3) and aqueous onion peel extract (Allium cepa L). The synthesized biogenic AgNPs were characterized with UV-Visible spectrophotometer, XRD, FT-IR, and TEM with EDS analysis; then, their toxicity was assessed on common carp fish (Cyprinus carpio) using biomarkers of haematological alterations, oxidative stress, histological changes, differential gene expression patterns, and bioaccumulation. The 96 h lethal toxicity was analysed with various concentrations (2, 4, 6, 8, and 10 mg/l) of biogenic AgNPs. Based on 96 h LC50, sublethal concentrations (1/15th, 1/10th, and 1/5th) were given to C. carpio for 28 days. At the end of experiment, the bioaccumulations of Ag content were accumulated mainly in the gills, followed by the liver and muscle. At an interval of 7 days, the haematological alterations showed significance (p < 0.05) and elevation of antioxidant defence mechanism reveals the toxicity of biogenic synthesized AgNPs. Adverse effects on oxidative stress were probably related to the histopathological damage of its vital organs like gill, liver, and muscle. Finally, the fish treated with biogenic synthesized AgNPs were significantly (p < 0.05) downregulates the oxidative stress genes such as Cu-Zn SOD, CAT, GPx1a, GST-α, CYP1A, and Nrf-2 expression patterns. The present study provides evidence of biogenic synthesized AgNPs influence on the aquatic life through induction of oxidative stress.
Collapse
Affiliation(s)
- Rajkumar Krishnasamy Sekar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Ramkumar Arunachalam
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
| | - Murugadas Anbazhagan
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India
- Department of Pediatrics, School of Medicine, Emory University, GA, 30322, Atlanta, USA
| | - Sivagaami Palaniyappan
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Srinivasan Veeran
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
| | - Arun Sridhar
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics & Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620 024, India.
- UGC-National Centre for Alternatives to Animal Experiments, Bharathidasan University, Tamil Nadu, 620 024, Tiruchirappalli, India.
| |
Collapse
|
91
|
Ferrante M, Grasso A, Salemi R, Libra M, Tomasello B, Fiore M, Copat C. DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO 2-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032002. [PMID: 36767368 PMCID: PMC9915631 DOI: 10.3390/ijerph20032002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
This study investigated the DNA damage and apoptosis in colon cancer cells HCT-116 and Caco-2 induced by engineered titanium dioxide nanoparticles (TiO2-NPs) (60 nm) and titanium dioxide food additive E171. MTT assays showed that both chemical forms significantly reduced cancer cell viability in a dose-dependent manner. In particular the food additive E171 induced a pronounced inhibitory effect on the growth of HCT-116 and Caco-2 cell lines (E171 IC50: 3.45 mg/L for HTC-116 and 1.88 mg/L Caco-2; TiO2-NPs 60 nm IC50: 41.1 mg/L for HTC-116 and 14.3 mg/L for Caco-2). A low level of genotoxicity was observed in Caco-2 cells, especially when treated with TiO2 60 nm. Western blot analysis showed that HCT116 and Caco-2 treated cells did not overexpress apoptotic markers such as cleaved Caspase 3 and cleaved Parp. Moreover, further analysis by quantitative real-time PCR (qRT-PCR) showed that TiO2-NPs and E171 did not promote the expression of Bax or downregulation of Bcl-2, nor did they increase the Bax/Bcl-2 ratio. The assay data provide clear evidence that TiO2 can cause DNA damage but does not induce apoptosis or decrease long-term cell proliferation. In addition, the results show that E171 has a slightly higher level of cytotoxicity and genotoxicity. This suggests that exposure to E171 may be hazardous to health and that further research on biological effects is needed to promote safer practices in the use of this compound.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 83, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 83, 95123 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug Science, University of Catania, 95125 Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| |
Collapse
|
92
|
Ranpara A, LeBouf RF, Nurkiewicz TR, Yi J, Cumpston JL, Stefaniak AB. Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:1-22. [PMID: 36444639 PMCID: PMC10663951 DOI: 10.1080/15287394.2022.2150730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The measurement of fine (diameter: 100 nanometers-2.5 micrometers) and ultrafine (UF: < 100 nanometers) titanium dioxide (TiO2) particles is instrument dependent. Differences in measurements exist between toxicological and field investigations for the same exposure metric such as mass, number, or surface area because of variations in instruments used, operating parameters, or particle-size measurement ranges. Without appropriate comparison, instrument measurements create a disconnect between toxicological and field investigations for a given exposure metric. Our objective was to compare a variety of instruments including multiple metrics including mass, number, and surface area (SA) concentrations for assessing different concentrations of separately aerosolized fine and UF TiO2 particles. The instruments studied were (1) DustTrak™ DRX, (2) personal DataRAMs™ (PDR), (3) GRIMMTM, and (4) diffusion charger (DC). Two devices of each field-study instrument (DRX, PDR, GRIMM, and DC) were used to measure various metrics while adjusting for gravimetric mass concentrations of fine and UF TiO2 particles in controlled chamber tests. An analysis of variance (ANOVA) was used to apportion the variance to inter-instrument (between different instrument-types), inter-device (within instrument), and intra-device components. Performance of each instrument-device was calculated using root mean squared error compared to reference methods: close-faced cassette and gravimetric analysis for mass and scanning mobility particle sizer (SMPS) real-time monitoring for number and SA concentrations. Generally, inter-instrument variability accounted for the greatest (62.6% or more) source of variance for mass, and SA-based concentrations of fine and UF TiO2 particles. However, higher intra-device variability (53.7%) was observed for number concentrations measurements with fine particles compared to inter-instrument variability (40.8%). Inter-device variance range(0.5-5.5%) was similar for all exposure metrics. DRX performed better in measuring mass closer to gravimetric than PDRs for fine and UF TiO2. Number concentrations measured by GRIMMs and SA measurements by DCs were considerably (40.8-86.9%) different from the reference (SMPS) method for comparable size ranges of fine and UF TiO2. This information may serve to aid in interpreting assessments in risk models, epidemiologic studies, and development of occupational exposure limits, relating to health effect endpoints identified in toxicological studies considering similar instruments evaluated in this study.
Collapse
Affiliation(s)
- Anand Ranpara
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ryan F. LeBouf
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jinghai Yi
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jared L. Cumpston
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B. Stefaniak
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
93
|
Fu M, Wang C, Hong S, Guan X, Meng H, Feng Y, Xiao Y, Zhou Y, Liu C, Zhong G, You Y, Wu T, Yang H, Zhang X, He M, Guo H. Multiple metals exposure and blood mitochondrial DNA copy number: A cross-sectional study from the Dongfeng-Tongji cohort. ENVIRONMENTAL RESEARCH 2023; 216:114509. [PMID: 36208786 DOI: 10.1016/j.envres.2022.114509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Mitochondria are essential organelles that execute fundamental biological processes, while mitochondrial DNA is vulnerable to environmental insults. The aim of this study was to investigate the individual and mixture effect of plasma metals on blood mitochondria DNA copy number (mtDNAcn). METHODS This study involved 1399 randomly selected subcohort participants from the Dongfeng-Tongji cohort. The blood mtDNAcn and plasma levels of 23 metals were determined by using quantitative real-time polymerase chain reaction (qPCR) and inductively coupled plasma mass spectrometer (ICP-MS), respectively. The multiple linear regression was used to explore the association between each metal and mtDNAcn, and the LASSO penalized regression was performed to select the most significant metals. We also used the quantile g-computation analysis to assess the mixture effect of multiple metals. RESULTS Based on multiple linear regression models, each 1% increase in plasma concentration of copper (Cu), rubidium (Rb), and titanium (Ti) was associated with a separate 0.16% [β(95% CI) = 0.158 (0.066, 0.249), P = 0.001], 0.20% [β(95% CI) = 0.196 (0.073, 0.318), P = 0.002], and 0.25% [β(95% CI) = 0.245 (0.081, 0.409), P = 0.003] increase in blood mtDNAcn. The LASSO regression also confirmed Cu, Rb, and Ti as significant predictors for mtDNAcn. There was a significant mixture effect of multiple metals on increasing mtDNAcn among the elder participants (aged ≥65), with an approximately 11% increase in mtDNAcn for each quartile increase in all metal concentrations [β(95% CI) = 0.146 (0.048, 0.243), P = 0.004]. CONCLUSIONS Our results show that plasma Cu, Rb and Ti were associated with increased blood mtDNA, and we further revealed a significant mixture effect of all metals on mtDNAcn among elder population. These findings may provide a novel perspective on the effect of metals on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Meng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Feng
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Dongfeng Motor Corporation and Hubei University of Medicine, Shiyan, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
94
|
Mohammadparast V, Mallard BL. The effect and underlying mechanisms of titanium dioxide nanoparticles on glucose homeostasis: A literature review. J Appl Toxicol 2023; 43:22-31. [PMID: 35287244 PMCID: PMC10078690 DOI: 10.1002/jat.4318] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Titanium dioxide (TiO2 ) is used extensively as a white pigment in the food industry, personal care, and a variety of products of everyday use. Although TiO2 has been categorized as a bioinert material, recent evidence has demonstrated different toxicity profiles of TiO2 nanoparticles (NPs) and a potential health risk to humans. Studies indicated that titanium dioxide enters the systemic circulation and accumulates in the lungs, liver, kidneys, spleen, heart, and central nervous system and may cause oxidative stress and tissue damage in these vital organs. Recently, some studies have raised concerns about the possible detrimental effects of TiO2 NPs on glucose homeostasis. However, the findings should be interpreted with caution due to the methodological issues. This article aims to evaluate current evidence regarding the effects of TiO2 NPs on glucose homeostasis, including possible underlying mechanisms. Furthermore, the limitations of current studies are discussed, which may provide a comprehensive understanding and new perspectives for future studies in this field.
Collapse
Affiliation(s)
| | - Beth L Mallard
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
95
|
Environmental Health and Safety of Engineered Nanomaterials. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
96
|
Pourmasoumi P, Moghaddam A, Nemati Mahand S, Heidari F, Salehi Moghaddam Z, Arjmand M, Kühnert I, Kruppke B, Wiesmann HP, Khonakdar HA. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:108-146. [PMID: 35924585 DOI: 10.1080/09205063.2022.2110480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Four-dimensional (4 D) printing is a novel emerging technology, which can be defined as the ability of 3 D printed materials to change their form and functions. The term 'time' is added to 3 D printing as the fourth dimension, in which materials can respond to a stimulus after finishing the manufacturing process. 4 D printing provides more versatility in terms of size, shape, and structure after printing the construct. Complex material programmability, multi-material printing, and precise structure design are the essential requirements of 4 D printing systems. The utilization of stimuli-responsive polymers has increasingly taken the place of cell traction force-dependent methods and manual folding, offering a more advanced technique to affect a construct's adjusted shape transformation. The present review highlights the concept of 4 D printing and the responsive bioinks used in 4 D printing, such as water-responsive, pH-responsive, thermo-responsive, and light-responsive materials used in tissue regeneration. Cell traction force methods are described as well. Finally, this paper aims to introduce the limitations and future trends of 4 D printing in biomedical applications based on selected key references from the last decade.
Collapse
Affiliation(s)
| | | | | | - Fatemeh Heidari
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Ines Kühnert
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hans-Peter Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.,Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| |
Collapse
|
97
|
Jiang Y, Wei Y, Guo W, Du J, Jiang T, Ma H, Jin G, Chen T, Qin R, Tao S, Lu Q, Lv H, Han X, Zhou K, Xu B, Li Z, Li M, Lin Y, Xia Y, Hu Z. Prenatal titanium exposure and child neurodevelopment at 1 year of age: A longitudinal prospective birth cohort study. CHEMOSPHERE 2023; 311:137034. [PMID: 36342025 DOI: 10.1016/j.chemosphere.2022.137034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Previous animal studies provided the evidence that prenatal titanium exposure can cause neurotoxicity in their offspring, while human data is vacant. Our aim was to identify the associations of prenatal titanium exposure with the child neurodevelopment. Participants in present study were recruited during early pregnancy between 2014 and 2017. Urinary concentrations of titanium at first trimester were determined. We assessed child neurodevelopment using the Chinese version of Gesell Developmental Schedules at first year follow-up. The multivariable linear regressions and the robust modified Poisson regressions were used to estimate the associations of specific gravity corrected urinary titanium concentrations with the child neurodevelopment. In adjusted models, children's developmental quotient scores in the language domain were 2.03 points (95% CI: -3.66, -0.40) lower in the highest tertile of prenatal urinary titanium than in the lowest tertile. Also, children with prenatal urinary titanium in the highest tertile had 1.42 times (95% CI: 1.17, 1.72) increased risk of language development delay compared to those in the lowest tertile. No statistically significant associations were observed between titanium exposure and child development delay in motor, adaptive and social areas. The findings indicated that prenatal higher titanium exposure was associated with impaired language development, suggesting that titanium might act as developmental neurotoxicants.
Collapse
Affiliation(s)
- Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Ting Chen
- Department of Science and Technology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| |
Collapse
|
98
|
Yi YJ, Dhandole LK, Seo DW, Lee SM, Jang JS. Inactivation of mammalian spermatozoa on the exposure of TiO 2 nanorods deposited with noble metals. J Anal Sci Technol 2023; 14:7. [PMID: 36718385 PMCID: PMC9879248 DOI: 10.1186/s40543-022-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Titanium dioxide (TiO2) nanorods (NRs) are well-known semiconducting and catalytic material that has been widely applied, but their toxicities have also attracted recent interest. In this study, we investigated and compared the toxic effects of TiO2 NRs and TiO2 NRs loaded with Ag or Au NPs on boar spermatozoa. As a result, sperm incubated with Ag-TiO2 NRs showed lower motility than sperm incubated with controls (with or without TiO2 NRs) or Au-TiO2 NRs. In addition, sperm viability and acrosomal integrity were defective in the presence of Ag-TiO2 NRs, and the generation of intracellular reactive oxygen species (ROS) increased significantly when spermatozoa were incubated with 20 μg/ml Ag-TiO2 NRs. We discussed in depth the charge transfer mechanism between enzymatic NADPH and Ag-TiO2 NRs in the context of ROS generation in spermatozoa. The effects we observed reflected the fertilization competence of sperm incubated with Ag-TiO2 NRs; specifically sperm penetration and embryonic development rates by in vitro fertilization were reduced by Ag-TiO2 NRs. To summarize, our findings indicate that exposure to Ag-TiO2 NRs could affect male fertilization fecundity and caution that care be exercised when using these NRs.
Collapse
Affiliation(s)
- Young-Joo Yi
- grid.412871.90000 0000 8543 5345Department of Agricultural Education, College of Education, Sunchon National University, 255 Jungang-Ro, Suncheon, 57922 Republic of Korea
| | - Love Kumar Dhandole
- grid.411545.00000 0004 0470 4320Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, 79 Gobong-Ro, Iksan, 54596 Jeonbuk Republic of Korea
| | - Dong-Won Seo
- Department of Vaccine Development, Gyeongbuk Institute for Bio Industry, Andong, 36618 Republic of Korea
| | - Sang-Myeong Lee
- grid.254229.a0000 0000 9611 0917Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Jum Suk Jang
- grid.411545.00000 0004 0470 4320Division of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, 79 Gobong-Ro, Iksan, 54596 Jeonbuk Republic of Korea
| |
Collapse
|
99
|
Man F, Tang J, Swedrowska M, Forbes B, T M de Rosales R. Imaging drug delivery to the lungs: Methods and applications in oncology. Adv Drug Deliv Rev 2023; 192:114641. [PMID: 36509173 PMCID: PMC10227194 DOI: 10.1016/j.addr.2022.114641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022]
Abstract
Direct delivery to the lung via inhalation is arguably one of the most logical approaches to treat lung cancer using drugs. However, despite significant efforts and investment in this area, this strategy has not progressed in clinical trials. Imaging drug delivery is a powerful tool to understand and develop novel drug delivery strategies. In this review we focus on imaging studies of drug delivery by the inhalation route, to provide a broad overview of the field to date and attempt to better understand the complexities of this route of administration and the significant barriers that it faces, as well as its advantages. We start with a discussion of the specific challenges for drug delivery to the lung via inhalation. We focus on the barriers that have prevented progress of this approach in oncology, as well as the most recent developments in this area. This is followed by a comprehensive overview of the different imaging modalities that are relevant to lung drug delivery, including nuclear imaging, X-ray imaging, magnetic resonance imaging, optical imaging and mass spectrometry imaging. For each of these modalities, examples from the literature where these techniques have been explored are provided. Finally the different applications of these technologies in oncology are discussed, focusing separately on small molecules and nanomedicines. We hope that this comprehensive review will be informative to the field and will guide the future preclinical and clinical development of this promising drug delivery strategy to maximise its therapeutic potential.
Collapse
Affiliation(s)
- Francis Man
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Jie Tang
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Magda Swedrowska
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Ben Forbes
- School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, United Kingdom
| | - Rafael T M de Rosales
- School of Biomedical Engineering & Imaging Sciences, King's College London, London SE1 7EH, United Kingdom.
| |
Collapse
|
100
|
Mechanical properties and corrosion behaviour of duplex stainless steel weldment using novel electrodes. Sci Rep 2022; 12:22405. [PMID: 36575290 PMCID: PMC9794832 DOI: 10.1038/s41598-022-26974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Mechanical and corrosion properties of welded duplex stainless steel (DSS) structures are of paramount consideration in many engineering applications. The current research investigates the mechanical properties and corrosion integrity of duplex stainless-steel weldment in a simulated 3.5% NaCl environment using specially developed novel electrodes without the addition of alloying elements to the flux samples. Two different types of fluxes having basicity indexes of 2.40 and 0.40 were used to coat E1 and E2 electrodes respectively for DSS plate welding. The thermal stability of the formulated flux was evaluated using thermogravimetric analysis. The chemical composition, using optical emission spectroscopy, and the mechanical and corrosion properties of the welded joints were evaluated as per different ASTM standards. X-ray diffraction was used to find out the phases present in the DSS welded joints while a scanning electron equipped with EDS was used for microstructural examination of the weldments. The ultimate tensile strength of welded joints made using the E1 electrode was in the range of 715-732 MPa and that of the E2 electrode was found to be 606-687 MPa. The hardness was increased with increased welding current from 90 to 110 A. The welded joint with E1 electrode coated with basic flux has better mechanical properties. The steel structure in 3.5% NaCl environment possesses substantial resistance to corrosion attack. This validates the performance of the welded joints made by the newly developed electrode. The results are discussed on the basis of the depletion of alloying elements such as Cr and Mo observed from the weldments with the coated electrodes E1 and E2 as well as precipitation of the Cr2N in the welded joints made by E1 and E2 electrodes.
Collapse
|