51
|
Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, Flores-Lamas C, Fernández-de la Rosa R, García-García L, Gómez-Oliver F, Ruiz-Albusac JM, Pozo MÁ. Effects of chronic treatment with metformin on brain glucose hypometabolism and central insulin actions in transgenic mice with tauopathy. Heliyon 2024; 10:e35752. [PMID: 39170185 PMCID: PMC11337050 DOI: 10.1016/j.heliyon.2024.e35752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Brain glucose hypometabolism and insulin alterations are common features of many neurological diseases. Herein we sought to corroborate the brain glucose hypometabolism that develops with ageing in 12-months old Tau-VLW transgenic mice, a model of tauopathy, as well as to determine whether this model showed signs of altered peripheral glucose metabolism. Our results demonstrated that 12-old months Tau mice exhibited brain glucose hypometabolism as well as basal hyperglycemia, impaired glucose tolerance, hyperinsulinemia, and signs of insulin resistance. Then, we further studied the effect of chronic metformin treatment (9 months) in Tau-VLW mice from 9 to 18 months of age. Longitudinal PET neuroimaging studies revealed that chronic metformin altered the temporal profile in the progression of brain glucose hypometabolism associated with ageing. Besides, metformin altered the content and/or phosphorylation of key components of the insulin signal transduction pathway in the frontal cortex leading to significant changes in the content of the active forms. Thus, metformin increased the expression of pAKT-Y474 while reducing pmTOR-S2448 and pGSK3β. These changes might be related, at least partially, to a slow progression of ageing, neurological damage, and cognitive decline. Metformin also improved the peripheral glucose tolerance and the ability of the Tau-VLW mice to maintain their body weight through ageing. Altogether our study shows that the tau-VLW mice could be a useful model to study the potential interrelationship between tauopathy and central and peripheral glucose metabolism alterations. More importantly our results suggest that chronic metformin treatment may have direct beneficial central effects by post-transcriptional modulation of key components of the insulin signal transduction pathway.
Collapse
Affiliation(s)
| | - Yannick LeBaut-Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Cinthya Flores-Lamas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Luis García-García
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Francisca Gómez-Oliver
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Miguel Ángel Pozo
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
| |
Collapse
|
52
|
Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming. Science 2024; 385:adl2992. [PMID: 39088624 PMCID: PMC11787906 DOI: 10.1126/science.adl2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aβ-dependent neurodegeneration, and treatment with β- or γ-secretase inhibitors before (but not subsequent to) Aβ deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aβ deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Computational and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Yudong Ren
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Courtney K. Walker
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Molecular Genetics and Genomics, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - Clarissa Valdez
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Henry Houlden
- UCL Institute of Neurology; Queen Square, London, WC1N 3BG, UK
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Randall J. Bateman
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Chihiro Sato
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Steven J. Mennerick
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School; Charlestown, Massachusetts, 02129, USA
| | - David M. Holtzman
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Andrew S. Yoo
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
53
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
54
|
García-Cruz VM, Arias C. Palmitic Acid Induces Posttranslational Modifications of Tau Protein in Alzheimer's Disease-Related Epitopes and Increases Intraneuronal Tau Levels. Mol Neurobiol 2024; 61:5129-5141. [PMID: 38167971 PMCID: PMC11249523 DOI: 10.1007/s12035-023-03886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Metabolic diseases derived from an unhealthy lifestyle have been linked with an increased risk for developing cognitive impairment and even Alzheimer's disease (AD). Although high consumption of saturated fatty acids such as palmitic acid (PA) has been associated with the development of obesity and type II diabetes, the mechanisms connecting elevated neuronal PA levels and increased AD marker expression remain unclear. Among other effects, PA induces insulin resistance, increases intracellular calcium and reactive oxygen species (ROS) production, and reduces the NAD+/NADH ratio, resulting in decreased activity of the deacetylase Sirtuin1 (SIRT1) in neurons. These mechanisms may affect signaling pathways that impact the posttranslational modifications (PTMs) of the tau protein. To analyze the role played by PA in inducing the phosphorylation and acetylation of tau, we examined PTM changes in human tau in differentiated neurons from human neuroblastoma cells. We found changes in the phosphorylation state of several AD-related sites, namely, S199/202 and S214, that were mediated by a mechanism associated with the dysregulated activity of the kinases GSK3β and mTOR. PA also increased the acetylation of residue K280 and elevated total tau level after long exposure time. These findings provide information about the mechanisms by which saturated fatty acids cause tau PTMs that are similar to those observed in association with AD biochemical changes.
Collapse
Affiliation(s)
- Valeria Melissa García-Cruz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, 04510, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, 04510, México.
| |
Collapse
|
55
|
Lantero-Rodriguez J, Camporesi E, Montoliu-Gaya L, Gobom J, Piotrowska D, Olsson M, Burmann IM, Becker B, Brinkmalm A, Burmann BM, Perkinton M, Ashton NJ, Fox NC, Lashley T, Zetterberg H, Blennow K, Brinkmalm G. Tau protein profiling in tauopathies: a human brain study. Mol Neurodegener 2024; 19:54. [PMID: 39026372 PMCID: PMC11264707 DOI: 10.1186/s13024-024-00741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Abnormal accumulation of misfolded and hyperphosphorylated tau protein in brain is the defining feature of several neurodegenerative diseases called tauopathies, including Alzheimer's disease (AD). In AD, this pathological change is reflected by highly specific cerebrospinal fluid (CSF) tau biomarkers, including both phosphorylated and non-phosphorylated variants. Interestingly, despite tau pathology being at the core of all tauopathies, CSF tau biomarkers remain unchanged in certain tauopathies, e.g., progressive supranuclear palsy (PSP), Pick's disease (PiD), and corticobasal neurodegeneration (CBD). To better understand commonalities and differences between tauopathies, we report a multiplex assay combining immunoprecipitation and high-resolution mass spectrometry capable of detecting and quantifying peptides from different tau protein isoforms as well as non-phosphorylated and phosphorylated peptides, including those carrying multiple phosphorylations. We investigated the tau proteoforms in soluble and insoluble fractions of brain tissue from subjects with autopsy-confirmed tauopathies, including sporadic AD (n = 10), PSP (n = 11), PiD (n = 10), and CBD (n = 10), and controls (n = 10). Our results demonstrate that non-phosphorylated tau profiles differ across tauopathies, generally showing high abundance of microtubule-binding region (MTBR)-containing peptides in insoluble protein fractions compared with controls; the AD group showed 12-72 times higher levels of MTBR-containing aggregates. Quantification of tau isoforms showed the 3R being more abundant in PiD and the 4R isoform being more abundant in CBD and PSP in the insoluble fraction. Twenty-three different phosphorylated peptides were quantified. Most phosphorylated peptides were measurable in all investigated tauopathies. All phosphorylated peptides were significantly increased in AD insoluble fraction. However, doubly and triply phosphorylated peptides were significantly increased in AD even in the soluble fraction. Results were replicated using a validation cohort comprising AD (n = 10), CBD (n = 10), and controls (n = 10). Our study demonstrates that abnormal levels of phosphorylation and aggregation do indeed occur in non-AD tauopathies, however, both appear pronouncedly increased in AD, becoming a distinctive characteristic of AD pathology.
Collapse
Affiliation(s)
- Juan Lantero-Rodriguez
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Elena Camporesi
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Laia Montoliu-Gaya
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Diana Piotrowska
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Maria Olsson
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Irena Matečko Burmann
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Michael Perkinton
- AstraZeneca Neuroscience Innovative Medicines, MedImmune Ltd, Cambridge, CB21 6GH, UK
| | - Nicholas J Ashton
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, Maurice, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry & Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
| |
Collapse
|
56
|
Roemer SN, Brendel M, Gnörich J, Malpetti M, Zaganjori M, Quattrone A, Gross M, Steward A, Dewenter A, Wagner F, Dehsarvi A, Ferschmann C, Wall S, Palleis C, Rauchmann BS, Katzdobler S, Jäck A, Stockbauer A, Fietzek UM, Bernhardt AM, Weidinger E, Zwergal A, Stöcklein S, Perneczky R, Barthel H, Sabri O, Levin J, Höglinger GU, Franzmeier N. Subcortical tau is linked to hypoperfusion in connected cortical regions in 4-repeat tauopathies. Brain 2024; 147:2428-2439. [PMID: 38842726 DOI: 10.1093/brain/awae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024] Open
Abstract
Four-repeat (4R) tauopathies are neurodegenerative diseases characterized by cerebral accumulation of 4R tau pathology. The most prominent 4R tauopathies are progressive supranuclear palsy (PSP) and corticobasal degeneration characterized by subcortical tau accumulation and cortical neuronal dysfunction, as shown by PET-assessed hypoperfusion and glucose hypometabolism. Yet, there is a spatial mismatch between subcortical tau deposition patterns and cortical neuronal dysfunction, and it is unclear how these two pathological brain changes are interrelated. Here, we hypothesized that subcortical tau pathology induces remote neuronal dysfunction in functionally connected cortical regions to test a pathophysiological model that mechanistically links subcortical tau accumulation to cortical neuronal dysfunction in 4R tauopathies. We included 51 Aβ-negative patients with clinically diagnosed PSP variants (n = 26) or corticobasal syndrome (n = 25) who underwent structural MRI and 18F-PI-2620 tau-PET. 18F-PI-2620 tau-PET was recorded using a dynamic one-stop-shop acquisition protocol to determine an early 0.5-2.5 min post tracer-injection perfusion window for assessing cortical neuronal dysfunction, as well as a 20-40 min post tracer-injection window to determine 4R-tau load. Perfusion-PET (i.e. early window) was assessed in 200 cortical regions, and tau-PET was assessed in 32 subcortical regions of established functional brain atlases. We determined tau epicentres as subcortical regions with the highest 18F-PI-2620 tau-PET signal and assessed the connectivity of tau epicentres to cortical regions of interest using a resting-state functional MRI-based functional connectivity template derived from 69 healthy elderly controls from the ADNI cohort. Using linear regression, we assessed whether: (i) higher subcortical tau-PET was associated with reduced cortical perfusion; and (ii) cortical perfusion reductions were observed preferentially in regions closely connected to subcortical tau epicentres. As hypothesized, higher subcortical tau-PET was associated with overall lower cortical perfusion, which remained consistent when controlling for cortical tau-PET. Using group-average and subject-level PET data, we found that the seed-based connectivity pattern of subcortical tau epicentres aligned with cortical perfusion patterns, where cortical regions that were more closely connected to the tau epicentre showed lower perfusion. Together, subcortical tau-accumulation is associated with remote perfusion reductions indicative of neuronal dysfunction in functionally connected cortical regions in 4R-tauopathies. This suggests that subcortical tau pathology may induce cortical dysfunction, which may contribute to clinical disease manifestation and clinical heterogeneity.
Collapse
Affiliation(s)
- Sebastian N Roemer
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Andrea Quattrone
- Institute of Neurology, Magna Graecia University, 88100 Catanzaro, Italy
| | - Mattes Gross
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Christian Ferschmann
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stephan Wall
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Boris S Rauchmann
- Department of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander Jäck
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Stockbauer
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Urban M Fietzek
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Alexander M Bernhardt
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Endy Weidinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Vertigo and Balance Disorders (DSGZ), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sophia Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London SW7 2BX, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK
| | - Henryk Barthel
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital of Leipzig, 04103 Leipzig, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, SE 413 90 Mölndal and Gothenburg, Sweden
| |
Collapse
|
57
|
Boucher ML, Conley G, Morriss NJ, Ospina-Mora S, Qiu J, Mannix R, Meehan WP. Time-Dependent Long-Term Effect of Memantine following Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:e1736-e1758. [PMID: 38666723 DOI: 10.1089/neu.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI, e.g., sports concussions) may be associated with both acute and chronic symptoms and neurological changes. Despite the common occurrence of these injuries, therapeutic strategies are limited. One potentially promising approach is N-methyl-D-aspartate receptor (NMDAR) blockade to alleviate the effects of post-injury glutamatergic excitotoxicity. Initial pre-clinical work using the NMDAR antagonist, memantine, suggests that immediate treatment following rmTBI improves a variety of acute outcomes. It remains unclear (1) whether acute memantine treatment has long-term benefits and (2) whether delayed treatment following rmTBI is beneficial, which are both clinically relevant concerns. To test this, animals were subjected to rmTBI via a weight drop model with rotational acceleration (five hits in 5 days) and randomized to memantine treatment immediately, 3 months, or 6 months post-injury, with a treatment duration of one month. Behavioral outcomes were assessed at 1, 4, and 7 months post-injury. Neuropathological outcomes were characterized at 7 months post-injury. We observed chronic changes in behavior (anxiety-like behavior, motor coordination, spatial learning, and memory), as well as neuroinflammation (microglia, astrocytes) and tau phosphorylation (T231). Memantine treatment, either immediately or 6 months post-injury, appears to confer greater rescue of neuroinflammatory changes (microglia) than vehicle or treatment at the 3-month time point. Although memantine is already being prescribed chronically to address persistent symptoms associated with rmTBI, this study represents the first evidence of which we are aware to suggest a small but durable effect of memantine treatment in mild, concussive injuries. This effect suggests that memantine, although potentially beneficial, is insufficient to treat all aspects of rmTBI alone and should be combined with other therapeutic agents in a multi-therapy approach, with attention given to the timing of treatment.
Collapse
Affiliation(s)
- Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Nicholas J Morriss
- University of Rochester School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
58
|
Nouh CD, Younes K. Diagnosis and Management of Progressive Corticobasal Syndrome. Curr Treat Options Neurol 2024; 26:319-338. [PMID: 39886562 PMCID: PMC11781596 DOI: 10.1007/s11940-024-00797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 02/01/2025]
Abstract
Purpose of review The purpose of this review is to discuss the clinical, radiological, and neuropathological heterogeneity of corticobasal syndrome (CBS), which can complicate the determination of underlying etiology and lead to inaccurate treatment decisions. Though the most common diagnosis is corticobasal degeneration (CBD), the spectrum of underlying pathologies expands beyond CBD and can overlap with other neurodegenerative diseases and even the neuroimmunology field. We will review possible clinical presentations and cues that can point towards the etiology. We will also discuss the most recent available biomarkers to facilitate a more accurate diagnosis. Additionally, we will examine current and future potential therapeutic options. Recent findings The range of available fluid and neuroimaging biomarkers is increasing and some are already being used in clinical practice. While the treatment of neurodegenerative diseases is largely aimed at managing symptoms, early detection and accurate diagnosis are crucial for initiating early management and enrollment in clinical trials. The recent approval of a disease-modifying therapy for Alzheimer's disease (AD) has raised hopes for the development of more therapeutic options for other proteinopathies. Several candidates are currently being studied in clinical trial pipelines, particularly those targeting tau pathology. Summary Recent advancements in understanding the genetic and neuropathological diversity of CBS, along with the promising development of fluid and imaging biomarkers, are driving clinical trial research forward, instilling optimism for creating more effective disease-modifying treatments for brain proteinopathies.
Collapse
Affiliation(s)
- Claire Delpirou Nouh
- Department of Neurology, Division of Behavioral Neurology, Stanford Neuroscience Health Center, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Kyan Younes
- Department of Neurology, Division of Behavioral Neurology, Stanford Neuroscience Health Center, 453 Quarry Road, Palo Alto, CA 94304, USA
| |
Collapse
|
59
|
Dellarole IL, Vacchi E, Ruiz-Barrio I, Pinton S, Raimondi A, Rossi S, Morandi S, Bianco G, Begum Bacinoglu M, Lombardo A, Celauro L, Staedler C, Galati S, Pagonabarraga J, Kulisevsky J, Legname G, Gobbi C, Kaelin-Lang A, Moda F, Melli G. Tau seeding activity in skin biopsy differentiates tauopathies from synucleinopathies. NPJ Parkinsons Dis 2024; 10:116. [PMID: 38879633 PMCID: PMC11180195 DOI: 10.1038/s41531-024-00728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
Most neurodegenerative diseases lack definitive diagnostic tests, and the identification of easily accessible and reliable biomarkers remains a critical unmet need. Since tau protein is highly expressed in skin of tauopathies patients, we aimed to exploit the ultrasensitive seeding activity assay (SAA) to assess tau seeding activity in skin of patients with tauopathies. In this multicentric, case-control study, patients with tauopathies and synucleinopathies were consecutively recruited and sex-matched to healthy controls (HC). Subjects underwent a double 3 mm skin biopsy in cervical area and ankle. Skin tau-SAA, using TauK18 and TauK19 as reaction substrates for 4R and 3R isoforms, seeding score, clinical scales, biochemical and morphological characterization of SAA end-products were evaluated. We analyzed 58 subjects: 24 tauopathies (18 progressive supranuclear palsy, PSP, and 6 corticobasal degeneration, CBD), 20 synucleinopathies (14 Parkinson's disease, PD, and 6 multiple system atrophy, MSA), and 14 HC. PSP and CBD showed higher tau seeding activity at both anatomical sites. A greater sensitivity of 4R-SAA than 3R-SAA was observed. 4R tau-SAA identified tauopathies with 71% sensitivity and 93% specificity. Accuracy was higher for PSP than CBD: PSP vs HC / PD (AUC 0.825), while CBD vs HC / PD (AUC 0.797), and PSP vs MSA (AU 0.778). SAA end-products showed differences in biochemical and morphological characterization according to the anatomical site. Skin tau-SAA identifies tauopathies with good accuracy and can be used to implement the in-vivo clinical diagnosis of patients with neurodegenerative diseases. Further characterization of peripheral tau seed in skin may elucidate the structure of tau deposits in brain.
Collapse
Affiliation(s)
- Ilaria Linda Dellarole
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Vacchi
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Inigo Ruiz-Barrio
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Sandra Pinton
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Andrea Raimondi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stefania Rossi
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sara Morandi
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Giovanni Bianco
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Merve Begum Bacinoglu
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Lombardo
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Claudio Staedler
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Salvatore Galati
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Claudio Gobbi
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Alain Kaelin-Lang
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabio Moda
- Division of Neurology 5 and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgia Melli
- Neurodegenerative Diseases Group, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland.
- Neurology Department, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| |
Collapse
|
60
|
Lindberg A, Murrell E, Tong J, Mason NS, Sohn D, Sandell J, Ström P, Stehouwer JS, Lopresti BJ, Viklund J, Svensson S, Mathis CA, Vasdev N. Ligand-based design of [ 18F]OXD-2314 for PET imaging in non-Alzheimer's disease tauopathies. Nat Commun 2024; 15:5109. [PMID: 38877019 PMCID: PMC11178805 DOI: 10.1038/s41467-024-49258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Positron emission tomography (PET) imaging of tau aggregation in Alzheimer's disease (AD) is helping to map and quantify the in vivo progression of AD pathology. To date, no high-affinity tau-PET radiopharmaceutical has been optimized for imaging non-AD tauopathies. Here we show the properties of analogues of a first-in-class 4R-tau lead, [18F]OXD-2115, using ligand-based design. Over 150 analogues of OXD-2115 were synthesized and screened in post-mortem brain tissue for tau affinity against [3H]OXD-2115, and in silico models were used to predict brain uptake. [18F]OXD-2314 was identified as a selective, high-affinity non-AD tau PET radiotracer with favorable brain uptake, dosimetry, and radiometabolite profiles in rats and non-human primate and is being translated for first-in-human PET studies.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Sohn
- Oxiant Discovery, SE-15136, Södertälje, Sweden
| | | | - Peter Ström
- Novandi Chemistry AB, SE-15136, Södertälje, Sweden
| | | | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Chester A Mathis
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
61
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
62
|
D'Brant L, Rugenstein N, Na SK, Miller MJ, Czajka TF, Trudeau N, Fitz E, Tomaszek L, Fisher ES, Mash E, Joy S, Lotz S, Borden S, Stevens K, Goderie SK, Wang Y, Bertucci T, Karch CM, Temple S, Butler DC. Fully Human Bifunctional Intrabodies Achieve Graded Reduction of Intracellular Tau and Rescue Survival of MAPT Mutation iPSC-derived Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596248. [PMID: 38854137 PMCID: PMC11160687 DOI: 10.1101/2024.05.28.596248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Tau protein aggregation is a hallmark of several neurodegenerative diseases, including Alzheimer's disease, frontotemporal dementia (FTD) and progressive supranuclear palsy (PSP), spurring development of tau-lowering therapeutic strategies. Here, we report fully human bifunctional anti-tau-PEST intrabodies that bind the mid-domain of tau to block aggregation and degrade tau via the proteasome using the ornithine decarboxylase (ODC) PEST degron. They effectively reduced tau protein in human iPSC-derived cortical neurons in 2D cultures and 3D organoids, including those with the disease-associated tau mutations R5L, N279K, R406W, and V337M. Anti-tau-hPEST intrabodies facilitated efficient ubiquitin-independent proteolysis, in contrast to tau-lowering approaches that rely on the cell's ubiquitination system. Importantly, they counteracted the proteasome impairment observed in V337M patient-derived cortical neurons and significantly improved neuronal survival. By serial mutagenesis, we created variants of the PEST degron that achieved graded levels of tau reduction. Moderate reduction was as effective as high reduction against tau V337M-induced neural cell death.
Collapse
|
63
|
Khalilpour J, Zangbar HS, Alipour MR, Pakdel FQ, Zavari Z, Shahabi P. Chronic Sustained Hypoxia Leads to Brainstem Tauopathy and Declines the Power of Rhythms in the Ventrolateral Medulla: Shedding Light on a Possible Mechanism. Mol Neurobiol 2024; 61:3121-3143. [PMID: 37976025 DOI: 10.1007/s12035-023-03763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Hypoxia, especially the chronic type, leads to disruptive results in the brain that may contribute to the pathogenesis of some neurodegenerative diseases such as Alzheimer's disease (AD). The ventrolateral medulla (VLM) contains clusters of interneurons, such as the pre-Bötzinger complex (preBötC), that generate the main respiratory rhythm drive. We hypothesized that exposing animals to chronic sustained hypoxia (CSH) might develop tauopathy in the brainstem, consequently changing the rhythmic manifestations of respiratory neurons. In this study, old (20-22 months) and young (2-3 months) male rats were subjected to CSH (10 ± 0.5% O2) for ten consecutive days. Western blotting and immunofluorescence (IF) staining were used to evaluate phosphorylated tau. Mitochondrial membrane potential (MMP or ∆ψm) and reactive oxygen species (ROS) production were measured to assess mitochondrial function. In vivo diaphragm's electromyography (dEMG) and local field potential (LFP) recordings from preBötC were employed to assess the respiratory factors and rhythmic representation of preBötC, respectively. Findings showed that ROS production increased significantly in hypoxic groups, associated with a significant decline in ∆ψm. In addition, tau phosphorylation elevated in the brainstem of hypoxic groups. On the other hand, the power of rhythms declined significantly in the preBötC of hypoxic rats, parallel with changes in the respiratory rate, total respiration time, and expiration time. Moreover, there was a positive and statistically significant correlation between LFP rhythm's power and inspiration time. Our data showed that besides CSH, aging also contributed to mitochondrial dysfunction, tau hyperphosphorylation, LFP rhythms' power decline, and changes in respiratory factors.
Collapse
Affiliation(s)
- Jamal Khalilpour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Firouz Qaderi Pakdel
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zohre Zavari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, East Azerbaijan, Iran.
| |
Collapse
|
64
|
Ellis MJ, Lekka C, Holden KL, Tulmin H, Seedat F, O'Brien DP, Dhayal S, Zeissler ML, Knudsen JG, Kessler BM, Morgan NG, Todd JA, Richardson SJ, Stefana MI. Identification of high-performing antibodies for the reliable detection of Tau proteoforms by Western blotting and immunohistochemistry. Acta Neuropathol 2024; 147:87. [PMID: 38761203 PMCID: PMC11102361 DOI: 10.1007/s00401-024-02729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 05/20/2024]
Abstract
Antibodies are essential research tools whose performance directly impacts research conclusions and reproducibility. Owing to its central role in Alzheimer's disease and other dementias, hundreds of distinct antibody clones have been developed against the microtubule-associated protein Tau and its multiple proteoforms. Despite this breadth of offer, limited understanding of their performance and poor antibody selectivity have hindered research progress. Here, we validate a large panel of Tau antibodies by Western blot (79 reagents) and immunohistochemistry (35 reagents). We address the reagents' ability to detect the target proteoform, selectivity, the impact of protein phosphorylation on antibody binding and performance in human brain samples. While most antibodies detected Tau at high levels, many failed to detect it at lower, endogenous levels. By WB, non-selective binding to other proteins affected over half of the antibodies tested, with several cross-reacting with the related MAP2 protein, whereas the "oligomeric Tau" T22 antibody reacted with monomeric Tau by WB, thus calling into question its specificity to Tau oligomers. Despite the presumption that "total" Tau antibodies are agnostic to post-translational modifications, we found that phosphorylation partially inhibits binding for many such antibodies, including the popular Tau-5 clone. We further combine high-sensitivity reagents, mass-spectrometry proteomics and cDNA sequencing to demonstrate that presumptive Tau "knockout" human cells continue to express residual protein arising through exon skipping, providing evidence of previously unappreciated gene plasticity. Finally, probing of human brain samples with a large panel of antibodies revealed the presence of C-term-truncated versions of all main Tau brain isoforms in both control and tauopathy donors. Ultimately, we identify a validated panel of Tau antibodies that can be employed in Western blotting and/or immunohistochemistry to reliably detect even low levels of Tau expression with high selectivity. This work represents an extensive resource that will enable the re-interpretation of published data, improve reproducibility in Tau research, and overall accelerate scientific progress.
Collapse
Affiliation(s)
- Michael J Ellis
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Christiana Lekka
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Katie L Holden
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Hanna Tulmin
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Faheem Seedat
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, Women's Centre, University of Oxford, John Radcliffe Hospital, Level 3, Oxford, UK
| | - Darragh P O'Brien
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Shalinee Dhayal
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Marie-Louise Zeissler
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - Jakob G Knudsen
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Radcliffe, UK
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedikt M Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Noel G Morgan
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Sarah J Richardson
- Islet Biology Group, Department of Clinical & Biomedical Sciences, Exeter Centre of Excellence in Diabetes (EXCEED), University of Exeter, RILD Building, Exeter, UK
| | - M Irina Stefana
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Nuffield Department of Medicine, Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
65
|
Oliveri D, Moschetti G, Griego A, Scarpa E. Endothelial cellular senescence and tau accumulation: An interplay full of opportunities? IBRAIN 2024; 10:225-230. [PMID: 38915948 PMCID: PMC11193862 DOI: 10.1002/ibra.12154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024]
Abstract
Recent research has shown that tau protein can be passed to neighboring cells, leading to cellular senescence in the endothelial cells present in the central nervous system (CNS). This discovery could potentially open new doors for testing novel therapeutic compounds that specifically target senescent cells (senolytics) or for identifying new biomarkers that can enable early detection of tauopathies and dementia.
Collapse
Affiliation(s)
- Doriana Oliveri
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Giorgia Moschetti
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Anna Griego
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical Sciences (DISFARM)University of MilanMilanItaly
- Infection Dynamics Laboratory‐National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
66
|
Su J, Xiao Y, Wei L, Lei H, Sun F, Wang W, Yin J, Xiong R, Li S, Zhang P, Zhou Y, Wang X, Zheng J, Wang JZ. Generation of tau dephosphorylation-targeting chimeras for the treatment of Alzheimer's disease and related tauopathies. Sci Bull (Beijing) 2024; 69:1137-1152. [PMID: 38341350 DOI: 10.1016/j.scib.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Abnormal hyperphosphorylation and accumulation of tau protein play a pivotal role in neurodegeneration in Alzheimer's disease (AD) and many other tauopathies. Selective elimination of hyperphosphorylated tau is promising for the therapy of these diseases. We have conceptualized a strategy, named dephosphorylation-targeting chimeras (DEPTACs), for specifically hijacking phosphatases to tau to debilitate its hyperphosphorylation. Here, we conducted the step-by-step optimization of each constituent motif to generate DEPTACs with reasonable effectiveness in facilitating the dephosphorylation and subsequent clearance of pathological tau. Specifically, for one of the selected chimeras, D16, we demonstrated its significant efficiency in rescuing the neurodegeneration caused by neurotoxic K18-tau seeds in vitro. Moreover, intravenous administration of D16 also alleviated tau pathologies in the brain and improved memory deficits in AD mice. These results suggested DEPTACs as targeted modulators of tau phosphorylation, which hold therapeutic potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Jingfen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linyu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weixia Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shihong Li
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Pei Zhang
- The Core Facility and Technical Support, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China
| | - Ying Zhou
- Research Center for Medicine and Structural Biology, Wuhan University, Wuhan 430030, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Beijing 100083, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.
| |
Collapse
|
67
|
Santiago-Ruiz AN, Hugelier S, Bond CR, Lee EB, Lakadamyali M. Super-Resolution Imaging Uncovers Nanoscale Tau Aggregate Hyperphosphorylation Patterns in Human Alzheimer's Disease Brain Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590893. [PMID: 38712162 PMCID: PMC11071528 DOI: 10.1101/2024.04.24.590893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tau aggregation plays a critical role in Alzheimer's Disease (AD), where tau neurofibrillary tangles (NFTs) are a key pathological hallmark. While much attention has been given to NFTs, emerging evidence underscores nano-sized pre-NFT tau aggregates as potentially toxic entities in AD. By leveraging DNA-PAINT super-resolution microscopy, we visualized and quantified nanoscale tau aggregates (nano-aggregates) in human postmortem brain tissues from intermediate and advanced AD, and Primary Age-Related Tauopathy (PART). Nano-aggregates were predominant across cases, with AD exhibiting a higher burden compared to PART. Hyperphosphorylated tau residues (p-T231, p-T181, and p-S202/T205) were present within nano-aggregates across all AD Braak stages and PART. Moreover, nano-aggregates displayed morphological differences between PART and AD, and exhibited distinct hyperphosphorylation patterns in advanced AD. These findings suggest that changes in nano-aggregate morphology and hyperphosphorylation patterns may exacerbate tau aggregation and AD progression. The ability to detect and profile nanoscale tau aggregates in human brain tissue opens new avenues for studying the molecular underpinnings of tauopathies.
Collapse
|
68
|
Bouton L, Ecoutin A, Malard F, Campagne S. Small molecules modulating RNA splicing: a review of targets and future perspectives. RSC Med Chem 2024; 15:1109-1126. [PMID: 38665842 PMCID: PMC11042171 DOI: 10.1039/d3md00685a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 04/28/2024] Open
Abstract
In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, trans-acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.
Collapse
Affiliation(s)
- Léa Bouton
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Agathe Ecoutin
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Florian Malard
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| | - Sébastien Campagne
- Inserm U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux 146 rue Léo Saignat 33076 Bordeaux Cedex France
- Institut Européen de Chimie et de Biologie F-33600 Pessac France
| |
Collapse
|
69
|
Zou Y, Guan L, Tan J, Qi B, Sun Y, Huang F, Zhang Q. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats. J Chem Inf Model 2024; 64:3386-3399. [PMID: 38489841 DOI: 10.1021/acs.jcim.3c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Aggregation of tau protein into intracellular fibrillary inclusions is characterized as the hallmark of tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. The microtubule-binding (MTB) domain of tau, containing either three or four repeats with sequence similarities, plays an important role in determining tau's aggregation. Previous studies have reported that abnormal acetylation of lysine residues displays a distinct effect on the formation of pathological tau aggregates. However, the underlying molecular mechanism remains mostly elusive. In this study, we performed extensive replica exchange molecular dynamics (REMD) simulations of 144 μs in total to systematically investigate the dimerization of four tau MTB repeats and explore the impacts of Lys280 (K280) or Lys321 (K321) acetylation on the conformational ensembles of the R2 or R3 dimer. Our results show that R3 is the most prone to aggregation among the four repeats, followed by R2 and R4, while R1 displays the weakest aggregation propensity with a disordered structure. Acetylation of K280 could promote the aggregation of R2 peptides by increasing the formation of β-sheet structures and strengthening the interchain interaction. However, K321 acetylation decreases the β-sheet content of the R3 dimer, reduces the ability of R3 peptides to form long β-strands, and promotes the stable helix structure formation. The salt bridge and Y310-Y310 π-π stacking interactions of the R3 dimer are greatly weakened by K321 acetylation, resulting in the inhibition of dimerization. This study uncovers the structural ensembles of tau MTB repeats and provides mechanistic insights into the influences of acetylation on tau aggregation, which may deepen the understanding of the pathogenesis of tauopathies.
Collapse
Affiliation(s)
- Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Lulu Guan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Jingwang Tan
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, P. R. China
| | - Yunxiang Sun
- Department of Physics, Ningbo University, 818 Fenghua Road, Ningbo 315211, Zhejiang, P. R. China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, Zhejiang, P. R. China
| | - Qingwen Zhang
- College of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, P. R. China
| |
Collapse
|
70
|
Smith ED, McKenna R, Mietzsch M, Borchelt DR, Prokop S, Chakrabarty P. Hyperacetylation mimetics within the tau filament core inhibits prion-like propagation of misfolded tau. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589253. [PMID: 38659970 PMCID: PMC11042196 DOI: 10.1101/2024.04.12.589253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Acetylation of key Lysine residues characterizes aggregates of the microtubule-associated protein tau constituting the neuropathological hallmark of many neurodegenerative diseases, such as Alzheimer's disease (AD) and Progressive Supranuclear Palsy (PSP). This has led to the idea that acetylation influences tau aggregation. Using a HEK293 cell-based aggregation assay, we tested whether acetylation-mimicking substitutions (K→Q) on five AD-associated acetyl-modified sites (AcK-311, 353, 369, 370, 375) influenced its propensity to aggregate when exposed to tau seeds derived from two clinically distinctive diseases - AD and PSP. In combination, the presence of 5K→Q sites ablated tau aggregation induced by seeds from both AD and PSP patients, indicating that acetylation within the filament core domain of tau could have an inhibitory effect on seed-mediated aggregation. We had previously identified that a phosphorylation-mimetic on Ser305 (S→E) abrogated tau aggregation by seeds from AD patients, without affecting seeding by PSP patients. Combining the S305→E to the 5K→Q acetyl-modified sites, we found that this tau could now be seeded only by PSP patients, but not by AD patients, confirming Ser305 as a critical determinant of strain-specific tau seeding. On the other hand, acetylation-nullifying substitutions (K→R or K→A) on these same Lys sites did not alter tau seeding abilities compared to the parental tau construct. Notably, the combined acetylation-nullifying Alanine substitutions on these 5 Lys sites resulted in spontaneous self-aggregation, with the filaments resembling amorphous deposits. All together, we demonstrate that cooperative acetyl-occupancy in the tau filament core influences seeded propagation of misfolded tau as well as drives self-aggregation.
Collapse
Affiliation(s)
- Ethan D Smith
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Center For Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
- Center For Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - David R Borchelt
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
71
|
Gee MS, Kwon E, Song MH, Jeon SH, Kim N, Lee JK, Koo T. CRISPR base editing-mediated correction of a tau mutation rescues cognitive decline in a mouse model of tauopathy. Transl Neurodegener 2024; 13:21. [PMID: 38610033 PMCID: PMC11010288 DOI: 10.1186/s40035-024-00415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Affiliation(s)
- Min Sung Gee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Eunji Kwon
- Department of Biomedical and Pharmaceutical Sciences, Graudate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Myeong-Hoon Song
- Department of Biomedical and Pharmaceutical Sciences, Graudate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seung Ho Jeon
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Namkwon Kim
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Kil Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Taeyoung Koo
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Graudate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
72
|
Yuan Y, Mao X, Pan X, Zhang R, Su W. Kinetic Ensemble of Tau Protein through the Markov State Model and Deep Learning Analysis. J Chem Theory Comput 2024; 20:2947-2958. [PMID: 38501645 DOI: 10.1021/acs.jctc.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The ordered assembly of Tau protein into filaments characterizes Alzheimer's and other neurodegenerative diseases, and thus, stabilization of Tau protein is a promising avenue for tauopathies therapy. To dissect the underlying aggregation mechanisms on Tau, we employ a set of molecular simulations and the Markov state model to determine the kinetics of ensemble of K18. K18 is the microtubule-binding domain of Tau protein and plays a vital role in the microtubule assembly, recycling processes, and amyloid fibril formation. Here, we efficiently explore the conformation of K18 with about 150 μs lifetimes in silico. Our results observe that all four repeat regions (R1-R4) are very dynamic, featuring frequent conformational conversion and lacking stable conformations, and the R2 region is more flexible than the R1, R3, and R4 regions. Additionally, it is worth noting that residues 300-310 in R2-R3 and residues 319-336 in R3 tend to form sheet structures, indicating that K18 has a broader functional role than individual repeat monomers. Finally, the simulations combined with Markov state models and deep learning reveal 5 key conformational states along the transition pathway and provide the information on the microsecond time scale interstate transition rates. Overall, this study offers significant insights into the molecular mechanism of Tau pathological aggregation and develops novel strategies for both securing tauopathies and advancing drug discovery.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xuqi Mao
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xiaohang Pan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
73
|
Rinaldi M, Pezone A, Quadrini GI, Abbadessa G, Laezza MP, Passaro ML, Porcellini A, Costagliola C. Targeting shared pathways in tauopathies and age-related macular degeneration: implications for novel therapies. Front Aging Neurosci 2024; 16:1371745. [PMID: 38633983 PMCID: PMC11021713 DOI: 10.3389/fnagi.2024.1371745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
The intricate parallels in structure and function between the human retina and the central nervous system designate the retina as a prospective avenue for understanding brain-related processes. This review extensively explores the shared physiopathological mechanisms connecting age-related macular degeneration (AMD) and proteinopathies, with a specific focus on tauopathies. The pivotal involvement of oxidative stress and cellular senescence emerges as key drivers of pathogenesis in both conditions. Uncovering these shared elements not only has the potential to enhance our understanding of intricate neurodegenerative diseases but also sets the stage for pioneering therapeutic approaches in AMD.
Collapse
Affiliation(s)
- Michele Rinaldi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gaia Italia Quadrini
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Gianmarco Abbadessa
- Division of Neurology, Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Paola Laezza
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | | | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
74
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
75
|
Sugiyama M, Kosik KS, Panagiotou E. Mathematical topology and geometry-based classification of tauopathies. Sci Rep 2024; 14:7560. [PMID: 38555402 PMCID: PMC10981734 DOI: 10.1038/s41598-024-58221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
Neurodegenerative diseases, like Alzheimer's, are associated with the presence of neurofibrillary lesions formed by tau protein filaments in the cerebral cortex. While it is known that different morphologies of tau filaments characterize different neurodegenerative diseases, there are few metrics of global and local structure complexity that enable to quantify their structural diversity rigorously. In this manuscript, we employ for the first time mathematical topology and geometry to classify neurodegenerative diseases by using cryo-electron microscopy structures of tau filaments that are available in the Protein Data Bank. By employing mathematical topology metrics (Gauss linking integral, writhe and second Vassiliev measure) we achieve a consistent, but more refined classification of tauopathies, than what was previously observed through visual inspection. Our results reveal a hierarchy of classification from global to local topology and geometry characteristics. In particular, we find that tauopathies can be classified with respect to the handedness of their global conformations and the handedness of the relative orientations of their repeats. Progressive supranuclear palsy is identified as an outlier, with a more complex structure than the rest, reflected by a small, but observable knotoid structure (a diagrammatic structure representing non-trivial topology). This topological characteristic can be attributed to a pattern in the beginning of the R3 repeat that is present in all tauopathies but at different extent. Moreover, by comparing single filament to paired filament structures within tauopathies we find a consistent change in the side-chain orientations with respect to the alpha carbon atoms at the area of interaction.
Collapse
Affiliation(s)
- Masumi Sugiyama
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Eleni Panagiotou
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
76
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
77
|
Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms linking cerebrovascular dysfunction and tauopathy: Adding a layer of epiregulatory complexity. Br J Pharmacol 2024; 181:879-895. [PMID: 37926507 DOI: 10.1111/bph.16280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Intracellular accumulation of hyperphosphorylated misfolded tau proteins are found in many neurodegenerative tauopathies, including Alzheimer's disease (AD). Tau pathology can impact cerebrovascular physiology and function through multiple mechanisms. In vitro and in vivo studies have shown that alterations in the blood-brain barrier (BBB) integrity and function can result in synaptic abnormalities and neuronal damage. In the present review, we will summarize how tau proteostasis dysregulation contributes to vascular dysfunction and, conversely, we will examine the factors and pathways leading to tau pathological alterations triggered by cerebrovascular dysfunction. Finally, we will highlight the role epigenetic and epitranscriptomic factors play in regulating the integrity of the cerebrovascular system and the progression of tauopathy including a few observartions on potential therapeutic interventions. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yoon A Kim
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Marian Mellen
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Ismael Santa-Maria
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain
| |
Collapse
|
78
|
Manglano-Artuñedo Z, Peña-Díaz S, Ventura S. Small molecules to target tau amyloid aggregation. Neural Regen Res 2024; 19:509-511. [PMID: 37721277 PMCID: PMC10581584 DOI: 10.4103/1673-5374.380900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Zoe Manglano-Artuñedo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
79
|
Han M, Saxton A, Currey H, Waldherr SM, Liachko NF, Kraemer BC. Transgenic Dendra2::tau expression allows in vivo monitoring of tau proteostasis in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050473. [PMID: 38469687 PMCID: PMC10985736 DOI: 10.1242/dmm.050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Protein homeostasis is perturbed in aging-related neurodegenerative diseases called tauopathies, which are pathologically characterized by aggregation of the microtubule-associated protein tau (encoded by the human MAPT gene). Transgenic Caenorhabditis elegans serve as a powerful model organism to study tauopathy disease mechanisms, but moderating transgenic expression level has proven problematic. To study neuronal tau proteostasis, we generated a suite of transgenic strains expressing low, medium or high levels of Dendra2::tau fusion proteins by comparing integrated multicopy transgene arrays with single-copy safe-harbor locus strains generated by recombinase-mediated cassette exchange. Multicopy Dendra2::tau strains exhibited expression level-dependent neuronal dysfunction that was modifiable by known genetic suppressors or an enhancer of tauopathy. Single-copy Dendra2::tau strains lacked distinguishable phenotypes on their own but enabled detection of enhancer-driven neuronal dysfunction. We used multicopy Dendra2::tau strains in optical pulse-chase experiments measuring tau turnover in vivo and found that Dendra2::tau turned over faster than the relatively stable Dendra2. Furthermore, Dendra2::tau turnover was dependent on the protein expression level and independent of co-expression with human TDP-43 (officially known as TARDBP), an aggregating protein interacting with pathological tau. We present Dendra2::tau transgenic C. elegans as a novel tool for investigating molecular mechanisms of tau proteostasis.
Collapse
Affiliation(s)
- Marina Han
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah M Waldherr
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
80
|
Alhadidy MM, Kanaan NM. Biochemical approaches to assess the impact of post-translational modifications on pathogenic tau conformations using recombinant protein. Biochem Soc Trans 2024; 52:301-318. [PMID: 38348781 PMCID: PMC10903483 DOI: 10.1042/bst20230596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/29/2024]
Abstract
Tau protein is associated with many neurodegenerative disorders known as tauopathies. Aggregates of tau are thought of as a main contributor to neurodegeneration in these diseases. Increasingly, evidence points to earlier, soluble conformations of abnormally modified monomers and multimeric tau as toxic forms of tau. The biological processes driving tau from physiological species to pathogenic conformations remain poorly understood, but certain avenues are currently under investigation including the functional consequences of various pathological tau changes (e.g. mutations, post-translational modifications (PTMs), and protein-protein interactions). PTMs can regulate several aspects of tau biology such as proteasomal and autophagic clearance, solubility, and aggregation. Moreover, PTMs can contribute to the transition of tau from normal to pathogenic conformations. However, our understating of how PTMs specifically regulate the transition of tau into pathogenic conformations is partly impeded by the relative lack of structured frameworks to assess and quantify these conformations. In this review, we describe a set of approaches that includes several in vitro assays to determine the contribution of PTMs to tau's transition into known pathogenic conformations. The approaches begin with different methods to create recombinant tau proteins carrying specific PTMs followed by validation of the PTMs status. Then, we describe a set of biochemical and biophysical assays that assess the contribution of a given PTM to different tau conformations, including aggregation, oligomerization, exposure of the phosphatase-activating domain, and seeding. Together, these approaches can facilitate the advancement of our understanding of the relationships between PTMs and tau conformations.
Collapse
Affiliation(s)
- Mohammed M. Alhadidy
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, U.S.A
- Neuroscience Program, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
81
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
82
|
do Nascimento Amorim MDS, Silva França ÁR, Santos-Oliveira R, Rodrigues Sanches J, Marinho Melo T, Araújo Serra Pinto B, Barbosa LRS, Alencar LMR. Atomic Force Microscopy Applied to the Study of Tauopathies. ACS Chem Neurosci 2024; 15:699-715. [PMID: 38305187 DOI: 10.1021/acschemneuro.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity. In the broad universe of neurodegenerative diseases, tauopathies comprise the most prevalent, with Alzheimer's disease as its main representative. This review highlights the use of AFM as a suitable research technique for the study of cellular damages in tauopathies, even in early stages, allowing elucidation of pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do Nascimento Amorim
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Álefe Roger Silva França
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Jonas Rodrigues Sanches
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Leandro R S Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| |
Collapse
|
83
|
Malik N, Miah MU, Galgani A, McAleese K, Walker L, LeBeau FE, Attems J, Outeiro TF, Thomas A, Koss DJ. Regional AT-8 reactive tau species correlate with intracellular Aβ levels in cases of low AD neuropathologic change. Acta Neuropathol 2024; 147:40. [PMID: 38353753 PMCID: PMC10866780 DOI: 10.1007/s00401-024-02691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The amyloid cascade hypothesis states that Aβ aggregates induce pathological changes in tau, leading to neurofibrillary tangles (NFTs) and cell death. A caveat with this hypothesis is the spatio-temporal divide between plaques and NFTs. This has been addressed by the inclusion of soluble Aβ and tau species in the revised amyloid cascade hypothesis. Nevertheless, despite the potential for non-plaque Aβ to contribute to tau pathology, few studies have examined relative correlative strengths between total Aβ, plaque Aβ and intracellular Aβ with tau pathology within a single tissue cohort. Employing frozen and fixed frontal cortex grey and white matter tissue from non-AD controls (Con; n = 39) and Alzheimer's disease (AD) cases (n = 21), biochemical and immunohistochemical (IHC) measures of Aβ and AT-8 phosphorylated tau were assessed. Biochemical native-state dot blots from crude tissue lysates demonstrated robust correlations between total Aβ and AT-8 tau, when considered as a combined cohort (Con and AD) and when as Con and AD cases, separately. In contrast, no associations between Aβ plaques and AT-8 were reported when using IHC measurements in either Con or AD cases. However, when intracellular Aβ was measured via the Aβ specific antibody MOAB-2, a correlative relationship with AT-8 tau was reported in non-AD controls but not in AD cases. Collectively the data suggests that accumulating intracellular Aβ may influence AT-8 pathology, early in AD-related neuropathological change. Despite the lower levels of phospho-tau and Aβ in controls, the robust correlative relationships observed suggest a physiological association of Aβ production and tau phosphorylation, which may be modified during disease. This study is supportive of a revised amyloid cascade hypothesis and demonstrates regional associative relationships between tau pathology and intracellular Aβ, but not extracellular Aβ plaques.
Collapse
Affiliation(s)
- Nauman Malik
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Mohi-Uddin Miah
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Alessandro Galgani
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Kirsty McAleese
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Lauren Walker
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Fiona E LeBeau
- Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alan Thomas
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, Scotland, UK.
| |
Collapse
|
84
|
Raulin AC, Doss SV, Heckman MG, Craver EC, Li Z, Ikezu TC, Sekiya H, Liu CC, Martens YA, Rosenberg CL, Kuchenbecker LA, DeTure M, Reichard RR, Nguyen AT, Constantopoulos E, Larsen RA, Kounaves EK, Murray ME, Dickson DW, Petersen RC, Bu G, Kanekiyo T. Impact of APOE on amyloid and tau accumulation in argyrophilic grain disease and Alzheimer's disease. Acta Neuropathol Commun 2024; 12:25. [PMID: 38336940 PMCID: PMC10854035 DOI: 10.1186/s40478-024-01731-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by the deposition of amyloid-β (Aβ) in senile plaques and neurofibrillary tangles of phosphorylated tau (pTau), is increasingly recognized as a complex disease with multiple pathologies. AD sometimes pathologically overlaps with age-related tauopathies such as four repeat (4R)-tau predominant argyrophilic grain disease (AGD). While AGD is often detected with AD pathology, the contribution of APOE4 to AGD risk is not clear despite its robust effects on AD pathogenesis. Specifically, how APOE genotype influences Aβ and tau pathology in co-occurring AGD and AD has not been fully understood. Using postmortem brain samples (N = 353) from a neuropathologically defined cohort comprising of cases with AD and/or AGD pathology built to best represent different APOE genotypes, we measured the amounts of major AD-related molecules, including Aβ40, Aβ42, apolipoprotein E (apoE), total tau (tTau), and pTau181, in the temporal cortex. The presence of tau lesions characteristic of AD (AD-tau) was correlated with cognitive decline based on Mini-Mental State Examination (MMSE) scores, while the presence of AGD tau lesions (AGD-tau) was not. Interestingly, while APOE4 increased the risk of AD-tau pathology, it did not increase the risk of AGD-tau pathology. Although APOE4 was significantly associated with higher levels of insoluble Aβ40, Aβ42, apoE, and pTau181, the APOE4 effect was no longer detected in the presence of AGD-tau. We also found that co-occurrence of AGD with AD was associated with lower insoluble Aβ42 and pTau181 levels. Overall, our findings suggest that different patterns of Aβ, tau, and apoE accumulation mediate the development of AD-tau and AGD-tau pathology, which is affected by APOE genotype.
Collapse
Affiliation(s)
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Emily C Craver
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tadafumi C Ikezu
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Biogen, Cambridge, MA, 02142, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- SciNeuro Pharmaceuticals, Rockville, MD, 20850, USA
| | | | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rachel A Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Emmaline K Kounaves
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
85
|
Bisi N, Pinzi L, Rastelli G, Tonali N. Early Diagnosis of Neurodegenerative Diseases: What Has Been Undertaken to Promote the Transition from PET to Fluorescence Tracers. Molecules 2024; 29:722. [PMID: 38338465 PMCID: PMC10856728 DOI: 10.3390/molecules29030722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Alzheimer's Disease (AD) and Parkinson's Disease (PD) represent two among the most frequent neurodegenerative diseases worldwide. A common hallmark of these pathologies is the misfolding and consequent aggregation of amyloid proteins into soluble oligomers and insoluble β-sheet-rich fibrils, which ultimately lead to neurotoxicity and cell death. After a hundred years of research on the subject, this is the only reliable histopathological feature in our hands. Since AD and PD are diagnosed only once neuronal death and the first symptoms have appeared, the early detection of these diseases is currently impossible. At present, there is no effective drug available, and patients are left with symptomatic and inconclusive therapies. Several reasons could be associated with the lack of effective therapeutic treatments. One of the most important factors is the lack of selective probes capable of detecting, as early as possible, the most toxic amyloid species involved in the onset of these pathologies. In this regard, chemical probes able to detect and distinguish among different amyloid aggregates are urgently needed. In this article, we will review and put into perspective results from ex vivo and in vivo studies performed on compounds specifically interacting with such early species. Following a general overview on the three different amyloid proteins leading to insoluble β-sheet-rich amyloid deposits (amyloid β1-42 peptide, Tau, and α-synuclein), a list of the advantages and disadvantages of the approaches employed to date is discussed, with particular attention paid to the translation of fluorescence imaging into clinical applications. Furthermore, we also discuss how the progress achieved in detecting the amyloids of one neurodegenerative disease could be leveraged for research into another amyloidosis. As evidenced by a critical analysis of the state of the art, substantial work still needs to be conducted. Indeed, the early diagnosis of neurodegenerative diseases is a priority, and we believe that this review could be a useful tool for better investigating this field.
Collapse
Affiliation(s)
- Nicolò Bisi
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| | - Luca Pinzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Giulio Rastelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 103, 41125 Modena, Italy; (L.P.); (G.R.)
| | - Nicolò Tonali
- Université Paris-Saclay, CNRS, BioCIS, Bat. Henri Moissan, 17, Av. des Sciences, 91400 Orsay, France
| |
Collapse
|
86
|
James EI, Baggett DW, Chang E, Schachter J, Nixey T, Choi K, Guttman M, Nath A. Tryptanthrin Analogs Substoichiometrically Inhibit Seeded and Unseeded Tau4RD Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578649. [PMID: 38352474 PMCID: PMC10862865 DOI: 10.1101/2024.02.02.578649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microtubule-associated protein tau is an intrinsically disordered protein (IDP) that forms characteristic fibrillar aggregates in several diseases, the most well-known of which is Alzheimer's disease (AD). Despite keen interest in disrupting or inhibiting tau aggregation to treat AD and related dementias, there are currently no FDA-approved tau-targeting drugs. This is due, in part, to the fact that tau and other IDPs do not exhibit a single well-defined conformation but instead populate a fluctuating conformational ensemble that precludes finding a stable "druggable" pocket. Despite this challenge, we previously reported the discovery of two novel families of tau ligands, including a class of aggregation inhibitors, identified through a protocol that combines molecular dynamics, structural analysis, and machine learning. Here we extend our exploration of tau druggability with the identification of tryptanthrin and its analogs as potent, substoichiometric aggregation inhibitors, with the best compounds showing potencies in the low nanomolar range even at a ~100-fold molar excess of tau4RD. Moreover, conservative changes in small molecule structure can have large impacts on inhibitory potency, demonstrating that similar structure-activity relationship (SAR) principles as used for traditional drug development also apply to tau and potentially to other IDPs.
Collapse
Affiliation(s)
- Ellie I. James
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA
| | - David W. Baggett
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Current address: Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Edcon Chang
- Takeda Development Center Americas, San Diego, CA
| | | | - Thomas Nixey
- Takeda Development Center Americas, San Diego, CA
| | | | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA
| | - Abhinav Nath
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA
| |
Collapse
|
87
|
Sahara N, Higuchi M. Diagnostic and therapeutic targeting of pathological tau proteins in neurodegenerative disorders. FEBS Open Bio 2024; 14:165-180. [PMID: 37746832 PMCID: PMC10839408 DOI: 10.1002/2211-5463.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
Tauopathies, characterized by fibrillar tau accumulation in neurons and glial cells, constitute a major neuropathological category of neurodegenerative diseases. Neurofibrillary tau lesions are strongly associated with cognitive deficits in these diseases, but the causal mechanisms underlying tau-induced neuronal dysfunction remain unresolved. Recent advances in cryo-electron microscopy examination have revealed various core structures of tau filaments from different tauopathy patients, which can be used to classify tauopathies. In vivo visualization of tau pathology is now available using several tau positron emission tomography tracers. Among these radioprobes, PM-PBB3 allows high-contrast imaging of tau deposits in the brains of patients with diverse disorders and tauopathy mouse models. Selective degradation of pathological tau species by the ubiquitin-proteasome system or autophagy machinery is a potential therapeutic strategy. Alternatively, the non-cell-autonomous clearance of pathological tau species through neuron-glia networks could be reinforced as a disease-modifying treatment. In addition, the development of neuroinflammatory biomarkers is required for understanding the contribution of immunocompetent cells in the brain to preventing neurodegeneration. This review provides an overview of the current research and development of diagnostic and therapeutic agents targeting divergent tau pathologies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical SciencesNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
88
|
Jacquemin C, Villain N, Azevedo R, Boluda S, Thévenot EA, Fenaille F, Lamari F, Becher F. Evaluation of SP3 for antibody-free quantification of tau in CSF mimic and brain by mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2024; 30:65-75. [PMID: 38258392 DOI: 10.1177/14690667231218912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tubulin-associated unit (tau) has an important role in the pathogenesis and the diagnosis of Alzheimer's disease (AD) and other tauopathies. In view of the diversity of tau proteoforms, antibody-free methods represent a good approach for unbiased quantification. We adapted and evaluated the single-pot, solid-phase-enhanced sample-preparation (SP3) protocol for antibody-free extraction of the tau protein in cerebro-spinal fluid (CSF) mimic and in human brain. A total of 13 non-modified peptides were quantified by high-resolution mass spectrometry (HRMS) after digestion of tau by trypsin. We significantly improved the basic SP3 protocol by carefully optimizing the organic solvents and incubation time for tau binding, as well as the digestion step for the release directly from the SP3 beads of the 13 tau peptides. These optimizations proved to be primarily beneficial for the most hydrophilic tau peptides, increasing the sequence coverage of recombinant tau. Mean recovery in CSF mimic of the 13 non-modified peptides was of 53%, with LODs ranging from 0.75 to 10 ng/mL. Next, we tested the optimized SP3 protocol on pathological tau extracted from the soluble fraction from an AD brain sample (middle frontal gyrus). We could successfully identify and quantify biologically relevant tau peptides including representative peptides of two isoforms and two phospho-peptides (pTau217 and pTau181).
Collapse
Affiliation(s)
- Chloé Jacquemin
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Nicolas Villain
- Department of Neurology, Institute of Memory and Alzheimer's Disease, Assistance Publique - Hopitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Rita Azevedo
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Susana Boluda
- Department of Neuropathology Raymond Escourolle, Assistance Publique - Hôpitaux de Paris (AP-HP) Sorbonne, Pitié-Salpêtrière, Paris, France
| | - Etienne A Thévenot
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| | - Foudil Lamari
- Service de Biochimie Métabolique, AP-HP Sorbonne, Paris Brain Institute (ICM) Inserm - Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - François Becher
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, Gif-sur-Yvette, France
| |
Collapse
|
89
|
Medina-Vera D, López-Gambero AJ, Navarro JA, Sanjuan C, Baixeras E, Decara J, de Fonseca FR. Novel insights into D-Pinitol based therapies: a link between tau hyperphosphorylation and insulin resistance. Neural Regen Res 2024; 19:289-295. [PMID: 37488880 PMCID: PMC10503604 DOI: 10.4103/1673-5374.379015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the amyloid accumulation in the brains of patients with Alzheimer's disease. The pathogenesis of Alzheimer's disease is mainly mediated by the phosphorylation and aggregation of tau protein. Among the multiple causes of tau hyperphosphorylation, brain insulin resistance has generated much attention, and inositols as insulin sensitizers, are currently considered candidates for drug development. The present narrative review revises the interactions between these three elements: Alzheimer's disease-tau-inositols, which can eventually identify targets for new disease modifiers capable of bringing hope to the millions of people affected by this devastating disease.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- CIBER Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario Virgen de la Victoria, UGC del Corazón, Málaga, Spain
| | - Antonio Jesús López-Gambero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- University of Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - Juan Antonio Navarro
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | | | - Elena Baixeras
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, UGC Salud Mental, Málaga, Spain
| |
Collapse
|
90
|
Jiang Z, Wang J, Qin Y, Liu S, Luo B, Bai F, Wei H, Zhang S, Wei J, Ding G, Ma L, He S, Chen R, Sun Y, Chen Y, Wang L, Xu H, Wang X, Chen G, Lei W. A nonhuman primate model with Alzheimer's disease-like pathology induced by hippocampal overexpression of human tau. Alzheimers Res Ther 2024; 16:22. [PMID: 38281031 PMCID: PMC10821564 DOI: 10.1186/s13195-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most burdening diseases of the century with no disease-modifying treatment at this time. Nonhuman primates (NHPs) share genetic, anatomical, and physiological similarities with humans, making them ideal model animals for investigating the pathogenesis of AD and potential therapies. However, the use of NHPs in AD research has been hindered by the paucity of AD monkey models due to their long generation time, ethical considerations, and technical challenges in genetically modifying monkeys. METHODS Here, we developed an AD-like NHP model by overexpressing human tau in the bilateral hippocampi of adult rhesus macaque monkeys. We evaluated the pathological features of these monkeys with immunostaining, Nissl staining, cerebrospinal fluid (CSF) analysis, magnetic resonance imaging (MRI), positron emission tomography (PET), and behavioural tests. RESULTS We demonstrated that after hippocampal overexpression of tau protein, these monkeys displayed multiple pathological features of AD, including 3-repeat (3R)/4-repeat (4R) tau accumulation, tau hyperphosphorylation, tau propagation, neuronal loss, hippocampal atrophy, neuroinflammation, Aβ clearance deficits, blood vessel damage, and cognitive decline. More interestingly, the accumulation of both 3R and 4R tau is specific to NHPs but not found in adult rodents. CONCLUSIONS This work establishes a tau-induced AD-like NHP model with many key pathological and behavioural features of AD. In addition, our model may potentially become one of the AD NHP models adopted by researchers worldwide since it can be generated within 2 ~ 3 months through a single injection of AAVs into the monkey brains. Hence, our model NHPs may facilitate mechanistic studies and therapeutic treatments for AD.
Collapse
Affiliation(s)
- Zhouquan Jiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jing Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yongpeng Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Bin Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Fan Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Huiyi Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Junjie Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Guoyu Ding
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Long Ma
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shu He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Rongjie Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ying Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yi Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
91
|
Giusti V, Kaur G, Giusto E, Civiero L. Brain clearance of protein aggregates: a close-up on astrocytes. Mol Neurodegener 2024; 19:5. [PMID: 38229094 PMCID: PMC10790381 DOI: 10.1186/s13024-024-00703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
Protein misfolding and accumulation defines a prevailing feature of many neurodegenerative disorders, finally resulting in the formation of toxic intra- and extracellular aggregates. Intracellular aggregates can enter the extracellular space and be subsequently transferred among different cell types, thus spreading between connected brain districts.Although microglia perform a predominant role in the removal of extracellular aggregated proteins, mounting evidence suggests that astrocytes actively contribute to the clearing process. However, the molecular mechanisms used by astrocytes to remove misfolded proteins are still largely unknown.Here we first provide a brief overview of the progressive transition from soluble monomers to insoluble fibrils that characterizes amyloid proteins, referring to α-Synuclein and Tau as archetypical examples. We then highlight the mechanisms at the basis of astrocyte-mediated clearance with a focus on their potential ability to recognize, collect, internalize and digest extracellular protein aggregates. Finally, we explore the potential of targeting astrocyte-mediated clearance as a future therapeutic approach for the treatment of neurodegenerative disorders characterized by protein misfolding and accumulation.
Collapse
Affiliation(s)
| | - Gurkirat Kaur
- Department of Biology, University of Padova, Padua, Italy
| | | | - Laura Civiero
- IRCCS San Camillo Hospital, Venice, Italy.
- Department of Biology, University of Padova, Padua, Italy.
| |
Collapse
|
92
|
Nuñez-Diaz C, Andersson E, Schultz N, Pocevičiūtė D, Hansson O, Nilsson KPR, Wennström M. The fluorescent ligand bTVBT2 reveals increased p-tau uptake by retinal microglia in Alzheimer's disease patients and App NL-F/NL-F mice. Alzheimers Res Ther 2024; 16:4. [PMID: 38167557 PMCID: PMC10763304 DOI: 10.1186/s13195-023-01375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Amyloid beta (Aβ) deposits and hyperphosphorylated tau (p-tau) accumulation have been identified in the retina of Alzheimer's disease (AD) patients and transgenic AD mice. Previous studies have shown that retinal microglia engulf Aβ, but this property decreases in AD patients. Whether retinal microglia also take up p-tau and if this event is affected in AD is yet not described. In the current study, we use the p-tau-specific thiophene-based ligand bTVBT2 to investigate the relationship between disease progression and p-tau uptake by microglia in the retina of AD patients and AppNL-F/NL-F knock-in mice, an AD mouse model known to demonstrate extracellular Aβ plaques and dystrophic neurites in the brain from 6 months of age. METHODS Evaluation of bTVBT2 specificity and its presence within microglia was assessed by immunofluorescent staining of hippocampal sections and flat-mount retina samples from non-demented controls, AD patients, 3-, 9-, and 12-month-old AppNL-F/NL-F knock-in mice and 12- and 18-month-old wild type (WT) mice. We used ImageJ to analyze the amount of bTVBT2 inside Iba1-positive microglia. Co-localization between the ligand and p-tau variant Ser396/Ser404 (PHF-1), Aβ, phosphorylated TAR DNA binding protein 43 (pTDP-43), and islet amyloid polypeptide (IAPP) in the brain and retina was analyzed using confocal imaging. RESULTS Confocal imaging analysis showed that bTVBT2 binds to PHF-1- and AT8-positive aggregates inside retinal microglia, and not to Aβ, pTDP-43, or IAPP. The density of bTVBT2-positive microglia was higher in cases with a high Aβ load compared to those with a low Aβ load. This density correlated with the neurofibrillary tangle load in the brain, but not with retinal levels of high molecular weight (aggregated) Aβ40 or Aβ42. Analysis of AppNL-F/NL-F knock-in mouse retina further showed that 50% of microglia in 3-month-old AppNL-F/NL-F knock-in mice contained bTVBT2. The percentage significantly increased in 9- and 12-month-old mice. CONCLUSION Our study suggests that the microglial capability to uptake p-tau in the retina persists and intensifies with AD progression. These results also highlight bTVBT2 as a ligand of interest in future monitoring of retinal AD pathology.
Collapse
Affiliation(s)
- Cristina Nuñez-Diaz
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Emelie Andersson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Nina Schultz
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology IFM, Linköping University, 581 83, Linköping, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
93
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
94
|
Mishra S, Aziz T, Toppo AJ, Kumar D, Tirkey MP, Beck P, Anjum N, Sharma D, Khan MM, Kumari S, Sahu PR, Nitin M. Genomics and Drug Discovery Strategies: The Role of Natural Compounds and Its Receptor in Alzheimer's Disease. Cureus 2024; 16:e52423. [PMID: 38371064 PMCID: PMC10870247 DOI: 10.7759/cureus.52423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/20/2024] Open
Abstract
Alzheimer's Disease (AD) is a special class of neurodegenerative diseases demarcated as a progressive disorder affecting especially older adults globally. The AD-infected brain shows declination in cognitive functions, memory loss, and other exhausting symptoms. In this study, we focused on using advanced bioinformatics and next-generation sequencing to explore essential clusters of genes from various diversified Alzheimer's, Parkinson and Frontotemporal Dementia diseased cases. The significant differential expression analysis of genes (p-value ≤ 0.05, log fold change ≤ 0.05) was carried out, followed by meta-analysis, which resulted in the identification of 20 conserved genes across variable case studies. Out of 20 conserved genes, CASP8 and PTPN11 were observed to show essential regulatory mechanisms in AD metabolic pathways and proceeded further for docking analysis. Moreover, the natural compounds were screened for ligand library preparation based on extensive scientific literature and (ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)) property check. Molecular docking was carried out with screened ligands and target receptors, resulting in the identification of Rosmarinic acid (RA) with CASP8 having docked score (∆G = -8.0 kcal/mol); Donepezil (FDA drug) dock score (∆G = -7.3 kcal/mol) (control). PTPN11 receptor with Carnosol ligand resulted in docking score (∆G = -9.1 kcal/mol) w.r.t Tacrine (FDA drug) docked score (∆G = -8.0 kcal/mol) followed by MD simulation. This research will aid in the identification of potential natural compounds that future researchers can use for further validation as a potential candidate drug in combating various neurodegenerative diseases highlighting AD.
Collapse
Affiliation(s)
- Shweta Mishra
- Genetics, Digianalix, Ranchi, IND
- Biotechnology, Marwari College, Ranchi, IND
| | - Tarique Aziz
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | | | - Daksh Kumar
- Genetics, Digianalix, Ranchi, IND
- Biotechnology, Marwari College, Ranchi, IND
| | | | | | - Nawed Anjum
- Biochemistry, Rajendra Institute of Medical Sciences, Ranchi, IND
| | - Dipanjali Sharma
- Genetics, Digianalix, Ranchi, IND
- Biotechnology, Marwari College, Ranchi, IND
| | - Md Mahfooz Khan
- Genetics, Digianalix, Ranchi, IND
- Biotechnology, Marwari College, Ranchi, IND
| | | | | | | |
Collapse
|
95
|
Selvarasu K, Singh AK, Dakshinamoorthy A, Sreenivasmurthy SG, Iyaswamy A, Radhakrishnan M, Patnaik S, Huang JD, Williams LL, Senapati S, Durairajan SSK. Interaction of Tau with Kinesin-1: Effect of Kinesin-1 Heavy Chain Elimination on Autophagy-Mediated Mutant Tau Degradation. Biomedicines 2023; 12:5. [PMID: 38275365 PMCID: PMC10813313 DOI: 10.3390/biomedicines12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Natively unfolded tau has a low propensity to form aggregates, but in tauopathies, such as Alzheimer's disease (AD), tau aggregates into paired helical filaments (PHFs) and neurofibrillary tangles (NFTs). Multiple intracellular transport pathways utilize kinesin-1, a plus-end-directed microtubule-based motor. Kinesin-1 is crucial in various neurodegenerative diseases as it transports multiple cargoes along the microtubules (MT). Kinesin-1 proteins cannot progress along MTs due to an accumulation of tau on their surfaces. Although kinesin-1-mediated neuronal transport dysfunction is well-documented in other neurodegenerative diseases, its role in AD has received less attention. Very recently, we have shown that knocking down and knocking out of kinesin-1 heavy chain (KIF5B KO) expression significantly reduced the level and stability of tau in cells and tau transgenic mice, respectively. Here, we report that tau interacts with the motor domain of KIF5B in vivo and in vitro, possibly through its microtubule-binding repeat domain. This interaction leads to the inhibition of the ATPase activity of the motor domain. In addition, the KIF5B KO results in autophagy initiation, which subsequently assists in tau degradation. The mechanisms behind KIF5B KO-mediated tau degradation seem to involve its interaction with tau, promoting the trafficking of tau through retrograde transport into autophagosomes for subsequent lysosomal degradation of tau. Our results suggest how KIF5B removal facilitates the movement of autophagosomes toward lysosomes for efficient tau degradation. This mechanism can be enabled through the downregulation of kinesin-1 or the disruption of the association between kinesin-1 and tau, particularly in cases when neurons perceive disturbances in intercellular axonal transport.
Collapse
Affiliation(s)
- Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Avinash Dakshinamoorthy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (A.D.); (S.S.)
| | | | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China;
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Moorthi Radhakrishnan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Leonard L. Williams
- Center for Excellence in Post Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, 500 Laureate Way, Kannapolis, NC 28081, USA
| | - Sanjib Senapati
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; (A.D.); (S.S.)
| | - Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610 005, India; (K.S.); (A.K.S.); (S.P.)
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
96
|
Rahhal S, Farmer C, Thurm A, Wassif CA, Cawley NX, Perreault J, Dang Do A, Bianconi S, Hannah-Shmouni F, Guthrie W, Cubit LS, Miller JS, Sutton VR, Koeberl D, Porter FD. Elevated amyloid beta peptides and total tau in cerebrospinal fluid in individuals with Creatine transporter deficiency. Mol Genet Metab Rep 2023; 37:101001. [PMID: 37662495 PMCID: PMC10470314 DOI: 10.1016/j.ymgmr.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Background Creatine transporter deficiency (CTD) is a rare X-linked disorder of creatine transport caused by pathogenic variants in SLC6A8 (Xq28). The disorder is marked by developmental delay, especially speech delay. The biomarkers Aβ40, Aβ42 and total tau are abnormal in Alzheimer disease (AD), a common neurodegenerative disorder pathologically characterized by Aβ peptide containing amyloid plaques and tau neurofibrillary tangles. Although CTD results in neuronal energy deficiency, the pathological processes underlying the CTD phenotype are not fully characterized. Methods Cerebral spinal fluid (CSF) was collected as an optional part of a natural history study of CTD. Aβ40, Aβ42 and total tau levels were quantified in CSF from individuals with CTD and from age-appropriate comparison samples. Neuro3-Plex enzyme-linked immunoassay was performed on a Quanterix SR-X instrument. The Vineland Adaptive Behavior Scale, 3rd Edition was used to determine an overall Adaptive Behavior Composite (ABC) standard score. Results CSF from 12 individuals with CTD and 23 age appropriate non-CTD comparison samples were analyzed. We found that levels of total tau [t(32) = 4.05, p = 0.0003], Aβ40 [t(31) = 6.11, p < 0.0001], and Aβ42 [t(32) = 3.20, p = 0.003] were elevated in the participants with CTD relative to the comparison group. Additionally, except for one individual that we considered an outlier, all three biomarkers correlated inversely with the adaptive behavior score (total tau: ρ = -0.60 [-0.88, 0.005]; Aβ40: ρ = -0.67 [-0.91, -0.12]; Aβ42: ρ = -0.62 [-0.89, -0.02]). Conclusion We describe here the novel finding of elevated protein biomarkers in the CSF of individuals with CTD. Aβ40, Aβ42 and total tau are markedly elevated in individuals with CTD compared to comparison samples, and increased levels of these biomarkers inversely correlated with ABC scores. We hypothesize that elevated CSF levels of Aβ40 and Aβ42 are due to cellular energy deficiency. Elevated CSF total tau levels may indicate ongoing neuronal damage. The observed inverse correlation of Vineland ABC scores with increased biomarker levels needs to be confirmed in a larger CTD cohort; however, our observation of increased Aβ40, Aβ42 and total tau levels in CSF from individuals with CTD may provide insight into pathological mechanisms contributing to the CTD phenotype and may prove useful as supportive data in future therapeutic trials.
Collapse
Affiliation(s)
- Samar Rahhal
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Cristan Farmer
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Christopher A. Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Niamh X. Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - John Perreault
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - An Dang Do
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Simona Bianconi
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fady Hannah-Shmouni
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Whitney Guthrie
- Center for Autism Research, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Developmental and Behavioral Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura S. Cubit
- Center for Autism Research, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Judith S. Miller
- Center for Autism Research, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Developmental and Behavioral Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - V. Reid Sutton
- Department of Molecular & Human Genetics, Baylor College of Medicine & Texas Children's Hospital, USA
| | - Dwight Koeberl
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
97
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
98
|
Zilberter Y, Tabuena DR, Zilberter M. NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog Neurobiol 2023; 231:102539. [PMID: 37838279 PMCID: PMC11758986 DOI: 10.1016/j.pneurobio.2023.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Neurodegenerative diseases (NDDs) causing cognitive impairment and dementia are difficult to treat due to the lack of understanding of primary initiating factors. Meanwhile, major sporadic NDDs share many risk factors and exhibit similar pathologies in their early stages, indicating the existence of common initiation pathways. Glucose hypometabolism associated with oxidative stress is one such primary, early and shared pathology, and a likely major cause of detrimental disease-associated cascades; targeting this common pathology may therefore be an effective preventative strategy for most sporadic NDDs. However, its exact cause and trigger remain unclear. Recent research suggests that early oxidative stress caused by NADPH oxidase (NOX) activation is a shared initiating mechanism among major sporadic NDDs and could prove to be the long-sought ubiquitous NDD trigger. We focus on two major NDDs - Alzheimer's disease (AD) and Parkinson's disease (PD), as well as on acquired epilepsy which is an increasingly recognized comorbidity in NDDs. We also discuss available data suggesting the relevance of the proposed mechanisms to other NDDs. We delve into the commonalities among these NDDs in neuroinflammation and NOX involvement to identify potential therapeutic targets and gain a deeper understanding of the underlying causes of NDDs.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Dennis R Tabuena
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
99
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J Costa
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W Wilson
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T Fontes
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
100
|
Gholami A. Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci Lett 2023; 817:137532. [PMID: 37866702 DOI: 10.1016/j.neulet.2023.137532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that affects the central nervous system (CNS), leading to memory and cognitive decline. In AD, the brain experiences three main structural changes: a significant decrease in the quantity of neurons, the development of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein, and the formation of amyloid beta (Aβ) or senile plaques, which are protein deposits found outside cells and surrounded by dystrophic neurites. Genetic studies have identified four genes associated with autosomal dominant or familial early-onset AD (FAD): amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2), and apolipoprotein E (ApoE). The formation of plaques primarily involves the accumulation of Aβ, which can be influenced by mutations in APP, PS1, PS2, or ApoE genes. Mutations in the APP and presenilin (PS) proteins can cause an increased amyloid β peptides production, especially the further form of amyloidogenic known as Aβ42. Apart from genetic factors, environmental factors such as cytokines and neurotoxins may also have a significant impact on the development and progression of AD by influencing the formation of amyloid plaques and intracellular tangles. Exploring the causes and implications of protein aggregation in the brain could lead to innovative therapeutic approaches. Some promising therapy strategies that have reached the clinical stage include using acetylcholinesterase inhibitors, estrogen, nonsteroidal anti-inflammatory drugs (NSAIDs), antioxidants, and antiapoptotic agents. The most hopeful therapeutic strategies involve inhibiting activity of secretase and preventing the β-amyloid oligomers and fibrils formation, which are associated with the β-amyloid fibrils accumulation in AD. Additionally, immunotherapy development holds promise as a progressive therapeutic approach for treatment of AD. Recently, the two primary categories of brain stimulation techniques that have been studied for the treatment of AD are invasive brain stimulation (IBS) and non-invasive brain stimulation (NIBS). In this article, the amyloid proteins that play a significant role in the AD formation, the mechanism of disease formation as well as new drugs utilized to treat of AD will be reviewed.
Collapse
Affiliation(s)
- Amirreza Gholami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|