51
|
Li M, Li Y, Lu L, Wang X, Gong Q, Duan C. Structural, gene expression, and functional analysis of the fugu (Takifugu rubripes) insulin-like growth factor binding protein-4 gene. Am J Physiol Regul Integr Comp Physiol 2008; 296:R558-66. [PMID: 19091910 DOI: 10.1152/ajpregu.90439.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) signaling pathway is a conserved pathway that regulates animal development, growth, metabolism, reproduction, and aging. The biological actions of IGFs are modulated by IGF-binding proteins (IGFBPs). Although the structure and function of fish IGFBP-1, -2, -3, and -5 have been elucidated, there is currently no report on the full-length structure of a fish IGFBP-4 nor its biological action. In this study, we cloned and characterized the IGFBP-4 gene from fugu. Sequence comparison, phylogenetic, and synteny analyses indicate that its chromosomal location, gene, and protein structure are similar to its mammalian orthologs. Fugu IGFBP-4 mRNA was easily detectable in all adult tissues examined with the exception of spleen. Older animals tended to have higher levels of IGFBP-4 mRNA in the muscle and eyes compared with younger animals. Starvation resulted in significant increases in IGFBP-4 mRNA abundance in the muscle, liver, gallbladder, and brain. Overexpression of fugu and human IGFBP-4 in zebrafish embryos caused a significant decrease in body size and somite number, suggesting that fugu IGFBP-4 inhibits growth and development, possibly by binding to IGFs and inhibiting their binding to the IGF receptors. These results provide new information about the structural and functional conservation, expression patterns, and physiological regulation of the IGFBP-4 gene in a teleost fish.
Collapse
Affiliation(s)
- Mingyu Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
52
|
Zhou J, Li W, Kamei H, Duan C. Duplication of the IGFBP-2 gene in teleost fish: protein structure and functionality conservation and gene expression divergence. PLoS One 2008; 3:e3926. [PMID: 19081843 PMCID: PMC2593780 DOI: 10.1371/journal.pone.0003926] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 11/17/2008] [Indexed: 12/01/2022] Open
Abstract
Background Insulin-like growth factor binding protein-2 (IGFBP-2) is a secreted protein that binds and regulates IGF actions in controlling growth, development, reproduction, and aging. Elevated expression of IGFBP-2 is often associated with progression of many types of cancers. Methodology/Principal Findings We report the identification and characterization of two IGFBP-2 genes in zebrafish and four other teleost fish. Comparative genomics and structural analyses suggest that they are co-orthologs of the human IGFBP-2 gene. Biochemical assays show that both zebrafish igfbp-2a and -2b encode secreted proteins that bind IGFs. These two genes exhibit distinct spatiotemporal expression patterns. During embryogenesis, IGFBP-2a mRNA is initially detected in the lens, then in the brain boundary vasculature, and subsequently becomes highly expressed in the liver. In the adult stage, liver has the highest levels of IGFBP-2a mRNA, followed by the brain. Low levels of IGFBP-2a mRNA were detected in muscle and in the gonad in male adults only. IGFBP-2b mRNA is detected initially in all tissues at low levels, but later becomes abundant in the liver. In adult males, IGFBP-2b mRNA is only detected in the liver. In adult females, it is also found in the gut, kidney, ovary, and muscle. To gain insights into how the IGFBP-2 genes may have evolved through partitioning of ancestral functions, functional and mechanistic studies were carried out. Expression of zebrafish IGFBP-2a and -2b caused significant decreases in the growth and developmental rates and their effects are comparable to that of human IGFBP-2. IGFBP-2 mutants with altered IGF binding-, RGD-, and heparin-binding sites were generated and their actions examined. While mutating the RGD and heparin binding sites had little effect, altering the IGF binding site abolished its biological activity. Conclusions/Significance These results suggest that IGFBP-2 is a conserved regulatory protein and it inhibits growth and development primarily by binding to and inhibiting IGF actions in vivo. The duplicated IGFBP-2 genes may provide additional flexibility in the regulation of IGF activities.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenhong Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Aquaculture, Guangxi University, Nanning, China
| | - Hiroyasu Kamei
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- * E-mail:
| |
Collapse
|
53
|
Laviola L, Natalicchio A, Perrini S, Giorgino F. Abnormalities of IGF-I signaling in the pathogenesis of diseases of the bone, brain, and fetoplacental unit in humans. Am J Physiol Endocrinol Metab 2008; 295:E991-9. [PMID: 18713961 DOI: 10.1152/ajpendo.90452.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IGF-I action is essential for the regulation of tissue formation and remodeling, bone growth, prenatal growth, brain development, and muscle metabolism. Cellular effects of IGF-I are mediated through the IGF-I receptor, a transmembrane tyrosine kinase that phosphorylates intracellular substrates, resulting in the activation of multiple intracellular signaling cascades. Dysregulation of IGF-I actions due to impairment in the postreceptor signaling machinery may contribute to multiple diseases in humans. This article will review current information on IGF-I signaling and illustrate recent results demonstrating how impaired IGF-I signaling and action may contribute to the pathogenesis of human diseases, including osteoporosis, neurodegenerative disorders, and reduced fetal growth in utero.
Collapse
Affiliation(s)
- Luigi Laviola
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, and Metabolic Diseases, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
54
|
Yakar S, Rosen CJ, Bouxsein ML, Sun H, Mejia W, Kawashima Y, Wu Y, Emerton K, Williams V, Jepsen K, Schaffler MB, Majeska RJ, Gavrilova O, Gutierrez M, Hwang D, Pennisi P, Frystyk J, Boisclair Y, Pintar J, Jasper H, Domene H, Cohen P, Clemmons D, LeRoith D. Serum complexes of insulin-like growth factor-1 modulate skeletal integrity and carbohydrate metabolism. FASEB J 2008; 23:709-19. [PMID: 18952711 DOI: 10.1096/fj.08-118976] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serum insulin-like growth factor (IGF) -1 is secreted mainly by the liver and circulates bound to IGF-binding proteins (IGFBPs), either as binary complexes or ternary complexes with IGFBP-3 or IGFBP-5 and an acid-labile subunit (ALS). The purpose of this study was to genetically dissect the role of IGF-1 circulatory complexes in somatic growth, skeletal integrity, and metabolism. Phenotypic comparisons of controls and four mouse lines with genetic IGF-1 deficits-liver-specific IGF-1 deficiency (LID), ALS knockout (ALSKO), IGFBP-3 (BP3) knockout, and a triply deficient LID/ALSKO/BP3 line-produced several novel findings. 1) All deficient strains had decreased serum IGF-1 levels, but this neither predicted growth potential or skeletal integrity nor defined growth hormone secretion or metabolic abnormalities. 2) IGF-1 deficiency affected development of both cortical and trabecular bone differently, effects apparently dependent on the presence of different circulating IGF-1 complexes. 3) IGFBP-3 deficiency resulted in increased linear growth. In summary, each IGF-1 complex constituent appears to play a distinct role in determining skeletal phenotype, with different effects on cortical and trabecular bone compartments.
Collapse
Affiliation(s)
- Shoshana Yakar
- Endocrinology/Diabetes and Bone Disease, The Mt. Sinai School of Medicine, One Gustave L Levy Place, Box 1055, New York, NY 10029-6574, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Ren H, Yin P, Duan C. IGFBP-5 regulates muscle cell differentiation by binding to IGF-II and switching on the IGF-II auto-regulation loop. ACTA ACUST UNITED AC 2008; 182:979-91. [PMID: 18762576 PMCID: PMC2528583 DOI: 10.1083/jcb.200712110] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IGF-II stimulates both mitogenesis and myogenesis through its binding and activation of the IGF-I receptor (IGF-IR). How this growth factor pathway promotes these two opposite cellular responses is not well understood. We investigate whether local IGF binding protein-5 (IGFBP-5) promotes the myogenic action of IGF-II. IGFBP-5 is induced before the elevation of IGF-II expression during myogenesis. Knockdown of IGFBP-5 impairs myogenesis and suppresses IGF-II gene expression. IGF-II up-regulates its own gene expression via the PI3K-Akt signaling pathway. Adding IGF-II or constitutively activating Akt rescues the IGFBP-5 knockdown-caused defects. However, an IGF analogue that binds to the IGF-IR but not IGFBP has only a limited effect. When added with low concentrations of IGF-II, IGFBP-5 restores IGF-II expression and myogenic differentiation, whereas an IGF binding–deficient IGFBP-5 mutant has no effect. These findings suggest that IGFBP-5 promotes muscle cell differentiation by binding to and switching on the IGF-II auto-regulation loop.
Collapse
Affiliation(s)
- Hongxia Ren
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
56
|
Kamei H, Lu L, Jiao S, Li Y, Gyrup C, Laursen LS, Oxvig C, Zhou J, Duan C. Duplication and diversification of the hypoxia-inducible IGFBP-1 gene in zebrafish. PLoS One 2008; 3:e3091. [PMID: 18769480 PMCID: PMC2518108 DOI: 10.1371/journal.pone.0003091] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/06/2008] [Indexed: 01/23/2023] Open
Abstract
Background Gene duplication is the primary force of new gene evolution. Deciphering whether a pair of duplicated genes has evolved divergent functions is often challenging. The zebrafish is uniquely positioned to provide insight into the process of functional gene evolution due to its amenability to genetic and experimental manipulation and because it possess a large number of duplicated genes. Methodology/Principal Findings We report the identification and characterization of two hypoxia-inducible genes in zebrafish that are co-ortholgs of human IGF binding protein-1 (IGFBP-1). IGFBP-1 is a secreted protein that binds to IGF and modulates IGF actions in somatic growth, development, and aging. Like their human and mouse counterparts, in adult zebrafish igfbp-1a and igfbp-1b are exclusively expressed in the liver. During embryogenesis, the two genes are expressed in overlapping spatial domains but with distinct temporal patterns. While zebrafish IGFBP-1a mRNA was easily detected throughout embryogenesis, IGFBP-1b mRNA was detectable only in advanced stages. Hypoxia induces igfbp-1a expression in early embryogenesis, but induces the igfbp-1b expression later in embryogenesis. Both IGFBP-1a and -b are capable of IGF binding, but IGFBP-1b has much lower affinities for IGF-I and -II because of greater dissociation rates. Overexpression of IGFBP-1a and -1b in zebrafish embryos caused significant decreases in growth and developmental rates. When tested in cultured zebrafish embryonic cells, IGFBP-1a and -1b both inhibited IGF-1-induced cell proliferation but the activity of IGFBP-1b was significantly weaker. Conclusions/Significance These results indicate subfunction partitioning of the duplicated IGFBP-1 genes at the levels of gene expression, physiological regulation, protein structure, and biological actions. The duplicated IGFBP-1 may provide additional flexibility in fine-tuning IGF signaling activities under hypoxia and other catabolic conditions.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ling Lu
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shuang Jiao
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yun Li
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Claus Gyrup
- Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | - Lisbeth S. Laursen
- Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | - Claus Oxvig
- Department of Molecular Biology, University of Aarhus, Aarhus C, Denmark
| | - Jianfeng Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Laboratory of Molecular Medicine, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- * E-mail:
| |
Collapse
|
57
|
Kuang Z, Yao S, McNeil KA, Thompson JA, Bach LA, Forbes BE, Wallace JC, Norton RS. Cooperativity of the N- and C-terminal domains of insulin-like growth factor (IGF) binding protein 2 in IGF binding. Biochemistry 2007; 46:13720-32. [PMID: 17985932 DOI: 10.1021/bi701251d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A family of six insulin-like growth factor (IGF) binding proteins (IGFBP-1-6) binds IGF-I and IGF-II with high affinity and thus regulates their bioavailability and biological functions. IGFBPs consist of N- and C-terminal domains, which are highly conserved and cysteine-rich, joined by a variable linker domain. The role of the C-domain in IGF binding is not completely understood in that C-domain fragments have very low or even undetectable IGF binding affinity, but loss of the C-domain dramatically disrupts IGF binding by IGFBPs. We recently reported the solution structure and backbone dynamics of the C-domain of IGFBP-2 (C-BP-2) and identified a pH-dependent heparin binding site [Kuang, Z., Yao, S., Keizer, D. W., Wang, C. C., Bach, L. A., Forbes, B. E., Wallace, J. C., and Norton, R. S. (2006) Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2), J. Mol. Biol. 364, 690-704]. Here, we have analyzed the molecular interactions among the N-domain of IGFBP-2 (N-BP-2), C-BP-2, and IGFs using cross-linking and nuclear magnetic resonance (NMR) spectroscopy. The binding of C-BP-2 to the IGF-I.N-BP-2 binary complex was significantly stronger than the binding of C-BP-2 to IGF-I alone, switching from intermediate exchange to slow exchange on the NMR time scale. A conformational change or stabilization of the IGF-I Phe49-Leu54 region and the Phe49 aromatic ring upon binding to the N-domains, as well as an interdomain interaction between N-BP-2 and C-BP-2 (which is also detectable in the absence of ligand), may contribute to this cooperativity in IGF binding. Glycosaminoglycan binding by IGFBPs can affect their IGF binding although the effects appear to differ among different IGFBPs; here, we found that heparin bound to the IGF-I.N-BP-2.C-BP-2 ternary complex, but did not cause it to dissociate.
Collapse
Affiliation(s)
- Zhihe Kuang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Liu H, Liu J. Prediction of domain interactive motif pairs. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2005:7750-3. [PMID: 17282078 DOI: 10.1109/iembs.2005.1616309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Protein domain-domain interaction pairs supply functional information about the interacting proteins; and finding interaction motif pairs in protein-protein interaction database can deeply disclose the essence of the protein interaction. Up to now, there is little research work on prediction of interaction motif pairs within domain-domain interaction pairs. In this paper, we propose a new method to predict domain interaction motif pairs. We start from collecting contact segment pairs in the PDB protein complexes, and then use the contact segment pairs as seeds to iteratively cluster the protein-protein interaction database with the help of functional domains, finally we generalize the similar segment pair clusters to produce motif pairs. Using our method, we find 528 motif pairs.
Collapse
Affiliation(s)
- Hongbiao Liu
- School of Computer, Wuhan University, Wuhan 430079, China
| | | |
Collapse
|
59
|
Effect of Low-Level Laser Irradiation on IGF-II and IGFBP-2 Gene Expressions in Osteoblasts. ACTA ACUST UNITED AC 2007. [DOI: 10.5466/ijoms.5.74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
60
|
Johnson SK, Dennis RA, Barone GW, Lamps LW, Haun RS. Differential expression of insulin-like growth factor binding protein-5 in pancreatic adenocarcinomas: identification using DNA microarray. Mol Carcinog 2006; 45:814-27. [PMID: 16865675 DOI: 10.1002/mc.20203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressiveness and resistance to both radiation and chemotherapeutic treatment. To better understand the molecular pathogenesis of pancreatic cancer, DNA array technology was employed to identify genes differentially expressed in pancreatic tumors when compared to non-malignant pancreatic tissues. RNA isolated from 11 PDACs and 14 non-malignant bulk pancreatic duct specimens was used to probe Affymetrix U95A DNA arrays. Genes that displayed at least a fourfold differential expression were identified and real-time quantitative PCR was used to verify the differential expression of selected upregulated genes. Interrogation of the DNA array revealed that 73 genes were upregulated in PDACs and 77 genes were downregulated. The majority of the 150 genes identified have not been previously reported to be differentially expressed in pancreatic tumors, although a number of the upregulated transcripts have been reported previously. Immunohistochemistry was used to correlate calponin and insulin-like growth factor binding protein-5 (IGFBP-5) RNA levels with protein expression in PDACs and revealed peritumoral calponin staining in the reactive stroma and intense focal staining of islets cells expressing IGFBP-5 at the edge of tumors; thus implicating the interplay of various cell types to promote neoplastic cell growth within pancreatic carcinomas. As a potential modulator of cell proliferation, the overexpression of IGFBP-5 may, therefore, play a significant role in the malignant transformation of normal pancreatic epithelial cells.
Collapse
Affiliation(s)
- Sarah K Johnson
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | | | | | | | |
Collapse
|
61
|
Yan YP, Sailor KA, Vemuganti R, Dempsey RJ. Insulin-like growth factor-1 is an endogenous mediator of focal ischemia-induced neural progenitor proliferation. Eur J Neurosci 2006; 24:45-54. [PMID: 16882007 DOI: 10.1111/j.1460-9568.2006.04872.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adult mammalian brain contains resident neural progenitors in the subgranular zone of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricles. The proliferation of neural progenitors increases after focal cerebral ischemia in both of these regions, but the mechanisms that promote ischemia-induced neural progenitor proliferation are not yet understood. We hypothesize that diffusible factors from the ischemic area play a role in this process as the DG is remote from the area of infarction. In this study, we observed that the peak of neural progenitor proliferation in the ipsilateral DG was between day 2 and day 4 of reperfusion after transient middle cerebral artery occlusion in adult spontaneously hypertensive rats. GeneChip and real-time PCR analysis showed a three- to 102-fold increase in the expression of 15 diffusible, mitogenic factors in the ischemic cortex at 3 days of reperfusion. Of these, insulin-like growth factor-1 (IGF-1) showed increased protein expression in the activated astrocytes in the ischemic penumbra. In addition, the progenitors in both the SVZ and DG showed IGF-1 receptor expression. Inhibiting IGF-1 activity by introcerebroventricular infusion of IGF-1 antibody significantly prevented the ischemia-induced neural progenitor proliferation. These results indicate that IGF-1 formed in the ischemic penumbra might be one of the diffusible factors that mediate post-ischemic neural progenitor proliferation.
Collapse
Affiliation(s)
- Yi-Ping Yan
- Department of Neurological Surgery, University of Wisconsin-Madison, WI 53792, USA
| | | | | | | |
Collapse
|
62
|
Alvarado D, Evans TA, Sharma R, Lemmon MA, Duffy JB. Argos Mutants Define an Affinity Threshold for Spitz Inhibition in Vivo. J Biol Chem 2006; 281:28993-9001. [PMID: 16870613 DOI: 10.1074/jbc.m603782200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Argos, a secreted antagonist of Drosophila epidermal growth factor receptor (dEGFR) signaling, acts by sequestering the activating ligand Spitz. To understand how different domains in Argos contribute to efficient Spitz sequestration, we performed a genetic screen aimed at uncovering modifiers of an Argos misexpression phenotype in the developing eye. We identified a series of suppressors mapping to the Argos transgene that affect its activity in multiple developmental contexts. These point mutations map to both the N- and C-terminal cysteine-rich regions, implicating both domains in Argos function. We show by surface plasmon resonance that these Argos mutants are deficient in their ability to bind Spitz in vitro. Our data indicate that a mere approximately 2-fold decrease in K(D) is sufficient to compromise Argos activity in vivo. This effect could be recapitulated in a cell-based assay, where a higher molar concentration of mutant Argos was needed to inhibit Spitz-dependent dEGFR phosphorylation. In contrast, a approximately 37-fold decrease in the binding constant nearly abolishes Argos activity in vivo and in cellular assays. In agreement with previously reported computational studies, our results define an affinity threshold for optimal Argos inhibition of dEGFR signaling during development.
Collapse
Affiliation(s)
- Diego Alvarado
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA.
| | | | | | | | | |
Collapse
|
63
|
Sitar T, Popowicz GM, Siwanowicz I, Huber R, Holak TA. Structural basis for the inhibition of insulin-like growth factors by insulin-like growth factor-binding proteins. Proc Natl Acad Sci U S A 2006; 103:13028-33. [PMID: 16924115 PMCID: PMC1551901 DOI: 10.1073/pnas.0605652103] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) control bioavailability, activity, and distribution of insulin-like growth factor (IGF)1 and -2 through high-affinity IGFBP/IGF complexes. IGF-binding sites are found on N- and C-terminal fragments of IGFBPs, the two conserved domains of IGFBPs. The relative contributions of these domains to IGFBP/IGF complexation has been difficult to analyze, in part, because of the lack of appropriate three-dimensional structures. To analyze the effects of N- and C-terminal domain interactions, we determined several x-ray structures: first, of a ternary complex of N- and C-terminal domain fragments of IGFBP4 and IGF1 and second, of a "hybrid" ternary complex using the C-terminal domain fragment of IGFBP1 instead of IGFBP4. We also solved the binary complex of the N-terminal domains of IGFBP4 and IGF1, again to analyze C- and N-terminal domain interactions by comparison with the ternary complexes. The structures reveal the mechanisms of IGF signaling regulation via IGFBP binding. This finding supports research into the design of IGFBP variants as therapeutic IGF inhibitors for diseases of IGF disregulation. In IGFBP4, residues 1-38 form a rigid disulphide bond ladder-like structure, and the first five N-terminal residues bind to IGF and partially mask IGF residues responsible for the type 1 IGF receptor binding. A high-affinity IGF1-binding site is located in a globular structure between residues 39 and 82. Although the C-terminal domains do not form stable binary complexes with either IGF1 or the N-terminal domain of IGFBP4, in the ternary complex, the C-terminal domain contacts both and contributes to blocking of the IGF1 receptor-binding region of IGF1.
Collapse
Affiliation(s)
- Tomasz Sitar
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | - Igor Siwanowicz
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | - Robert Huber
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
- *To whom correspondence may be addressed. E-mail:
or
| | - Tad A. Holak
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
64
|
Silha JV, Sheppard PC, Mishra S, Gui Y, Schwartz J, Dodd JG, Murphy LJ. Insulin-like growth factor (IGF) binding protein-3 attenuates prostate tumor growth by IGF-dependent and IGF-independent mechanisms. Endocrinology 2006; 147:2112-21. [PMID: 16469805 DOI: 10.1210/en.2005-1270] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF binding protein (IGFBP)-3 inhibits cell growth and promotes apoptosis by sequestering free IGFs. In addition IGFBP-3 has IGF-independent, proapoptotic, antiproliferative effects on prostate cancer cells in vitro. Expression of the large T-antigen (Tag) under the long probasin promoter (LPB) in LPB-Tag mice results in prostate tumorigenesis. To investigate the IGF-dependent and IGF-independent effects of IGFBP-3 on prostate tumor growth, we crossed LPB-Tag mice with cytomegalovirus (CMVBP-3) and phosphoglycerate kinase (PGKBP-3) mice that overexpress IGFBP-3 under the cytomegalovirus promoter and the phosphoglycerate kinase promoter, respectively, and also I56G/L80G/L81G-mutant IGFBP-3 (PGKmBP-3) mice that express I56G/L80G/L81G-IGFBP-3, a mutant, that does not bind IGF-I but retains IGF-independent proapoptotic effects in vitro. Prostate tumor size and the steady-state level of p53 were attenuated in LPB-Tag/CMVBP-3 and LPB-Tag/PGKBP-3 mice, compared with LPB-Tag/wild-type (Wt) mice. A more marked effect was observed in LPB-Tag/CMVBP-3, compared with LPB-Tag/PGKBP-3, reflecting increased levels of transgene expression in CMVBP-3 prostate tissue. No attenuation of tumor growth was observed in LPB-Tag/PGKmBP-3 mice during the early tumor development, indicating that the inhibitory effects of IGFBP-3 were most likely IGF dependent during the initiation of tumorigenesis. At 15 wk of age, epidermal growth factor receptor expression was increased in LPB-Tag/Wt and LPB-Tag/PGKmBP-3 tissue, compared with LPB-Tag/PGKBP-3. IGF receptor was increased in all transgenic mice, but pAkt expression, a marker of downstream IGF-I action, was increased only in LPB-Tag/Wt and LPB-Tag/PGKmBP-3. After 15 wk of age, a marked reduction in tumor growth was apparent in LPB-Tag/PGKmBP-3 mice, indicating that the IGF-independent effects of IGFBP-3 may be important in inhibiting tumor progression.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
65
|
Beattie J, Allan GJ, Lochrie JD, Flint DJ. Insulin-like growth factor-binding protein-5 (IGFBP-5): a critical member of the IGF axis. Biochem J 2006; 395:1-19. [PMID: 16526944 PMCID: PMC1409685 DOI: 10.1042/bj20060086] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/30/2006] [Indexed: 11/17/2022]
Abstract
The six members of the insulin-like growth factor-binding protein family (IGFBP-1-6) are important components of the IGF (insulin-like growth factor) axis. In this capacity, they serve to regulate the activity of both IGF-I and -II polypeptide growth factors. The IGFBPs are able to enhance or inhibit the activity of IGFs in a cell- and tissue-specific manner. One of these proteins, IGFBP-5, also has an important role in controlling cell survival, differentiation and apoptosis. In this review, we report on the structural and functional features of the protein which are important for these effects. We also examine the regulation of IGFBP-5 expression and comment on its potential role in tumour biology, with special reference to work with breast cancer cells.
Collapse
Key Words
- extracellular matrix (ecm)
- glycosaminoglycan
- insulin-like growth factor-i (igf-i)
- insulin-like growth factor-binding protein 5 (igfbp-5)
- mammary gland
- proteolysis
- adam, adisintegrin and metalloprotease
- ap-2, activator protein 2
- cat, chloramphenicol acetyltransferase
- cbp-4, c-terminus of insulin-like growth factor-binding protein 4 (residues 151–232)
- c/ebp, ccaat/enhancer-binding protein
- ecm, extracellular matrix
- er, oestrogen receptor
- erk1/2, extracellular-signal-regulated protein kinase 1/2
- fhl-2, four-and-a-half lim domain 2
- gag, glycosaminoglycan
- gh, growth hormone
- igf, insulin-like growth factor
- igfbp, igf-binding protein
- igf-ir, igf-i receptor
- igf-iir, igf-ii receptor
- ir, insulin receptor
- irs, ir substrate
- mapk, mitogen-activated protein kinase
- nbp-4, n-terminus of igfbp-4 (residues 3–82)
- oe2, oestradiol
- op-1, osteogenic protein-1
- opn, osteopontin
- pai-1, plasminogen activator inhibitor-1
- papp, pregnancy-associated plasma protease
- pge2, prostaglandin e2
- psmc, porcine smooth-muscle cell
- ra, retinoic acid
- rassf1c, isoform c of the ras association family 1 protein group
- rt, reverse transcription
- spr, surface plasmon resonance
- tpa, tissue plasminogen activator
- tsp-1, thrombospondin-1
- vn, vitronectin
Collapse
Affiliation(s)
- James Beattie
- Hannah Research Institute, Ayr KA6 5HL, Scotland, UK.
| | | | | | | |
Collapse
|
66
|
Kajimura S, Aida K, Duan C. Understanding hypoxia-induced gene expression in early development: in vitro and in vivo analysis of hypoxia-inducible factor 1-regulated zebra fish insulin-like growth factor binding protein 1 gene expression. Mol Cell Biol 2006; 26:1142-55. [PMID: 16428465 PMCID: PMC1347021 DOI: 10.1128/mcb.26.3.1142-1155.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insulin-like growth factor binding protein 1 (IGFBP-1) is a hypoxia-inducible gene that plays an important role in regulating embryonic growth and development under hypoxic stress. The molecular mechanisms underlying hypoxia-induced IGFBP-1 gene expression in the embryonic tissues are not well understood. Here we report that the hypoxia-inducible factor 1 (HIF-1) pathway is established in early embryogenesis and mediates hypoxia-induced IGFBP-1 expression. Hypoxia increased the HIF-1 activity, and HIF-1alpha overexpression or CoCl2 treatment resulted in elevated IGFBP-1 expression in zebra fish embryos. Although the zebra fish IGFBP-1 promoter contains 13 consensus hypoxia response elements (HREs), deletion and mutational analysis revealed that only the HRE positioned at -1090/-1086 is required for the hypoxia and HIF-1 induction. Further experiments revealed that there is an HIF-1 ancillary sequence (HAS) adjacent only to the functional HRE. Mutation of this HAS greatly reduced the responsiveness of the IGFBP-1 promoter to hypoxia and HIF-1. The HAS does not directly bind to HIF-1 or affect the binding of the HRE to HIF-1. The HAS is bound to a nuclear protein(s), and this HAS binding activity is reduced by hypoxia. These results suggest that HIF-1 mediates hypoxia-induced IGFBP-1 gene expression in early development by selectively interacting with the -1090/-1086 HRE and its adjacent HAS.
Collapse
Affiliation(s)
- Shingo Kajimura
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
67
|
Pell JM, Salih DAM, Cobb LJ, Tripathi G, Drozd A. The role of insulin-like growth factor binding proteins in development. Rev Endocr Metab Disord 2005; 6:189-98. [PMID: 16151623 DOI: 10.1007/s11154-005-3050-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- J M Pell
- Babraham Institute, Babraham Research Campus, Cambridge, CB2 4AT, UK
| | | | | | | | | |
Collapse
|
68
|
Silha JV, Murphy LJ. The effects of the insulin-like growth factor-I aptamer, NBI-31772, on glucose homeostasis in the mouse. Can J Physiol Pharmacol 2005; 83:557-63. [PMID: 16091781 DOI: 10.1139/y05-041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of insulin-like growth factor-I (IGF-I) in the adult rodent circulation is bound to high affinity IGF binding proteins. We investigated the changes in IGF-I clearance, blood glucose and plasma insulin levels, and tissue 2-deoxyglucose uptake after intravenous administration of the IGF aptamer, NBI-31772, which selectively competes with IGF-I for binding to the IGFBPs, but has no effect at the IGF-I receptor. Clearance of 125I-IGF-I was significantly increased in NBI-31772-treated mice compared with vehicle-treated mice (t1/2 = 45.0 ± 1.9 vs. 56.3 ± 3.9 min, respectively; p = 0.021). However, NBI-31772 had no significant effect on glucose levels, and no insulin sparing effect was apparent neither under basal conditions nor during an intravenous glucose challenge. The decline in the specific activity after 3H-2-deoxyglucose administration was significantly less rapid in NBI-31772-treated mice compared with controls, suggesting that the IGF-I aptamer had an inhibitory effect on hepatic gluconeogenesis. In contrast, no insulin-like effect was apparent in other tissues examined. 3H-2-deoxyglucose accumulation was similar in all tissues analyzed, including skeletal muscle, which is thought to be particularly sensitive to IGF-I. These data suggest that the IGF-I aptamer affects clearance of radiolabeled IGF-I from the circulation, but has no marked effects on glucose nor insulin homeostasis. The search for hydrophilic IGF aptamers with longer duration of action that could be used in the treatment of diabetes may be rewarding. Key words: insulin resistance, gluconeogenesis, 2-deoxyglucose uptake, glucose clearance.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | | |
Collapse
|
69
|
Siwanowicz I, Popowicz GM, Wisniewska M, Huber R, Kuenkele KP, Lang K, Engh RA, Holak TA. Structural basis for the regulation of insulin-like growth factors by IGF binding proteins. Structure 2005; 13:155-67. [PMID: 15642270 DOI: 10.1016/j.str.2004.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 10/21/2004] [Accepted: 11/08/2004] [Indexed: 01/24/2023]
Abstract
Insulin-like growth factor binding proteins (IGFBPs) control the extracellular distribution, function, and activity of IGFs. Here, we report an X-ray structure of the binary complex of IGF-I and the N-terminal domain of IGFBP-4 (NBP-4, residues 3-82) and a model of the ternary complex of IGF-I, NBP-4, and the C-terminal domain (CBP-4, residues 151-232) derived from diffraction data with weak definition of the C-terminal domain. These structures show how the IGFBPs regulate IGF signaling. Key features of the structures include (1) a disulphide bond ladder that binds to IGF and partially masks the IGF residues responsible for type 1 IGF receptor (IGF-IR) binding, (2) the high-affinity IGF-I interaction site formed by residues 39-82 in a globular fold, and (3) CBP-4 interactions. Although CBP-4 does not bind individually to either IGF-I or NBP-4, in the ternary complex, CBP-4 contacts both and also blocks the IGF-IR binding region of IGF-I.
Collapse
Affiliation(s)
- Igor Siwanowicz
- Max Planck Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Mishra S, Murphy LJ. The effects of insulin-like growth factor binding protein-3 (IGFBP-3) on T47D breast cancer cells enriched for IGFBP-3 binding sites. Mol Cell Biochem 2005; 267:83-9. [PMID: 15663189 DOI: 10.1023/b:mcbi.0000049368.40558.0a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate insulin-like growth factor (IGF)-independent effects of IGF binding protein-3 (IGFBP-3), T47D cells were enriched for a population of cells that expressed binding sites for biotinylated-IGFBP-3 by panning on streptavidin-coated plate. Proliferation of cell enriched for IGFBP-3 binding sites was significantly inhibited by IGFBP-3, whereas IGFBP-3 had no significant effect on the non-enriched cell population. Enriched and non-enriched cells were equally responsive to IGF-I, TGF-beta and EGF. Conditioned medium from enriched cells had less IGFBP-3 than that from non-enriched cells. Cross-linking of biotinylated IGFBP-3 to T47D cell membranes identified complexes with Mr of 32, 80 and 100 kDa. All of these complexes were more abundant in enriched cells compared with the non-enriched cell population. These data demonstrate that despite the anti-proliferative effects of IGFBP-3 it is possible to selectively enriched for cell populations with more abundant IGFBP-3 binding sites. These enriched cells are more responsive to IGFBP-3 and secrete less of this binding protein than non-enriched cells, supporting the concept that IGFBP-3 secretion by human breast cancer cells may function as an autocrine or paracrine modulator of cell proliferation.
Collapse
Affiliation(s)
- Suresh Mishra
- Departments of Internal Medicine & Physiology, University of Manitoba, Winnipeg R3E 0W3 Canada
| | | |
Collapse
|
71
|
Atti E, Boskey AL, Canalis E. Overexpression of IGF-binding protein 5 alters mineral and matrix properties in mouse femora: an infrared imaging study. Calcif Tissue Int 2005; 76:187-93. [PMID: 15570402 DOI: 10.1007/s00223-004-0076-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The anabolic effects of insulin-like growth factors (IGFs) are modulated by a family of IGF-binding proteins (IGFBPs). Among the six known IGFBPs, IGFBP-5 is considered to play a role in bone formation. To investigate the effects of IGFBP-5 on bone mineral and matrix properties, femurs from transgenic mice overexpressing IGFBP-5 under the control of the osteocalcin promoter were evaluated by Fourier Transform Infrared Imaging (FTIRI). Analyses were done at the time of maximal osteocalcin expression (5 weeks). The spectroscopic parameters monitored were mineral-to-matrix ratio (indicative of the relative amount of mineral present), mineral crystallinity (index of the mineral crystal size and perfection) and collagen maturity (reflecting the ratio of non-reducible and reducible collagen cross-links). Multiple fields were selected for each femur, ranging from epiphysis to diaphysis. Previously, we showed that these transgenic mice display decreased osteoblastic function and osteopenia. In the present work, FTIRI showed that transgenic mice as compared to wild types have a different pattern of bone mineralization and matrix maturation. Specifically, cortical bone, primary spongiosa, and secondary ossification centers had lower values for mineral-to-matrix ratio and collagen maturity. Differences were not statistically significant in all cases although the trends were consistent. The mineral crystallinity did not vary significantly between the two groups, implying that the crystal maturation of mineral was not affected by IGFBP-5 overexpression. This study demonstrates that femurs from transgenic mice over expressing IGFBP-5 under the control of the osteocalcin promoter have modest alterations in mineral and matrix distribution, consistent with a role of IGF in osteoblast maturation.
Collapse
Affiliation(s)
- E Atti
- Hospital for Special Surgery, New York, NY, USA
| | | | | |
Collapse
|
72
|
Li Y, Xiang J, Duan C. Insulin-like Growth Factor-binding Protein-3 Plays an Important Role in Regulating Pharyngeal Skeleton and Inner Ear Formation and Differentiation. J Biol Chem 2005; 280:3613-20. [PMID: 15550380 DOI: 10.1074/jbc.m411479200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin-like growth factor-binding protein (IGFBP)-3 is the major insulin-like growth factor (IGF) carrier protein in the bloodstream. IGFBP-3 prolongs the half-life of circulating IGFs and prevents their potential hypoglycemic effect. IGFBP-3 is also expressed in many peripheral tissues in fetal and adult stages. In vitro, IGFBP-3 can inhibit or potentiate IGF actions and even possesses IGF-independent activities, suggesting that local IGFBP-3 may also have paracrine/autocrine function(s). The in vivo function of IGFBP-3, however, is unclear. In this study, we elucidate the developmental role of IGFBP-3 using the zebrafish model. IGFBP-3 mRNA expression is first detected in the migrating cranial neural crest cells and subsequently in pharyngeal arches in zebrafish embryos. IGFBP-3 mRNA is also persistently expressed in the developing inner ears. To determine the role of IGFBP-3 in these tissues, we ablated the IGFBP-3 gene product using morpholino-modified antisense oligonucleotides (MOs). The IGFBP-3 knocked down embryos had delayed pharyngeal skeleton morphogenesis and greatly reduced pharyngeal cartilage differentiation. Knockdown of IGFBP-3 also significantly decreased inner ear size and disrupted hair cell differentiation and semicircular canal formation. Furthermore, reintroduction of a MO-resistant form of IGFBP-3 "rescued" the MO-induced defects. These findings suggest that IGFBP-3 plays an important role in regulating pharyngeal cartilage and inner ear development and growth in zebrafish.
Collapse
Affiliation(s)
- Yun Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
73
|
Salih DAM, Mohan S, Kasukawa Y, Tripathi G, Lovett FA, Anderson NF, Carter EJ, Wergedal JE, Baylink DJ, Pell JM. Insulin-like growth factor-binding protein-5 induces a gender-related decrease in bone mineral density in transgenic mice. Endocrinology 2005; 146:931-40. [PMID: 15550514 PMCID: PMC2897135 DOI: 10.1210/en.2004-0816] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IGF-binding protein-5 (IGFBP-5) is abundant in serum and bone during normal skeletal development, but levels decrease in osteoporosis. Studies have shown that IGFBP-5 stimulates markers of bone formation by potentiating IGF actions and by IGF-independent actions. To test the hypothesis that IGFBP-5 promotes the acquisition of bone mineral density (BMD), we generated transgenic (Tg) mice overexpressing Igfbp5 using a cytomegalovirus enhancer and beta-actin promoter (CMV/betaA). Tg animals showed an increase in serum IGFBP-5 concentrations by 7.7- to 3.5-fold at 3-8 wk of age, respectively. Concentrations were 6-49% higher for males compared with females in both wild-type and Tg mice. Surprisingly, BMD decreased in a gender-dependent manner, with Tg male adults affected more severely than Tg females (31.3% vs. 19.2% reduction, respectively, compared with wild-type mice, assessed by dual energy x-ray absorptiometry). Significant gender differences in BMD were confirmed by peripheral quantitative computed tomography. Histomorphometry revealed that although the bone formation rate and mineralizing surface at the periosteum decreased in Tg mice, they increased at the endosteum, suggesting opposing effects of IGFBP-5 on periosteal and endosteal osteoblasts (by altering proliferation or survival). These findings differ from previous observations in Igf1- and Igf2-null animals. In conclusion, IGFBP-5 has a significant influence on BMD acquisition and maintenance that is dependent on gender and age. The phenotype of Igfbp5 mice cannot be explained solely by IGF inhibition; thus, this study provides the first in vivo evidence, by genetic manipulation, for IGF-independent actions of IGFBP-5 in bone function. These findings have implications for the gender-biased progression of osteoporosis.
Collapse
Affiliation(s)
- Dervis A M Salih
- Laboratory of Molecular Signaling, The Babraham Institute, Cambridge, United Kingdom CB2 4AT
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kajimura S, Aida K, Duan C. Insulin-like growth factor-binding protein-1 (IGFBP-1) mediates hypoxia-induced embryonic growth and developmental retardation. Proc Natl Acad Sci U S A 2005; 102:1240-5. [PMID: 15644436 PMCID: PMC545835 DOI: 10.1073/pnas.0407443102] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Indexed: 11/18/2022] Open
Abstract
Although reduced fetal growth in response to hypoxia has been appreciated for decades, we have a poor understanding of the effects of hypoxia on embryonic development and the underlying cellular and molecular mechanisms. Here we show that hypoxia treatment not only resulted in embryonic growth retardation but also caused significant delay in developmental speed and the timing of morphogenesis in vital organs of zebrafish. Hypoxia strongly induced the expression of insulin-like growth factor (IGF)-binding protein (IGFBP)-1, a secreted protein that binds IGFs in extracellular environments. Hypoxia did not change the expression levels of IGFs, IGF receptors, or other IGFBPs. The hypothesis that elevated IGFBP-1 mediates hypoxia-induced embryonic growth retardation and developmental delay by binding to and inhibiting the activities of IGFs was tested by loss- and gain-of-function approaches. Knockdown of IGFBP-1 significantly alleviated the hypoxia-induced growth retardation and developmental delay. Overexpression of IGFBP-1 caused growth and developmental retardation under normoxia. Furthermore, reintroduction of IGFBP-1 to the IGFBP-1 knocked-down embryos restored the hypoxic effects on embryonic growth and development. When tested in vitro with cultured zebrafish embryonic cells, IGFBP-1 itself had no mitogenic activity, but it inhibited IGF-1- and IGF-2-stimulated cell proliferation. This inhibitory effect was abolished when IGF-1 or IGF-2 was added in molar excess, suggesting that IGFBP-1 inhibits embryonic growth and development by binding to and inhibiting the activities of IGFs. The induction of IGFBP-1 expression may be a conserved physiological mechanism to restrict the IGF-stimulated growth and developmental process under hypoxic stress.
Collapse
Affiliation(s)
- Shingo Kajimura
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
75
|
Shepherd BS, Drennon K, Johnson J, Nichols JW, Playle RC, Singer TD, Vijayan MM. Salinity acclimation affects the somatotropic axis in rainbow trout. Am J Physiol Regul Integr Comp Physiol 2004; 288:R1385-95. [PMID: 15604305 DOI: 10.1152/ajpregu.00443.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we set out to examine the role of the somatotropic axis in the ion-regulation process in rainbow trout. Specifically, our objective was to examine whether plasma insulin-like growth factor-binding proteins (IGFBPs) are modulated by gradual salinity exposure. To this end, freshwater (FW)-adapted rainbow trout were subjected to gradual salinity increases, up to 66% seawater, over a period of 5 days. During this acclimation process, minimal elevations in plasma Ca2+ and Cl- were seen in the salinity-acclimated groups compared with FW controls. There were no changes in plasma Na+ levels, and only a minor transient change in plasma cortisol levels was seen with salinity exposure. The salinity challenged animals responded with elevations in plasma growth hormone (GH) and IGF-I levels and gill Na+-K+-ATPase activity. We identified IGFBPs of 21, 32, 42, and 50 kDa in size in the plasma of these animals, and they were consistently higher with salinity. Despite the overall increase in IGFBPs with salinity, transient changes in individual BPs over the 5-day period were noted in the FW and salinity-exposed fish. Specifically, the transient changes in plasma levels of the 21-, 42-, and 50-kDa IGFBPs were different between the FW and salinity groups, while the 32-kDa IGFBP showed a similar trend (increases with sampling time) in both groups. Considered together, the elevated plasma IGFBPs suggest a key role for these binding proteins in the regulation of IGF-I during salinity acclimation in salmonids.
Collapse
Affiliation(s)
- Brian S Shepherd
- National Center for Cool and Coldwater Aquaculture, ARS/USDA, 11861 Leetown Rd., Kearneysville, WV 25430, USA.
| | | | | | | | | | | | | |
Collapse
|
76
|
Yan X, Forbes BE, McNeil KA, Baxter RC, Firth SM. Role of N- and C-terminal residues of insulin-like growth factor (IGF)-binding protein-3 in regulating IGF complex formation and receptor activation. J Biol Chem 2004; 279:53232-40. [PMID: 15485880 DOI: 10.1074/jbc.m409345200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-binding protein-3 (IGFBP-3), the major IGFBP in the circulation, sequesters IGF in a stable ternary complex with the acid-labile subunit. The high affinity IGF-binding site is proposed to reside within an N-terminal hydrophobic domain in IGFBP-3, but C-terminal residues have also been implicated in the homologous protein IGFBP-5. We have mutated in various combinations Leu(77), Leu(80), and Leu(81) in the N terminus and Gly(217) and Gln(223) in the C terminus of IGF-BP-3. All mutants retained immunoreactivity toward a polyclonal IGFBP-3 antibody, whereas IGF ligand blotting showed that all of the mutants had reduced binding to IGFs. Both solution IGF binding assays and BIAcore analysis indicated that mutations to the N-terminal region caused greater reduction in IGF binding activity than C-terminal mutations. The combined N- and C-terminal mutants showed undetectable binding to IGF-I but retained <10% IGF-II binding activity. Reduced ternary complex formation was seen only in mutants that had considerably reduced IGF-I binding, consistent with previous studies indicating that the binary IGF.IGFBP-3 complex is required for acid-labile subunit binding. Decreased IGF binding was also reflected in the inability of the mutants to inhibit IGF-I signaling in IGF receptor overexpressing cells. However, when present in excess, IGFBP-3 analogs defined as non-IGF-binding by biochemical assays could still inhibit IGF signaling. This suggests that residual binding activity of IGFBP-3 mutants may still be sufficient to inhibit IGF biological activity and questions the use of such analogs to study IGF-independent effects of IGFBP-3.
Collapse
Affiliation(s)
- Xiaolang Yan
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | | | | | |
Collapse
|
77
|
Abstract
Since their initial discovery over 25 years ago as IGF carrier proteins, the insulin-like growth factor binding protein (IGFBP) family has grown to six members, ranging in size from 216 to 289 amino acids. The assumption over the years has been that this family of proteins, having higher affinities for IGF-I and IGF-II than does the IGF-IR, serves to block access of these ligands to the receptor. Although the need for such regulatory proteins is consistent with the constitutive secretion of IGFs from many cell types, it is not surprising that additional functions have begun to be uncovered for these proteins. This review will examine new and old actions of the IGFBPs from a biochemical and cell biological perspective.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29403, USA.
| |
Collapse
|
78
|
Yin P, Xu Q, Duan C. Paradoxical actions of endogenous and exogenous insulin-like growth factor-binding protein-5 revealed by RNA interference analysis. J Biol Chem 2004; 279:32660-6. [PMID: 15155755 DOI: 10.1074/jbc.m401378200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-binding protein-5 (IGFBP-5) is abundantly expressed in bone cells. To determine the physiological role(s) of endogenous IGFBP-5 in regulating bone cell growth, differentiation, and survival, we used short double-stranded RNA (siRNA) to trigger RNA interference of IGFBP-5 in human osteosarcoma cells. The IGFBP-5 siRNA, targeting against a sequence unique to the IGFBP-5 middle domain, efficiently reduced IGFBP-5 mRNA and protein levels. The IGFBP-5 siRNA did not change the levels of IGFBP-4, a structurally related protein, or glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene. Knock-down of IGFBP-5 resulted in a significant increase in the number of transferase-mediated dUTP nick end labeling-positive cells and a decrease in a bone differentiation parameter (alkaline phosphatase activity) but had little effect on basal or insulin-like growth factor I-induced proliferation. Overexpression of a siRNA-resistant IGFBP-5 mutant in the IGFBP-5 knock-down cells restored the levels of survival to the control level; overexpression of IGFBP-4 or wild type IGFBP-5 had no such effect. Paradoxically, the addition of exogenous IGFBP-5 not only failed to rescue IGFBP-5 knock-down-induced apoptosis, it caused a further increase in apoptosis. Furthermore, the addition of exogenous IGFBP-5 alone increased apoptosis. This pro-apoptotic action of exogenous IGFBP-5 was abolished when IGF-I was added in excess, suggesting that exogenous IGFBP-5 increases apoptosis by binding to and inhibiting the activities of insulin-like growth factors. These results indicate that endogenous and exogenous IGFBP-5 exhibits opposing biological actions on cell survival and underscore the necessity and utility of studying IGFBP functions through loss-of-function approaches.
Collapse
Affiliation(s)
- Ping Yin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109, USA
| | | | | |
Collapse
|
79
|
Salih DAM, Tripathi G, Holding C, Szestak TAM, Gonzalez MI, Carter EJ, Cobb LJ, Eisemann JE, Pell JM. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci U S A 2004; 101:4314-9. [PMID: 15010534 PMCID: PMC384738 DOI: 10.1073/pnas.0400230101] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Indexed: 12/27/2022] Open
Abstract
The insulin-like growth factors (IGFs) are essential for development; bioavailable IGF is tightly regulated by six related IGF-binding proteins (IGFBPs). Igfbp5 is the most conserved and is developmentally up-regulated in key lineages and pathologies; in vitro studies suggest that IGFBP-5 functions independently of IGF interaction. Genetic ablation of individual Igfbps has yielded limited phenotypes because of substantial compensation by remaining family members. Therefore, to reveal Igfbp5 actions in vivo, we generated lines of transgenic mice that ubiquitously overexpressed Igfbp5 from early development. Significantly increased neonatal mortality, reduced female fertility, whole-body growth inhibition, and retarded muscle development were observed in Igfbp5-overexpressing mice. The magnitude of the response in individual transgenic lines was positively correlated with Igfbp5 expression. Circulating IGFBP-5 concentrations increased a maximum of only 4-fold, total and free IGF-I concentrations increased up to 2-fold, and IGFBP-5 was detected in high M(r) complexes; however, no detectable decrease in the proportion of free IGF-I was observed. Thus, despite only modest changes in IGF and IGFBP concentrations, the Igfbp5-overexpressing mice displayed a phenotype more extreme than that observed for other Igfbp genetic models. Although growth retardation was obvious prenatally, maximal inhibition occurred postnatally before the onset of growth hormone-dependent growth, regardless of Igfbp5 expression level, revealing a period of sensitivity to IGFBP-5 during this important stage of tissue programming.
Collapse
Affiliation(s)
- Dervis A M Salih
- Signalling Programme, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Xu Q, Li S, Zhao Y, Maures TJ, Yin P, Duan C. Evidence That IGF Binding Protein-5 Functions as a Ligand-Independent Transcriptional Regulator in Vascular Smooth Muscle Cells. Circ Res 2004; 94:E46-54. [PMID: 15001525 DOI: 10.1161/01.res.0000124761.62846.df] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insulin-like growth factor binding protein (IGFBP)-5 is a conserved protein synthesized and secreted by vascular smooth muscle cells (VSMCs). IGFBP-5 binds to extracellular IGFs and modulates IGF actions in regulating VSMC proliferation, migration, and survival. IGFBP-5 also stimulates VSMC migration through an IGF-independent mechanism, but the molecular basis underlying this ligand-independent action is unknown. In this study, we show that endogenous IGFBP-5 or transiently expressed IGFBP-5-EGFP, but not IGFBP-4-EGFP, is localized in the nuclei of VSMCs. Using a series of IGFBP-4/5 chimeras and IGFBP-5 points mutants, we demonstrated that the IGFBP-5 C-domain is necessary and sufficient for its nuclear localization, and residues K206, K208, K217, and K218 are particularly critical. Intriguingly, inhibition of protein secretion abolishes IGFBP-5 nuclear localization, suggesting the nuclear IGFBP-5 is derived from the secreted protein. When added exogenously,
125
I- or Cy3-labeled IGFBP-5 is capable of cellular entry and nuclear translocation. To identify potential transcriptional factor(s) that interact with IGFBP-5, a human aorta cDNA library was screened by a yeast two-hybrid screening strategy. Although this screen identified many extracellular and cytosolic proteins that are known to interact with IGFBP-5, no known transcription factors were found. Further motif analysis revealed that the IGFBP-5 N-domain contains a putative transactivation domain. When fused to GAL-4 DNA dinging domain and tested, the IGFBP-5 N-domain has strong transactivation activity. Mutation of the IGF binding domain or treatment of cells with IGF-I has little effect on transactivation activity. These results suggest that IGFBP-5 is localized in VSMC nucleus and possesses transcription-regulatory activity that is IGF independent. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
Affiliation(s)
- Qijin Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
81
|
Cobb LJ, Salih DAM, Gonzalez I, Tripathi G, Carter EJ, Lovett F, Holding C, Pell JM. Partitioning of IGFBP-5 actions in myogenesis: IGF-independent anti-apoptotic function. J Cell Sci 2004; 117:1737-46. [PMID: 15075235 DOI: 10.1242/jcs.01028] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Igfbp5 is upregulated during the differentiation of several key cell lineages and in some tumours; the function of IGFBP-5 in these physiological and pathological situations is unknown. Since IGFBP-5 contains sequence motifs consistent with IGF-independent actions, the aim of these studies was to distinguish between IGF-dependent and -independent actions of IGFBP-5. Myc-tagged wild-type (termed wtIGFBP-5) and non-IGF binding mouse Igfbp5 (termed mutIGFBP-5) cDNAs were generated and used to transfect C2 myoblasts, a cell line that undergoes differentiation to myotubes in an IGF- and IGFBP-5-regulated manner. WtIGFBP-5, but not mutIGFBP-5, inhibited myogenesis, as assessed by cell morphology, MHC immunocytochemistry and caveolin 3 expression. However, both wt- and mutIGFBP-5 increased cell survival and decreased apoptosis, as indicated by decreased caspase-3 activity and cell surface annexin V binding. Further examination of apoptotic pathways revealed that wt- and mutIGFBP-5 ameliorated the increase in caspase-9 but not the modest increase in caspase-8 during myogenesis, suggesting that IGFBP-5 increased cell survival via inhibition of intrinsic cell death pathways in an IGF-independent manner. The relationship between IGF-II and IGFBP-5 was examined further by cotransfecting C2 myoblasts with antisense Igf2 (previously established to induce increased cell death) and Igfbp5; both wt- and mutIGFBP-5 conferred equivalent protection against the decreased cell survival and increased apoptosis. In conclusion, we have partitioned IGFBP-5 action in myogenesis into IGF-dependent inhibition of differentiation and IGF-independent cell survival. Our findings suggest that, by regulation of cell survival, IGFBP-5 has an autonomous role in the regulation of cell fate in development and in tumourigenesis.
Collapse
Affiliation(s)
- Laura J Cobb
- Signalling Programme, The Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Xu Q, Yan B, Li S, Duan C. Fibronectin Binds Insulin-like Growth Factor-binding Protein 5 and Abolishes Its Ligand-dependent Action on Cell Migration. J Biol Chem 2004; 279:4269-77. [PMID: 14645245 DOI: 10.1074/jbc.m311586200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor-binding protein 5 (IGFBP-5) is a secreted protein that binds to insulin-like growth factors (IGFs) and modulates IGF actions on cell proliferation, differentiation, survival, and motility. IGFBP-5 also regulates these cellular events through IGF-independent mechanisms. To elucidate the molecular mechanisms governing these diverse actions of IGFBP-5, we screened a human cDNA library by a yeast two-hybrid system using IGFBP-5 as bait and identified fibronectin (FN) as a potential IGFBP-5-interacting partner. The complex formation of IGFBP-5 and FN was established by glutathione S-transferase pull-down, solution, and solid phase binding assays using glutathione S-transferase-IGFBP-5 and native IGFBP-5 in vitro and by co-immunoprecipitation in vivo. Binding assay using deletion mutants indicated that the IGFBP-5 C domain binds to the 10th and 11th type I repeats of FN. IGFBP-5 potentiated IGF-I-induced cell migration in FN-null, but not in wild-type, mouse embryonic cells. When FN was reintroduced either as an adhesive substrate or in solution to the FN-null cells, the potentiating effect of IGFBP-5 on IGF-I-induced cell migration was abolished. Binding of IGFBP-5 to FN had no effect on the ability of IGFBP-5 to bind IGF-I, but it increased the proteolytic degradation of IGFBP-5. Inhibition of IGFBP-5 proteolysis restored the potentiating effect of IGFBP-5. These results suggest that FN and IGFBP-5 bind to each other, and this binding negatively regulates the ligand-dependent action of IGFBP-5 by triggering IGFBP-5 proteolysis.
Collapse
Affiliation(s)
- Qijin Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
83
|
Edmondson SR, Thumiger SP, Werther GA, Wraight CJ. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev 2003; 24:737-64. [PMID: 14671001 DOI: 10.1210/er.2002-0021] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GH and IGF-I and -II were first identified by their endocrine activity. Specifically, IGF-I was found to mediate the linear growth-promoting actions of GH. It is now evident that these two growth factor systems also exert widespread activity throughout the body and that their actions are not always interconnected. The literature highlights the importance of the GH and IGF systems in normal skin homeostasis, including dermal/epidermal cross-talk. GH activity, sometimes mediated via IGF-I, is primarily evident in the dermis, particularly affecting collagen synthesis. In contrast, IGF action is an important feature of the dermal and epidermal compartments, predominantly enhancing cell proliferation, survival, and migration. The locally expressed IGF binding proteins play significant and complex roles, primarily via modulation of IGF actions. Disturbances in GH and IGF signaling pathways are implicated in the pathophysiology of several skin perturbations, particularly those exhibiting epidermal hyperplasia (e.g., psoriasis, carcinomas). Additionally, many studies emphasize the potential use of both growth factors in the treatment of skin wounds; for example, burn patients. This overview concerns the role and mechanisms of action of the GH and IGF systems in skin and maintenance of epidermal integrity in both health and disease.
Collapse
Affiliation(s)
- Stephanie R Edmondson
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia 3052.
| | | | | | | |
Collapse
|
84
|
Hsieh T, Gordon RE, Clemmons DR, Busby WH, Duan C. Regulation of vascular smooth muscle cell responses to insulin-like growth factor (IGF)-I by local IGF-binding proteins. J Biol Chem 2003; 278:42886-92. [PMID: 12917428 DOI: 10.1074/jbc.m303835200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-like growth factor (IGF)-I is a pleiotropic hormone that regulates vascular smooth muscle cell (VSMC) migration, proliferation, apoptosis, and differentiation. These actions are mediated by the IGF-I receptor. How activation of the same receptor by the same ligand leads to these diverse cellular responses is not well understood. Here we describe a novel mechanism specifying VSMC responses to IGF-I stimulation, distinctive for the pivotal roles of local IGF-binding proteins (IGFBPs). The role of local IGFBPs was indicated by comparing the activities of IGF-I and des-1-3-IGF-I, an IGF-I analog with reduced binding affinity to IGFBPs. Compared with IGF-I, des-1-3-IGF-I was more potent in stimulating DNA synthesis but much less potent in inducing directed migration of VSMCs. When the effects of individual IGFBPs were tested, IGFBP-2 and IGFBP-4 were found to inhibit IGF-I-stimulated DNA synthesis and migration. IGFBP-5 had an inhibitory effect on IGF-I-stimulated DNA synthesis, but it strongly potentiated IGF-I-induced VSMC migration. By using a non-IGF-binding IGFBP-5 mutant and an IGF-I-neutralizing antibody, it was demonstrated that IGFBP-5 also stimulates VSMC migration in an IGF-independent manner. This effect of IGFBP-5 was inhibited by soluble heparin and by treating cells with heparinase. Mutation of the heparin-binding motif of IGFBP-5 reduced its migration promoting activity. These findings suggest that local IGFBPs are important determinants of cellular responses to IGF-I stimulation, and a key player in this paradigm is IGFBP-5. IGFBP-5 not only modulates IGF-I actions, but it also stimulates cell migration by interacting with cell-surface heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Tzefu Hsieh
- Department of Molecular, Cellular, and Developmental Biology, the University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
85
|
Mishra S, Murphy LJ. Phosphorylation of insulin-like growth factor (IGF) binding protein-3 by breast cancer cell membranes enhances IGF-I binding. Endocrinology 2003; 144:4042-50. [PMID: 12933678 DOI: 10.1210/en.2003-0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cross-linking of nonglycosylated biotinylated IGF binding protein (IGFBP)-3 to T-47D cell membranes identifies complexes with Mr of 32, 50, 70, and 100 kDa. Nonbiotinylated glycosylated IGFBP-3 competed for binding to each of these sites. The 32-kDa band approximated the size of intact nonglycosylated IGFBP-3, but its abundance was enhanced by cross-linking, and it had a more acidic isoelectric point on isoelectric focusing, suggesting that it had undergone phosphorylation. Immobilized IGFBP-3 was phosphorylated in the presence of (32)P-gamma ATP by both T-47D cell membranes and by intact cells treated with phenylarsine oxide to inhibit internalization. MCF-7 and COS-1 cells were also able to bind and phosphorylated IGFBP-3. IGF-I inhibited both IGFBP-3 binding to membranes and phosphorylation. However, incubation of T-47D cells with IGFBP-3 enhanced binding of (125)I-IGF-I to the cell monolayer indicating that membrane bound IGFBP-3 was able to bind IGF-I. Immobilized IGFBP-3 when phosphorylated by T-47D membranes bound significantly more (125)I-IGF-I than nonphosphorylated IGFBP-3. Treatment with alkaline phosphatase significantly reduced (125)I-IGF-I binding to phosphorylated immobilized IGFBP-3 and also reduced (125)I-IGF-I to T-47D cell monolayers preincubated with IGFBP-3. Phosphorylation of IGFBP-3 by T-47D membranes was partially blocked by inhibitors of both protein kinase A and C. These data demonstrate that binding of IGFBP-3 to breast cancer membranes is accompanied by phosphorylation at the plasma membrane and that both processes are inhibited by IGF-I. However, once phosphorylated the ability of IGFBP-3 to bind IGF-I is enhanced, resulting in increased association of the IGF-I with the cell membrane.
Collapse
Affiliation(s)
- Suresh Mishra
- Departments of Internal Medicine and Physiology, University of Manitoba, Winnipeg, Canada, R3E 0W3
| | | |
Collapse
|
86
|
Yang H, Chaum E. A reassessment of insulin-like growth factor binding protein gene expression in the human retinal pigment epithelium. J Cell Biochem 2003; 89:933-43. [PMID: 12874828 DOI: 10.1002/jcb.10570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The role of insulin-like growth factors (IGF) in regulating cell differentiation and proliferation is in part modulated by the IGF binding protein (IGFBP) family of genes. Previous studies of the human retinal pigment epithelium (RPE) have detected expression of IGFBP-2, -3, and -6. However, recent experiments in our lab have suggested a broader pattern of IGFBP gene family expression in the RPE cell than has previously been recognized. We have examined the gene expression profile of IGFBP-1 to -6 and the related protein, IGFBP-rP1, in RPE cell lines derived from ten donors eyes using RT-PCR, ELISA, and Western methods. Transcripts of IGFBP-1 to -6 and -rP1 were consistently detected in human RPE cells. IGFBP-3, -5, -6, and -rP-1, appear to be constitutively expressed in the RPE, whereas IGFBP-1, -2, and -4, were expressed at variable levels in the cell lines examined. IGFBP secretion by the RPE in vitro was confirmed by ELISA (IGFBP-1, -2, -3, -4, and -6) and Western blot analysis (IGFBP-5 and -rP1). There was, in general, a strong correlation between gene-specific transcription levels and protein secretion by the RPE. Our studies demonstrate that the major IGFBP family genes are ubiquitously expressed in explanted human RPE cells in vitro. This broad expression profile and the recent evidence that IGFBPs have IGF-independent biological activity suggest that the IGFBP family genes may constitute a previously unrecognized and complex regulatory system in the human retina and RPE.
Collapse
Affiliation(s)
- Huaitao Yang
- Department of Ophthalmology, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN 38163, USA
| | | |
Collapse
|
87
|
Boes M, Dake BL, Booth BA, Sandra A, Bateman M, Knudtson KL, Bar RS. IGF-I and IGFBP-3 transport in the rat heart. Am J Physiol Endocrinol Metab 2003; 284:E237-9. [PMID: 12485812 DOI: 10.1152/ajpendo.00336.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific binding of IGF-binding protein (IGFBP)-3 was shown to be present in the isolated, beating rat heart. The uptake of perfused (125)I-labeled IGF-I in the beating heart was decreased to 9% by blocking IGF-I binding sites with the IGF-I analog Long R(3) (LR(3)) IGF-I. When LR(3) was perfused with complexes of (125)I-IGF-I. IGFBP-3, uptake of (125)I-IGF-I was decreased to 41%, which was significantly greater than LR(3) and (125)I-IGF-I (41 vs. 9%). These data suggest that both microvessel IGF-I and IGFBP-3 binding sites contribute to the transport of IGF-I in the perfused rat heart. This also suggests a novel and plausible mechanism whereby circulating IGFs reach sites of IGF bioactivity.
Collapse
Affiliation(s)
- Mary Boes
- Veterans Administration Medical Center, Iowa City, Iowa 52246, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Kamionka M, Rehm T, Beisel HG, Lang K, Engh RA, Holak TA. In silico and NMR identification of inhibitors of the IGF-I and IGF-binding protein-5 interaction. J Med Chem 2002; 45:5655-60. [PMID: 12477349 DOI: 10.1021/jm0208828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recently we have determined the crystal structure of the insulin-like growth factor-I (IGF-I) in complex with the N-terminal domain of the IGF-binding protein-5 (IGFBP-5). Here we report results of computer screening for potential inhibitors of this interaction using the crystal coordinates. From the compounds suggested by in silico screens, successful binders were identified by NMR spectroscopic methods. NMR was also used to map their binding sites and calculate their binding affinities. Small molecular weight compounds (FMOC derivatives) bind to the IGF-I binding site on the IGFBP-5 with micromolar affinities and thus serve as potential starting compounds for the design of more potent inhibitors and therapeutic agents for diseases that are associated with abnormal IGF-I regulation.
Collapse
Affiliation(s)
- Mariusz Kamionka
- Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
In addition to their roles in IGF transport, the six IGF-binding proteins (IGFBPs) regulate cell activity in various ways. By sequestering IGFs away from the type I IGF receptor, they may inhibit mitogenesis, differentiation, survival, and other IGF-stimulated events. IGFBP proteolysis can reverse this inhibition or generate IGFBP fragments with novel bioactivity. Alternatively, IGFBP interaction with cell or matrix components may concentrate IGFs near their receptor, enhancing IGF activity. IGF receptor-independent IGFBP actions are also increasingly recognized. IGFBP-1 interacts with alpha(5)beta(1) integrin, influencing cell adhesion and migration. IGFBP-2, -3, -5, and -6 have heparin-binding domains and can bind glycosaminoglycans. IGFBP-3 and -5 have carboxyl-terminal basic motifs incorporating heparin-binding and additional basic residues that interact with the cell surface and matrix, the nuclear transporter importin-beta, and other proteins. Serine/threonine kinase receptors are proposed for IGFBP-3 and -5, but their signaling functions are poorly understood. Other cell surface IGFBP-interacting proteins are uncharacterized as functional receptors. However, IGFBP-3 binds and modulates the retinoid X receptor-alpha, interacts with TGFbeta signaling through Smad proteins, and influences other signaling pathways. These interactions can modulate cell cycle and apoptosis. Because IGFBPs regulate cell functions by diverse mechanisms, manipulation of IGFBP-regulated pathways is speculated to offer therapeutic opportunities in cancer and other diseases.
Collapse
Affiliation(s)
- Sue M Firth
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| | | |
Collapse
|
90
|
Simó R, Lecube A, Segura RM, García Arumí J, Hernández C. Free insulin growth factor-I and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy. Am J Ophthalmol 2002; 134:376-82. [PMID: 12208249 DOI: 10.1016/s0002-9394(02)01538-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the relationship between insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in the vitreous fluid of diabetic patients with proliferative diabetic retinopathy (PDR). DESIGN Observational case-control study. METHODS In a prospective study, 37 consecutive diabetic patients with PDR (14 type I and 23 type II diabetes mellitus) in whom a vitrectomy was performed were compared with 21 nondiabetic patients with other conditions requiring vitrectomy (control group). Free IGF-I and VEGF were measured by ELISA. RESULTS Vitreal levels of both free IGF-1 and VEGF were higher in diabetic patients with PDR than in control subjects (P <.01, and P <.0001, respectively). After adjusting for total intravitreous protein concentration, VEGF (ng/mg of proteins) remained significantly higher in diabetic patients with PDR than in the control group (P <.0001), whereas free IGF-I (ng/mg of proteins) was lower in diabetic patients than in control subjects (P <.0001). The vitreous concentrations of VEGF were higher in patients with active PDR than in patients with quiescent PDR (P <.005), whereas vitreous free IGF-I was not related to PDR activity. Finally, we did not observe a correlation between the vitreal levels of free IGF-I and VEGF. CONCLUSIONS We conclude that free IGF-I and VEGF are both increased, but not related, within the vitreous fluid of diabetic patients with PDR. In addition, our results support the current concept that VEGF is directly involved in the pathogenesis of PDR, whereas the precise role of free IGF-I remains to be established.
Collapse
Affiliation(s)
- Rafael Simó
- Division of Endocrinology, Diabetes Research Unit, Hospital General Universitari Vall d'Hebron, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
91
|
The interaction of Insulin-like Growth Factors (IGFs) with Insulin-like Growth Factor Binding Proteins (IGFBPs): a review. ACTA ACUST UNITED AC 2001. [DOI: 10.1007/bf02446511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|