51
|
Brg1 governs distinct pathways to direct multiple aspects of mammalian neural crest cell development. Proc Natl Acad Sci U S A 2013; 110:1738-43. [PMID: 23319608 DOI: 10.1073/pnas.1218072110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of the cerebral vessels, pharyngeal arch arteries (PAAs). and cardiac outflow tract (OFT) requires multipotent neural crest cells (NCCs) that migrate from the neural tube to target tissue destinations. Little is known about how mammalian NCC development is orchestrated by gene programming at the chromatin level, however. Here we show that Brahma-related gene 1 (Brg1), an ATPase subunit of the Brg1/Brahma-associated factor (BAF) chromatin-remodeling complex, is required in NCCs to direct cardiovascular development. Mouse embryos lacking Brg1 in NCCs display immature cerebral vessels, aberrant PAA patterning, and shortened OFT. Brg1 suppresses an apoptosis factor, Apoptosis signal-regulating kinase 1 (Ask1), and a cell cycle inhibitor, p21(cip1), to inhibit apoptosis and promote proliferation of NCCs, thereby maintaining a multipotent cell reservoir at the neural crest. Brg1 also supports Myosin heavy chain 11 (Myh11) expression to allow NCCs to develop into mature vascular smooth muscle cells of cerebral vessels. Within NCCs, Brg1 partners with chromatin remodeler Chromodomain-helicase-DNA-binding protein 7 (Chd7) on the PlexinA2 promoter to activate PlexinA2, which encodes a receptor for semaphorin to guide NCCs into the OFT. Our findings reveal an important role for Brg1 and its downstream pathways in the survival, differentiation, and migration of the multipotent NCCs critical for mammalian cardiovascular development.
Collapse
|
52
|
Willaredt MA, Gorgas K, Gardner HAR, Tucker KL. Multiple essential roles for primary cilia in heart development. Cilia 2012; 1:23. [PMID: 23351706 PMCID: PMC3563622 DOI: 10.1186/2046-2530-1-23] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022] Open
Abstract
Background The primary cilium is a microtubule-based, plasma membrane-ensheathed protrusion projecting from the basal bodies of almost all cell types in the mammalian body. In the past several years a plethora of papers has indicated a crucial role for primary cilia in the development of a wide variety of organs. We have investigated heart development in cobblestone, a hypomorphic allele of the gene encoding the intraflagellar transport protein Ift88, and uncovered a number of the most common congenital heart defects seen in newborn humans. Methods We generated serial sections of mutant cobblestone and wild type embryos in the region encompassing the heart and the cardiac outflow tract. The sections were further processed to generate three-dimensional reconstructions of these structures, and immunofluorescence confocal microscopy, transmission electron microscopy, and in situ hybridization were used to examine signal transduction pathways in the relevant areas. Whole mount in situ hybridization was also employed for certain developmental markers. Results In addition to an enlarged pericardium and failure of both ventricular and atrial septum formation, the cobblestone mutants displayed manifold defects in outflow tract formation, including persistent truncus arteriosus, an overriding aorta, and abnormal transformation of the aortic arches. To discern the basis of these anomalies we examined both the maintenance of primary cilia as well as endogenous and migratory embryonic cell populations that contribute to the outflow tract and atrioventricular septa. The colonization of the embryonic heart by cardiac neural crest occurred normally in the cobblestone mutant, as did the expression of Sonic hedgehog. However, with the loss of primary cilia in the mutant hearts, there was a loss of both downstream Sonic hedgehog signaling and of Islet 1 expression in the second heart field, a derivative of the pharyngeal mesoderm. In addition, defects were recorded in development of atrial laterality and ventricular myocardiogenesis. Finally, we observed a reduction in expression of Bmp4 in the outflow tract, and complete loss of expression of both Bmp2 and Bmp4 in the atrioventricular endocardial cushions. Loss of BMP2/4 signaling may result in the observed proliferative defect in the endocardial cushions, which give rise to both the atrioventricular septa as well as to the septation of the outflow tract. Conclusions Taken together, our results potentially identify a novel link between Sonic hedgehog signaling at the primary cilium and BMP-dependent effects upon cardiogenesis. Our data further point to a potential linkage of atrioventricular septal defects, the most common congenital heart defects, to genes of the transport machinery or basal body of the cilia.
Collapse
Affiliation(s)
- Marc August Willaredt
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, 69120, Germany.
| | | | | | | |
Collapse
|
53
|
Mura M, Cappato S, Giacopelli F, Ravazzolo R, Bocciardi R. The role of the 3'UTR region in the regulation of the ACVR1/Alk-2 gene expression. PLoS One 2012; 7:e50958. [PMID: 23227223 PMCID: PMC3515447 DOI: 10.1371/journal.pone.0050958] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/29/2012] [Indexed: 12/19/2022] Open
Abstract
Background The ACVR1/Alk-2 gene, encoding a BMP type I receptor, is mutated in Fibrodysplasia Ossificans Progressiva, a severe form of heterotopic ossification. Regulation of ACVR1/Alk-2 expression, still poorly understood, is likely to be controlled by transcriptional and post-transcriptional mechanisms. In our work, we focused on the functional role of the 3′UTR region of the gene and on microRNAs as possible modulators of the ACVR1/Alk-2 expression. Results The ACVR1/Alk-2 3′UTR region consists of a 1.1 kb sequence harboring several putative, well-conserved binding sites for miRNAs in its proximal half, and AU-rich elements in the distal one, as assessed by bioinformatic analysis. The functional role of this region was tested in presence of transcription inhibitors and in transfection experiments in different cell lines, with a ACVR1/Alk-2-3′UTR reporter construct. By this transfection-based approach, we have also verified that three microRNAs, among those predicted to target ACVR1/Alk-2 gene by in silico analysis, can bind its 3′UTR sequence thereby modulating its expression. Conclusion In this work we demonstrated that the ACVR1/Alk-2 transcript is unstable in presence of inhibitors of transcription. Functional analysis of the 3′UTR region by Luciferase reporter assays showed that it plays an inhibitory role on ACVR1/Alk-2 gene expression. Moreover, we found that specific miRNAs are involved in modulating ACVR1/Alk-2 gene expression as suggested by binding sites prediction in its 3′UTR sequence. In particular, we found that mir148b and mir365 were able to down-regulate ACVR1/Alk-2 expression, whereas mir26a showed a positive effect on its mRNA. Our data contribute to elucidate some of the mechanisms intervening in the modulation of ACVR1/Alk-2 expression. Considering that no specific and effective treatment of FOP is available, clarifying the basic mechanisms of the ACVR1/Alk-2 gene biology may provide means to develop innovative therapeutics approaches.
Collapse
Affiliation(s)
- Marzia Mura
- Laboratory of Molecular Genetics, G. Gaslini Institute, Genova, Italy
| | - Serena Cappato
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova and CEBR, Genova, Italy
| | - Francesca Giacopelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova and CEBR, Genova, Italy
| | - Roberto Ravazzolo
- Laboratory of Molecular Genetics, G. Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova and CEBR, Genova, Italy
| | - Renata Bocciardi
- Laboratory of Molecular Genetics, G. Gaslini Institute, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova and CEBR, Genova, Italy
- * E-mail:
| |
Collapse
|
54
|
Gorący I, Safranow K, Dawid G, Skonieczna-Żydecka K, Kaczmarczyk M, Gorący J, Łoniewska B, Ciechanowicz A. Common Genetic Variants of the BMP4, BMPR1A, BMPR1B, and ACVR1 Genes, Left Ventricular Mass, and Other Parameters of the Heart in Newborns. Genet Test Mol Biomarkers 2012; 16:1309-16. [DOI: 10.1089/gtmb.2012.0164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Iwona Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Szczecin, Poland
| | - Grażyna Dawid
- Department of Pediatrics, Pomeranian Medical University, Szczecin, Poland
| | | | - Mariusz Kaczmarczyk
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Jarosław Gorący
- Department of Cardiology, Pomeranian Medical University, Szczecin, Poland
| | - Beata Łoniewska
- Department of Neonatal Diseases, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
55
|
Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012; 139:3277-99. [PMID: 22912411 DOI: 10.1242/dev.063495] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
56
|
Javier AL, Doan LT, Luong M, Reyes de Mochel NS, Sun A, Monuki ES, Cho KWY. Bmp indicator mice reveal dynamic regulation of transcriptional response. PLoS One 2012; 7:e42566. [PMID: 22984405 PMCID: PMC3439458 DOI: 10.1371/journal.pone.0042566] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE), originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.
Collapse
Affiliation(s)
- Anna L. Javier
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Linda T. Doan
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Mui Luong
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - N. Soledad Reyes de Mochel
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Aixu Sun
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
| | - Edwin S. Monuki
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ken W. Y. Cho
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
57
|
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008151. [PMID: 22570373 DOI: 10.1101/cshperspect.a008151] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All the information to make a complete, fully functional living organism is encoded within the genome of the fertilized oocyte. How is this genetic code translated into the vast array of cellular behaviors that unfold during the course of embryonic development, as the zygote slowly morphs into a new organism? Studies over the last 30 years or so have shown that many of these cellular processes are driven by secreted or membrane-bound signaling molecules. Elucidating how the genetic code is translated into instructions or signals during embryogenesis, how signals are generated at the correct time and place and at the appropriate level, and finally, how these instructions are interpreted and put into action, are some of the central questions of developmental biology. Our understanding of the causes of congenital malformations and disease has improved substantially with the rapid advances in our knowledge of signaling pathways and their regulation during development. In this article, I review some of the signaling pathways that play essential roles during embryonic development. These examples show some of the mechanisms used by cells to receive and interpret developmental signals. I also discuss how signaling pathways downstream from these signals are regulated and how they induce specific cellular responses that ultimately affect cell fate and morphogenesis.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development, King's College London, United Kingdom.
| |
Collapse
|
58
|
Kruithof BPT, Duim SN, Moerkamp AT, Goumans MJ. TGFβ and BMP signaling in cardiac cushion formation: lessons from mice and chicken. Differentiation 2012; 84:89-102. [PMID: 22656450 DOI: 10.1016/j.diff.2012.04.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/28/2012] [Accepted: 04/04/2012] [Indexed: 02/01/2023]
Abstract
Cardiac cushion formation is crucial for both valvular and septal development. Disruption in this process can lead to valvular and septal malformations, which constitute the largest part of congenital heart defects. One of the signaling pathways that is important for cushion formation is the TGFβ superfamily. The involvement of TGFβ and BMP signaling pathways in cardiac cushion formation has been intensively studied using chicken in vitro explant assays and in genetically modified mice. In this review, we will summarize and discuss the role of TGFβ and BMP signaling components in cardiac cushion formation.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | | | | | | |
Collapse
|
59
|
Keyte A, Hutson MR. The neural crest in cardiac congenital anomalies. Differentiation 2012; 84:25-40. [PMID: 22595346 DOI: 10.1016/j.diff.2012.04.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 02/07/2023]
Abstract
This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions.
Collapse
Affiliation(s)
- Anna Keyte
- Department of Pediatrics (Neonatology), Neonatal-Perinatal Research Institute, Box 103105, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
60
|
Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 2012; 69:3715-37. [PMID: 22547091 PMCID: PMC3478512 DOI: 10.1007/s00018-012-0991-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
Abstract
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
61
|
Thomas PS, Sridurongrit S, Ruiz-Lozano P, Kaartinen V. Deficient signaling via Alk2 (Acvr1) leads to bicuspid aortic valve development. PLoS One 2012; 7:e35539. [PMID: 22536403 PMCID: PMC3334911 DOI: 10.1371/journal.pone.0035539] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 03/17/2012] [Indexed: 12/21/2022] Open
Abstract
Bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly in humans. Despite recent advances, the molecular basis of BAV development is poorly understood. Previously it has been shown that mutations in the Notch1 gene lead to BAV and valve calcification both in human and mice, and mice deficient in Gata5 or its downstream target Nos3 have been shown to display BAVs. Here we show that tissue-specific deletion of the gene encoding Activin Receptor Type I (Alk2 or Acvr1) in the cushion mesenchyme results in formation of aortic valve defects including BAV. These defects are largely due to a failure of normal development of the embryonic aortic valve leaflet precursor cushions in the outflow tract resulting in either a fused right- and non-coronary leaflet, or the presence of only a very small, rudimentary non-coronary leaflet. The surviving adult mutant mice display aortic stenosis with high frequency and occasional aortic valve insufficiency. The thickened aortic valve leaflets in such animals do not show changes in Bmp signaling activity, while Map kinase pathways are activated. Although dysfunction correlated with some pro-osteogenic differences in gene expression, neither calcification nor inflammation were detected in aortic valves of Alk2 mutants with stenosis. We conclude that signaling via Alk2 is required for appropriate aortic valve development in utero, and that defects in this process lead to indirect secondary complications later in life.
Collapse
Affiliation(s)
- Penny S Thomas
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | | | | |
Collapse
|
62
|
Shore EM. Fibrodysplasia ossificans progressiva: a human genetic disorder of extraskeletal bone formation, or--how does one tissue become another? WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:153-65. [PMID: 22408652 PMCID: PMC3297114 DOI: 10.1002/wdev.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare human genetic disease in which de novo osteogenesis—a developmental process occurring during embryonic skeletal formation—is induced aberrantly and progressively beginning during early childhood in soft connective tissues. Episodic initiation of spontaneous bone-forming lesions occurs over time, affecting a generally predictable sequence of body locations following a pattern similar to that of the developing embryonic skeleton. The heterotopic (extraskeletal) bone formation in FOP can also be induced by connective tissue injury. At the tissue level, an initial tissue degradation phase is followed by a tissue formation phase during which soft connective tissues are replaced by bone tissue through endochondral osteogenesis. This extraskeletal bone is physiologically normal and develops through the same series of tissue differentiation events that occur during normal embryonic skeletal development. The underlying genetic mutation in FOP alters the signals that regulate induction of cell differentiation leading to bone formation. In addition to postnatal heterotopic ossification, FOP patients show specific malformations of skeletal elements indicating effects on bone formation during embryonic development as well. Nearly all cases of FOP are caused by the identical mutation in the ACVR1 gene that causes a single amino acid substitution, R206H, in the bone morphogenetic protein (BMP) type I receptor ACVR1 (formerly known as ALK2). This mutation causes mild constitutive activation of the BMP signaling pathway and identifies ACVR1 as a key regulator of cell fate decisions and bone formation, providing opportunities to investigate previously unrecognized functions for this receptor during tissue development and homeostasis.
Collapse
Affiliation(s)
- Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
63
|
Planar cell polarity signaling pathway in congenital heart diseases. J Biomed Biotechnol 2011; 2011:589414. [PMID: 22131815 PMCID: PMC3205795 DOI: 10.1155/2011/589414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/31/2011] [Indexed: 12/14/2022] Open
Abstract
Congenital heart disease (CHD) is a common cardiac disorder in humans. Despite many advances in the understanding of CHD and the identification of many associated genes, the fundamental etiology for the majority of cases remains unclear. The planar cell polarity (PCP) signaling pathway, responsible for tissue polarity in Drosophila and gastrulation movements and cardiogenesis in vertebrates, has been shown to play multiple roles during cardiac differentiation and development. The disrupted function of PCP signaling is connected to some CHDs. Here, we summarize our current understanding of how PCP factors affect the pathogenesis of CHD.
Collapse
|
64
|
Alexander C, Zuniga E, Blitz IL, Wada N, Le Pabic P, Javidan Y, Zhang T, Cho KW, Crump JG, Schilling TF. Combinatorial roles for BMPs and Endothelin 1 in patterning the dorsal-ventral axis of the craniofacial skeleton. Development 2011; 138:5135-46. [PMID: 22031543 DOI: 10.1242/dev.067801] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) play crucial roles in craniofacial development but little is known about their interactions with other signals, such as Endothelin 1 (Edn1) and Jagged/Notch, which pattern the dorsal-ventral (DV) axis of the pharyngeal arches. Here, we use transgenic zebrafish to monitor and perturb BMP signaling during arch formation. With a BMP-responsive transgene, Tg(Bre:GFP), we show active BMP signaling in neural crest (NC)-derived skeletal precursors of the ventral arches, and in surrounding epithelia. Loss-of-function studies using a heat shock-inducible, dominant-negative BMP receptor 1a [Tg(hs70I:dnBmpr1a-GFP)] to bypass early roles show that BMP signaling is required for ventral arch development just after NC migration, the same stages at which we detect Tg(Bre:GFP). Inhibition of BMP signaling at these stages reduces expression of the ventral signal Edn1, as well as ventral-specific genes such as hand2 and dlx6a in the arches, and expands expression of the dorsal signal jag1b. This results in a loss or reduction of ventral and intermediate skeletal elements and a mis-shapen dorsal arch skeleton. Conversely, ectopic BMP causes dorsal expansion of ventral-specific gene expression and corresponding reductions/transformations of dorsal cartilages. Soon after NC migration, BMP is required to induce Edn1 and overexpression of either signal partially rescues ventral skeletal defects in embryos deficient for the other. However, once arch primordia are established the effects of BMPs become restricted to more ventral and anterior (palate) domains, which do not depend on Edn1. This suggests that BMPs act upstream and in parallel to Edn1 to promote ventral fates in the arches during early DV patterning, but later acquire distinct roles that further subdivide the identities of NC cells to pattern the craniofacial skeleton.
Collapse
Affiliation(s)
- Courtney Alexander
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Cheng Z, Sundberg-Smith LJ, Mangiante LE, Sayers RL, Hakim ZS, Musunuri S, Maguire CT, Majesky MW, Zhou Z, Mack CP, Taylor JM. Focal adhesion kinase regulates smooth muscle cell recruitment to the developing vasculature. Arterioscler Thromb Vasc Biol 2011; 31:2193-202. [PMID: 21757658 PMCID: PMC3182406 DOI: 10.1161/atvbaha.111.232231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 06/25/2011] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The investment of newly formed endothelial cell tubes with differentiated smooth muscle cells (SMC) is critical for appropriate vessel formation, but the underlying mechanisms remain unknown. We previously showed that depletion of focal adhesion kinase (FAK) in the nkx2.5 expression domain led to aberrant outflow tract (OFT) morphogenesis and strove herein to determine the cell types and mechanisms involved. METHODS AND RESULTS We crossed fak(loxp) targeted mice with available Cre drivers to deplete FAK in OFT SMC (FAK(wnt) and FAK(nk)) or coronary SMC (FAK(cSMC)). In each case, depletion of FAK led to defective vasculogenesis that was incompatible with postnatal life. Immunohistochemical analysis of the mutant vascular structures revealed that FAK was not required for progenitor cell proliferation, survival, or differentiation into SMC but was necessary for subsequent SMC recruitment to developing vasculature. Using a novel FAK-null SMC culture model, we found that depletion of FAK did not influence SMC growth or survival, but blocked directional SMC motility and invasion toward the potent endothelial-derived chemokine, platelet-derived growth factor PDGFBB. FAK depletion resulted in unstable lamellipodial protrusions due to defective spatial-temporal activation of the small GTPase, Rac-1, and lack of Rac1-dependent recruitment of cortactin (an actin stabilizing protein) to the leading edge. Moreover, FAK null SMC exhibited a significant reduction in stimulated extracellular matrix degradation. CONCLUSIONS FAK drives PDGFBB-stimulated SMC chemotaxis/invasion and is essential for SMC to appropriately populate the aorticopulmonary septum and the coronary vascular plexus.
Collapse
Affiliation(s)
- Zhaokang Cheng
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Lee E. Mangiante
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Zeenat S. Hakim
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
| | - Srilaxmi Musunuri
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
| | - Colin T. Maguire
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 94132
| | - Mark W. Majesky
- Department of Pediatrics, University of Washington, Seattle WA 98105, USA
| | | | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
66
|
Zhao F, Bosserhoff AK, Buettner R, Moser M. A heart-hand syndrome gene: Tfap2b plays a critical role in the development and remodeling of mouse ductus arteriosus and limb patterning. PLoS One 2011; 6:e22908. [PMID: 21829553 PMCID: PMC3146506 DOI: 10.1371/journal.pone.0022908] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/30/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. METHODOLOGY/PRINCIPAL FINDINGS Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b(-/-) mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. CONCLUSIONS/SIGNIFICANCE Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal models of PDA.
Collapse
MESH Headings
- Abnormalities, Multiple
- Animals
- Animals, Newborn
- Bone Morphogenetic Protein 2/genetics
- Bone Morphogenetic Protein 4/genetics
- Ductus Arteriosus, Patent/etiology
- Ductus Arteriosus, Patent/metabolism
- Ductus Arteriosus, Patent/pathology
- Electrophoretic Mobility Shift Assay
- Female
- Heart Defects, Congenital
- Heart Septal Defects, Atrial
- Humans
- In Situ Hybridization
- Limb Deformities, Congenital/etiology
- Limb Deformities, Congenital/metabolism
- Limb Deformities, Congenital/pathology
- Lower Extremity Deformities, Congenital
- Luciferases/metabolism
- Male
- Mice
- Mice, Knockout
- Phenotype
- Promoter Regions, Genetic/genetics
- Transcription Factor AP-2/physiology
- Upper Extremity Deformities, Congenital
Collapse
Affiliation(s)
- Feng Zhao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, United States of America.
| | | | | | | |
Collapse
|
67
|
Abstract
Cardiac neural crest cells originate as part of the postotic caudal rhombencephalic neural crest stream. Ectomesenchymal cells in this stream migrate to the circumpharyngeal ridge and then into the caudal pharyngeal arches where they condense to form first a sheath and then the smooth muscle tunics of the persisting pharyngeal arch arteries. A subset of the cells continue migrating into the cardiac outflow tract where they will condense to form the aorticopulmonary septum. Cell signaling, extracellular matrix and cell-cell contacts are all critical for the initial migration, pauses, continued migration, and condensation of these cells. This review elucidates what is currently known about these factors.
Collapse
|
68
|
Dabovic B, Chen Y, Choi J, Davis EC, Sakai LY, Todorovic V, Vassallo M, Zilberberg L, Singh A, Rifkin DB. Control of lung development by latent TGF-β binding proteins. J Cell Physiol 2011; 226:1499-509. [PMID: 20945348 PMCID: PMC3060286 DOI: 10.1002/jcp.22479] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The latent TGF-β binding proteins (LTBP-1 -3, and -4) assist in the secretion and localization of latent TGF-β molecules. Ltbp3(-/-) and Ltbp4S(-/-) mice have distinct phenotypes and only in the lungs does deficiency of either Ltbp-3 or Ltbp-4 cause developmental abnormalities. To determine if these two LTBPs have additional common functions, we generated mice deficient for both Ltbp-3 and Ltbp-4S. The only novel defect in Ltbp3(-/-);Ltbp4S(-/-) mice was an early lethality compared to mice with single mutations. In addition lung abnormalities were exacerbated and the terminal air sac septation defect was more severe in Ltbp3(-/-);Ltbp4S(-/-) mice than in Ltbp4S(-/-) mice. Decreased cellularity of Ltbp3(-/-);Ltbp4S(-/-) lungs was correlated with higher rate of apoptosis in newborn lungs of Ltbp3(-/-);Ltbp4S(-/-) animals compared to WT, Ltbp3(-/-), and Ltbp4S(-/-) mice. No differences in the maturation of the major lung cell types were discerned between the single and double mutant mice. However, the distribution of type 2 cells and myofibroblasts was abnormal, and myofibroblast segregation in some areas might be an indication of early fibrosis. We also observed differences in ECM composition between Ltbp3(-/-);Ltbp4S(-/-) and Ltbp4S(-/-) lungs after birth, reflected in decreased incorporation of fibrillin-1 and -2 in Ltbp3(-/-);Ltbp4S(-/-) matrix. The function of the lungs of Ltbp3(-/-);Ltbp4S(-/-) mice after the first week of life was potentially further compromised by macrophage infiltration, as proteases secreted from macrophages might exacerbate developmental emphysema. Together these data indicate that LTBP-3 and -4 perform partially overlapping functions only in the lungs.
Collapse
Affiliation(s)
- Branka Dabovic
- Department of Cell Biology, New York University Medical Center, New York, New York 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wang J, Greene SB, Martin JF. BMP signaling in congenital heart disease: new developments and future directions. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2011; 91:441-8. [PMID: 21384533 PMCID: PMC3124406 DOI: 10.1002/bdra.20785] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 01/07/2023]
Abstract
Congenital heart malformations are the most common of all congenital human birth anomalies. During the past decade, research with zebrafish, chick, and mouse models have elucidated many fundamental genetic pathways that govern early cardiac patterning and differentiation. This review highlights the roles of the bone morphogenetic protein (BMP) signaling pathway in cardiogenesis and how defective BMP signals can disrupt the intricate steps of cardiac formation and cause congenital heart defects.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 W. Holcombe Blvd, Houston, Texas 77030
| | - Stephanie B. Greene
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 W. Holcombe Blvd, Houston, Texas 77030
| | - James F. Martin
- Institute of Biosciences and Technology, Texas A&M System Health Science Center, 2121 W. Holcombe Blvd, Houston, Texas 77030
| |
Collapse
|
70
|
Abstract
The neural crest cell (NCC) lineage is often referred to as the fourth germ layer in embryos, as its wide range of migration and early colonization of multiple tissues and organ systems throughout the developing body is astounding. Many human birth defects are thought to have their origins within the NCC lineage. Exciting recent conditional mouse targeting and transgenic combinatorial suppression approaches have revealed that the Tgf-b superfamily is a key signaling pathway within the cardiac and cranial NCC subpopulations. Given the complexity of Tgf-b superfamily signaling and that multiple ligand and receptor combinations have already been shown to be expressed within the NCC subpopulations, and the difficulty in transgenically targeting entire signaling cascades, we review several up-to-date transgenic approaches that are revealing unexpected consequences.
Collapse
Affiliation(s)
- Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
71
|
Tzahor E, Evans SM. Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis. Cardiovasc Res 2011; 91:196-202. [PMID: 21498416 DOI: 10.1093/cvr/cvr116] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pharyngeal mesoderm (PM), located in the head region of the developing embryo, recently triggered renewed interest as the major source of cells contributing to broad regions of the heart as well as to the head musculature. What exactly is PM? In this review, we describe the anatomical and molecular characteristics of this mesodermal population and its relationship to the first and second heart fields in chick and mouse embryos. The regulatory network of transcription factors and signalling molecules that regulate PM development is also discussed. In addition, we summarize recent studies into the evolutionary origins of this tissue and its multipotential contributions to both cardiac and pharyngeal muscle progenitors.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
72
|
Stottmann RW, Klingensmith J. Bone morphogenetic protein signaling is required in the dorsal neural folds before neurulation for the induction of spinal neural crest cells and dorsal neurons. Dev Dyn 2011; 240:755-65. [PMID: 21394823 PMCID: PMC3070542 DOI: 10.1002/dvdy.22579] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2011] [Indexed: 11/06/2022] Open
Abstract
Bone Morphogenetic Protein (BMP) activity has been implicated as a key regulator of multiple aspects of dorsal neural tube development. BMP signaling in the dorsal-most neuroepithelial cells presumably plays a critical role. We use tissue-specific gene ablation to probe the roles of BMPR1A, the type 1 BMP receptor that is seemingly the best candidate to mediate the activities of BMPs on early dorsal neural development. We use two different Cre lines expressed in the dorsal neural folds, one prior to spinal neurulation and one shortly afterward, together with a Bmpr1a conditional null mutation. Our findings indicate that BMPR1A signaling in the dorsal neural folds is important for hindbrain neural tube closure, but suggest it is dispensable for spinal neurulation. Our results also demonstrate a requirement for BMP signaling in patterning of dorsal neural tube cell fate and in neural crest cell formation, and imply a critical period shortly before neural tube closure.
Collapse
Affiliation(s)
| | - John Klingensmith
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
73
|
Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfield L, Lu MM, Morley GE, Patel VV, Epstein JA. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest 2011; 121:525-33. [PMID: 21266778 DOI: 10.1172/jci44470] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/01/2010] [Indexed: 11/17/2022] Open
Abstract
Ventricular preexcitation, which characterizes Wolff-Parkinson-White syndrome, is caused by the presence of accessory pathways that can rapidly conduct electrical impulses from atria to ventricles, without the intrinsic delay characteristic of the atrioventricular (AV) node. Preexcitation is associated with an increased risk of tachyarrhythmia, palpitations, syncope, and sudden death. Although the pathology and electrophysiology of preexcitation syndromes are well characterized, the developmental mechanisms are poorly understood, and few animal models that faithfully recapitulate the human disorder have been described. Here we show that activation of Notch signaling in the developing myocardium of mice can produce fully penetrant accessory pathways and ventricular preexcitation. Conversely, inhibition of Notch signaling in the developing myocardium resulted in a hypoplastic AV node, with specific loss of slow-conducting cells expressing connexin-30.2 (Cx30.2) and a resulting loss of physiologic AV conduction delay. Taken together, our results suggest that Notch regulates the functional maturation of AV canal embryonic myocardium during the development of the specialized conduction system. Our results also show that ventricular preexcitation can arise from inappropriate patterning of the AV canal-derived myocardium.
Collapse
Affiliation(s)
- Stacey Rentschler
- Department of Cell and Developmental Biology and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Nie X, Wang Q, Jiao K. Dicer activity in neural crest cells is essential for craniofacial organogenesis and pharyngeal arch artery morphogenesis. Mech Dev 2011; 128:200-7. [PMID: 21256960 DOI: 10.1016/j.mod.2010.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/30/2010] [Accepted: 12/15/2010] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) play important roles in regulating gene expression during numerous biological/pathological processes. Dicer encodes an RNase III endonuclease that is essential for generating most, if not all, functional miRNAs. In this work, we applied a conditional gene inactivation approach to examine the function of Dicer during neural crest cell (NCC) development. Mice with NCC-specific inactivation of Dicer died perinatally. Cranial and cardiac NCC migration into target tissues was not affected by Dicer disruption, but their subsequent development was disturbed. NCC derivatives and their associated mesoderm-derived cells displayed massive apoptosis, leading to severe abnormalities during craniofacial morphogenesis and organogenesis. In addition, the 4th pharyngeal arch artery (PAA) remodeling was affected, resulting in interrupted aortic arch artery type B (IAA-B) in mutant animals. Taken together, our results show that Dicer activity in NCCs is essential for craniofacial development and pharyngeal arch artery morphogenesis.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
75
|
Jung Y, Kissil JL, McCarty JH. β8 integrin and band 4.1B cooperatively regulate morphogenesis of the embryonic heart. Dev Dyn 2010; 240:271-7. [DOI: 10.1002/dvdy.22513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
76
|
Tirosh-Finkel L, Zeisel A, Brodt-Ivenshitz M, Shamai A, Yao Z, Seger R, Domany E, Tzahor E. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 2010; 137:2989-3000. [PMID: 20702560 DOI: 10.1242/dev.051649] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anterior heart field (AHF) encompasses a niche in which mesoderm-derived cardiac progenitors maintain their multipotent and undifferentiated nature in response to signals from surrounding tissues. Here, we investigate the signaling mechanism that promotes the shift from proliferating cardiac progenitors to differentiating cardiomyocytes in chick embryos. Genomic and systems biology approaches, as well as perturbations of signaling molecules, in vitro and in vivo, reveal tight crosstalk between the bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) signaling pathways within the AHF niche: BMP4 promotes myofibrillar gene expression and cardiomyocyte contraction by blocking FGF signaling. Furthermore, inhibition of the FGF-ERK pathway is both sufficient and necessary for these processes, suggesting that FGF signaling blocks premature differentiation of cardiac progenitors in the AHF. We further revealed that BMP4 induced a set of neural crest-related genes, including MSX1. Overexpression of Msx1 was sufficient to repress FGF gene expression and cell proliferation, thereby promoting cardiomyocyte differentiation. Finally, we show that BMP-induced cardiomyocyte differentiation is diminished following cranial neural crest ablation, underscoring the key roles of these cells in the regulation of AHF cell differentiation. Hence, BMP and FGF signaling pathways act via inter- and intra-regulatory loops in multiple tissues, to coordinate the balance between proliferation and differentiation of cardiac progenitors.
Collapse
Affiliation(s)
- Libbat Tirosh-Finkel
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Shore EM, Kaplan FS. Inherited human diseases of heterotopic bone formation. Nat Rev Rheumatol 2010; 6:518-27. [PMID: 20703219 DOI: 10.1038/nrrheum.2010.122] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human disorders of hereditary and nonhereditary heterotopic ossification are conditions in which osteogenesis occurs outside of the skeleton, within soft tissues of the body. The resulting extraskeletal bone is normal. The aberration lies within the mechanisms that regulate cell-fate determination, directing the inappropriate formation of cartilage or bone, or both, in tissues such as skeletal muscle and adipose tissue. Specific gene mutations have been identified in two rare inherited disorders that are clinically characterized by extensive and progressive extraskeletal bone formation-fibrodysplasia ossificans progressiva and progressive osseous heteroplasia. In fibrodysplasia ossificans progressiva, activating mutations in activin receptor type-1, a bone morphogenetic protein type I receptor, induce heterotopic endochondral ossification, which results in the development of a functional bone organ system that includes skeletal-like bone and bone marrow. In progressive osseous heteroplasia, the heterotopic ossification leads to the formation of mainly intramembranous bone tissue in response to inactivating mutations in the GNAS gene. Patients with these diseases variably show malformation of normal skeletal elements, identifying the causative genes and their associated signaling pathways as key mediators of skeletal development in addition to regulating cell-fate decisions by adult stem cells.
Collapse
Affiliation(s)
- Eileen M Shore
- Department of Orthopedic Surgery, University of Pennsylvania School of Medicine, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081, USA.
| | | |
Collapse
|
78
|
Tang S, Snider P, Firulli AB, Conway SJ. Trigenic neural crest-restricted Smad7 over-expression results in congenital craniofacial and cardiovascular defects. Dev Biol 2010; 344:233-47. [PMID: 20457144 PMCID: PMC2909335 DOI: 10.1016/j.ydbio.2010.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 01/10/2023]
Abstract
Smad7 is a negative regulator of TGFbeta superfamily signaling. Using a three-component triple transgenic system, expression of the inhibitory Smad7 was induced via doxycycline within the NCC lineages at pre- and post-migratory stages. Consistent with its role in negatively regulating both TGFbeta and BMP signaling in vitro, induction of Smad7 within the NCC significantly suppressed phosphorylation levels of both Smad1/5/8 and Smad2/3 in vivo, resulting in subsequent loss of NCC-derived craniofacial, pharyngeal and cardiac OFT cushion cells. At the cellular level, increased cell death was observed in pharyngeal arches. However, cell proliferation and NCC-derived smooth muscle differentiation were unaltered. NCC lineage mapping demonstrated that cardiac NCC emigration and initial migration were not affected, but subsequent colonization of the OFT was significantly reduced. Induction of Smad7 in post-migratory NCC resulted in interventricular septal chamber septation defects, suggesting that TGFbeta superfamily signaling is also essential for cardiac NCC at post-migratory stages to govern normal cardiac development. Taken together, the data illustrate that tightly regulated TGFbeta superfamily signaling plays an essential role during craniofacial and cardiac NCC colonization and cell survival in vivo.
Collapse
Affiliation(s)
- Sunyong Tang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Paige Snider
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Antony B. Firulli
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Simon J. Conway
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
79
|
Song GA, Kim HJ, Woo KM, Baek JH, Kim GS, Choi JY, Ryoo HM. Molecular consequences of the ACVR1(R206H) mutation of fibrodysplasia ossificans progressiva. J Biol Chem 2010; 285:22542-53. [PMID: 20463014 DOI: 10.1074/jbc.m109.094557] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP), a rare genetic and catastrophic disorder characterized by progressive heterotopic ossification, is caused by a point mutation, c.617G>A; p.R206H, in the activin A receptor type 1 (ACVR1) gene, one of the bone morphogenetic protein type I receptors (BMPR-Is). Although altered BMP signaling has been suggested to explain the pathogenesis, the molecular consequences of this mutation are still elusive. Here we studied the impact of ACVR1 R206H mutation on BMP signaling and its downstream signaling cascades in murine myogenic C2C12 cells and HEK 293 cells. We found that ACVR1 was the most abundant of the BMPR-Is expressed in mesenchymal cells but its contribution to osteogenic BMP signal transduction was minor. The R206H mutant caused weak activation of the BMP signaling pathway, unlike the Q207D mutant, a strong and constitutively active form. The R206H mutant showed a decreased binding affinity for FKBP1A/FKBP12, a known safeguard molecule against the leakage of transforming growth factor (TGF)-beta or BMP signaling. The decreased binding affinity of FKBP1A to the mutant R206H ACVR1 resulted in leaky activation of the BMP signal, and moreover, it decreased steady-state R206H ACVR1 protein levels. Interestingly, while WT ACVR1 and FKBP1A were broadly distributed in plasma membrane and cytoplasm without BMP-2 stimulation and then localized in plasma membrane on BMP-2 stimulation, R206H ACVR1 and FKBP1A were mainly distributed in plasma membrane regardless of BMP-2 stimulation. The impaired binding to FKBP1A and an altered subcellular distribution by R206H ACVR1 mutation may result in mild activation of osteogenic BMP-signaling in extraskeletal sites such as muscle, which eventually lead to delayed and progressive ectopic bone formation in FOP patients.
Collapse
Affiliation(s)
- Gin-Ah Song
- Department of Molecular Genetics, BK21 Program, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | | | | | | | | | | | | |
Collapse
|
80
|
Holler KL, Hendershot TJ, Troy SE, Vincentz JW, Firulli AB, Howard MJ. Targeted deletion of Hand2 in cardiac neural crest-derived cells influences cardiac gene expression and outflow tract development. Dev Biol 2010; 341:291-304. [PMID: 20144608 PMCID: PMC2854279 DOI: 10.1016/j.ydbio.2010.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 01/29/2010] [Accepted: 02/01/2010] [Indexed: 11/29/2022]
Abstract
The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Kristen L. Holler
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| | - Tyler J. Hendershot
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| | - Sophia E. Troy
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| | - Joshua W. Vincentz
- Riley Heart Research Center, Herman B Webb Center for Pediatric Research, Indiana Medical School, 1044 W. Walnut, St., Indianapolis, IN 46202-5225, USA
| | - Anthony B. Firulli
- Riley Heart Research Center, Herman B Webb Center for Pediatric Research, Indiana Medical School, 1044 W. Walnut, St., Indianapolis, IN 46202-5225, USA
| | - Marthe J. Howard
- Department of Neurosciences and Program in Neurosciences and Degenerative DiseaseΨ Health Sciences Campus University of Toledo, 3000 Arlington Ave, Toledo, OH 43614-1007
| |
Collapse
|
81
|
Thomas PS, Kim J, Nunez S, Glogauer M, Kaartinen V. Neural crest cell-specific deletion of Rac1 results in defective cell-matrix interactions and severe craniofacial and cardiovascular malformations. Dev Biol 2010; 340:613-25. [PMID: 20184871 PMCID: PMC2854286 DOI: 10.1016/j.ydbio.2010.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 11/30/2022]
Abstract
The small GTP-binding protein Rac1, a member of the Rho family of small GTPases, has been implicated in regulation of many cellular processes including adhesion, migration and cytokinesis. These functions have largely been attributed to its ability to reorganize cytoskeleton. While the function of Rac1 is relatively well known in vitro, its role in vivo has been poorly understood. It has previously been shown that in neural crest cells (NCCs) Rac1 is required in a stage-specific manner to acquire responsiveness to mitogenic EGF signals. Here we demonstrate that mouse embryos lacking Rac1 in neural crest cells (Rac1/Wnt1-Cre) showed abnormal craniofacial development including regional ectodermal detachment associated with mesenchymal acellularity culminating in cleft face at E12. Rac1/Wnt1-Cre mutants also displayed inappropriate remodelling of pharyngeal arch arteries and defective outflow tract septation resulting in the formation of a common arterial trunk ('persistent truncus arteriosus' or PTA). The mesenchyme around the aortic sac also developed acellular regions, and the distal aortic sac became grossly dysmorphic, forming a pair of bilateral, highly dilated arterial structures connecting to the dorsal aortas. Smooth muscle cells lacking Rac1 failed to differentiate appropriately, and subpopulations of post-migratory NCCs demonstrated aberrant cell death and attenuated proliferation. These novel data demonstrate that while Rac1 is not required for normal NCC migration in vivo, it plays a critical cell-autonomous role in post-migratory NCCs during craniofacial and cardiac development by regulating the integrity of the craniofacial and pharyngeal mesenchyme.
Collapse
Affiliation(s)
- Penny S Thomas
- Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
82
|
Watanabe Y, Buckingham M. The formation of the embryonic mouse heart: heart fields and myocardial cell lineages. Ann N Y Acad Sci 2010; 1188:15-24. [PMID: 20201881 DOI: 10.1111/j.1749-6632.2009.05078.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During cardiogenesis in the mouse, the second heart field (SHF) is the source of the myocardium of the outflow tract and it contributes to other regions of the heart with the exception of the primitive left ventricle. This contribution corresponds with that of the second myocardial cell lineage, identified by retrospective clonal analysis. Gene regulatory networks, signaling pathways, and heterogeneity within the SHF are discussed, together with the question of regulation of myocardial progenitor cells within the first heart field. The extension of the SHF into the mesodermal core of the arches also gives rise to endothelial cells of the pharyngeal arch arteries. Knowledge about the origin and genetic regulation of cells that contribute to the heart and associated vasculature is important for the diagnosis and treatment of congenital heart malformations.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Developmental Biology, Pasteur Institute, Paris, France
| | | |
Collapse
|
83
|
Song L, Li Y, Wang K, Zhou CJ. Cardiac neural crest and outflow tract defects in Lrp6 mutant mice. Dev Dyn 2010; 239:200-10. [PMID: 19705442 DOI: 10.1002/dvdy.22079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of a key Wnt coreceptor Lrp6 during heart development remains unclear. Here we show that ablation of Lrp6 in mice causes conotruncal anomalies including double-outlet right ventricle (DORV), outflow tract (OFT) cushion hypoplasia, and ventricular septal defect (VSD). Cardiac neural crest cells are specifically lost in the dorsal neural tube and caudal pharyngeal arches of the mutant embryos. We also demonstrate that Lrp6 is required for proliferation and survival of cardiac progenitors and for the expression of Isl1 in the secondary heart field. Other known cardiogenic regulators such as Msx1, Msx2, and Fgf8 are also significantly diminished in the mutant pharyngeal arches and/or OFT. Unexpectedly, the myocardium differentiation factors Mef2c and Myocardin are upregulated in the mutant OFT. Our results indicate that Lrp6 is essential for cardiac neural crest and OFT development upstream of multiple important cardiogenic genes in different cardiac lineage cells during early cardiogenesis.
Collapse
Affiliation(s)
- Lanying Song
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Sacramento, California, USA
| | | | | | | |
Collapse
|
84
|
Rentschler S, Jain R, Epstein JA. Tissue-tissue interactions during morphogenesis of the outflow tract. Pediatr Cardiol 2010; 31:408-13. [PMID: 20039033 PMCID: PMC2951316 DOI: 10.1007/s00246-009-9611-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/07/2009] [Indexed: 01/02/2023]
Abstract
The heart forms as a linear heart tube that loops and septates to produce a mature four-chambered structure. The single vessel emerging from the embryonic heart, the truncus arteriosus, divides into the aorta and the pulmonary artery as part of this septation process, and a series of additional morphogenetic events result in the proper alignment and orientation of the cardiac outflow tract. Recent evidence indicates that this process involves the complex interactions of multiple cell types including primary and secondary heart fields, neural crest, pharyngeal mesenchyme, endoderm, and endothelium. Among the many signals that mediate tissue-tissue interactions during the formation of the outflow tract, we have focused on the role of the Notch signaling pathway. Here, we focus on recent advances in our understanding of Notch-mediated regulation of cardiac development with specific attention to the formation of the cardiac outflow tract.
Collapse
Affiliation(s)
- Stacey Rentschler
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, and the Institute for Regenerative Medicine, University of Pennsylvania, 1154 BRB II, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
85
|
Abstract
Congenital heart disease represents the most common form of human birth defect, occurring in nearly 1 in 100 live births. An increasing number of patients with these defects are surviving infancy. Approximately one-third of congenital heart defects involve malformations of the outflow tract. Related defects are found in isolation and as part of common human syndromes. Our laboratory has investigated mechanisms of cardiac morphogenesis with particular attention to outflow tract formation. During cardiogenesis, neural crest cells interact with second heart field myocardium and endocardial cushion mesenchyme. Our recent work demonstrates that Jagged1/Notch signaling within the second heart field initiates a signaling cascade involving Fgf8, Bmp4, and downstream effectors that modulate outflow tract development and aortic arch artery patterning. Hence, complex tissue-tissue interactions and integration of multiple pathways converge to orchestrate proper patterning of the outflow region. The role of Notch signaling in adult cardiac homeostasis and disease is an area of active investigation.
Collapse
Affiliation(s)
- Rajan Jain
- Department of Cell and Developmental Biology, Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
86
|
|
87
|
Scholl AM, Kirby ML. Signals controlling neural crest contributions to the heart. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:220-7. [PMID: 20490374 PMCID: PMC2873602 DOI: 10.1002/wsbm.8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac neural crest cells represent a unique subpopulation of cranial neural crest cells that are specified, delaminate and migrate from the developing neural tube to the caudal pharynx where they support aortic arch artery development. From the caudal pharynx, a subset of these cells migrates into the cardiac outflow tract where they are needed for outflow septation. Many signaling factors are known to be involved in specifying and triggering the migration of neural crest cells. These factors have not been specifically studied in cardiac crest but are assumed to be the same as for the other regions of crest. Signaling factors like Ephs and Semaphorins guide the cells into the caudal pharynx. Support of the cells in the pharynx is from endothelin, PDGF and the TGFbeta/BMP signaling pathways. Mutants in the TGFbeta/BMP pathway show abnormal migration or survival in the pharynx, whereas the migration of the neural crest cells into the outflow tract is orchestrated by Semaphorin/Plexin signaling. Although TGFbeta family members have been well studied and show defective neural crest function in outflow septation, their mechanism of action remains unclear.
Collapse
Affiliation(s)
- Ann Marie Scholl
- Department of Pediatrics (Neonatology), Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
88
|
Beppu H, Malhotra R, Beppu Y, Lepore JJ, Parmacek MS, Bloch KD. BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis. Dev Biol 2009; 331:167-75. [PMID: 19409885 PMCID: PMC2745439 DOI: 10.1016/j.ydbio.2009.04.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/20/2009] [Accepted: 04/25/2009] [Indexed: 12/20/2022]
Abstract
Signaling of bone morphogenetic protein (BMP) via type I and type II receptors is involved in multiple processes contributing to cardiogenesis. To investigate the role of the BMP type II receptor (BMPRII) in heart development, the BMPRII gene was deleted throughout the embryo during gastrulation using a Mox2-Cre transgene. BMPRII(flox/-);Mox2-Cre mice exhibited cardiac defects including double-outlet right ventricle, ventricular septal defect (VSD), atrioventricular (AV) cushion defects, and thickened valve leaflets. To characterize the tissue-specific functions of BMPRII in cardiogenesis, a series of Cre transgenes (alphaMHC-, Tie2-, Wnt1-, and SM22alpha-Cre) was employed. Interestingly, myocardial development was normal when the BMPRII gene was deleted in myocardial cells using Mox2-Cre, alphaMHC-Cre, or SM22alpha-Cre transgenes, suggesting that signaling by other BMP type II receptors may compensate for the absence of BMPRII in the myocardial cells. AV cushion defects including atrial septal defect, membranous VSD, and thickened valve leaflets were found in BMPRII(flox/-);Tie2-Cre mice. Abnormal positioning of the aorta was observed in BMPRII(flox/-);Wnt1-Cre and BMPRII(flox/-);SM22alpha-Cre mice. Taken together, these results demonstrate that endocardial BMPRII expression is required for septal formation and valvulogenesis. Moreover, mesenchymal BMPRII expression in the outflow tract cushion is required for proper positioning of the aorta.
Collapse
Affiliation(s)
- Hideyuki Beppu
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, 02129, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Adams-Oliver syndrome: Additions to the clinical features and possible role of BMP pathway. Am J Med Genet A 2009; 149A:1678-84. [DOI: 10.1002/ajmg.a.32938] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
90
|
High FA, Jain R, Stoller JZ, Antonucci NB, Lu MM, Loomes KM, Kaestner KH, Pear WS, Epstein JA. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J Clin Invest 2009; 119:1986-96. [PMID: 19509466 PMCID: PMC2701882 DOI: 10.1172/jci38922] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 04/24/2009] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is vital for proper cardiovascular development and function in both humans and animal models. Indeed, mutations in either JAGGED or NOTCH cause congenital heart disease in humans and NOTCH mutations are associated with adult valvular disease. Notch typically functions to mediate developmental interactions between adjacent tissues. Here we show that either absence of the Notch ligand Jagged1 or inhibition of Notch signaling in second heart field tissues results in murine aortic arch artery and cardiac anomalies. In mid-gestation, these mutants displayed decreased Fgf8 and Bmp4 expression. Notch inhibition within the second heart field affected the development of neighboring tissues. For example, faulty migration of cardiac neural crest cells and defective endothelial-mesenchymal transition within the outflow tract endocardial cushions were observed. Furthermore, exogenous Fgf8 was sufficient to rescue the defect in endothelial-mesenchymal transition in explant assays of endocardial cushions following Notch inhibition within second heart field derivatives. These data support a model that relates second heart field, neural crest, and endocardial cushion development and suggests that perturbed Notch-Jagged signaling within second heart field progenitors accounts for some forms of congenital and adult cardiac disease.
Collapse
Affiliation(s)
- Frances A. High
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Rajan Jain
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason Z. Stoller
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicole B. Antonucci
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Min Min Lu
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kathleen M. Loomes
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Klaus H. Kaestner
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Warren S. Pear
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jonathan A. Epstein
- Department of Cell and Developmental Biology, Cardiovascular Institute, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Department of Genetics and Institute for Diabetes, Obesity, and Metabolism,
Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
91
|
Klaus A, Birchmeier W. Developmental signaling in myocardial progenitor cells: a comprehensive view of Bmp- and Wnt/beta-catenin signaling. Pediatr Cardiol 2009; 30:609-16. [PMID: 19099173 DOI: 10.1007/s00246-008-9352-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/15/2008] [Indexed: 12/22/2022]
Abstract
The tight regulation of different signaling systems and the transcriptional and translational networks during embryonic development have been the focus of embryologists in recent decades. Defective developmental signaling due to genetic mutation or temporal and region-specific alteration of gene expression causes embryonic lethality or accounts for birth defects (e.g., congenital heart disease). The formation of the heart requires the coordinated integration of multiple cardiac progenitor cell populations derived from the first and second heart fields and from cardiac neural crest cells. This article summarizes what has been learned from conditional mutagenesis of Bmp pathway components and the Wnt effector, beta-catenin, in the developing heart of mice. Although Bmp signaling is required for cardiac progenitor cell specification, proliferation, and differentiation, recent studies have demonstrated distinct functions of Wnt/beta-catenin signaling at various stages of heart development.
Collapse
Affiliation(s)
- Alexandra Klaus
- Max-Delbrueck-Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | | |
Collapse
|
92
|
Vallejo-Illarramendi A, Zang K, Reichardt LF. Focal adhesion kinase is required for neural crest cell morphogenesis during mouse cardiovascular development. J Clin Invest 2009; 119:2218-30. [PMID: 19587446 DOI: 10.1172/jci38194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 05/06/2009] [Indexed: 01/08/2023] Open
Abstract
Neural crest cells (NCCs) participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Focal adhesion kinase (FAK) mediates signal transduction by integrin and growth factor receptors, each of which is important for normal cardiovascular development. To investigate the role of FAK in NCC morphogenesis, we deleted it in murine NCCs using Wnt1cre, yielding craniofacial and cardiovascular malformations resembling those observed in individuals with DiGeorge syndrome. In these mice, we observed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and impaired cardiac outflow tract rotation, which resulted in a dextroposed aortic root. Moreover, within the conotruncal cushions, Fak-deficient NCCs formed a less organized mesenchyme, with reduced expression of perlecan and semaphorin 3C, and exhibited disorganized F-actin stress fibers within the aorticopulmonary septum. Additionally, absence of Fak resulted in reduced in vivo phosphorylation of Crkl and Erk1/2, components of a signaling pathway essential for NCC development. Consistent with this, both TGF-beta and FGF induced FAK and Crkl phosphorylation in control but not Fak-deficient NCCs in vitro. Our results indicate that FAK plays an essential role in cardiac outflow tract development by promoting the activation of molecules such as Crkl and Erk1/2.
Collapse
|
93
|
Uchimura T, Komatsu Y, Tanaka M, McCann KL, Mishina Y. Bmp2 and Bmp4 genetically interact to support multiple aspects of mouse development including functional heart development. Genesis 2009; 47:374-84. [PMID: 19391114 PMCID: PMC2847484 DOI: 10.1002/dvg.20511] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bone morphogenetic proteins (BMPs) have multiple roles during embryogenesis. Current data indicate that the dosage of BMPs is tightly regulated for normal development in mice. Since Bmp2 or Bmp4 homozygous mutant mice show early embryonic lethality, we generated compound heterozygous mice for Bmp2 and Bmp4 to explore the impact of lowered dosage of these BMP ligands. Genotyping pups bred between Bmp2 and Bmp4 heterozygous mice revealed that the ratio of adult compound heterozygous mice for Bmp2 and Bmp4 is much lower than expected. During embryogenesis, the compound heterozygous embryos showed several abnormalities, including defects in eye formation, body wall closure defects, and ventricular septal defects (VSD) in the heart. However, the ratio of the compound heterozygous embryos was the same as expected. Caesarean sections at E18.5 revealed that half of the compound heterozygotes died soon after birth, and the majority of the dead individuals exhibited VSD. Survivors were able to grow to adults, but their body weight was significantly lower than control littermates. They demonstrated progressive abnormalities in the heart, eventually showing a branched leaflet in atrioventricular valves. These results suggest that the dosage of both BMP2 and 4 is critical for functional heart formation during embryogenesis and after birth.
Collapse
Affiliation(s)
- Takashi Uchimura
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yoshihiro Komatsu
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Momo Tanaka
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kelly L. McCann
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yuji Mishina
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Knock Out Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
94
|
Choudhary B, Zhou J, Li P, Thomas S, Kaartinen V, Sucov HM. Absence of TGFbeta signaling in embryonic vascular smooth muscle leads to reduced lysyl oxidase expression, impaired elastogenesis, and aneurysm. Genesis 2009; 47:115-21. [PMID: 19165826 DOI: 10.1002/dvg.20466] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To address the requirement for TGFbeta signaling in the formation and maintenance of the vascular matrix, we employed lineage-specific mutation of the type II TGFbeta receptor gene (Tgfbr2) in vascular smooth muscle precursors in mice. In both neural crest- and mesoderm-derived smooth muscle, absence of TGFbeta receptor function resulted in a poorly organized vascular elastic matrix in late-stage embryos which was prone to dilation and aneurysm. This defect represents a failure to initiate formation of the elastic matrix, rather than a failure to maintain a preexisting matrix. In mutant tissue, lysyl oxidase expression was substantially reduced, which may contribute to the observed pathology.
Collapse
MESH Headings
- Aneurysm/embryology
- Aneurysm/metabolism
- Aneurysm/pathology
- Animals
- Base Sequence
- DNA Primers/genetics
- Elastic Tissue/abnormalities
- Elastic Tissue/embryology
- Elastic Tissue/metabolism
- Female
- Gene Expression Regulation, Developmental
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle, Smooth, Vascular/abnormalities
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Pregnancy
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Lysine 6-Oxidase/genetics
- Protein-Lysine 6-Oxidase/metabolism
- RNA/genetics
- RNA/metabolism
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/deficiency
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Tissue Distribution
- Transforming Growth Factor beta/metabolism
Collapse
|
95
|
Büchmann-Møller S, Miescher I, John N, Krishnan J, Deng CX, Sommer L. Multiple lineage-specific roles of Smad4 during neural crest development. Dev Biol 2009; 330:329-38. [PMID: 19361496 DOI: 10.1016/j.ydbio.2009.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 01/13/2023]
Abstract
During vertebrate development, neural crest cells are exposed to multiple extracellular cues that drive their differentiation into neural and non-neural cell lineages. Insights into the signals potentially involved in neural crest cell fate decisions in vivo have been gained by cell culture experiments that have allowed the identification of instructive growth factors promoting either proliferation of multipotent neural crest cells or acquisition of specific fates. For instance, members of the TGFbeta factor family induce neurogenesis and smooth muscle cell formation at the expense of other fates in culture. In vivo, conditional ablation of various TGFbeta signaling components resulted in malformations of non-neural derivatives of the neural crest, but it is unclear whether these phenotypes involved aberrant fate decisions. Moreover, it remains to be shown whether neuronal determination indeed requires TGFbeta factor activity in vivo. To address these issues, we conditionally deleted Smad4 in the neural crest, thus inactivating all canonical TGFbeta factor signaling. Surprisingly, neural crest cell fates were not affected in these mutants, with the exception of sensory neurogenesis in trigeminal ganglia. Rather, Smad4 regulates survival of smooth muscle and proliferation of autonomic and ENS neuronal progenitor cells. Thus, Smad signaling plays multiple, lineage-specific roles in vivo, many of which are elicited only after neural crest cell fate decision.
Collapse
Affiliation(s)
- Stine Büchmann-Møller
- Division of Cell and Developmental Biology, Institute of Anatomy, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
96
|
Hoxa3 and signaling molecules involved in aortic arch patterning and remodeling. Cell Tissue Res 2009; 336:165-78. [DOI: 10.1007/s00441-009-0760-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 01/15/2009] [Indexed: 12/17/2022]
|
97
|
Yamagishi T, Ando K, Nakamura H. Roles of TGFβ and BMP during valvulo–septal endocardial cushion formation. Anat Sci Int 2009; 84:77-87. [DOI: 10.1007/s12565-009-0027-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/05/2008] [Indexed: 01/01/2023]
|
98
|
Goldman DC, Donley N, Christian JL. Genetic interaction between Bmp2 and Bmp4 reveals shared functions during multiple aspects of mouse organogenesis. Mech Dev 2009; 126:117-27. [PMID: 19116164 PMCID: PMC2891503 DOI: 10.1016/j.mod.2008.11.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/15/2008] [Accepted: 11/30/2008] [Indexed: 11/25/2022]
Abstract
Vertebrate Bmp2 and Bmp4 diverged from a common ancestral gene and encode closely related proteins. Mice homozygous for null mutations in either gene show early embryonic lethality, thereby precluding analysis of shared functions. In the current studies, we present phenotypic analysis of compound mutant mice heterozygous for a null allele of Bmp2 in combination with null or hypomorphic alleles of Bmp4. Whereas mice lacking a single copy of Bmp2 or Bmp4 are viable and have subtle developmental defects, compound mutants show embryonic and postnatal lethality due to defects in multiple organ systems including the allantois, placental vasculature, ventral body wall, skeleton, eye and heart. Within the heart, BMP2 and BMP4 function coordinately to direct normal lengthening of the outflow tract, proper positioning of the outflow vessels, and septation of the atria, ventricle and atrioventricular canal. Our results identify numerous BMP4-dependent developmental processes that are also very sensitive to BMP2 dosage, thus revealing novel functions of Bmp2.
Collapse
Affiliation(s)
- Devorah C. Goldman
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Nathan Donley
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Jan L. Christian
- Department of Cell and Developmental Biology, Oregon Health and Sciences University, School of Medicine, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| |
Collapse
|
99
|
Barillot W, Tréguer K, Faucheux C, Fédou S, Thézé N, Thiébaud P. Induction and modulation of smooth muscle differentiation in Xenopus embryonic cells. Dev Dyn 2009; 237:3373-86. [PMID: 18855898 DOI: 10.1002/dvdy.21749] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
By comparison with skeletal or cardiac developmental programs, little is known regarding the specific factors that promote specification and differentiation of smooth muscle cells from pluripotent cells. We have analyzed the developmental expression of a subset of smooth muscle genes during Xenopus early development and showed that similar to mammals and avians, Xenopus smooth muscle myosin heavy chain (SM-MHC) is a highly specific marker of smooth muscle differentiation. Embryonic cells from animal pole explants of Xenopus blastula can be induced by basic fibroblast growth factor, Wnt, and bone morphogenetic protein signals to adopt the smooth muscle pathway. Explants from early embryos that contain neural crest cells can also differentiate into cells expressing smooth muscle genes. We examined the interplay of several transcription factors, that is SRF, myocardin, and GATA6, that induce the expression of SM-MHC in animal cap cells and found that myocardin-dependent expression of smooth muscle genes in animal cap cells is synergized by SRF but is strongly antagonized by GATA6.
Collapse
|
100
|
Yao Y, Shao ES, Jumabay M, Shahbazian A, Ji S, Boström KI. High-density lipoproteins affect endothelial BMP-signaling by modulating expression of the activin-like kinase receptor 1 and 2. Arterioscler Thromb Vasc Biol 2008; 28:2266-74. [PMID: 18948634 PMCID: PMC2709402 DOI: 10.1161/atvbaha.108.176958] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE High-density lipoproteins (HDL) have antiinflammatory effects on the vascular endothelium. Because bone morphogenetic proteins (BMPs) are known to be inflammatory mediators, we examined the effect of HDL on BMP signaling. METHODS AND RESULTS Increasing concentrations of HDL progressively enhanced expression of the activin-like kinase receptor (ALK)1 and ALK2 in human aortic endothelial cells as determined by real-time polymerase chain reaction and immunoblotting. Induction of ALK1 was a result of enhanced ALK2 expression as determined by siRNA interference, and was associated with increased levels of vascular endothelial growth factor (VEGF) and matrix Gla protein (MGP). The HDL-induction of ALK2 was dependent on BMP-signaling, and affected coregulation of the ALK2 gene by the homeodomain proteins MSX2, DLX3, and DLX5, as determined by reporter gene assays, siRNA interference, and chromatin immunoprecipitation. Apolipoprotein A-I transgenic mice, known to have high HDL and inhibition of atherogenesis, exhibited similar changes in aortic gene expression as seen in endothelial cells treated with HDL in vitro. CONCLUSIONS We conclude that HDL benefits the arterial wall by allowing for enhanced ALK1 and ALK2 signaling, resulting in an increase of VEGF and MGP, essential for endothelial cell survival and prevention of vascular calcification, respectively.
Collapse
MESH Headings
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Activin Receptors, Type II/genetics
- Activin Receptors, Type II/metabolism
- Animals
- Apolipoprotein A-I/genetics
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Base Sequence
- Bone Morphogenetic Protein 4/metabolism
- Bone Morphogenetic Protein 4/pharmacology
- Bone Morphogenetic Proteins/metabolism
- Calcium-Binding Proteins/metabolism
- Cattle
- Cells, Cultured
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Extracellular Matrix Proteins/metabolism
- Humans
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/genetics
- Signal Transduction/drug effects
- Vascular Endothelial Growth Factor A/metabolism
- Matrix Gla Protein
Collapse
Affiliation(s)
- Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | |
Collapse
|