51
|
Leung AW, Murdoch B, Salem AF, Prasad MS, Gomez GA, García-Castro MI. WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate. Development 2016; 143:398-410. [PMID: 26839343 DOI: 10.1242/dev.130849] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues. Here, we set out to generate a model in which to decipher signaling and tissue interactions involved in human NC induction. Our novel human embryonic stem cell (ESC)-based model yields high proportions of multipotent NC cells (expressing SOX10, PAX7 and TFAP2A) in 5 days. We demonstrate a crucial role for WNT/β-catenin signaling in launching NC development, while blocking placodal and surface ectoderm fates. We provide evidence of the delicate temporal effects of BMP and FGF signaling, and find that NC development is separable from neural and/or mesodermal contributions. We further substantiate the notion of a neural-independent origin of NC through PAX6 expression and knockdown studies. Finally, we identify a novel pre-neural border state characterized by early WNT/β-catenin signaling targets that displays distinct responses to BMP and FGF signaling from the traditional neural border genes. In summary, our work provides a fast and efficient protocol for human NC differentiation under signaling constraints similar to those identified in vivo in model organisms, and strengthens a framework for neural crest ontogeny that is separable from neural and mesodermal fates.
Collapse
Affiliation(s)
- Alan W Leung
- Kline Biology Tower, Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA Yale Stem Cell Center, 10 Amistad Street, New Haven, CT 06519, USA
| | - Barbara Murdoch
- Department of Biology, Eastern Connecticut State University, 83 Windham St., Willimantic, CT 06226, USA
| | - Ahmed F Salem
- 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Maneeshi S Prasad
- 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Gustavo A Gomez
- 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| | - Martín I García-Castro
- Kline Biology Tower, Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06511, USA 203 School of Medicine Research Building, School of Medicine, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
52
|
Mašek J, Machoň O, Kořínek V, Taketo MM, Kozmik Z. Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development 2016; 143:2206-16. [DOI: 10.1242/dev.132357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/21/2016] [Indexed: 12/11/2022]
Abstract
The neural crest (NC) is crucial for the evolutionary diversification of vertebrates. NC cells are induced at the neural plate border by the coordinated action of several signaling pathways, including Wnt/β-catenin. NC cells are normally generated in the posterior neural plate border, whereas the anterior neural fold is devoid of NC cells. Using the mouse model, we show here that active repression of Wnt/β-catenin signaling is required for maintenance of neuroepithelial identity in the anterior neural fold and for inhibition of NC induction. Conditional inactivation of Tcf7l1, a transcriptional repressor of Wnt target genes, leads to aberrant activation of Wnt/β-catenin signaling in the anterior neuroectoderm and its conversion into NC. This reduces the developing prosencephalon without affecting the anterior-posterior neural character. Thus, Tcf7l1 defines the border between the NC and the prospective forebrain via restriction of the Wnt/β-catenin signaling gradient.
Collapse
Affiliation(s)
- Jan Mašek
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Prague 142 20, Czech Republic
| | - Ondřej Machoň
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Prague 142 20, Czech Republic
| | - Vladimír Kořínek
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Prague 142 20, Czech Republic
| | - M. Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Zbyněk Kozmik
- Institute of Molecular Genetics, Academy of Science of the Czech Republic, Prague 142 20, Czech Republic
| |
Collapse
|
53
|
Rabadán MA, Herrera A, Fanlo L, Usieto S, Carmona-Fontaine C, Barriga EH, Mayor R, Pons S, Martí E. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2. Development 2016; 143:2194-205. [PMID: 27122165 DOI: 10.1242/dev.134981] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023]
Abstract
Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination.
Collapse
Affiliation(s)
- M Angeles Rabadán
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Antonio Herrera
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Lucia Fanlo
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Carlos Carmona-Fontaine
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sebastián Pons
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
54
|
Sanchez-Ferras O, Bernas G, Farnos O, Touré AM, Souchkova O, Pilon N. A direct role for murine Cdx proteins in the trunk neural crest gene regulatory network. Development 2016; 143:1363-74. [PMID: 26952979 DOI: 10.1242/dev.132159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Numerous studies in chordates and arthropods currently indicate that Cdx proteins have a major ancestral role in the organization of post-head tissues. In urochordate embryos, Cdx loss-of-function has been shown to impair axial elongation, neural tube (NT) closure and pigment cell development. Intriguingly, in contrast to axial elongation and NT closure, a Cdx role in neural crest (NC)-derived melanocyte/pigment cell development has not been reported in any other chordate species. To address this, we generated a new conditional pan-Cdx functional knockdown mouse model that circumvents Cdx functional redundancy as well as the early embryonic lethality of Cdx mutants. Through directed inhibition in the neuroectoderm, we provide in vivo evidence that murine Cdx proteins impact melanocyte and enteric nervous system development by, at least in part, directly controlling the expression of the key early regulators of NC ontogenesis Pax3,Msx1 and Foxd3 Our work thus reveals a novel role for Cdx proteins at the top of the trunk NC gene regulatory network in the mouse, which appears to have been inherited from their ancestral ortholog.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Omar Farnos
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Aboubacrine M Touré
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Ouliana Souchkova
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal H2X 3Y7, Canada
| |
Collapse
|
55
|
Roellig D, Bronner ME. The epigenetic modifier DNMT3A is necessary for proper otic placode formation. Dev Biol 2016; 411:294-300. [PMID: 26826496 DOI: 10.1016/j.ydbio.2016.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 11/17/2022]
Abstract
Cranial placodes are thickenings in the ectoderm that give rise to sensory organs and peripheral ganglia of the vertebrate head. At gastrula and neurula stages, placodal precursors are intermingled in the neural plate border with future neural and neural crest cells. Here, we show that the epigenetic modifier, DNA methyl transferase (DNMT) 3A, expressed in the neural plate border region, influences development of the otic placode which will contribute to the ear. DNMT3A is expressed in the presumptive otic region at gastrula through neurula stages and later in the otic placode itself. Whereas neural plate border and non-neural ectoderm markers Erni, Dlx5, Msx1 and Six1 are unaltered, DNMT3A loss of function leads to early reduction in the expression of the key otic placode specifier genes Pax2 and Gbx2 and later otic markers Sox10 and Soho1. Reduction of Gbx2 was first observed at HH7, well before loss of other otic markers. Later, this translates to significant reduction in the size of the otic vesicle. Based on these results, we propose that DNMT3A is important for enabling the activation of Gbx2 expression, necessary for normal development of the inner ear.
Collapse
Affiliation(s)
- Daniela Roellig
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
56
|
Schille C, Heller J, Schambony A. Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. BMC DEVELOPMENTAL BIOLOGY 2016; 16:1. [PMID: 26780949 PMCID: PMC4717534 DOI: 10.1186/s12861-016-0101-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 01/01/2023]
Abstract
Background Bone morphogenetic proteins regulate multiple processes in embryonic development, including early dorso-ventral patterning and neural crest development. BMPs activate heteromeric receptor complexes consisting of type I and type II receptor-serine/threonine kinases. BMP receptors Ia and Ib, also known as ALK3 and ALK6 respectively, are the most common type I receptors that likely mediate most BMP signaling events. Since early expression patterns and functions in Xenopus laevis development have not been described, we have addressed these questions in the present study. Results Here we have analyzed the temporal and spatial expression patterns of ALK3 and ALK6; we have also carried out loss-of-function studies to define the function of these receptors in early Xenopus development. We detected both redundant and non-redundant roles of ALK3 and ALK6 in dorso-ventral patterning. From late gastrula stages onwards, their expression patterns diverged, which correlated with a specific, non-redundant requirement of ALK6 in post-gastrula neural crest cells. ALK6 was essential for induction of neural crest cell fate and further development of the neural crest and its derivatives. Conclusions ALK3 and ALK6 both contribute to the gene regulatory network that regulates dorso-ventral patterning; they play partially overlapping and partially non-redundant roles in this process. ALK3 and ALK6 are independently required for the spatially restricted activation of BMP signaling and msx2 upregulation at the neural plate border, whereas in post-gastrula development ALK6 exerts a highly specific, conserved function in neural crest development. Electronic supplementary material The online version of this article (doi:10.1186/s12861-016-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolin Schille
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Jens Heller
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, 91058, Erlangen, Germany.
| |
Collapse
|
57
|
Monsoro-Burq AH. PAX transcription factors in neural crest development. Semin Cell Dev Biol 2015; 44:87-96. [PMID: 26410165 DOI: 10.1016/j.semcdb.2015.09.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 10/23/2022]
Abstract
The nine vertebrate PAX transcription factors (PAX1-PAX9) play essential roles during early development and organogenesis. Pax genes were identified in vertebrates using their homology with the Drosophila melanogaster paired gene DNA-binding domain. PAX1-9 functions are largely conserved throughout vertebrate evolution, in particular during central nervous system and neural crest development. The neural crest is a vertebrate invention, which gives rise to numerous derivatives during organogenesis, including neurons and glia of the peripheral nervous system, craniofacial skeleton and mesenchyme, the heart outflow tract, endocrine and pigment cells. Human and mouse spontaneous mutations as well as experimental analyses have evidenced the critical and diverse functions of PAX factors during neural crest development. Recent studies have highlighted the role of PAX3 and PAX7 in neural crest induction. Additionally, several PAX proteins - PAX1, 3, 7, 9 - regulate cell proliferation, migration and determination in multiple neural crest-derived lineages, such as cardiac, sensory, and enteric neural crest, pigment cells, glia, craniofacial skeleton and teeth, or in organs developing in close relationship with the neural crest such as the thymus and parathyroids. The diverse PAX molecular functions during neural crest formation rely on fine-tuned modulations of their transcriptional transactivation properties. These modulations are generated by multiple means, such as different roles for the various isoforms (formed by alternative splicing), or posttranslational modifications which alter protein-DNA binding, or carefully orchestrated protein-protein interactions with various co-factors which control PAX proteins activity. Understanding these regulations is the key to decipher the versatile roles of PAX transcription factors in neural crest development, differentiation and disease.
Collapse
Affiliation(s)
- Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; UMR 3347 CNRS, U1021 Inserm, Université Paris Saclay, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France.
| |
Collapse
|
58
|
Deichmann C, Link M, Seyfang M, Knotz V, Gradl D, Wedlich D. Neural crest specification by Prohibitin1 depends on transcriptional regulation of prl3 and vangl1. Genesis 2015; 53:627-39. [PMID: 26259516 DOI: 10.1002/dvg.22883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 12/19/2022]
Abstract
A complex network of transcription factors regulates specification of neural crest cells at early neurula stage by stabilizing neural crest identity and activating neural crest effector genes so that distinct subpopulations evolve. In this network, c-myc acts on top of the gene hierarchy controlling snail2, AP2 and prohibitin1 (phb1) expression. While snail2 and AP2 are well studied neural crest specifier genes little is known about the role of phb1 in this process. To identify phb1 regulated genes we analyzed the transcriptome of neural crest explants of phb1 morphant Xenopus embryos. Among 147 phb1 regulated genes we identified the membrane-associated protein-tyrosine phosphatase PRP4A3 (prl3) and the atypical cadherin and Wnt-PCP component van gogh like1 (vangl1). Gain of function, loss of function and epistasis experiments allowed us to allocate both genes in the neural crest specification network between phb1 and twist. Interestingly, both, vangl1 and prl3 regulate only a small subset of neural crest marker genes. The identification of two membrane-associated proteins as novel neural crest specifiers indicates that in addition to gene regulation by combinatory effects of transcription factors also post-translational modifications (prl3) and cell-cell adhesion and/or regulation of cell-polarity (vangl1) specify the identity of neural crest cell populations. genesis 53:627-639, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christina Deichmann
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Martina Link
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Melanie Seyfang
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Viktoria Knotz
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| | - Doris Wedlich
- Department of Cell and Developmental Biology, KIT, Campus South, Zoological Institute, Karlsruhe, Germany
| |
Collapse
|
59
|
Zhang Q, Wang J, Deng F, Yan Z, Xia Y, Wang Z, Ye J, Deng Y, Zhang Z, Qiao M, Li R, Denduluri SK, Wei Q, Zhao L, Lu S, Wang X, Tang S, Liu H, Luu HH, Haydon RC, He TC, Jiang L. TqPCR: A Touchdown qPCR Assay with Significantly Improved Detection Sensitivity and Amplification Efficiency of SYBR Green qPCR. PLoS One 2015; 10:e0132666. [PMID: 26172450 PMCID: PMC4501803 DOI: 10.1371/journal.pone.0132666] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/17/2015] [Indexed: 02/05/2023] Open
Abstract
The advent of fluorescence-based quantitative real-time PCR (qPCR) has revolutionized the quantification of gene expression analysis in many fields, including life sciences, agriculture, forensic science, molecular diagnostics, and medicine. While SYBR Green-based qPCR is the most commonly-used platform due to its inexpensive nature and robust chemistry, quantifying the expression of genes with low abundance or RNA samples extracted from highly restricted or limited sources can be challenging because the detection sensitivity of SYBR Green-based qPCR is limited. Here, we develop a novel and effective touchdown qPCR (TqPCR) protocol by incorporating a 4-cycle touchdown stage prior to the quantification amplification stage. Using the same cDNA templates, we find that TqPCR can reduce the average Cq values for Gapdh, Rps13, and Hprt1 reference genes by 4.45, 5.47, and 4.94 cycles, respectively, when compared with conventional qPCR; the overall average Cq value reduction for the three reference genes together is 4.95. We further find that TqPCR can improve PCR amplification efficiency and thus increase detection sensitivity. When the quantification of Wnt3A-induced target gene expression in mesenchymal stem cells is analyzed, we find that, while both conventional qPCR and TqPCR can detect the up-regulation of the relatively abundant target Axin2, only TqPCR can detect the up-regulation of the lowly-expressed targets Oct4 and Gbx2. Finally, we demonstrate that the MRQ2 and MRQ3 primer pairs derived from mouse reference gene Tbp can be used to validate the RNA/cDNA integrity of qPCR samples. Taken together, our results strongly suggest that TqPCR may increase detection sensitivity and PCR amplification efficiency. Overall, TqPCR should be advantageous over conventional qPCR in expression quantification, especially when the transcripts of interest are lowly expressed, and/or the availability of total RNA is highly restricted or limited.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Jing Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Fang Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Cell Biology, the Third Military Medical University, Chongqing 400038, China
| | - Zhengjian Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Yinglin Xia
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, United States of America
| | - Zhongliang Wang
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Jixing Ye
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- School of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Youlin Deng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Zhonglin Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Departments of General Surgery and Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Min Qiao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Ruifang Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Departments of General Surgery and Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Sahitya K. Denduluri
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Qiang Wei
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Lianggong Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Lanzhou University, Lanzhou 730000, China
| | - Shun Lu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Orthopaedic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, China
| | - Xin Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Department of Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Shengli Tang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Departments of General Surgery and Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hao Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- Ministry of Education Key Laboratory of Diagnostic Medicine, and the Affiliated Hospitals of Chongqing Medical University, Chongqing 400016, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
| | - Tong-Chuan He
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, United States of America
- * E-mail: (T-CH); (LJ)
| | - Li Jiang
- Department of Neurology, and the Ministry of Education Key Laboratory of Child Development and Disorders, The Children’s Hospital of Chongqing Medical University, Chongqing 400046, China
- * E-mail: (T-CH); (LJ)
| |
Collapse
|
60
|
Vega‐López GA, Bonano M, Tríbulo C, Fernández JP, Agüero TH, Aybar MJ. Functional analysis of
Hairy
genes in
Xenopus
neural crest initial specification and cell migration. Dev Dyn 2015; 244:988-1013. [DOI: 10.1002/dvdy.24295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/25/2015] [Accepted: 05/14/2015] [Indexed: 01/28/2023] Open
Affiliation(s)
| | - Marcela Bonano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Celeste Tríbulo
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| | - Juan P. Fernández
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Tristán H. Agüero
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
| | - Manuel J. Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT
- Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánChacabuco San Miguel de Tucumán Argentina
| |
Collapse
|
61
|
β-Catenin Regulates Primitive Streak Induction through Collaborative Interactions with SMAD2/SMAD3 and OCT4. Cell Stem Cell 2015; 16:639-52. [PMID: 25921273 DOI: 10.1016/j.stem.2015.03.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 12/31/2022]
Abstract
Canonical Wnt and Nodal signaling are both required for induction of the primitive streak (PS), which guides organization of the early embryo. The Wnt effector β-catenin is thought to function in these early lineage specification decisions via transcriptional activation of Nodal signaling. Here, we demonstrate a broader role for β-catenin in PS formation by analyzing its genome-wide binding in a human embryonic stem cell model of PS induction. β-catenin occupies regulatory regions in numerous PS and neural crest genes, and direct interactions between β-catenin and the Nodal effectors SMAD2/SMAD3 are required at these regions for PS gene activation. Furthermore, OCT4 binding in proximity to these sites is likewise required for PS induction, suggesting a collaborative interaction between β-catenin and OCT4. Induction of neural crest genes by β-catenin is repressed by SMAD2/SMAD3, ensuring proper lineage specification. This study provides mechanistic insight into how Wnt signaling controls early cell lineage decisions.
Collapse
|
62
|
Simões-Costa M, Bronner ME. Establishing neural crest identity: a gene regulatory recipe. Development 2015; 142:242-57. [PMID: 25564621 DOI: 10.1242/dev.105445] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neural crest is a stem/progenitor cell population that contributes to a wide variety of derivatives, including sensory and autonomic ganglia, cartilage and bone of the face and pigment cells of the skin. Unique to vertebrate embryos, it has served as an excellent model system for the study of cell behavior and identity owing to its multipotency, motility and ability to form a broad array of cell types. Neural crest development is thought to be controlled by a suite of transcriptional and epigenetic inputs arranged hierarchically in a gene regulatory network. Here, we examine neural crest development from a gene regulatory perspective and discuss how the underlying genetic circuitry results in the features that define this unique cell population.
Collapse
Affiliation(s)
- Marcos Simões-Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
63
|
Bisson N, Wedlich D, Moss T. The p21-activated kinase Pak1 regulates induction and migration of the neural crest in Xenopus. Cell Cycle 2014; 11:1316-24. [DOI: 10.4161/cc.19685] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
64
|
Ezin M, Barembaum M, Bronner ME. Stage-dependent plasticity of the anterior neural folds to form neural crest. Differentiation 2014; 88:42-50. [PMID: 25264214 DOI: 10.1016/j.diff.2014.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 06/06/2014] [Accepted: 09/06/2014] [Indexed: 12/21/2022]
Abstract
The anterior neural fold (ANF) is the only region of the neural tube that does not produce neural crest cells. Instead, ANF cells contribute to the olfactory and lens placodes, as well as to the forebrain and epidermis. Here, we test the ability of the ANF to form neural crest by performing heterotopic transplantation experiments in the chick embryo. We find that, at the neurula stage (HH stage 7), the chick ANF retains the ability to form migrating neural crest cells when transplanted caudally to rostral hindbrain levels. This ability is gradually lost, such that by HH9, this tissue appears to no longer have the potential to form neural crest. In contrast to the ANF, hindbrain dorsal neural folds transplanted rostrally fail to contribute to the olfactory placode but instead continue to generate neural crest cells. The transcription factor GANF is expressed in the ANF and its morpholino-mediated knock-down expands the neural crest domain rostrally and results in the production of migratory cells emerging from the ANF; however, these cells fail to express the HNK1 neural crest marker, suggesting only partial conversion. Our results show that environmental factors can imbue the chick anterior neural folds to assume a neural crest cell fate via a mechanism that partially involves loss of GANF.
Collapse
Affiliation(s)
- Maxellende Ezin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Meyer Barembaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
65
|
Matthes M, Preusse M, Zhang J, Schechter J, Mayer D, Lentes B, Theis F, Prakash N, Wurst W, Trümbach D. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau083. [PMID: 25145340 PMCID: PMC4139671 DOI: 10.1093/database/bau083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL:http://mouseidgenes.helmholtz-muenchen.de.
Collapse
Affiliation(s)
- Michaela Matthes
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-In
| | - Martin Preusse
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-In
| | - Jingzhong Zhang
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany
| | - Julia Schechter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany
| | - Daniela Mayer
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany
| | - Bernd Lentes
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany
| | - Fabian Theis
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-In
| | - Nilima Prakash
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-In
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 München, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Schillerstr. 44, 80336 München, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany and Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Schillerstr. 44, 80336 München, Germany Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München-Weihenstephan, Lehrstuhl für Genetik, Emil-Ramannstr. 8, 85354 Freising, Germany, Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany, Technische Universität München, Zentrum Mathematik, Boltzmannstr. 3, 85747 Garching, Germany, Max-Planck-In
| |
Collapse
|
66
|
Young JJ, Kjolby RAS, Kong NR, Monica SD, Harland RM. Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus. Development 2014; 141:1683-93. [PMID: 24715458 DOI: 10.1242/dev.099374] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amphibian neural development occurs as a two-step process: (1) induction specifies a neural fate in undifferentiated ectoderm; and (2) transformation induces posterior spinal cord and hindbrain. Signaling through the Fgf, retinoic acid (RA) and Wnt/β-catenin pathways is necessary and sufficient to induce posterior fates in the neural plate, yet a mechanistic understanding of the process is lacking. Here, we screened for factors enriched in posterior neural tissue and identify spalt-like 4 (sall4), which is induced by Fgf. Knockdown of Sall4 results in loss of spinal cord marker expression and increased expression of pou5f3.2 (oct25), pou5f3.3 (oct60) and pou5f3.1 (oct91) (collectively, pou5f3 genes), the closest Xenopus homologs of mammalian stem cell factor Pou5f1 (Oct4). Overexpression of the pou5f3 genes results in the loss of spinal cord identity and knockdown of pou5f3 function restores spinal cord marker expression in Sall4 morphants. Finally, knockdown of Sall4 blocks the posteriorizing effects of Fgf and RA signaling in the neurectoderm. These results suggest that Sall4, activated by posteriorizing signals, represses the pou5f3 genes to provide a permissive environment allowing for additional Wnt/Fgf/RA signals to posteriorize the neural plate.
Collapse
Affiliation(s)
- John J Young
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
67
|
Sanchez-Ferras O, Bernas G, Laberge-Perrault E, Pilon N. Induction and dorsal restriction of Paired-box 3 (Pax3) gene expression in the caudal neuroectoderm is mediated by integration of multiple pathways on a short neural crest enhancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:546-58. [PMID: 24815547 DOI: 10.1016/j.bbagrm.2014.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/26/2014] [Accepted: 04/30/2014] [Indexed: 12/27/2022]
Abstract
Pax3 encodes a paired-box transcription factor with key roles in neural crest and neural tube ontogenesis. Robust control of Pax3 neural expression is ensured by two redundant sets of cis-regulatory modules (CRMs) that integrate anterior-posterior (such as Wnt-βCatenin signaling) as well as dorsal-ventral (such as Shh-Gli signaling) instructive cues. In previous work, we sought to characterize the Wnt-mediated regulation of Pax3 expression and identified the Cdx transcription factors (Cdx1/2/4) as critical intermediates in this process. We identified the neural crest enhancer-2 (NCE2) from the 5'-flanking region of Pax3 as a Cdx-dependent CRM that recapitulates the restricted expression of Pax3 in the mouse caudal neuroectoderm. While this is consistent with a key role in relaying the inductive signal from posteriorizing Wnt ligands, the broad expression of Cdx proteins in the tailbud region is not consistent with the restricted activity of NCE2. This implies that other positive and/or negative inputs are required and, here, we report a novel role for the transcription factor Zic2 in this regulation. Our data strongly suggests that Zic2 is involved in the induction (as a direct Pax3NCE2 activator and Cdx neural cofactor) as well as the maintenance of Pax3 dorsal restriction (as a target of the ventral Shh repressive input). We also provide evidence that the inductive Cdx-Zic2 interaction is integrated on NCE2 with a positive input from the neural-specific transcription factor Sox2. Altogether, our data provide important mechanistic insights into the coordinated integration of different signaling pathways on a short Pax3 CRM.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada
| | - Guillaume Bernas
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada
| | - Emilie Laberge-Perrault
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, Faculty of Sciences, University of Quebec at Montreal (UQAM), Canada.
| |
Collapse
|
68
|
Al Tanoury Z, Gaouar S, Piskunov A, Ye T, Urban S, Jost B, Keime C, Davidson I, Dierich A, Rochette-Egly C. Phosphorylation of the retinoic acid receptor RARγ2 is crucial for the neuronal differentiation of mouse embryonic stem cells. J Cell Sci 2014; 127:2095-105. [PMID: 24569880 DOI: 10.1242/jcs.145979] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Retinoic acid (RA) plays key roles in cell differentiation and growth arrest by activating nuclear RA receptors (RARs) (α, β and γ), which are ligand-dependent transcription factors. RARs are also phosphorylated in response to RA. Here, we investigated the in vivo relevance of the phosphorylation of RARs during RA-induced neuronal differentiation of mouse embryonic stem cells (mESCs). Using ESCs where the genes encoding each RAR subtype had been inactivated, and stable rescue lines expressing RARs mutated in phospho-acceptor sites, we show that RA-induced neuronal differentiation involves RARγ2 and requires RARγ2 phosphorylation. By gene expression profiling, we found that the phosphorylated form of RARγ2 regulates a small subset of genes through binding an unusual RA response element consisting of two direct repeats with a seven-base-pair spacer. These new findings suggest an important role for RARγ phosphorylation during cell differentiation and pave the way for further investigations during embryonic development.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Rochette-Egly C. Retinoic acid signaling and mouse embryonic stem cell differentiation: Cross talk between genomic and non-genomic effects of RA. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:66-75. [PMID: 24768681 DOI: 10.1016/j.bbalip.2014.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 03/31/2014] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA), the active derivative of vitamin A, a fat-soluble vitamin, plays key roles in cell growth and differentiation by activating nuclear receptors, RARs (α, β and γ), which are ligand dependent regulators of transcription. The past years highlighted several novelties in the field that increased the complexity of RA effects. Indeed, in addition to its classical genomic effects, RA also has extranuclear and non-transcriptional effects. RA induces the rapid and transient activation of kinase cascades, which are integrated in the nucleus via the phosphorylation of RARs at a conserved serine residue located in the N-terminal domain and their coregulators. In order to investigate the relevance of RARs' phosphorylation in cell differentiation, mouse embryonic stem (mES) cells were used as a model. When treated with RA, these pluripotent cells give rise to neuronal cells. Cells invalidated for each RAR were generated as well as stable rescue lines expressing RARs mutated in phosphor acceptor sites. Such a strategy revealed that RA-induced neuronal differentiation involves the RARγ2 subtype and requires RARγ2 phosphorylation. Moreover, in gene expression profiling experiments, the phosphorylated form of RARγ2 was found to regulate a small subset of genes through binding a novel RA response element consisting of two direct repeats with a 7 base pair spacer. These new findings suggest an important role for RAR phosphorylation during cell differentiation, and pave the way for further investigations with other cell types and during embryonic development. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM, U964; CNRS, UMR7104; Université de Strasbourg, 1 rue Laurent Fries, BP 10142, 67404 Illkirch Cedex, France.
| |
Collapse
|
70
|
Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C. Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci 2014; 71:1123-48. [PMID: 23749084 PMCID: PMC11113114 DOI: 10.1007/s00018-013-1378-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.
Collapse
Affiliation(s)
- Delphine Meffre
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Julien Grenier
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Sophie Bernard
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Françoise Courtin
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan, R.O.C
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | - Charbel Massaad
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| |
Collapse
|
71
|
Fish JL, Sklar RS, Woronowicz KC, Schneider RA. Multiple developmental mechanisms regulate species-specific jaw size. Development 2014; 141:674-84. [PMID: 24449843 DOI: 10.1242/dev.100107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Variation in jaw size during evolution has been crucial for the adaptive radiation of vertebrates, yet variation in jaw size during development is often associated with disease. To test the hypothesis that early developmental events regulating neural crest (NC) progenitors contribute to species-specific differences in size, we investigated mechanisms through which two avian species, duck and quail, achieve their remarkably different jaw size. At early stages, duck exhibit an anterior shift in brain regionalization yielding a shorter, broader, midbrain. We find no significant difference in the total number of pre-migratory NC; however, duck concentrate their pre-migratory NC in the midbrain, which contributes to an increase in size of the post-migratory NC population allocated to the mandibular arch. Subsequent differences in proliferation lead to a progressive increase in size of the duck mandibular arch relative to that of quail. To test the role of pre-migratory NC progenitor number in regulating jaw size, we reduced and augmented NC progenitors. In contrast to previous reports of regeneration by NC precursors, we find that neural fold extirpation results in a loss of NC precursors. Despite this reduction in their numbers, post-migratory NC progenitors compensate, producing a symmetric and normal-sized jaw. Our results suggest that evolutionary modification of multiple aspects of NC cell biology, including NC allocation within the jaw primordia and NC-mediated proliferation, have been important to the evolution of jaw size. Furthermore, our finding of NC post-migratory compensatory mechanisms potentially extends the developmental time frame for treatments of disease or injury associated with NC progenitor loss.
Collapse
Affiliation(s)
- Jennifer L Fish
- University of California, 513 Parnassus Ave, S-1159 San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
72
|
Betancur P, Simões-Costa M, Sauka-Spengler T, Bronner ME. Expression and function of transcription factor cMyb during cranial neural crest development. Mech Dev 2014; 132:38-43. [PMID: 24509349 DOI: 10.1016/j.mod.2014.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/26/2014] [Accepted: 01/29/2014] [Indexed: 01/13/2023]
Abstract
The transcription factor cMyb has well known functions in vertebrate hematopoiesis, but little was known about its distribution or function at early developmental stages. Here, we show that cMyb transcripts are present at the neural plate during gastrulation in chick embryos. cMyb expression then resolves to the cranial neural folds and is maintained in early migrating cranial neural crest cells during and after neurulation. Morpholino-mediated knock-down of cMyb reduces expression of Pax7 and Twist at the neural plate border, as well as reducing expression of neural crest specifier gene Slug/Snail2 and completely eliminating expression of Ets1. On the other hand, its loss results in abnormal maintenance of Zic1, but little or no effect on other neural crest specifier genes like FoxD3 or Sox9. These results place cMyb in a critical hierarchical position within the cranial neural crest cell gene regulatory network, likely directly inhibiting Zic1 and upstream of Ets1 and some, but not all, neural crest specifier genes.
Collapse
Affiliation(s)
- Paola Betancur
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, United States
| | - Marcos Simões-Costa
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, United States
| | - Tatjana Sauka-Spengler
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, United States
| | - Marianne E Bronner
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
73
|
Schlosser G, Patthey C, Shimeld SM. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. Dev Biol 2014; 389:98-119. [PMID: 24491817 DOI: 10.1016/j.ydbio.2014.01.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/12/2022]
Abstract
Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Department of Zoology, School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, University Road, Galway, Ireland.
| | - Cedric Patthey
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
74
|
Bae CJ, Park BY, Lee YH, Tobias JW, Hong CS, Saint-Jeannet JP. Identification of Pax3 and Zic1 targets in the developing neural crest. Dev Biol 2013; 386:473-83. [PMID: 24360908 DOI: 10.1016/j.ydbio.2013.12.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/07/2013] [Accepted: 12/10/2013] [Indexed: 11/28/2022]
Abstract
The neural crest (NC) is a multipotent population of migratory cells unique to the vertebrate embryo, contributing to the development of multiple organ systems. Transcription factors pax3 and zic1 are among the earliest genes activated in NC progenitors, and they are both necessary and sufficient to promote NC fate. In order to further characterize the function of these transcription factors during NC development we have used hormone inducible fusion proteins in a Xenopus animal cap assay, and DNA microarray to identify downstream targets of Pax3 and Zic1. Here we present the results of this screen and the initial validation of these targets using quantitative RT-PCR, in situ hybridization and morpholinos-mediated knockdown. Among the targets identified we found several well-characterized NC-specific genes, including snail2, foxd3, gbx2, twist, sox8 and sox9, which validate our approach. We also obtained several factors with no known function in Xenopus NC, which represent novel regulators of NC fate. The comprehensive characterization of Pax3 and Zic1 targets function in the NC gene regulatory network, are essential to understanding the mechanisms regulating the emergence of this important cell population.
Collapse
Affiliation(s)
- Chang-Joon Bae
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA
| | - Byung-Yong Park
- Department of Anatomy, College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | - Young-Hoon Lee
- Department of Oral Anatomy, School of Dentistry & Institute of Oral Biosciences, Chonbuk National University, Jeonju, Republic of Korea
| | - John W Tobias
- Bioinformatics Group, Molecular Profiling Facility, University of Pennsylvania, Philadelphia, PA, USA
| | - Chang-Soo Hong
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea.
| | - Jean-Pierre Saint-Jeannet
- Department of Basic Science & Craniofacial Biology, College of Dentistry, New York University, New York, USA; Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
75
|
Pax3 and Zic1 trigger the early neural crest gene regulatory network by the direct activation of multiple key neural crest specifiers. Dev Biol 2013; 386:461-72. [PMID: 24360906 DOI: 10.1016/j.ydbio.2013.12.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/08/2013] [Accepted: 12/10/2013] [Indexed: 12/17/2022]
Abstract
Neural crest development is orchestrated by a complex and still poorly understood gene regulatory network. Premigratory neural crest is induced at the lateral border of the neural plate by the combined action of signaling molecules and transcription factors such as AP2, Gbx2, Pax3 and Zic1. Among them, Pax3 and Zic1 are both necessary and sufficient to trigger a complete neural crest developmental program. However, their gene targets in the neural crest regulatory network remain unknown. Here, through a transcriptome analysis of frog microdissected neural border, we identified an extended gene signature for the premigratory neural crest, and we defined novel potential members of the regulatory network. This signature includes 34 novel genes, as well as 44 known genes expressed at the neural border. Using another microarray analysis which combined Pax3 and Zic1 gain-of-function and protein translation blockade, we uncovered 25 Pax3 and Zic1 direct targets within this signature. We demonstrated that the neural border specifiers Pax3 and Zic1 are direct upstream regulators of neural crest specifiers Snail1/2, Foxd3, Twist1, and Tfap2b. In addition, they may modulate the transcriptional output of multiple signaling pathways involved in neural crest development (Wnt, Retinoic Acid) through the induction of key pathway regulators (Axin2 and Cyp26c1). We also found that Pax3 could maintain its own expression through a positive autoregulatory feedback loop. These hierarchical inductions, feedback loops, and pathway modulations provide novel tools to understand the neural crest induction network.
Collapse
|
76
|
Nakayama Y, Kikuta H, Kanai M, Yoshikawa K, Kawamura A, Kobayashi K, Wang Z, Khan A, Kawakami K, Yamasu K. Gbx2 functions as a transcriptional repressor to regulate the specification and morphogenesis of the mid–hindbrain junction in a dosage- and stage-dependent manner. Mech Dev 2013; 130:532-52. [DOI: 10.1016/j.mod.2013.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
|
77
|
Vadasz S, Marquez J, Tulloch M, Shylo NA, García-Castro MI. Pax7 is regulated by cMyb during early neural crest development through a novel enhancer. Development 2013; 140:3691-702. [PMID: 23942518 DOI: 10.1242/dev.088328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neural crest (NC) is a migratory population of cells unique to vertebrates that generates many diverse derivatives. NC cells arise during gastrulation at the neural plate border (NPB), which is later elevated as the neural folds (NFs) form and fuse in the dorsal region of the closed neural tube, from where NC cells emigrate. In chick embryos, Pax7 is an early marker, and necessary component of NC development. Unlike other early NPB markers, which are co-expressed in lateral ectoderm, medial neural plate or posterior-lateral mesoderm, Pax7 early expression seems more restricted to the NPB. However, the molecular mechanisms controlling early Pax7 expression remain poorly understood. Here, we identify a novel enhancer of Pax7 in avian embryos that replicates the expression of Pax7 associated with early NC development. Expression from this enhancer is found in early NPB, NFs and early emigrating NC, but unlike Pax7, which is also expressed in mesodermal derivatives, this enhancer is not active in somites. Further analysis demonstrates that cMyb is able to interact with this enhancer and modulates reporter and endogenous early Pax7 expression; thus, cMyb is identified as a novel regulator of Pax7 in early NC development.
Collapse
Affiliation(s)
- Stephanie Vadasz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | | | | | | | |
Collapse
|
78
|
Park DS, Seo JH, Hong M, Bang W, Han JK, Choi SC. Role of Sp5 as an essential early regulator of neural crest specification in xenopus. Dev Dyn 2013; 242:1382-94. [PMID: 24038420 DOI: 10.1002/dvdy.24034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The neural crest (NC) is a multipotent embryonic cell population, which is induced by an integration of secreted signals including BMP, Wnt, and FGF and, subsequently, NC cell fates are specified by a regulatory network of specific transcription factors. This study was undertaken to identify a role of Sp5 transcription factor in vertebrates. RESULTS Xenopus Sp5 is expressed in the prospective neural crest regions from gastrulation through the tadpole stages in early development. Knockdown of Sp5 caused severe defects in craniofacial cartilage, pigmentation, and dorsal fin. Gain- and loss-of-function of Sp5 led to up- and down-regulation of the expression of NC markers in the neural fold, respectively. In contrast, Sp5 had no effect on neural induction and patterning. Sp5 regulated the expression of neural plate border (NPB) specifiers, Msx1 and Pax3, and these regulatory factors recovered the expression of NC marker in the Sp5-deficient embryos. Depletion of Sp5 impaired NC induction by Wnt/β-catenin or FGF signal, whereas its co-expression rescued NC markers in embryos in which either signal was blocked. CONCLUSIONS These results suggest that Sp5 functions as a critical early factor in the genetic cascade to regulate NC induction downstream of Wnt and FGF pathways.
Collapse
Affiliation(s)
- Dong-Seok Park
- Department of Biomedical Sciences, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
79
|
Tadeu AMB, Horsley V. Notch signaling represses p63 expression in the developing surface ectoderm. Development 2013; 140:3777-86. [PMID: 23924630 DOI: 10.1242/dev.093948] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of the mature epidermis requires a coordinated sequence of signaling events and transcriptional changes to specify surface ectodermal progenitor cells to the keratinocyte lineage. The initial events that specify epidermal keratinocytes from ectodermal progenitor cells are not well understood. Here, we use both developing mouse embryos and human embryonic stem cells (hESCs) to explore the mechanisms that direct keratinocyte fate from ectodermal progenitor cells. We show that both hESCs and murine embryos express p63 before keratin 14. Furthermore, we find that Notch signaling is activated before p63 expression in ectodermal progenitor cells. Inhibition of Notch signaling pharmacologically or genetically reveals a negative regulatory role for Notch signaling in p63 expression during ectodermal specification in hESCs or mouse embryos, respectively. Taken together, these data reveal a role for Notch signaling in the molecular control of ectodermal progenitor cell specification to the epidermal keratinocyte lineage.
Collapse
Affiliation(s)
- Ana Mafalda Baptista Tadeu
- Department of Molecular, Cell and Developmental Biology, Yale University, 219 Prospect Street, Box 208103, New Haven, CT 06520, USA
| | | |
Collapse
|
80
|
Higdon CW, Mitra RD, Johnson SL. Gene expression analysis of zebrafish melanocytes, iridophores, and retinal pigmented epithelium reveals indicators of biological function and developmental origin. PLoS One 2013; 8:e67801. [PMID: 23874447 PMCID: PMC3706446 DOI: 10.1371/journal.pone.0067801] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/23/2013] [Indexed: 01/05/2023] Open
Abstract
In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology.
Collapse
Affiliation(s)
- Charles W. Higdon
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| | - Robi D. Mitra
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
| | - Stephen L. Johnson
- Department of Genetics, Washington University, St. Louis, Missouri, United States of America
- * E-mail: (CWH); (SLJ)
| |
Collapse
|
81
|
Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos. Proc Natl Acad Sci U S A 2013; 110:5528-33. [PMID: 23509273 DOI: 10.1073/pnas.1219124110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Defining which key factors control commitment of an embryonic lineage among a myriad of candidates is a longstanding challenge in developmental biology and an essential prerequisite for developing stem cell-based therapies. Commitment implies that the induced cells not only express early lineage markers but further undergo an autonomous differentiation into the lineage. The embryonic neural crest generates a highly diverse array of derivatives, including melanocytes, neurons, glia, cartilage, mesenchyme, and bone. A complex gene regulatory network has recently classified genes involved in the many steps of neural crest induction, specification, migration, and differentiation. However, which factor or combination of factors is sufficient to trigger full commitment of this multipotent lineage remains unknown. Here, we show that, in contrast to other potential combinations of candidate factors, coactivating transcription factors Pax3 and Zic1 not only initiate neural crest specification from various early embryonic lineages in Xenopus and chicken embryos but also trigger full neural crest determination. These two factors are sufficient to drive migration and differentiation of several neural crest derivatives in minimal culture conditions in vitro or ectopic locations in vivo. After transplantation, the induced cells migrate to and integrate into normal neural crest craniofacial target territories, indicating an efficient spatial recognition in vivo. Thus, Pax3 and Zic1 cooperate and execute a transcriptional switch sufficient to activate full multipotent neural crest development and differentiation.
Collapse
|
82
|
Dowell KG, Simons AK, Wang ZZ, Yun K, Hibbs MA. Cell-type-specific predictive network yields novel insights into mouse embryonic stem cell self-renewal and cell fate. PLoS One 2013; 8:e56810. [PMID: 23468881 PMCID: PMC3585227 DOI: 10.1371/journal.pone.0056810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/14/2013] [Indexed: 01/25/2023] Open
Abstract
Self-renewal, the ability of a stem cell to divide repeatedly while maintaining an undifferentiated state, is a defining characteristic of all stem cells. Here, we clarify the molecular foundations of mouse embryonic stem cell (mESC) self-renewal by applying a proven Bayesian network machine learning approach to integrate high-throughput data for protein function discovery. By focusing on a single stem-cell system, at a specific developmental stage, within the context of well-defined biological processes known to be active in that cell type, we produce a consensus predictive network that reflects biological reality more closely than those made by prior efforts using more generalized, context-independent methods. In addition, we show how machine learning efforts may be misled if the tissue specific role of mammalian proteins is not defined in the training set and circumscribed in the evidential data. For this study, we assembled an extensive compendium of mESC data: ∼2.2 million data points, collected from 60 different studies, under 992 conditions. We then integrated these data into a consensus mESC functional relationship network focused on biological processes associated with embryonic stem cell self-renewal and cell fate determination. Computational evaluations, literature validation, and analyses of predicted functional linkages show that our results are highly accurate and biologically relevant. Our mESC network predicts many novel players involved in self-renewal and serves as the foundation for future pluripotent stem cell studies. This network can be used by stem cell researchers (at http://StemSight.org) to explore hypotheses about gene function in the context of self-renewal and to prioritize genes of interest for experimental validation.
Collapse
Affiliation(s)
- Karen G. Dowell
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| | - Allen K. Simons
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Zack Z. Wang
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kyuson Yun
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
| | - Matthew A. Hibbs
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, United States of America
- Trinity University, Department of Computer Science, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
83
|
Buckley DM, Burroughs-Garcia J, Lewandoski M, Waters ST. Characterization of the Gbx1-/- mouse mutant: a requirement for Gbx1 in normal locomotion and sensorimotor circuit development. PLoS One 2013; 8:e56214. [PMID: 23418536 PMCID: PMC3572027 DOI: 10.1371/journal.pone.0056214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/08/2013] [Indexed: 01/13/2023] Open
Abstract
The Gbx class of homeobox genes encodes DNA binding transcription factors involved in regulation of embryonic central nervous system (CNS) development. Gbx1 is dynamically expressed within spinal neuron progenitor pools and becomes restricted to the dorsal mantle zone by embryonic day (E) 12.5. Here, we provide the first functional analysis of Gbx1. We generated mice containing a conditional Gbx1 allele in which exon 2 that contains the functional homeodomain is flanked with loxP sites (Gbx1(flox)); Cre-mediated recombination of this allele results in a Gbx1 null allele. In contrast to mice homozygous for a loss-of-function allele of Gbx2, mice homozygous for the Gbx1 null allele, Gbx1(-/-), are viable and reproductively competent. However, Gbx1(-/-) mice display a gross locomotive defect that specifically affects hindlimb gait. Analysis of embryos homozygous for the Gbx1 null allele reveals disrupted assembly of the proprioceptive sensorimotor circuit within the spinal cord, and a reduction in ISL1(+) ventral motor neurons. These data suggest a functional requirement for Gbx1 in normal development of the neural networks that contribute to locomotion. The generation of this null allele has enabled us to functionally characterize a novel role for Gbx1 in development of the spinal cord.
Collapse
Affiliation(s)
- Desirè M. Buckley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jessica Burroughs-Garcia
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
| | - Samuel T. Waters
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
84
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
85
|
Streit A, Tambalo M, Chen J, Grocott T, Anwar M, Sosinsky A, Stern CD. Experimental approaches for gene regulatory network construction: the chick as a model system. Genesis 2012; 51:296-310. [PMID: 23174848 DOI: 10.1002/dvg.22359] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 01/23/2023]
Abstract
Setting up the body plan during embryonic development requires the coordinated action of many signals and transcriptional regulators in a precise temporal sequence and spatial pattern. The last decades have seen an explosion of information describing the molecular control of many developmental processes. The next challenge is to integrate this information into logic "wiring diagrams" that visualize gene actions and outputs, have predictive power and point to key control nodes. Here, we provide an experimental workflow on how to construct gene regulatory networks using the chick as model system.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Despite its complexity in the adult, during development the inner ear arises from a simple epithelium, the otic placode. Placode specification is a multistep process that involves the integration of various signalling pathways and downstream transcription factors in time and space. Here we review the molecular events that successively commit multipotent ectodermal precursors to the otic lineage. The first step in this hierarchy is the specification of sensory progenitor cells, which can contribute to all sensory placodes, followed by the induction of a common otic-epibranchial field and finally the establishment the otic territory. In recent years, some of the molecular components that control this process have been identified, and begin to reveal complex interactions. Future studies will need to unravel how this information is integrated and encoded in the genome. This will form the blueprint for stem cell differentiation towards otic fates and generate a predictive gene regulatory network that models the earliest steps of otic specification.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | |
Collapse
|
87
|
Roeseler DA, Sachdev S, Buckley DM, Joshi T, Wu DK, Xu D, Hannink M, Waters ST. Elongation factor 1 alpha1 and genes associated with Usher syndromes are downstream targets of GBX2. PLoS One 2012; 7:e47366. [PMID: 23144817 PMCID: PMC3493575 DOI: 10.1371/journal.pone.0047366] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq) analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/-) mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/-) embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.
Collapse
Affiliation(s)
- David A. Roeseler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Shrikesh Sachdev
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Desire M. Buckley
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Doris K. Wu
- Laboratory of Molecular Biology, NIDCD, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dong Xu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Samuel T. Waters
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
88
|
Grocott T, Tambalo M, Streit A. The peripheral sensory nervous system in the vertebrate head: a gene regulatory perspective. Dev Biol 2012; 370:3-23. [PMID: 22790010 DOI: 10.1016/j.ydbio.2012.06.028] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
In the vertebrate head, crucial parts of the sense organs and sensory ganglia develop from special regions, the cranial placodes. Despite their cellular and functional diversity, they arise from a common field of multipotent progenitors and acquire distinct identity later under the influence of local signalling. Here we present the gene regulatory network that summarises our current understanding of how sensory cells are specified, how they become different from other ectodermal derivatives and how they begin to diversify to generate placodes with different identities. This analysis reveals how sequential activation of sets of transcription factors subdivides the ectoderm over time into smaller domains of progenitors for the central nervous system, neural crest, epidermis and sensory placodes. Within this hierarchy the timing of signalling and developmental history of each cell population is of critical importance to determine the ultimate outcome. A reoccurring theme is that local signals set up broad gene expression domains, which are further refined by mutual repression between different transcription factors. The Six and Eya network lies at the heart of sensory progenitor specification. In a positive feedback loop these factors perpetuate their own expression thus stabilising pre-placodal fate, while simultaneously repressing neural and neural crest specific factors. Downstream of the Six and Eya cassette, Pax genes in combination with other factors begin to impart regional identity to placode progenitors. While our review highlights the wealth of information available, it also points to the lack information on the cis-regulatory mechanisms that control placode specification and of how the repeated use of signalling input is integrated.
Collapse
Affiliation(s)
- Timothy Grocott
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | | | |
Collapse
|
89
|
Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 2012; 10:440-54. [PMID: 22482508 DOI: 10.1016/j.stem.2012.02.016] [Citation(s) in RCA: 411] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/12/2011] [Accepted: 02/16/2012] [Indexed: 01/03/2023]
Abstract
Nanog, Oct4, and Sox2 are the core regulators of mouse (m)ESC pluripotency. Although their basic importance in human (h)ESCs has been demonstrated, the mechanistic functions are not well defined. Here, we identify general and cell-line-specific requirements for NANOG, OCT4, and SOX2 in hESCs. We show that OCT4 regulates, and interacts with, the BMP4 pathway to specify four developmental fates. High levels of OCT4 enable self-renewal in the absence of BMP4 but specify mesendoderm in the presence of BMP4. Low levels of OCT4 induce embryonic ectoderm differentiation in the absence of BMP4 but specify extraembryonic lineages in the presence of BMP4. NANOG represses embryonic ectoderm differentiation but has little effect on other lineages, whereas SOX2 and SOX3 are redundant and repress mesendoderm differentiation. Thus, instead of being panrepressors of differentiation, each factor controls specific cell fates. Our study revises the view of how self-renewal is orchestrated in hESCs.
Collapse
|
90
|
Steventon B, Mayor R. Early neural crest induction requires an initial inhibition of Wnt signals. Dev Biol 2012; 365:196-207. [PMID: 22394485 PMCID: PMC3657187 DOI: 10.1016/j.ydbio.2012.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/31/2012] [Accepted: 02/20/2012] [Indexed: 01/28/2023]
Abstract
Neural crest (NC) induction is a long process that continues through gastrula and neurula stages. In order to reveal additional stages of NC induction we performed a series of explants where different known inducing tissues were taken along with the prospective NC. Interestingly the dorso-lateral marginal zone (DLMZ) is only able to promote the expression of a subset of neural plate border (NPB) makers without the presence of specific NC markers. We then analysed the temporal requirement for BMP and Wnt signals for the NPB genes Hairy2a and Dlx5, compared to the expression of neural plate (NP) and NC genes. Although the NP is sensitive to BMP levels at early gastrula stages, Hairy2a/Dlx5 expression is unaffected. Later, the NP becomes insensitive to BMP levels at late gastrulation when NC markers require an inhibition. The NP requires an inhibition of Wnt signals prior to gastrulation, but becomes insensitive during early gastrula stages when Hairy2a/Dlx5 requires an inhibition of Wnt signalling. An increase in Wnt signalling is then important for the switch from NPB to NC at late gastrula stages. In addition to revealing an additional distinct signalling event in NC induction, this work emphasizes the importance of integrating both timing and levels of signalling activity during the patterning of complex tissues such as the vertebrate ectoderm.
Collapse
Affiliation(s)
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
91
|
Stuhlmiller TJ, García-Castro MI. Current perspectives of the signaling pathways directing neural crest induction. Cell Mol Life Sci 2012; 69:3715-37. [PMID: 22547091 PMCID: PMC3478512 DOI: 10.1007/s00018-012-0991-8] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/12/2012] [Accepted: 04/02/2012] [Indexed: 01/05/2023]
Abstract
The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
92
|
Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning. Dev Biol 2012; 367:55-65. [PMID: 22564795 PMCID: PMC3384001 DOI: 10.1016/j.ydbio.2012.04.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 11/27/2022]
Abstract
In the vertebrate head, central and peripheral components of the sensory nervous system have different embryonic origins, the neural plate and sensory placodes. This raises the question of how they develop in register to form functional sense organs and sensory circuits. Here we show that mutual repression between the homeobox transcription factors Gbx2 and Otx2 patterns the placode territory by influencing regional identity and by segregating inner ear and trigeminal progenitors. Activation of Otx2 targets is necessary for anterior olfactory, lens and trigeminal character, while Gbx2 function is required for the formation of the posterior otic placode. Thus, like in the neural plate antagonistic interaction between Otx2 and Gbx2 establishes positional information thus providing a general mechanism for rostro-caudal patterning of the ectoderm. Our findings support the idea that the Otx/Gbx boundary has an ancient evolutionary origin to which different modules were recruited to specify cells of different fates.
Collapse
|
93
|
Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions. Dev Biol 2012; 366:10-21. [PMID: 22583479 DOI: 10.1016/j.ydbio.2012.03.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 01/07/2023]
Abstract
Neural crest cells are a population of multipotent stem cell-like progenitors that arise at the neural plate border in vertebrates, migrate extensively, and give rise to diverse derivatives such as melanocytes, craniofacial cartilage and bone, smooth muscle, peripheral and enteric neurons and glia. The neural crest gene regulatory network (NC-GRN) includes a number of key factors that are used reiteratively to control multiple steps in the development of neural crest cells, including the acquisition of stem cell attributes. It is therefore essential to understand the mechanisms that control the distinct functions of such reiteratively used factors in different cellular contexts. The context-dependent control of neural crest specification is achieved through combinatorial interaction with other factors, post-transcriptional and post-translational modifications, and the epigenetic status and chromatin state of target genes. Here we review the current understanding of the NC-GRN, including the role of the neural crest specifiers, their links to the control of "stemness," and their dynamic context-dependent regulation during the formation of neural crest progenitors.
Collapse
|
94
|
Sanchez-Ferras O, Coutaud B, Djavanbakht Samani T, Tremblay I, Souchkova O, Pilon N. Caudal-related homeobox (Cdx) protein-dependent integration of canonical Wnt signaling on paired-box 3 (Pax3) neural crest enhancer. J Biol Chem 2012; 287:16623-35. [PMID: 22457346 DOI: 10.1074/jbc.m112.356394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the earliest events in neural crest development takes place at the neural plate border and consists in the induction of Pax3 expression by posteriorizing Wnt·β-catenin signaling. The molecular mechanism of this regulation is not well understood, but several observations suggest a role for posteriorizing Cdx transcription factors (Cdx1/2/4) in this process. Cdx genes are known as integrators of posteriorizing signals from Wnt, retinoic acid, and FGF pathways. In this work, we report that Wnt-mediated regulation of murine Pax3 expression is indirect and involves Cdx proteins as intermediates. We show that Pax3 transcripts co-localize with Cdx proteins in the posterior neurectoderm and that neural Pax3 expression is reduced in Cdx1-null embryos. Using Wnt3a-treated P19 cells and neural crest-derived Neuro2a cells, we demonstrate that Pax3 expression is induced by the Wnt-Cdx pathway. Co-transfection analyses, electrophoretic mobility shift assays, chromatin immunoprecipitation, and transgenic studies further indicate that Cdx proteins operate via direct binding to an evolutionarily conserved neural crest enhancer of the Pax3 proximal promoter. Taken together, these results suggest a novel neural function for Cdx proteins within the gene regulatory network controlling neural crest development.
Collapse
Affiliation(s)
- Oraly Sanchez-Ferras
- Molecular Genetics of Development, Department of Biological Sciences, and BioMed Research Center, Faculty of Sciences, University of Quebec, Montreal, Quebec H2X 3Y7, Canada
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
During early vertebrate development, the embryonic ectoderm becomes subdivided into neural, neural plate border (border) and epidermal regions. The nervous system is derived from the neural and border domains which, respectively, give rise to the central and peripheral nervous systems. To better understand the functional nervous system we need to know how individual neurons are specified and connected. Our understanding of the early development of the peripheral nervous system has been lagging compared to knowledge regarding central nervous system and epidermal cell lineage decision. Recent advances have shown when and how the specification of border cells is initiated. One important insight is that border specification is already initiated at blastula stages, and can be molecularly and temporally distinguished from rostrocaudal regionalisation of the border. From findings in several species, it is clear that Wnt, Bone Morphogenetic Protein and Fibroblast Growth Factor signals play important roles during the specification and regionalisation of the border. In this review, we highlight the individual roles of these signals and compare models of border specification, including a new model that describes how temporal coordination and epistatic interactions of extracellular signals result in the specification and regionalisation of border cells.
Collapse
Affiliation(s)
- Cédric Patthey
- Umeå Centre for Molecular Medicine, Building 6M, 4th Floor, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
96
|
Milet C, Monsoro-Burq AH. Neural crest induction at the neural plate border in vertebrates. Dev Biol 2012; 366:22-33. [PMID: 22305800 DOI: 10.1016/j.ydbio.2012.01.013] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/13/2012] [Indexed: 12/11/2022]
Abstract
The neural crest is a transient and multipotent cell population arising at the edge of the neural plate in vertebrates. Recent findings highlight that neural crest patterning is initiated during gastrulation, i.e. earlier than classically described, in a progenitor domain named the neural border. This chapter reviews the dynamic and complex molecular interactions underlying neural border formation and neural crest emergence.
Collapse
Affiliation(s)
- Cécile Milet
- Institut Curie, INSERM U1021, CNRS, UMR 3347, F-91405 Orsay, France
| | | |
Collapse
|
97
|
Archbold HC, Yang YX, Chen L, Cadigan KM. How do they do Wnt they do?: regulation of transcription by the Wnt/β-catenin pathway. Acta Physiol (Oxf) 2012; 204:74-109. [PMID: 21624092 DOI: 10.1111/j.1748-1716.2011.02293.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Wnt/β-catenin signalling is known to play many roles in metazoan development and tissue homeostasis. Misregulation of the pathway has also been linked to many human diseases. In this review, specific aspects of the pathway's involvement in these processes are discussed, with an emphasis on how Wnt/β-catenin signalling regulates gene expression in a cell and temporally specific manner. The T-cell factor (TCF) family of transcription factors, which mediate a large portion of Wnt/β-catenin signalling, will be discussed in detail. Invertebrates contain a single TCF gene that contains two DNA-binding domains, the high mobility group (HMG) domain and the C-clamp, which increases the specificity of DNA binding. In vertebrates, the situation is more complex, with four TCF genes producing many isoforms that contain the HMG domain, but only some of which possess a C-clamp. Vertebrate TCFs have been reported to act in concert with many other transcription factors, which may explain how they obtain sufficient specificity for specific DNA sequences, as well as how they achieve a wide diversity of transcriptional outputs in different cells.
Collapse
Affiliation(s)
- H C Archbold
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | |
Collapse
|
98
|
Rogers CD, Jayasena CS, Nie S, Bronner ME. Neural crest specification: tissues, signals, and transcription factors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:52-68. [PMID: 23801667 DOI: 10.1002/wdev.8] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The neural crest is a transient population of multipotent and migratory cells unique to vertebrate embryos. Initially derived from the borders of the neural plate, these cells undergo an epithelial to mesenchymal transition to leave the central nervous system, migrate extensively in the periphery, and differentiate into numerous diverse derivatives. These include but are not limited to craniofacial cartilage, pigment cells, and peripheral neurons and glia. Attractive for their similarities to stem cells and metastatic cancer cells, neural crest cells are a popular model system for studying cell/tissue interactions and signaling factors that influence cell fate decisions and lineage transitions. In this review, we discuss the mechanisms required for neural crest formation in various vertebrate species, focusing on the importance of signaling factors from adjacent tissues and conserved gene regulatory interactions, which are required for induction and specification of the ectodermal tissue that will become neural crest.
Collapse
Affiliation(s)
- C D Rogers
- Department of Biology, California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|
99
|
Schumacher JA, Hashiguchi M, Nguyen VH, Mullins MC. An intermediate level of BMP signaling directly specifies cranial neural crest progenitor cells in zebrafish. PLoS One 2011; 6:e27403. [PMID: 22102893 PMCID: PMC3216922 DOI: 10.1371/journal.pone.0027403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/16/2011] [Indexed: 11/25/2022] Open
Abstract
The specification of the neural crest progenitor cell (NCPC) population in the early vertebrate embryo requires an elaborate network of signaling pathways, one of which is the Bone Morphogenetic Protein (BMP) pathway. Based on alterations in neural crest gene expression in zebrafish BMP pathway component mutants, we previously proposed a model in which the gastrula BMP morphogen gradient establishes an intermediate level of BMP activity establishing the future NCPC domain. Here, we tested this model and show that an intermediate level of BMP signaling acts directly to specify the NCPC. We quantified the effects of reducing BMP signaling on the number of neural crest cells and show that neural crest cells are significantly increased when BMP signaling is reduced and that this increase is not due to an increase in cell proliferation. In contrast, when BMP signaling is eliminated, NCPC fail to be specified. We modulated BMP signaling levels in BMP pathway mutants with expanded or no NCPCs to demonstrate that an intermediate level of BMP signaling specifies the NCPC. We further investigated the ability of Smad5 to act in a graded fashion by injecting smad5 antisense morpholinos and show that increasing doses first expand the NCPCs and then cause a loss of NCPCs, consistent with Smad5 acting directly in neural crest progenitor specification. Using Western blot analysis, we show that P-Smad5 levels are dose-dependently reduced in smad5 morphants, consistent with an intermediate level of BMP signaling acting through Smad5 to specify the neural crest progenitors. Finally, we performed chimeric analysis to demonstrate for the first time that BMP signal reception is required directly by NCPCs for their specification. Together these results add substantial evidence to a model in which graded BMP signaling acts as a morphogen to pattern the ectoderm, with an intermediate level acting in neural crest specification.
Collapse
Affiliation(s)
- Jennifer A. Schumacher
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Megumi Hashiguchi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Vu H. Nguyen
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
100
|
Marquis-Nicholson R, Aftimos S, Ashton F, Love JM, Stone P, McFarlane J, George AM, Love DR. Pseudotrisomy 13 syndrome: Use of homozygosity mapping to target candidate genes. Gene 2011; 486:37-40. [DOI: 10.1016/j.gene.2011.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 12/01/2022]
|