51
|
Yagi H, Kato K. Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj J 2016; 34:757-763. [PMID: 27350557 DOI: 10.1007/s10719-016-9707-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 12/11/2022]
Abstract
Neural stem cells (NSCs) possess a high proliferative potential and capacity for self-renewal with retention of multipotency to differentiate into brain-forming cells. NSCs have gained a considerable attention because of their potential application in treatment strategies on the basis of transplantation for neurodegenerative disorders and nerve injuries. Although several signaling pathways have been reportedly involved in the fate determination process of NSCs, the molecular mechanisms underlying the maintenance of neural cell stemness and differentiation process remain largely unknown. Glycoconjugates expressed in the NSC niche in the brain offer markers of NSCs; moreover, they serve as cell regulators, which are actively involved in the modulation of signal transduction. The glycans function on NCS surfaces by recruiting growth factor receptors to specific microdomains as components of glycolipids, thereby mediating the ligand-receptor interactions both indirectly and directly as components of proteoglycans and interacting with specific lectin-type receptors as components of ligand glycoproteins. In this review, we outline current knowledge of the possible functional mechanisms of glycoconjugates to determine cell fates, which are associated with their expression pattern and structural characteristic features.
Collapse
Affiliation(s)
- Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama Myodaiji, Okazaki, 444-8787, Japan.
| |
Collapse
|
52
|
Hayashi S, Lewis P, Pevny L, McMahon AP. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 2016; 119 Suppl 1:S97-S101. [PMID: 14516668 DOI: 10.1016/s0925-4773(03)00099-6] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have generated a transgenic line that expresses the Cre gene product under the regulation of a 12.5 kb upstream regulatory sequence from the Sox2 gene. Using a R26R reporter line, we show that this transgenic line induces recombination in all epiblast cells by embryonic day (E) 6.5 but little or no activity in other extraembryonic cell types at this time. When crossed to a conditional allele of the Sonic hedgehog gene (Shhc), all Sox2Cre;Shhn/Shhc embryos displayed a phenotype indistinguishable from that of the Shh null mutant. Sox2Cre functioned more efficiently in epiblast-mediated recombination than the Mox2Cre (MORE) transgenic line, which has also been shown to drive Cre-mediated recombination exclusively in the embryonic component of the early mouse embryo. Although most MORE; shhh/shhc embryos have a shh hull phenotype, 33% displayed a milder skeletal phenotype, most likely result of incomplete recombination at egg cylinder stages. In agreement with these findings, Sox2Cre was active earlier and Sox2Cre-mediated recombination was more advanced than MORE-mediated recombination at early gastrulation stages. The Sox2Cre line is likely to be more effective in generating complete, epiblast-specific removal of gene activity, and the mosaic activity of the MORE line will be helpful in generating partial loss-of-function phenotypes in the embryo-proper.
Collapse
Affiliation(s)
- Shigemi Hayashi
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
53
|
Cell-cycle-independent transitions in temporal identity of mammalian neural progenitor cells. Nat Commun 2016; 7:11349. [PMID: 27094546 PMCID: PMC4842982 DOI: 10.1038/ncomms11349] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
During cerebral development, many types of neurons are sequentially generated by self-renewing progenitor cells called apical progenitors (APs). Temporal changes in AP identity are thought to be responsible for neuronal diversity; however, the mechanisms underlying such changes remain largely unknown. Here we perform single-cell transcriptome analysis of individual progenitors at different developmental stages, and identify a subset of genes whose expression changes over time but is independent of differentiation status. Surprisingly, the pattern of changes in the expression of such temporal-axis genes in APs is unaffected by cell-cycle arrest. Consistent with this, transient cell-cycle arrest of APs in vivo does not prevent descendant neurons from acquiring their correct laminar fates. Analysis of cultured APs reveals that transitions in AP gene expression are driven by both cell-intrinsic and -extrinsic mechanisms. These results suggest that the timing mechanisms controlling AP temporal identity function independently of cell-cycle progression and Notch activation mode.
Collapse
|
54
|
Latorre E, Carelli S, Caremoli F, Giallongo T, Colli M, Canazza A, Provenzani A, Di Giulio AM, Gorio A. Human Antigen R Binding and Regulation of SOX2 mRNA in Human Mesenchymal Stem Cells. Mol Pharmacol 2016; 89:243-52. [PMID: 26677051 DOI: 10.1124/mol.115.100701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/11/2015] [Indexed: 02/02/2023] Open
Abstract
Since 2005, sex determining region y-box 2 (SOX2) has drawn the attention of the scientific community for being one of the key transcription factors responsible for pluripotency induction in somatic stem cells. Our research investigated the turnover regulation of SOX2 mRNA in human adipose-derived stem cells, considered one of the most valuable sources of somatic stem cells in regenerative medicine. Mitoxantrone is a drug that acts on nucleic acids primarily used to treat certain types of cancer and was recently shown to ameliorate the outcome of autoimmune diseases such as multiple sclerosis. In addition, mitoxantrone has been shown to inhibit the binding of human antigen R (HuR) RNA-binding protein to tumor necrosis factor-α mRNA. Our results show that HuR binds to the 3'-untranslated region of SOX2 mRNA together with the RNA-induced silencing complex miR145. The HuR binding works by stabilizing the interaction between the 3'-untranslated region and the RNA-induced silencing complex. Cell exposure to mitoxantrone leads to HuR detachment and the subsequent prolongation of the SOX2 mRNA half-life. The prolonged SOX2 half-life allows improvement of the spheroid-forming capability of the adipose-derived stem cells. The silencing of HuR confirmed the above observations and illustrates how the RNA-binding protein HuR may be a required molecule for regulation of SOX2 mRNA decay.
Collapse
Affiliation(s)
- Elisa Latorre
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Stephana Carelli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Filippo Caremoli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Toniella Giallongo
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Mattia Colli
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Alessandra Canazza
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Alessandro Provenzani
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Anna Maria Di Giulio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| | - Alfredo Gorio
- Laboratory of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy (E.L., S.C., F.C., T.G., M.C., A.M.D.G., A.G.); Laboratory of Cell Biology, Cerebrovascular Diseases Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy (A.C.); and Laboratory of Genomic Screening Center for Integrative Biology, University of Trento, Trento, Italy (A.P.)
| |
Collapse
|
55
|
Yu YH, Narayanan G, Sankaran S, Ramasamy S, Chan SY, Lin S, Chen J, Yang H, Srivats H, Ahmed S. Purification, Visualization, and Molecular Signature of Neural Stem Cells. Stem Cells Dev 2015; 25:189-201. [PMID: 26464067 PMCID: PMC4770853 DOI: 10.1089/scd.2015.0190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural stem cells (NSCs) are isolated from primary brain tissue and propagated as a heterogeneous mix of cells, including neural progenitors. To date, NSCs have not been purified in vitro to allow study of their biology and utility in regenerative medicine. In this study, we identify C1qR1 as a novel marker for NSCs and show that it can be used along with Lewis-X (LeX) to yield a highly purified population of NSCs. Using time-lapse microscopy, we are able to follow NSCs forming neurospheres, allowing their visualization. Finally, using single-cell polymerase chain reaction (PCR), we determine the molecular signature of NSCs. The single-cell PCR data suggest that along with the Notch and Shh pathways, the Hippo pathway plays an important role in NSC activity.
Collapse
Affiliation(s)
- Yuan Hong Yu
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Gunaseelan Narayanan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shvetha Sankaran
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Srinivas Ramasamy
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shi Yu Chan
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Shuping Lin
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Jinmiao Chen
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Henry Yang
- 2 Bioinformatics Laboratory , Singapore Immunology Network, Singapore, Singapore
| | - Hariharan Srivats
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| | - Sohail Ahmed
- 1 Neural Stem Cell Laboratory, Institute of Medical Biology , Singapore, Singapore
| |
Collapse
|
56
|
Zechel S, Zajac P, Lönnerberg P, Ibáñez CF, Linnarsson S. Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biol 2015; 15:486. [PMID: 25344199 PMCID: PMC4234883 DOI: 10.1186/s13059-014-0486-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cortical interneurons originating from the medial ganglionic eminence, MGE, are among the most diverse cells within the CNS. Different pools of proliferating progenitor cells are thought to exist in the ventricular zone of the MGE, but whether the underlying subventricular and mantle regions of the MGE are spatially patterned has not yet been addressed. Here, we combined laser-capture microdissection and multiplex RNA-sequencing to map the transcriptome of MGE cells at a spatial resolution of 50 μm. RESULTS Distinct groups of progenitor cells showing different stages of interneuron maturation are identified and topographically mapped based on their genome-wide transcriptional pattern. Although proliferating potential decreased rather abruptly outside the ventricular zone, a ventro-lateral gradient of increasing migratory capacity was identified, revealing heterogeneous cell populations within this neurogenic structure. CONCLUSIONS We demonstrate that spatially resolved RNA-seq is ideally suited for high resolution topographical mapping of genome-wide gene expression in heterogeneous anatomical structures such as the mammalian central nervous system.
Collapse
Affiliation(s)
- Sabrina Zechel
- Department of Neuroscience, Karolinska Institute, Stockholm SE-171 77, Sweden
| | | | | | | | | |
Collapse
|
57
|
Bifari F, Berton V, Pino A, Kusalo M, Malpeli G, Di Chio M, Bersan E, Amato E, Scarpa A, Krampera M, Fumagalli G, Decimo I. Meninges harbor cells expressing neural precursor markers during development and adulthood. Front Cell Neurosci 2015; 9:383. [PMID: 26483637 PMCID: PMC4591429 DOI: 10.3389/fncel.2015.00383] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/14/2015] [Indexed: 01/01/2023] Open
Abstract
Brain and skull developments are tightly synchronized, allowing the cranial bones to dynamically adapt to the brain shape. At the brain-skull interface, meninges produce the trophic signals necessary for normal corticogenesis and bone development. Meninges harbor different cell populations, including cells forming the endosteum of the cranial vault. Recently, we and other groups have described the presence in meninges of a cell population endowed with neural differentiation potential in vitro and, after transplantation, in vivo. However, whether meninges may be a niche for neural progenitor cells during embryonic development and in adulthood remains to be determined. In this work we provide the first description of the distribution of neural precursor markers in rat meninges during development up to adulthood. We conclude that meninges share common properties with the classical neural stem cell niche, as they: (i) are a highly proliferating tissue; (ii) host cells expressing neural precursor markers such as nestin, vimentin, Sox2 and doublecortin; and (iii) are enriched in extracellular matrix components (e.g., fractones) known to bind and concentrate growth factors. This study underlines the importance of meninges as a potential niche for endogenous precursor cells during development and in adulthood.
Collapse
Affiliation(s)
- Francesco Bifari
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marijana Kusalo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Giorgio Malpeli
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Marzia Di Chio
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Emanuela Bersan
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Eliana Amato
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Aldo Scarpa
- Section of Pathological Anatomy, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Stem Cell Research Laboratory, Department of Medicine, University of Verona Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona Verona, Italy
| |
Collapse
|
58
|
Cardoso SD, Teles MC, Oliveira RF. Neurogenomic mechanisms of social plasticity. ACTA ACUST UNITED AC 2015; 218:140-9. [PMID: 25568461 DOI: 10.1242/jeb.106997] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level.
Collapse
Affiliation(s)
- Sara D Cardoso
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Magda C Teles
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Rui F Oliveira
- ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisbon, Portugal Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| |
Collapse
|
59
|
Ypsilanti AR, Rubenstein JLR. Transcriptional and epigenetic mechanisms of early cortical development: An examination of how Pax6 coordinates cortical development. J Comp Neurol 2015; 524:609-29. [PMID: 26304102 DOI: 10.1002/cne.23866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The development of the cortex is an elaborate process that integrates a plethora of finely tuned molecular processes ranging from carefully regulated gradients of transcription factors, dynamic changes in the chromatin landscape, or formation of protein complexes to elicit and regulate transcription. Combined with cellular processes such as cell type specification, proliferation, differentiation, and migration, all of these developmental processes result in the establishment of an adult mammalian cortex with its typical lamination and regional patterning. By examining in-depth the role of one transcription factor, Pax6, on the regulation of cortical development, its integration in the regulation of chromatin state, and its regulation by cis-regulatory elements, we aim to demonstrate the importance of integrating each level of regulation in our understanding of cortical development.
Collapse
Affiliation(s)
- Athéna R Ypsilanti
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| | - John L R Rubenstein
- Department of Psychiatry, Neuroscience Program, and the Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
60
|
Mozafari S, Laterza C, Roussel D, Bachelin C, Marteyn A, Deboux C, Martino G, Baron-Van Evercooren A. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice. J Clin Invest 2015; 125:3642-56. [PMID: 26301815 DOI: 10.1172/jci80437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.
Collapse
|
61
|
Naruse M, Ishino Y, Kumar A, Ono K, Takebayashi H, Yamaguchi M, Ishizaki Y, Ikenaka K, Hitoshi S. The Dorsoventral Boundary of the Germinal Zone is a Specialized Niche for the Generation of Cortical Oligodendrocytes during a Restricted Temporal Window. Cereb Cortex 2015; 26:2800-2810. [DOI: 10.1093/cercor/bhv141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
62
|
Cunningham TJ, Kumar S, Yamaguchi TP, Duester G. Wnt8a and Wnt3a cooperate in the axial stem cell niche to promote mammalian body axis extension. Dev Dyn 2015; 244:797-807. [PMID: 25809880 DOI: 10.1002/dvdy.24275] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Vertebrate body axis extension occurs in a head-to-tail direction from a caudal progenitor zone that responds to interacting signals. Wnt/β-catenin signaling is critical for generation of paraxial mesoderm, somite formation, and maintenance of the axial stem cell pool. Body axis extension requires Wnt8a in lower vertebrates, but in mammals Wnt3a is required, although the anterior trunk develops in the absence of Wnt3a. RESULTS We examined mouse Wnt8a(-/-) and Wnt3a(-/-) single and double mutants to explore whether mammalian Wnt8a contributes to body axis extension and to determine whether a posterior growth function for Wnt8a is conserved throughout the vertebrate lineage. We find that caudal Wnt8a is expressed only during early somite stages and is required for normal development of the anterior trunk in the absence of Wnt3a. During this time, we show that Wnt8a and Wnt3a cooperate to maintain Fgf8 expression and prevent premature Sox2 up-regulation in the axial stem cell niche, critical for posterior growth. Similar to Fgf8, Wnt8a requires retinoic acid (RA) signaling to restrict its caudal expression boundary and possesses an upstream RA response element that binds RA receptors. CONCLUSIONS These findings provide new insight into interaction of caudal Wnt-FGF-RA signals required for body axis extension.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Sandeep Kumar
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, NCI-Frederick, National Institutes of Health, Frederick, Maryland
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California
| |
Collapse
|
63
|
Singh S, Solecki DJ. Polarity transitions during neurogenesis and germinal zone exit in the developing central nervous system. Front Cell Neurosci 2015; 9:62. [PMID: 25852469 PMCID: PMC4349153 DOI: 10.3389/fncel.2015.00062] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/10/2015] [Indexed: 11/14/2022] Open
Abstract
During neural development, billions of neurons differentiate, polarize, migrate and form synapses in a precisely choreographed sequence. These precise developmental events are accompanied by discreet transitions in cellular polarity. While radial glial neural stem cells are highly polarized, transiently amplifying neural progenitors are less polarized after delaminating from their parental stem cell. Moreover, preceding their radial migration to a final laminar position neural progenitors re-adopt a polarized morphology before they embarking on their journey along a glial guide to the destination where they will fully mature. In this review, we will compare and contrast the key polarity transitions of cells derived from a neuroepithelium to the well-characterized polarity transitions that occur in true epithelia. We will highlight recent advances in the field that shows that neuronal progenitor delamination from germinal zone (GZ) niche shares similarities to an epithelial-mesenchymal transition. Moreover, studies in the cerebellum suggest the acquisition of radial migration and polarity in transiently amplifying neural progenitors share similarities to mesenchymal-epithelial transitions. Where applicable, we will compare and contrast the precise molecular mechanisms used by epithelial cells and neuronal progenitors to control plasticity in cell polarity during their distinct developmental programs.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital Memphis, TN, USA
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital Memphis, TN, USA
| |
Collapse
|
64
|
Zhou HY, Katsman Y, Dhaliwal NK, Davidson S, Macpherson NN, Sakthidevi M, Collura F, Mitchell JA. A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev 2015; 28:2699-711. [PMID: 25512558 PMCID: PMC4265674 DOI: 10.1101/gad.248526.114] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Sox2 transcription factor must be robustly transcribed in embryonic stem (ES) cells to maintain pluripotency. Zhou et al. identify three novel enhancers that, through the formation of chromatin loops, form a chromatin complex with the Sox2 promoter in ES cells. The distal cluster containing SRR107 and SRR111, located >100 kb downstream from Sox2, is required for cis-regulation of Sox2 in ES cells. The Sox2 transcription factor must be robustly transcribed in embryonic stem (ES) cells to maintain pluripotency. Two gene-proximal enhancers, Sox2 regulatory region 1 (SRR1) and SRR2, display activity in reporter assays, but deleting SRR1 has no effect on pluripotency. We identified and functionally validated the sequences required for Sox2 transcription based on a computational model that predicted transcriptional enhancer elements within 130 kb of Sox2. Our reporter assays revealed three novel enhancers—SRR18, SRR107, and SRR111—that, through the formation of chromatin loops, form a chromatin complex with the Sox2 promoter in ES cells. Using the CRISPR/Cas9 system and F1 ES cells (Mus musculus129 × Mus castaneus), we generated heterozygous deletions of each enhancer region, revealing that only the distal cluster containing SRR107 and SRR111, located >100 kb downstream from Sox2, is required for cis-regulation of Sox2 in ES cells. Furthermore, homozygous deletion of this distal Sox2 control region (SCR) caused significant reduction in Sox2 mRNA and protein levels, loss of ES cell colony morphology, genome-wide changes in gene expression, and impaired neuroectodermal formation upon spontaneous differentiation to embryoid bodies. Together, these data identify a distal control region essential for Sox2 transcription in ES cells.
Collapse
Affiliation(s)
- Harry Y Zhou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Yulia Katsman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Navroop K Dhaliwal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Scott Davidson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Neil N Macpherson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Moorthy Sakthidevi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Felicia Collura
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada; Center for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
65
|
Azevedo-Pereira RL, Morrot A, Machado GS, Paredes BD, Rodrigues DDC, de Carvalho ACC, Mendez-Otero R. Expression of ganglioside 9-O acetyl GD3 in undifferentiated embryonic stem cells. Cell Biol Int 2015; 39:121-127. [PMID: 25045067 DOI: 10.1002/cbin.10335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023]
Abstract
Embryonic stem cells (ES cells) express a transient and heterogeneous pattern of molecules, which suggests a notable mechanism to control self-renewal avoid the differentiation into germ layers. We show that 9-O-acetyl GD3 (9OacGD3), a highly expressed b-series ganglioside in neural stem (NS) cells, is expressed in undifferentiated mouse ES cells in a heterogeneous fashion. After sorting, undifferentiated 9OacGD3(+) ES cell population had higher levels of nestin and Sox2 mRNA than the 9OacGD3(-) cells. Even with elevated expression of these neural transcription factors, 9OacGD3(+) cells did not give rise to more neural progenitors than 9OacGD3(-) cells. Expression of 9OacGD3 was recovered from 9OacGD3(-) cell population, demonstrating that expression of this ganglioside in mouse embryonic stem cells is transient, and does not reflect cell fate. Our findings show that the ganglioside 9OacGD3 is expressed heterogeneously and transiently in ES cells, and this expression corresponds to higher levels of Sox2 and Nestin transcripts.
Collapse
Affiliation(s)
- Ricardo Luiz Azevedo-Pereira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
66
|
Li Y, Rivera CM, Ishii H, Jin F, Selvaraj S, Lee AY, Dixon JR, Ren B. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS One 2014; 9:e114485. [PMID: 25486255 PMCID: PMC4259346 DOI: 10.1371/journal.pone.0114485] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/11/2014] [Indexed: 12/22/2022] Open
Abstract
The pluripotency of embryonic stem cells (ESCs) is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE) located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.
Collapse
Affiliation(s)
- Yan Li
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Chloe M. Rivera
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
- The Biomedical Sciences Graduate Program, University of California San Diego, School of Medicine, San Diego, California, United States of America
| | - Haruhiko Ishii
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Fulai Jin
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Siddarth Selvaraj
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Ah Young Lee
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
| | - Jesse R. Dixon
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
- Medical Scientist Training Program, University of California San Diego, School of Medicine, San Diego, California, United States of America
| | - Bing Ren
- Ludwig Institute for Cancer Research, San Diego, California, United States of America
- Department of Cellular and Molecular Medicine, Institute of Genome Medicine, Moores Cancer Center, University of California San Diego, School of Medicine, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
67
|
Okamoto R, Uchikawa M, Kondoh H. Sixteen additional enhancers associated with the chickenSox2locus outside the central 50-kb region. Dev Growth Differ 2014; 57:24-39. [DOI: 10.1111/dgd.12185] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Ryuji Okamoto
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
- Faculty of Medicine; Kagawa University; 1750-1 Ikenobe Miki-Cho, Kita-gun Kagawa 761-0793 Japan
| | - Masanori Uchikawa
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
| | - Hisato Kondoh
- Graduate School of Frontier Biosciences; Osaka University; 1-3 Yamadaoka Suita Osaka 565-0871 Japan
- Faculty of Life Sciences; Kyoto Sangyo University; Motoyama, Kamigamo Kita-ku Kyoto 603-8555 Japan
| |
Collapse
|
68
|
Moya N, Cutts J, Gaasterland T, Willert K, Brafman DA. Endogenous WNT signaling regulates hPSC-derived neural progenitor cell heterogeneity and specifies their regional identity. Stem Cell Reports 2014; 3:1015-28. [PMID: 25458891 PMCID: PMC4264562 DOI: 10.1016/j.stemcr.2014.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 11/20/2022] Open
Abstract
Neural progenitor cells (NPCs) derived from human pluripotent stem cells (hPSCs) are a multipotent cell population that is capable of nearly indefinite expansion and subsequent differentiation into the various neuronal and supporting cell types that comprise the CNS. However, current protocols for differentiating NPCs toward neuronal lineages result in a mixture of neurons from various regions of the CNS. In this study, we determined that endogenous WNT signaling is a primary contributor to the heterogeneity observed in NPC cultures and neuronal differentiation. Furthermore, exogenous manipulation of WNT signaling during neural differentiation, through either activation or inhibition, reduces this heterogeneity in NPC cultures, thereby promoting the formation of regionally homogeneous NPC and neuronal cultures. The ability to manipulate WNT signaling to generate regionally specific NPCs and neurons will be useful for studying human neural development and will greatly enhance the translational potential of hPSCs for neural-related therapies. Heterogeneous endogenous WNT signaling regulates hPSC-derived neuronal diversity Endogenous WNT signaling specifies the regional identity of hPSC-derived neurons Exogenous WNT signaling leads to uniform neuronal cultures from hPSCs Effects of WNT signaling on neurogenesis are recapitulated in an hPSC-based system
Collapse
Affiliation(s)
- Noel Moya
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA
| | - Josh Cutts
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA
| | - Terry Gaasterland
- UCSD and Scripps Institution of Oceanography, Scripps Genome Center, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA.
| | - David A Brafman
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0695, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA.
| |
Collapse
|
69
|
Function of Sox2 in ependymal cells of lesioned spinal cords in adult zebrafish. Neurosci Res 2014; 88:84-7. [DOI: 10.1016/j.neures.2014.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/19/2014] [Accepted: 07/31/2014] [Indexed: 01/31/2023]
|
70
|
Lee HK, Lee HS, Moody SA. Neural transcription factors: from embryos to neural stem cells. Mol Cells 2014; 37:705-12. [PMID: 25234468 PMCID: PMC4213760 DOI: 10.14348/molcells.2014.0227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/10/2014] [Indexed: 01/01/2023] Open
Abstract
The early steps of neural development in the vertebrate embryo are regulated by sets of transcription factors that control the induction of proliferative, pluripotent neural precursors, the expansion of neural plate stem cells, and their transition to differentiating neural progenitors. These early events are critical for producing a pool of multipotent cells capable of giving rise to the multitude of neurons and glia that form the central nervous system. In this review we summarize findings from gain- and loss-of-function studies in embryos that detail the gene regulatory network responsible for these early events. We discuss whether this information is likely to be similar in mammalian embryonic and induced pluripotent stem cells that are cultured according to protocols designed to produce neurons. The similarities and differences between the embryo and stem cells may provide important guidance to stem cell protocols designed to create immature neural cells for therapeutic uses.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | - Hyun-Shik Lee
- ABRC, School of Life Sciences, BK21 Plus KNU Creative BioReserach Group, Kyungpook National University, Daegu 702-702,
Korea
| | | |
Collapse
|
71
|
Chew LJ, DeBoy CA, Senatorov VV. Finding degrees of separation: experimental approaches for astroglial and oligodendroglial cell isolation and genetic targeting. J Neurosci Methods 2014; 236:125-47. [PMID: 25169049 PMCID: PMC4171043 DOI: 10.1016/j.jneumeth.2014.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/20/2022]
Abstract
The study of CNS glial cell function requires experimental methods to detect, purify, and manipulate each cell population with fidelity and specificity. With the identification and cloning of cell- and stage-specific markers, glial cell analysis techniques have grown beyond physical methods of tissue dissociation and cell culture, and become highly specific with immunoselection of cell cultures in vitro and genetic targeting in vivo. The unique plasticity of glial cells offers the potential for cell replacement therapies in neurological disease that utilize neural cells derived from transplanted neural stem and progenitor cells. In this mini-review, we outline general physical and genetic approaches for macroglial cell generation. We summarize cell culture methods to obtain astrocytes and oligodendrocytes and their precursors, from developing and adult tissue, as well as approaches to obtain human neural progenitor cells through the establishment of stem cells. We discuss popular targeting rodent strains designed for cell-specific detection, selection and manipulation of neuroglial cell progenitors and their committed progeny. Based on shared markers between astrocytes and stem cells, we discuss genetically modified mouse strains with overlapping expression, and highlight SOX-expressing strains available for targeting of stem and progenitor cell populations. We also include recently established mouse strains for detection, and tag-assisted RNA and miRNA analysis. This discussion aims to provide a brief overview of the rapidly expanding collection of experimental approaches and genetic resources for the isolation and targeting of macroglial cells, their sources, progeny and gene products to facilitate our understanding of their properties and potential application in pathology.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, United States.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, United States
| | - Vladimir V Senatorov
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
| |
Collapse
|
72
|
Lai YJ, Li MY, Yang CY, Huang KH, Tsai JC, Wang TW. TRIP6 regulates neural stem cell maintenance in the postnatal mammalian subventricular zone. Dev Dyn 2014; 243:1130-42. [DOI: 10.1002/dvdy.24161] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yun-Ju Lai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Ming-Yang Li
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Cheng-Yao Yang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Kao-Hua Huang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Tsu-Wei Wang
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
- Brain Research Center; National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
73
|
Gao J, Wang Z, Shao K, Fan L, Yang L, Song H, Liu M, Wang Z, Wang X, Zhang Q. Identification and characterization of a Sox2 homolog in the Japanese flounder Paralichthys olivaceus. Gene 2014; 544:165-76. [DOI: 10.1016/j.gene.2014.04.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 12/23/2022]
|
74
|
iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat Commun 2014; 4:2597. [PMID: 24169527 DOI: 10.1038/ncomms3597] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022] Open
Abstract
The possibility of generating neural stem/precursor cells (NPCs) from induced pluripotent stem cells (iPSCs) has opened a new avenue of research that might nurture bench-to-bedside translation of cell transplantation protocols in central nervous system myelin disorders. Here we show that mouse iPSC-derived NPCs (miPSC-NPCs)-when intrathecally transplanted after disease onset-ameliorate clinical and pathological features of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Transplanted miPSC-NPCs exert the neuroprotective effect not through cell replacement, but through the secretion of leukaemia inhibitory factor that promotes survival, differentiation and the remyelination capacity of both endogenous oligodendrocyte precursors and mature oligodendrocytes. The early preservation of tissue integrity limits blood-brain barrier damage and central nervous system infiltration of blood-borne encephalitogenic leukocytes, ultimately responsible for demyelination and axonal damage. While proposing a novel mechanism of action, our results further expand the therapeutic potential of NPCs derived from iPSCs in myelin disorders.
Collapse
|
75
|
Campolo F, Gori M, Favaro R, Nicolis S, Pellegrini M, Botti F, Rossi P, Jannini EA, Dolci S. Essential role of Sox2 for the establishment and maintenance of the germ cell line. Stem Cells 2014; 31:1408-21. [PMID: 23553930 DOI: 10.1002/stem.1392] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/28/2013] [Accepted: 02/13/2013] [Indexed: 01/04/2023]
Abstract
Sox2 is a pluripotency-conferring gene expressed in primordial germ cells (PGCs) and postnatal oocytes, but the role it plays during germ cell development and early embryogenesis is unknown. Since Sox2 ablation causes early embryonic lethality shortly after blastocyst implantation, we generated mice bearing Sox2-conditional deletion in germ cells at different stages of their development through the Cre/loxP recombination system. Embryos lacking Sox2 in PGCs show a dramatic decrease of germ cell numbers at the time of their specification. At later stages, we found that Sox2 is strictly required for PGC proliferation. On the contrary, Sox2 deletion in meiotic oocytes does not impair postnatal oogenesis and early embryogenesis, indicating that it is not essential for oocyte maturation or for zygotic development. We also show that Sox2 regulates Kit expression in PGCs and binds to discrete transcriptional regulatory sequences of this gene, which is known to be important for PGCs survival and proliferation. Sox2 also stimulates the expression of Zfp148, which is required for normal development of fetal germ cells, and Rif1, a potential regulator of PGC pluripotency.
Collapse
Affiliation(s)
- Federica Campolo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Torvergata, Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
77
|
Chiang JH, Cheng WS, Hood L, Tian Q. An epigenetic biomarker panel for glioblastoma multiforme personalized medicine through DNA methylation analysis of human embryonic stem cell-like signature. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:310-23. [PMID: 24601786 DOI: 10.1089/omi.2013.0084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alterations of DNA methylation occur during the course of both stem cell development and tumorigenesis. We present a novel strategy that can be used to stratify glioblastoma multiforme (GBM) patients through the epigenetic states of genes associated with human embryonic stem cell (hESC) identity in order to 1) assess linkages between the methylation signatures of these stem cell genes and survival of GBM patients, and 2) delineate putative mechanisms leading to poor prognosis in some patient subgroups. A DNA methylation signature was established for stratifying GBM patients into several hESC methylator subgroups. The hESC methylator-negative phenotype has demonstrated poor survival and upregulation of glioma stem cell (GSC) markers, and is enriched in one of the previously defined transcriptomic phenotypes-the mesenchymal phenotype. We further identified a refined signature of 36 genes as the gene panel, including SOX2, POU3F2, FGFR2, GAP43, NTRK2, NTRK3, and NKX2-2, which are highly enriched in the nervous system. Both signatures outperformed the O6-methylguanine-DNA methyltransferase (MGMT) methylation test in predicting patient's outcome. These findings were also validated through an independent dataset of patients. Furthermore, through statistical analyses, both signatures were examined significantly. Hypomethylation of hESC-associated genes predicted poorer clinical outcome in GBM, supporting the idea that epigenetic activation of stem cell genes contributes to GBM aggression. The gene panel presented herein may be developed into clinical assays for patient stratification and future personalized medicine interventions.
Collapse
Affiliation(s)
- Jung-Hsien Chiang
- 1 Department of Computer Science and Information Engineering, National Cheng Kung University , Tainan City, Taiwan
| | | | | | | |
Collapse
|
78
|
Baumann J, Barenys M, Gassmann K, Fritsche E. Comparative human and rat "neurosphere assay" for developmental neurotoxicity testing. ACTA ACUST UNITED AC 2014; 59:12.21.1-24. [PMID: 24898107 DOI: 10.1002/0471140856.tx1221s59] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The developing nervous system is highly vulnerable to the adverse effects of chemical agents. Currently, there is an increasing need for testing and regulating chemical compounds in general use and, due to the lack of available data, to identify those which are developmental neurotoxicants. In this context, alternative testing strategies are needed in order to allow fast and cost-efficient screening and to reduce the number of animal experiments usually required. In this unit we present an in vitro three-dimensional model for developmental neurotoxicity screening based on human and rat neural progenitor cells. This model enables the detection of disturbances in basic processes of brain development, such as proliferation, migration, differentiation and apoptosis, and allows the distinction of these specific disturbances from general cytotoxicity. Furthermore, the comparison of human and rat data provides useful insights into species differences for toxicodynamics of compounds contributing to human risk assessment of developmental neurotoxicants.
Collapse
Affiliation(s)
- Jenny Baumann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Both authors contributed equally to this unit
| | | | | | | |
Collapse
|
79
|
Lee DY, Gutmann DH. Cancer stem cells and brain tumors: uprooting the bad seeds. Expert Rev Anticancer Ther 2014; 7:1581-90. [DOI: 10.1586/14737140.7.11.1581] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
80
|
Human Stem/Progenitor Cell-Based Assays for Neurodevelopmental Toxicity Testing. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/978-1-4939-0521-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
81
|
Trujillo-Cenóz O, Marichal N, Rehermann MI, Russo RE. The inner lining of the reptilian brain: A heterogeneous cellular mosaic. Glia 2013; 62:300-16. [DOI: 10.1002/glia.22607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 11/05/2013] [Accepted: 11/13/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Omar Trujillo-Cenóz
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Nicolás Marichal
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - María Inés Rehermann
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| | - Raúl E. Russo
- Neurofisiología Celular y Molecular; Instituto de Investigaciones Biológicas Clemente Estable; Avenida Italia 3318 CP11600 Montevideo Uruguay
| |
Collapse
|
82
|
Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 2013; 504:306-310. [PMID: 24213634 DOI: 10.1038/nature12716] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
In multicellular organisms, transcription regulation is one of the central mechanisms modelling lineage differentiation and cell-fate determination. Transcription requires dynamic chromatin configurations between promoters and their corresponding distal regulatory elements. It is believed that their communication occurs within large discrete foci of aggregated RNA polymerases termed transcription factories in three-dimensional nuclear space. However, the dynamic nature of chromatin connectivity has not been characterized at the genome-wide level. Here, through a chromatin interaction analysis with paired-end tagging approach using an antibody that primarily recognizes the pre-initiation complexes of RNA polymerase II, we explore the transcriptional interactomes of three mouse cells of progressive lineage commitment, including pluripotent embryonic stem cells, neural stem cells and neurosphere stem/progenitor cells. Our global chromatin connectivity maps reveal approximately 40,000 long-range interactions, suggest precise enhancer-promoter associations and delineate cell-type-specific chromatin structures. Analysis of the complex regulatory repertoire shows that there are extensive colocalizations among promoters and distal-acting enhancers. Most of the enhancers associate with promoters located beyond their nearest active genes, indicating that the linear juxtaposition is not the only guiding principle driving enhancer target selection. Although promoter-enhancer interactions exhibit high cell-type specificity, promoters involved in interactions are found to be generally common and mostly active among different cells. Chromatin connectivity networks reveal that the pivotal genes of reprogramming functions are transcribed within physical proximity to each other in embryonic stem cells, linking chromatin architecture to coordinated gene expression. Our study sets the stage for the full-scale dissection of spatial and temporal genome structures and their roles in orchestrating development.
Collapse
|
83
|
Koike T, Wakabayashi T, Mori T, Takamori Y, Hirahara Y, Yamada H. Sox2 in the adult rat sensory nervous system. Histochem Cell Biol 2013; 141:301-9. [PMID: 24170317 DOI: 10.1007/s00418-013-1158-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 01/06/2023]
Abstract
Sex-determining region Y (SRY)-box 2 (Sox2) is a member of the Sox family transcription factors. In the central nervous system, Sox2 is expressed in neural stem cells from neurogenic regions, and regulates stem cell proliferation and differentiation. In the peripheral nervous system, Sox2 is found only in the immature and dedifferentiated Schwann cells, and is involved in myelination inhibition or N-cadherin redistribution. In the present immunohistochemical study, we found that Sox2 is also expressed in other cells of the adult rat peripheral nervous system. Nuclear Sox2 was observed in all satellite glial cells, non-myelinating Schwann cells, and the majority of terminal Schwann cells that form lamellar corpuscles and longitudinal lanceolate endings. Sox2 was not found in myelinating Schwann cells and terminal Schwann cells of subepidermal free nerve endings. Satellite glial cells exhibit strong Sox2 immunoreactivity, whereas non-myelinating Schwann cells show weak immunoreactivity. RT-PCR confirmed the presence of Sox2 mRNA, indicating that the cells are likely Sox2 expressors. Our findings suggest that the role of Sox2 in the peripheral nervous system may be cell-type-dependent.
Collapse
|
84
|
Gagliardi A, Mullin NP, Ying Tan Z, Colby D, Kousa AI, Halbritter F, Weiss JT, Felker A, Bezstarosti K, Favaro R, Demmers J, Nicolis SK, Tomlinson SR, Poot RA, Chambers I. A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal. EMBO J 2013; 32:2231-47. [PMID: 23892456 PMCID: PMC3746198 DOI: 10.1038/emboj.2013.161] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/27/2013] [Indexed: 01/08/2023] Open
Abstract
Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal. This paper features a comprehensive proteomic view on the Nanog interactome. Further, it molecularly and functionally defines the intimate interplay of Nanog with another pluripotency determinant Sox2.
Collapse
Affiliation(s)
- Alessia Gagliardi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Khattak S, Schuez M, Richter T, Knapp D, Haigo SL, Sandoval-Guzmán T, Hradlikova K, Duemmler A, Kerney R, Tanaka EM. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports 2013; 1:90-103. [PMID: 24052945 PMCID: PMC3757742 DOI: 10.1016/j.stemcr.2013.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16 (INK4a) , which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible.
Collapse
Affiliation(s)
- Shahryar Khattak
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany ; Technische Universität Dresden, DFG Center for Regenerative Therapies, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Bery A, Martynoga B, Guillemot F, Joly JS, Rétaux S. Characterization of enhancers active in the mouse embryonic cerebral cortex suggests Sox/Pou cis-regulatory logics and heterogeneity of cortical progenitors. Cereb Cortex 2013; 24:2822-34. [PMID: 23720416 DOI: 10.1093/cercor/bht126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We aimed to identify cis-regulatory elements that control gene expression in progenitors of the cerebral cortex. A list of 975 putative enhancers were retrieved from a ChIP-Seq experiment performed in NS5 mouse stem cells with antibodies to Sox2, Brn2/Pou3f2, or Brn1/Pou3f3. Through a selection pipeline including gene ontology and expression pattern, we reduced the number of candidate enhancer sequences to 20. Ex vivo electroporation of green fluorescent pProtein (GFP) reporter constructs in the telencephalon of mouse embryos showed that 35% of the 20 selected candidate sequences displayed enhancer activity in the developing cortex at E13.5. In silico transcription factor binding site (TFBS) searches and mutagenesis experiments showed that enhancer activity is related to the presence of Sox/Pou TFBS pairs in the sequence. Comparative genomic analyses showed that enhancer activity is not related to the evolutionary conservation of the sequence. Finally, the combination of in utero electroporation of GFP reporter constructs with immunostaining for Tbr2 (basal progenitor marker) and phospho-histoneH3 (mitotic activity marker) demonstrated that each enhancer is specifically active in precise subpopulations of progenitors in the cortical germinal zone, highlighting the heterogeneity of these progenitors in terms of cis-regulation.
Collapse
Affiliation(s)
| | | | | | - Jean-Stéphane Joly
- Equipe Morphogenesis of the Chordate Nervous System, UPR3294 N&D, Institut de Neurobiologie Alfred Fessard, CNRS, Gif-sur-Yvette, France and
| | | |
Collapse
|
87
|
Jaremko KL, Marikawa Y. Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells. Stem Cell Res 2013; 10:489-502. [DOI: 10.1016/j.scr.2012.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/09/2012] [Accepted: 04/15/2012] [Indexed: 12/13/2022] Open
|
88
|
Ferri A, Favaro R, Beccari L, Bertolini J, Mercurio S, Nieto-Lopez F, Verzeroli C, La Regina F, De Pietri Tonelli D, Ottolenghi S, Bovolenta P, Nicolis SK. Sox2 is required for embryonic development of the ventral telencephalon through the activation of the ventral determinants Nkx2.1 and Shh. Development 2013; 140:1250-61. [PMID: 23444355 DOI: 10.1242/dev.073411] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Sox2 transcription factor is active in stem/progenitor cells throughout the developing vertebrate central nervous system. However, its conditional deletion at E12.5 in mouse causes few brain developmental problems, with the exception of the postnatal loss of the hippocampal radial glia stem cells and the dentate gyrus. We deleted Sox2 at E9.5 in the telencephalon, using a Bf1-Cre transgene. We observed embryonic brain defects that were particularly severe in the ventral, as opposed to the dorsal, telencephalon. Important tissue loss, including the medial ganglionic eminence (MGE), was detected at E12.5, causing the subsequent impairment of MGE-derived neurons. The defect was preceded by loss of expression of the essential ventral determinants Nkx2.1 and Shh, and accompanied by ventral spread of dorsal markers. This phenotype is reminiscent of that of mice mutant for the transcription factor Nkx2.1 or for the Shh receptor Smo. Nkx2.1 is known to mediate the initial activation of ventral telencephalic Shh expression. A partial rescue of the normal phenotype at E14.5 was obtained by administration of a Shh agonist. Experiments in Medaka fish indicate that expression of Nkx2.1 is regulated by Sox2 in this species also. We propose that Sox2 contributes to Nkx2.1 expression in early mouse development, thus participating in the region-specific activation of Shh, thereby mediating ventral telencephalic patterning induction.
Collapse
Affiliation(s)
- Anna Ferri
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, piazza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Ahlfeld J, Favaro R, Pagella P, Kretzschmar HA, Nicolis S, Schüller U. Sox2 requirement in sonic hedgehog-associated medulloblastoma. Cancer Res 2013; 73:3796-807. [PMID: 23596255 DOI: 10.1158/0008-5472.can-13-0238] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor Sox2 has been shown to play essential roles during embryonic development as well as in cancer. To more precisely understand tumor biology and to identify potential therapeutical targets, we thoroughly investigated the expression and function of Sox2 in medulloblastoma, a malignant embryonic brain tumor that initiates in the posterior fossa and eventually spreads throughout the entire cerebrospinal axis. We examined a large series of tumor samples (n = 188) to show that SOX2 is specifically expressed in Sonic hedgehog (SHH)-associated medulloblastoma with an interesting preponderance in adolescent and adult cases. We further show that cerebellar granule neuron precursors (CGNP), which are believed to serve as the cell of origin for this medulloblastoma subgroup, express Sox2 in early stages. Also, Shh-associated medulloblastoma can be initiated from such Sox2-positive CGNPs in mice. Independent of their endogenous Sox2 expression, constitutive activation of Shh signaling in CGNPs resulted in significantly enhanced proliferation and ectopic expression of Sox2 in vitro and Sox2-positive medulloblastoma in vivo. Genetic ablation of Sox2 from murine medulloblastoma did not affect survival, most likely due to a compensatory overexpression of Sox3. However, acute deletion of Sox2 from primary cultures of CGNPs with constitutive Shh signaling significantly decreased proliferation, whereas overexpression of Sox2 enhanced proliferation of murine medulloblastoma cells. We conclude that Sox2 is a marker for Shh-dependent medulloblastomas where it is required and sufficient to drive tumor cell proliferation.
Collapse
Affiliation(s)
- Julia Ahlfeld
- Center for Neuropathology, Ludwig Maximilians University Munich, Germany
| | | | | | | | | | | |
Collapse
|
90
|
Morris SA, Daley GQ. A blueprint for engineering cell fate: current technologies to reprogram cell identity. Cell Res 2013; 23:33-48. [PMID: 23277278 DOI: 10.1038/cr.2013.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human diseases such as heart failure, diabetes, neurodegenerative disorders, and many others result from the deficiency or dysfunction of critical cell types. Strategies for therapeutic tissue repair or regeneration require the in vitro manufacture of clinically relevant quantities of defined cell types. In addition to transplantation therapy, the generation of otherwise inaccessible cells also permits disease modeling, toxicology testing and drug discovery in vitro. In this review, we discuss current strategies to manipulate the identity of abundant and accessible cells by differentiation from an induced pluripotent state or direct conversion between differentiated states. We contrast these approaches with recent advances employing partial reprogramming to facilitate lineage switching, and discuss the mechanisms underlying the engineering of cell fate. Finally, we address the current limitations of the field and how the resulting cell types can be assessed to ensure the production of medically relevant populations.
Collapse
Affiliation(s)
- Samantha A Morris
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
91
|
Wakao S, Kitada M, Kuroda Y, Ogura F, Murakami T, Niwa A, Dezawa M. Morphologic and gene expression criteria for identifying human induced pluripotent stem cells. PLoS One 2012; 7:e48677. [PMID: 23272044 PMCID: PMC3521736 DOI: 10.1371/journal.pone.0048677] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/28/2012] [Indexed: 01/31/2023] Open
Abstract
Induced pluripotent stem (iPS) cells can be generated from somatic cells by the forced expression of four factors, Oct3/4, Sox2, Klf4, and c-Myc. While a great variety of colonies grow during induction, only a few of them develop into iPS cells. Researchers currently use visual observation to identify iPS cells and select colonies resembling embryonic stem (ES) cells, and there are no established objective criteria. Therefore, we exhaustively analyzed the morphology and gene expression of all the colonies generated from human fibroblasts after transfection with four retroviral vectors encoding individual factors (192 and 203 colonies in two experiments) and with a single polycistronic retroviral vector encoding all four factors (199 and 192 colonies in two experiments). Here we demonstrate that the morphologic features of emerged colonies can be categorized based on six parameters, and all generated colonies that could be passaged were classified into seven subtypes in colonies transfected with four retroviral vectors and six subtypes with a single polycistronic retroviral vector, both including iPS cell colonies. The essential qualifications for iPS cells were: cells with a single nucleolus; nucleus to nucleolus (N/Nls) ratio ∼2.19: cell size ∼43.5 µm(2): a nucleus to cytoplasm (N/C) ratio ∼0.87: cell density in a colony ∼5900 cells/mm(2): and number of cell layer single. Most importantly, gene expression analysis revealed for the first time that endogenous Sox2 and Cdx2 were expressed specifically in iPS cells, whereas Oct3/4 and Nanog, popularly used markers for identifying iPS cells, are expressed in colonies other than iPS cells, suggesting that Sox2 and Cdx2 are reliable markers for identifying iPS cells. Our findings indicate that morphologic parameters and the expression of endogenous Sox2 and Cdx2 can be used to accurately identify iPS cells.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail: (SW); (MD)
| | - Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yasumasa Kuroda
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Fumitaka Ogura
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toru Murakami
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akira Niwa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- * E-mail: (SW); (MD)
| |
Collapse
|
92
|
Restriction of neural precursor ability to respond to Nurr1 by early regional specification. PLoS One 2012; 7:e51798. [PMID: 23240065 PMCID: PMC3519900 DOI: 10.1371/journal.pone.0051798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/08/2012] [Indexed: 11/19/2022] Open
Abstract
During neural development, spatially regulated expression of specific transcription factors is crucial for central nervous system (CNS) regionalization, generation of neural precursors (NPs) and subsequent differentiation of specific cell types within defined regions. A critical role in dopaminergic differentiation in the midbrain (MB) has been assigned to the transcription factor Nurr1. Nurr1 controls the expression of key genes involved in dopamine (DA) neurotransmission, e.g. tyrosine hydroxylase (TH) and the DA transporter (DAT), and promotes the dopaminergic phenotype in embryonic stem cells. We investigated whether cells derived from different areas of the mouse CNS could be directed to differentiate into dopaminergic neurons in vitro by forced expression of the transcription factor Nurr1. We show that Nurr1 overexpression can promote dopaminergic cell fate specification only in NPs obtained from E13.5 ganglionic eminence (GE) and MB, but not in NPs isolated from E13.5 cortex (CTX) and spinal cord (SC) or from the adult subventricular zone (SVZ). Confirming previous studies, we also show that Nurr1 overexpression can increase the generation of TH-positive neurons in mouse embryonic stem cells. These data show that Nurr1 ability to induce a dopaminergic phenotype becomes restricted during CNS development and is critically dependent on the region of NPs derivation. Our results suggest that the plasticity of NPs and their ability to activate a dopaminergic differentiation program in response to Nurr1 is regulated during early stages of neurogenesis, possibly through mechanisms controlling CNS regionalization.
Collapse
|
93
|
Pacioni S, Rueger MA, Nisticò G, Bornstein SR, Park DM, McKay RD, Androutsellis-Theotokis A. Fast, potent pharmacological expansion of endogenous hes3+/sox2+ cells in the adult mouse and rat hippocampus. PLoS One 2012; 7:e51630. [PMID: 23251599 PMCID: PMC3518467 DOI: 10.1371/journal.pone.0051630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/08/2012] [Indexed: 01/19/2023] Open
Abstract
The adult hippocampus is involved in learning and memory. As a consequence, it is a brain region of remarkable plasticity. This plasticity exhibits itself both as cellular changes and neurogenesis. For neurogenesis to occur, a population of local stem cells and progenitor cells is maintained in the adult brain and these are able to proliferate and differentiate into neurons which contribute to the hippocampal circuitry. There is much interest in understanding the role of immature cells in the hippocampus, in relation to learning and memory. Methods and mechanisms that increase the numbers of these cells will be valuable in this research field. We show here that single injections of soluble factors into the lateral ventricle of adult rats and mice induces the rapid (within one week) increase in the number of putative stem cells/progenitor cells in the hippocampus. The established progenitor marker Sox2 together with the more recently established marker Hes3, were used to quantify the manipulation of the Sox2/Hes3 double-positive cell population. We report that in both adult rodent species, Sox2+/Hes3+ cell numbers can be increased within one week. The most prominent increase was observed in the hilus of the dentate gyrus. This study presents a fast, pharmacological method to manipulate the numbers of endogenous putative stem cells/progenitor cells. This method may be easily modified to alter the degree of activation (e.g. by the use of osmotic pumps for delivery, or by repeat injections through implanted cannulas), in order to be best adapted to different paradigms of research (neurodegenerative disease, neuroprotection, learning, memory, plasticity, etc).
Collapse
Affiliation(s)
| | | | | | | | - Deric M. Park
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ron D. McKay
- Lieber Institute for Brain Development, Baltimore, Maryland, United States of America
| | - Andreas Androutsellis-Theotokis
- European Brain Research Institute, Rome, Italy
- Department of Medicine, University of Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
94
|
Lee HJ, Wu J, Chung J, Wrathall JR. SOX2 expression is upregulated in adult spinal cord after contusion injury in both oligodendrocyte lineage and ependymal cells. J Neurosci Res 2012; 91:196-210. [PMID: 23169458 DOI: 10.1002/jnr.23151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/13/2012] [Accepted: 09/07/2012] [Indexed: 01/28/2023]
Abstract
The upregulation of genes normally associated with development may occur in the adult after spinal cord injury (SCI). To test this, we performed real-time RT-PCR array analysis of mouse spinal cord mRNAs comparing embryonic day (E)14.5 spinal cord with intact adult and adult cord 1 week after a clinically relevant standardized contusion SCI. We found significantly increased expression of a large number of neural development- and stem cell-associated genes after SCI. These included Sox2 (sex determining region Y-box 2), a transcription factor that regulates self-renewal and potency of embryonic neural stem cells and is one of only a few key factors needed to induce pluripotency. In adult spinal cord of Sox2-EGFP mice, Sox2-EGFP was found mainly in the ependymal cells of the central canal. After SCI, both mRNA and protein levels of Sox2 were significantly increased at and near the injury site. By 1 day, Sox2 was upregulated in NG2(+) oligodendrocyte progenitor cells (OPC) in the spared white matter. By 3 days, Sox2-EGFP ependymal cells had increased proliferation and begun to form multiple layers and clusters of cells in the central lesion zone of the cord. Expression of Sox2 by NG2(+) cells had declined by 1 week, but increased numbers of other Sox2-expressing cells persisted for at least 4 weeks after SCI in both mouse and rat models. Thus, SCI upregulates many genes associated with development and neural stem cells, including the key transcription factor Sox2, which is expressed in a pool of cells that persists for weeks after SCI.
Collapse
Affiliation(s)
- Hyun Joon Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
95
|
Kang W, Hébert JM. A Sox2 BAC transgenic approach for targeting adult neural stem cells. PLoS One 2012; 7:e49038. [PMID: 23145058 PMCID: PMC3492187 DOI: 10.1371/journal.pone.0049038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/09/2012] [Indexed: 11/25/2022] Open
Abstract
The transcription factor gene Sox2 is expressed in embryonic neural stem/progenitor cells and previous evidence suggests that it is also expressed in adult neural stem cells. To target Sox2-expressing neural stem/progenitor cells in a temporal manner, we generated a bacterial artificial chromosome (BAC) transgenic mouse line, in which an inducible form of Cre, CreER™, is expressed under Sox2 regulatory elements. Inducible Cre activity in these mice was characterized using floxed reporters. During development, the Sox2-CreER transgenic mice show inducible Cre activity specifically in CNS stem/progenitor cells, making them a useful tool to regulate the expression of floxed genes temporally in embryonic neural stem/progenitor cells. In the adult, we examined the cell-specific expression of Sox2 and performed long-term lineage tracing. Four months after the transient induction of Cre activity, recombined GFAP+ stem-like cells and DCX+ neuroblasts were still abundant in the neurogenic regions including the subventricular zone (SVZ), rostral migratory stream (RMS), and subgranular zone (SGZ) of the dentate gyrus. These results provide definitive in vivo evidence that Sox2 is expressed in neural stem cells (NSC) in both the SVZ and SGZ that are capable of self-renewal and long-term neurogenesis. Therefore, Sox2-CreER mice should be useful in targeting floxed genes in adult neural stem cells.
Collapse
Affiliation(s)
| | - Jean M. Hébert
- Departments of Neuroscience and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
96
|
NANOG modulates stemness in human colorectal cancer. Oncogene 2012; 32:4397-405. [PMID: 23085761 DOI: 10.1038/onc.2012.461] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/23/2012] [Accepted: 08/16/2012] [Indexed: 11/08/2022]
Abstract
NANOG is a stem cell transcription factor that is essential for embryonic development, reprogramming normal adult cells and malignant transformation and progression. The nearly identical retrogene NANOGP8 is expressed in multiple cancers, but generally not in normal tissues and its function is not well defined. Our postulate is that NANOGP8 directly modulates the stemness of individual human colorectal carcinoma (CRC) cells. Stemness was measured in vitro as the spherogenicity of single CRC cells in serum-free medium and the size of the side population (SP) and in vivo as tumorigenicity and experimental metastatic potential in NOD/SCID mice. We found that 80% of clinical liver metastases express a NANOG with 75% of the positive metastases containing NANOGP8 transcripts. In all, 3-62% of single cells within six CRC lines form spheroids in serum-free medium in suspension. NANOGP8 is translated into protein. The relative expression of a NANOG gene increased 8- to 122-fold during spheroid formation, more than the increase in OCT4 or SOX2 transcripts with NANOGP8 the more prevalent family member. Short hairpin RNA (shRNA) to NANOG not only inhibits spherogenicity but also reduces expression of OCT4 and SOX2, the size of the SP and tumor growth in vivo. Inhibition of NANOG gene expression is associated with inhibition of proliferation and decreased phosphorylation of G2-related cell-cycle proteins. Overexpression of NANOGP8 rescues single-cell spherogenicity when NANOG gene expression is inhibited and increases the SP in CRC. Thus, NANOGP8 can substitute for NANOG in directly promoting stemness in CRC.
Collapse
|
97
|
Tzatzalos E, Smith SM, Doh ST, Hao H, Li Y, Wu A, Grumet M, Cai L. A cis-element in the Notch1 locus is involved in the regulation of gene expression in interneuron progenitors. Dev Biol 2012; 372:217-28. [PMID: 23022658 DOI: 10.1016/j.ydbio.2012.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 01/11/2023]
Abstract
Interneurons comprise approximately one third of the total cortical neurons in the mammalian cerebral cortex. Studies have revealed many details in the generation of this cell type. However, the mechanism that defines interneuron-lineage specific gene expression is not well understood. Gene regulatory elements, e.g., promoters, enhancers, and trans-acting factors, are essential for the proper control of gene expression. Here, we report that a novel evolutionarily conserved cis-element in the second intron of the Notch1 locus plays an important role in regulating gene expression in interneuron progenitors. The spatiotemporal activity of the cis-element in the developing central nervous system (CNS) was determined by both transient reporter expression in the developing chick and a transgenic mouse model. Its activity is well correlated with neurogenesis in both the chick and mouse and restricted to neural progenitor cells in the ganglionic eminence that are fated to differentiate into GABAergic interneurons of the neocortex. We further demonstrate that the cis-element activity requires the binding motif for trans-acting factors Gsh1/Barx2/Brn3. Deletion of this binding motif abolishes reporter gene expression. Together, these data provide new insights into the regulatory mechanisms of interneuron development in the vertebrate CNS.
Collapse
Affiliation(s)
- Evangeline Tzatzalos
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Grondona JM, Granados-Durán P, Fernández-Llebrez P, López-Ávalos MD. A simple method to obtain pure cultures of multiciliated ependymal cells from adult rodents. Histochem Cell Biol 2012; 139:205-20. [PMID: 22878526 DOI: 10.1007/s00418-012-1008-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
Abstract
Ependymal cells form an epithelium lining the ventricular cavities of the vertebrate brain. Numerous methods to obtain primary culture ependymal cells have been developed. Most of them use foetal or neonatal rat brain and the few that utilize adult brain hardly achieve purity. Here, we describe a simple and novel method to obtain a pure non-adherent ependymal cell culture from explants of the striatal and septal walls of the lateral ventricles. The combination of a low incubation temperature followed by a gentle enzymatic digestion allows the detachment of most of the ependymal cells from the ventricular wall in a period of 6 h. Along with ependymal cells, a low percentage (less than 6 %) of non-ependymal cells also detaches. However, they do not survive under two restrictive culture conditions: (1) a simple medium (alpha-MEM with glucose) without any supplement; and (2) a low density of 1 cell/µl. This purification method strategy does not require cell labelling with antibodies and cell sorting, which makes it a simpler and cheaper procedure than other methods previously described. After a period of 48 h, only ependymal cells survive such conditions, revealing the remarkable survival capacity of ependymal cells. Ependymal cells can be maintained in culture for up to 7-10 days, with the best survival rates obtained in Neurobasal supplemented with B27 among the tested media. After 7 days in culture, ependymal cells lose most of the cilia and therefore the mobility, while acquiring radial glial cell markers (GFAP, BLBP, GLAST). This interesting fact might indicate a reprogramming of the cell identity.
Collapse
Affiliation(s)
- J M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | | | | | | |
Collapse
|
99
|
Axial stem cells deriving both posterior neural and mesodermal tissues during gastrulation. Curr Opin Genet Dev 2012; 22:374-80. [DOI: 10.1016/j.gde.2012.03.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/15/2012] [Accepted: 03/27/2012] [Indexed: 11/18/2022]
|
100
|
Munoz JL, Greco SJ, Patel SA, Sherman LS, Bhatt S, Bhatt RS, Shrensel JA, Guan YZ, Xie G, Ye JH, Rameshwar P, Siegel A. Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs. Differentiation 2012; 84:214-22. [PMID: 22824626 DOI: 10.1016/j.diff.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/24/2012] [Accepted: 07/03/2012] [Indexed: 11/25/2022]
Abstract
Mesenchymal stromal cells (MSCs) show promise for treatment of a variety of neurological and other disorders. Cat has a high degree of linkage with the human genome and has been used as a model for analysis of neurological disorders such as stroke, Alzheimer's disease and motor disorders. The present study was designed to characterize bone marrow-derived MSCs from cats and to investigate the capacity to generate functional peptidergic neurons. MSCs were expanded with cells from the femurs of cats and then characterized by phenotype and function. Phenotypically, feline and human MSCs shared surface markers, and lacked hematopoietic markers, with similar morphology. As compared to a subset of human MSCs, feline MSCs showed no evidence of the major histocompatibility class II. Since the literature suggested Stro-1 as an indicator of pluripotency, we compared early and late passages feline MSCs and found its expression in >90% of the cells. However, the early passage cells showed two distinct populations of Stro-1-expressing cells. At passage 5, the MSCs were more homogeneous with regards to Stro-1 expression. The passage 5 MSCs differentiated to osteogenic and adipogenic cells, and generated neurons with electrophysiological properties. This correlated with the expression of mature neuronal markers with concomitant decrease in stem cell-associated genes. At day 12 induction, the cells were positive for MAP2, Neuronal Nuclei, tubulin βIII, Tau and synaptophysin. This correlated with electrophysiological maturity as presented by excitatory postsynaptic potentials (EPSPs). The findings indicate that the cat may constitute a promising biomedical model for evaluation of novel therapies such as stem cell therapy in such neurological disorders as Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- Jessian L Munoz
- Department of Medicine-Hematology-Oncology University of Medicine and Dentistry, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|