51
|
Molecular mechanism of size control in development and human diseases. Cell Res 2011; 21:715-29. [PMID: 21483452 DOI: 10.1038/cr.2011.63] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
How multicellular organisms control their size is a fundamental question that fascinated generations of biologists. In the past 10 years, tremendous progress has been made toward our understanding of the molecular mechanism underlying size control. Original studies from Drosophila showed that in addition to extrinsic nutritional and hormonal cues, intrinsic mechanisms also play important roles in the control of organ size during development. Several novel signaling pathways such as insulin and Hippo-LATS signaling pathways have been identified that control organ size by regulating cell size and/or cell number through modulation of cell growth, cell division, and cell death. Later studies using mammalian cell and mouse models also demonstrated that the signaling pathways identified in flies are also conserved in mammals. Significantly, recent studies showed that dysregulation of size control plays important roles in the development of many human diseases such as cancer, diabetes, and hypertrophy.
Collapse
|
52
|
Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 2011; 143:1161-73. [PMID: 21183078 PMCID: PMC3087489 DOI: 10.1016/j.cell.2010.12.007] [Citation(s) in RCA: 296] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 11/17/2010] [Accepted: 12/07/2010] [Indexed: 11/28/2022]
Abstract
The systemic regulation of stem cells ensures that they meet the needs of the organism during growth and in response to injury. A key point of regulation is the decision between quiescence and proliferation. During development, Drosophila neural stem cells (neuroblasts) transit through a period of quiescence separating distinct embryonic and postembryonic phases of proliferation. It is known that neuroblasts exit quiescence via a hitherto unknown pathway in response to a nutrition-dependent signal from the fat body. We have identified a population of glial cells that produce insulin/IGF-like peptides in response to nutrition, and we show that the insulin/IGF receptor pathway is necessary for neuroblasts to exit quiescence. The forced expression of insulin/IGF-like peptides in glia, or activation of PI3K/Akt signaling in neuroblasts, can drive neuroblast growth and proliferation in the absence of dietary protein and thus uncouple neuroblasts from systemic control.
Collapse
Affiliation(s)
- James M Chell
- The Gurdon Institute and Department of Physiology, Development, and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
53
|
Bernstein RM. The big and small of it: How body size evolves. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 143 Suppl 51:46-62. [DOI: 10.1002/ajpa.21440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
54
|
Przybylski C, Jünger MA, Aubertin J, Radvanyi F, Aebersold R, Pflieger D. Quantitative Analysis of Protein Complex Constituents and Their Phosphorylation States on a LTQ-Orbitrap Instrument. J Proteome Res 2010; 9:5118-32. [DOI: 10.1021/pr1003888] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Cédric Przybylski
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, CNRS UMR 8587, Laboratoire d’Analyse et de Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, Institute for Molecular Systems Biology, ETH, Zürich, Switzerland and Faculty of Science, University of Zurich, Zurich, Switzerland, and Équipe Oncologie Moléculaire, UMR 144 - CNRS, Institut Curie, 75248 Paris, France
| | - Martin A. Jünger
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, CNRS UMR 8587, Laboratoire d’Analyse et de Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, Institute for Molecular Systems Biology, ETH, Zürich, Switzerland and Faculty of Science, University of Zurich, Zurich, Switzerland, and Équipe Oncologie Moléculaire, UMR 144 - CNRS, Institut Curie, 75248 Paris, France
| | - Johannes Aubertin
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, CNRS UMR 8587, Laboratoire d’Analyse et de Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, Institute for Molecular Systems Biology, ETH, Zürich, Switzerland and Faculty of Science, University of Zurich, Zurich, Switzerland, and Équipe Oncologie Moléculaire, UMR 144 - CNRS, Institut Curie, 75248 Paris, France
| | - François Radvanyi
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, CNRS UMR 8587, Laboratoire d’Analyse et de Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, Institute for Molecular Systems Biology, ETH, Zürich, Switzerland and Faculty of Science, University of Zurich, Zurich, Switzerland, and Équipe Oncologie Moléculaire, UMR 144 - CNRS, Institut Curie, 75248 Paris, France
| | - Ruedi Aebersold
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, CNRS UMR 8587, Laboratoire d’Analyse et de Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, Institute for Molecular Systems Biology, ETH, Zürich, Switzerland and Faculty of Science, University of Zurich, Zurich, Switzerland, and Équipe Oncologie Moléculaire, UMR 144 - CNRS, Institut Curie, 75248 Paris, France
| | - Delphine Pflieger
- Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, CNRS UMR 8587, Laboratoire d’Analyse et de Modélisation pour la Biologie et l’Environnement, Université d’Evry-Val-d’Essonne, 91025 Evry, France, Institute for Molecular Systems Biology, ETH, Zürich, Switzerland and Faculty of Science, University of Zurich, Zurich, Switzerland, and Équipe Oncologie Moléculaire, UMR 144 - CNRS, Institut Curie, 75248 Paris, France
| |
Collapse
|
55
|
Roberts AF, Gumienny TL, Gleason RJ, Wang H, Padgett RW. Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans. BMC DEVELOPMENTAL BIOLOGY 2010; 10:61. [PMID: 20529267 PMCID: PMC2894779 DOI: 10.1186/1471-213x-10-61] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 06/07/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) are members of the conserved transforming growth factor beta (TGFbeta superfamily, and play many developmental and homeostatic roles. In C. elegans, a BMP-like pathway, the DBL-1 pathway, controls body size and is involved in innate immunity. How these functions are carried out, though, and what most of the downstream targets of this pathway are, remain unknown. RESULTS We performed a microarray analysis and compared expression profiles of animals lacking the SMA-6 DBL-1 receptor, which decreases pathway signaling, with animals that overexpress DBL-1 ligand, which increases pathway signaling. Consistent with a role for DBL-1 in control of body size, we find positive regulation by DBL-1 of genes involved in physical structure, protein synthesis and degradation, and metabolism. However, cell cycle genes were mostly absent from our results. We also identified genes in a hedgehog-related pathway, which may comprise a secondary signaling pathway downstream of DBL-1 that controls body size. In addition, DBL-1 signaling up-regulates pro-innate immunity genes. We identified a reporter for DBL-1 signaling, which is normally repressed but is up-regulated when DBL-1 signaling is reduced. CONCLUSIONS Our results indicate that body size in C. elegans is controlled in part by regulation of metabolic processes as well as protein synthesis and degradation. This supports the growing body of evidence that suggests cell size is linked to metabolism. Furthermore, this study discovered a possible role for hedgehog-related pathways in transmitting the BMP-like signal from the hypodermis, where the core DBL-1 pathway components are required, to other tissues in the animal. We also identified the up-regulation of genes involved in innate immunity, clarifying the role of DBL-1 in innate immunity. One of the highly regulated genes is expressed at very low levels in wild-type animals, but is strongly up-regulated in Sma/Mab mutants, making it a useful reporter for DBL-1/BMP-like signaling in C. elegans.
Collapse
Affiliation(s)
- Andrew F Roberts
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
- Current Address: International Life Sciences Institute (ILSI) Research Foundation, Washington D.C. 20005, USA
| | - Tina L Gumienny
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
- Current Address: Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Ryan J Gleason
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Huang Wang
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Richard W Padgett
- Waksman Institute, Department of Molecular Biology and Biochemistry, Cancer Institute of New Jersey, Rutgers University, Piscataway, NJ 08854-8020, USA
| |
Collapse
|
56
|
Hahn K, Miranda M, Francis VA, Vendrell J, Zorzano A, Teleman AA. PP2A regulatory subunit PP2A-B' counteracts S6K phosphorylation. Cell Metab 2010; 11:438-44. [PMID: 20444422 DOI: 10.1016/j.cmet.2010.03.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 02/03/2010] [Accepted: 03/24/2010] [Indexed: 12/31/2022]
Abstract
The insulin/TOR signaling pathway plays a crucial role in animal homeostasis, sensing nutrient status to regulate organismal growth and metabolism. We identify here the Drosophila B' regulatory subunit of PP2A (PP2A-B') as a novel, conserved component of the insulin pathway that specifically targets the PP2A holoenzyme to dephosphorylate S6K. PP2A-B' knockout flies have elevated S6K phosphorylation and exhibit phenotypes typical of elevated insulin signaling such as reduced total body triglycerides and reduced longevity. We show that PP2A-B' interacts with S6K both physically and genetically. The human homolog of PP2A-B', PPP2R5C, also counteracts S6K1 phosphorylation, indicating a conserved mechanism in mammals. Since S6K affects development of cancer and metabolic disease, our data identify PPP2R5C as a novel factor of potential medical relevance.
Collapse
Affiliation(s)
- Katrin Hahn
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Loeb MJ. Factors affecting proliferation and differentiation of Lepidopteran midgut stem cells. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:1-16. [PMID: 20422716 DOI: 10.1002/arch.20349] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Midgut stem cells of last instar larvae and pupae of Heliothis virescens, Lymantria dispar and several other Lepidopteran species have been cultured in vitro and have been induced to proliferate using low titers of ecdysteroids and the 77-Kda peptide fragment, alpha-arylphorin, isolated and identified from pupal fat body tissue. The insulin-related hormone, Bombyxin, also induced mitosis in cultured midgut stem cells; it appeared to be fast-acting and quickly inactivated, while alpha-arylphorin was slower to act and had a longer lasting effect in vitro, indicating different functions for these proliferation agents. Changes in Calcium ion concentration within or outside the cells discretely affected stem cell differentiation, indicating a role for second messenger participation in peptide regulation of this process. Four different peptides (MDFs 1-4) that induced midgut stem cells to differentiate to mature midgut cell types in vitro were isolated and characterized from conditioned media and hemolymph of H. virescens and L. dispar. However, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and all-trans retinoic acid (RA) from vertebrate sources induced differentiation to non-midgut cell types as well. MDF1 was located in basal areas of columnar cells of midgut epithelium, although MDF2 was observed in all of the cytoplasm of columnar cells and in droplets of antibody positive material in the midgut lumen, suggesting a digestive function as well for this peptide. Anti-MDF-3 stained the central areas of cultured midgut columnar cells and the bases of columnar cells of midgut epithelium in vivo. Midgut secretory cells stained with anti-MDF-4; streams of MFD-4-positive material were observed extending from secretory cells facing the epithelial lumen, and as a layer on the hemolymph-facing side, suggesting an endocrine or paracrine function for this or an immunologically similar peptide.
Collapse
Affiliation(s)
- Marcia J Loeb
- U. S. Department of Agriculture, Insect Biocontrol Laboratory, Beltsville, Maryland, USA.
| |
Collapse
|
58
|
Abstract
The insulin signalling pathway is highly conserved from mammals to Drosophila. Insulin signalling in the fly, as in mammals, regulates a number of physiological functions, including carbohydrate and lipid metabolism, tissue growth and longevity. In the present review, I discuss the molecular mechanisms by which insulin signalling regulates metabolism in Drosophila, comparing and contrasting with the mammalian system. I discuss both the intracellular signalling network, as well as the communication between organs in the fly.
Collapse
|
59
|
Kent CF, Daskalchuk T, Cook L, Sokolowski MB, Greenspan RJ. The Drosophila foraging gene mediates adult plasticity and gene-environment interactions in behaviour, metabolites, and gene expression in response to food deprivation. PLoS Genet 2009; 5:e1000609. [PMID: 19696884 PMCID: PMC2720453 DOI: 10.1371/journal.pgen.1000609] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 07/20/2009] [Indexed: 12/19/2022] Open
Abstract
Nutrition is known to interact with genotype in human metabolic syndromes, obesity, and diabetes, and also in Drosophila metabolism. Plasticity in metabolic responses, such as changes in body fat or blood sugar in response to changes in dietary alterations, may also be affected by genotype. Here we show that variants of the foraging (for) gene in Drosophila melanogaster affect the response to food deprivation in a large suite of adult phenotypes by measuring gene by environment interactions (GEI) in a suite of food-related traits. for affects body fat, carbohydrates, food-leaving behavior, metabolite, and gene expression levels in response to food deprivation. This results in broad patterns of metabolic, genomic, and behavioral gene by environment interactions (GEI), in part by interaction with the insulin signaling pathway. Our results show that a single gene that varies in nature can have far reaching effects on behavior and metabolism by acting through multiple other genes and pathways.
Collapse
Affiliation(s)
- Clement F. Kent
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
| | - Tim Daskalchuk
- Phenomenome Discoveries, Saskatoon, Saskatchewan, Canada
| | - Lisa Cook
- Phenomenome Discoveries, Saskatoon, Saskatchewan, Canada
| | - Marla B. Sokolowski
- Department of Biology, University of Toronto Mississauga, Ontario, Canada
- * E-mail:
| | - Ralph J. Greenspan
- The Neurosciences Institute, San Diego, California, United States of America
| |
Collapse
|
60
|
Control of metabolic homeostasis by stress signaling is mediated by the lipocalin NLaz. PLoS Genet 2009; 5:e1000460. [PMID: 19390610 PMCID: PMC2667264 DOI: 10.1371/journal.pgen.1000460] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/25/2009] [Indexed: 11/19/2022] Open
Abstract
Metabolic homeostasis in metazoans is regulated by endocrine control of insulin/IGF signaling (IIS) activity. Stress and inflammatory signaling pathways--such as Jun-N-terminal Kinase (JNK) signaling--repress IIS, curtailing anabolic processes to promote stress tolerance and extend lifespan. While this interaction constitutes an adaptive response that allows managing energy resources under stress conditions, excessive JNK activity in adipose tissue of vertebrates has been found to cause insulin resistance, promoting type II diabetes. Thus, the interaction between JNK and IIS has to be tightly regulated to ensure proper metabolic adaptation to environmental challenges. Here, we identify a new regulatory mechanism by which JNK influences metabolism systemically. We show that JNK signaling is required for metabolic homeostasis in flies and that this function is mediated by the Drosophila Lipocalin family member Neural Lazarillo (NLaz), a homologue of vertebrate Apolipoprotein D (ApoD) and Retinol Binding Protein 4 (RBP4). Lipocalins are emerging as central regulators of peripheral insulin sensitivity and have been implicated in metabolic diseases. NLaz is transcriptionally regulated by JNK signaling and is required for JNK-mediated stress and starvation tolerance. Loss of NLaz function reduces stress resistance and lifespan, while its over-expression represses growth, promotes stress tolerance and extends lifespan--phenotypes that are consistent with reduced IIS activity. Accordingly, we find that NLaz represses IIS activity in larvae and adult flies. Our results show that JNK-NLaz signaling antagonizes IIS and is critical for metabolic adaptation of the organism to environmental challenges. The JNK pathway and Lipocalins are structurally and functionally conserved, suggesting that similar interactions represent an evolutionarily conserved system for the control of metabolic homeostasis.
Collapse
|
61
|
Mito T, Noji S. The Two-Spotted Cricket Gryllus bimaculatus: An Emerging Model for Developmental and Regeneration Studies. ACTA ACUST UNITED AC 2008; 2008:pdb.emo110. [PMID: 21356736 DOI: 10.1101/pdb.emo110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTIONThe two-spotted cricket Gryllus bimaculatus De Geer (Orthoptera: Gryllidae), which is one of the most abundant cricket species, inhabits the tropical and subtropical regions of Asia, Africa, and Europe. G. bimaculatus can be easily bred in the laboratory and has been widely used to study insect physiology and neurobiology. Recently, this species has become established as a model animal for studies on molecular mechanisms of development and regeneration because its mode of development is more typical of arthropods than that of Drosophila melanogaster, and the cricket is probably ancestral for this phylum. Moreover, the cricket is a hemimetabolous insect, in which nymphs possess functional legs with a remarkable capacity for regeneration after damage. Because RNA interference (RNAi) works effectively in this species, the elucidation of mechanisms of development and regeneration has been expedited through loss-of-function analyses of genes. Furthermore, because RNAi-based techniques for analyzing gene functions can be combined with assay systems in other research areas (such as behavioral analyses), G. bimaculatus is expected to become a model organism in various fields of biology. Thus, it may be possible to establish the cricket as a simple model system for exploring more complex organisms such as humans.
Collapse
Affiliation(s)
- Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Tokushima 770-8506, Japan
| | | |
Collapse
|
62
|
Oviedo NJ, Pearson BJ, Levin M, Sánchez Alvarado A. Planarian PTEN homologs regulate stem cells and regeneration through TOR signaling. Dis Model Mech 2008; 1:131-43; discussion 141. [PMID: 19048075 DOI: 10.1242/dmm.000117] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 03/29/2008] [Indexed: 12/20/2022] Open
Abstract
We have identified two genes, Smed-PTEN-1 and Smed-PTEN-2, capable of regulating stem cell function in the planarian Schmidtea mediterranea. Both genes encode proteins homologous to the mammalian tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Inactivation of Smed-PTEN-1 and -2 by RNA interference (RNAi) in planarians disrupts regeneration, and leads to abnormal outgrowths in both cut and uncut animals followed soon after by death (lysis). The resulting phenotype is characterized by hyperproliferation of neoblasts (planarian stem cells), tissue disorganization and a significant accumulation of postmitotic cells with impaired differentiation capacity. Further analyses revealed that rapamycin selectively prevented such accumulation without affecting the normal neoblast proliferation associated with physiological turnover and regeneration. In animals in which PTEN function is abrogated, we also detected a significant increase in the number of cells expressing the planarian Akt gene homolog (Smed-Akt). However, functional abrogation of Smed-Akt in Smed-PTEN RNAi-treated animals does not prevent cell overproliferation and lethality, indicating that functional abrogation of Smed-PTEN is sufficient to induce abnormal outgrowths. Altogether, our data reveal roles for PTEN in the regulation of planarian stem cells that are strikingly conserved to mammalian models. In addition, our results implicate this protein in the control of stem cell maintenance during the regeneration of complex structures in planarians.
Collapse
Affiliation(s)
- Néstor J Oviedo
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
63
|
Regulation of neurogenesis and epidermal growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in Drosophila. Genetics 2008; 179:843-53. [PMID: 18505882 DOI: 10.1534/genetics.107.083097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Determining how growth and differentiation are coordinated is key to understanding normal development, as well as disease states such as cancer, where that control is lost. We have previously shown that growth and neuronal differentiation are coordinated by the insulin receptor/target of rapamycin (TOR) kinase (InR/TOR) pathway. Here we show that the control of growth and differentiation diverge downstream of TOR. TOR regulates growth by controlling the activity of S6 kinase (S6K) and eIF4E. Loss of s6k delays differentiation, and is epistatic to the loss of tsc2, indicating that S6K acts downstream or in parallel to TOR in differentiation as in growth. However, loss of eIF4E inhibits growth but does not affect the timing of differentiation. We also show, for the first time in Drosophila, that there is crosstalk between the InR/TOR pathway and epidermal growth factor receptor (EGFR) signaling. InR/TOR signaling regulates the expression of several EGFR pathway components including pointedP2 (pntP2). In addition, reduction of EGFR signaling levels phenocopies inhibition of the InR/TOR pathway in the regulation of differentiation. Together these data suggest that InR/TOR signaling regulates the timing of differentiation through modulation of EGFR target genes in developing photoreceptors.
Collapse
|
64
|
Gluderer S, Oldham S, Rintelen F, Sulzer A, Schütt C, Wu X, Raftery LA, Hafen E, Stocker H. Bunched, the Drosophila homolog of the mammalian tumor suppressor TSC-22, promotes cellular growth. BMC DEVELOPMENTAL BIOLOGY 2008; 8:10. [PMID: 18226226 PMCID: PMC2253523 DOI: 10.1186/1471-213x-8-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/28/2008] [Indexed: 01/21/2023]
Abstract
BACKGROUND Transforming Growth Factor-beta1 stimulated clone-22 (TSC-22) is assumed to act as a negative growth regulator and tumor suppressor. TSC-22 belongs to a family of putative transcription factors encoded by four distinct loci in mammals. Possible redundancy among the members of the TSC-22/Dip/Bun protein family complicates a genetic analysis. In Drosophila, all proteins homologous to the TSC-22/Dip/Bun family members are derived from a single locus called bunched (bun). RESULTS We have identified bun in an unbiased genetic screen for growth regulators in Drosophila. Rather unexpectedly, bun mutations result in a growth deficit. Under standard conditions, only the long protein isoform BunA - but not the short isoforms BunB and BunC - is essential and affects growth. Whereas reducing bunA function diminishes cell number and cell size, overexpression of the short isoforms BunB and BunC antagonizes bunA function. CONCLUSION Our findings establish a growth-promoting function of Drosophila BunA. Since the published studies on mammalian systems have largely neglected the long TSC-22 protein version, we hypothesize that the long TSC-22 protein is a functional homolog of BunA in growth regulation, and that it is antagonized by the short TSC-22 protein.
Collapse
Affiliation(s)
- Silvia Gluderer
- Institute of Molecular Systems Biology, ETH Zürich, Wolfgang-Pauli-Str, 16, 8093 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hsu HJ, LaFever L, Drummond-Barbosa D. Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila. Dev Biol 2007; 313:700-12. [PMID: 18068153 DOI: 10.1016/j.ydbio.2007.11.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 10/31/2007] [Accepted: 11/02/2007] [Indexed: 01/08/2023]
Abstract
The external environment influences stem cells, but this process is poorly understood. Our previous work showed that germline stem cells (GSCs) respond to diet via neural insulin-like peptides (DILPs) that act directly on the germ line to upregulate stem cell division and cyst growth under a protein-rich diet in Drosophila. Here, we report that DILPs specifically control the G2 phase of the GSC cell cycle via phosphoinositide-3 kinase (PI3K) and dFOXO, and that a separate diet mediator regulates the G1 phase. Furthermore, GSC tumors, which escape the normal stem cell regulatory microenvironment, or niche, still respond to diet via both mechanisms, indicating that niche signals are not required for GSCs to sense or respond to diet. Our results document the effects of diet and insulin-like signals on the cell cycle of stem cells within an intact organism and demonstrate that the response to diet requires multiple signals. Moreover, the retained ability of GSC tumors to respond to diet parallels the long known connections between diet, insulin signaling, and cancer risk in humans.
Collapse
Affiliation(s)
- Hwei-Jan Hsu
- Department of Cell and Developmental Biology, 4120B Medical Research Building III, Vanderbilt University Medical Center, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | |
Collapse
|
66
|
Davé V, Wert SE, Tanner T, Thitoff AR, Loudy DE, Whitsett JA. Conditional deletion of Pten causes bronchiolar hyperplasia. Am J Respir Cell Mol Biol 2007; 38:337-45. [PMID: 17921358 DOI: 10.1165/rcmb.2007-0182oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a lipid phosphatase that regulates multiple cellular processes including cell polarity, migration, proliferation, and carcinogenesis. In this work, we demonstrate that conditional deletion of Pten (Pten(Delta/Delta)) in the respiratory epithelial cells of the developing mouse lung caused epithelial cell proliferation and hyperplasia as early as 4 to 6 weeks of age. While bronchiolar cell differentiation was normal, as indicated by beta-tubulin and FOXJ1 expression in ciliated cells and by CCSP expression in nonciliated cells, cell proliferation (detected by expression of Ki-67, phospho-histone-H3, and cyclin D1) was increased and associated with activation of the AKT/mTOR survival pathway. Deletion of Pten caused papillary epithelial hyperplasia characterized by a hypercellular epithelium lining papillae with fibrovascular cores that protruded into the airway lumens. Cell polarity, as assessed by subcellular localization of cadherin, beta-catenin, and zonula occludens-1, was unaltered. PTEN is required for regulation of epithelial cell proliferation in the lung and for the maintenance of the normal simple columnar epithelium characteristics of bronchi and bronchioles.
Collapse
Affiliation(s)
- Vrushank Davé
- Division of Pulmonary Biology, 4403, Cincinnati Children's Hospital Research Foundation, University of Cincinnati Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Riehle MA, Brown JM. Characterization of phosphatase and tensin homolog expression in the mosquito Aedes aegypti: six splice variants with developmental and tissue specificity. INSECT MOLECULAR BIOLOGY 2007; 16:277-86. [PMID: 17433073 DOI: 10.1111/j.1365-2583.2007.00724.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phosphatase and tensin homologue (PTEN), an inhibitor of insulin signalling, was characterized in Aedes aegypti. Surprisingly, six splice variants were identified: three with alternative terminal exons (AaegPTEN2 : 3 : 6) and three formed by intron retention (AaegPTEN1 : 4 : 5). All variants encoded active phosphatase domains. Variants with alternative terminal exons also encoded C2 and COOH-domains, and AaegPTEN6 encoded a PDZ binding motif. These three variants also had unique expression patterns. AaegPTEN2 was expressed primarily in the ovary. AaegPTEN3 was predominant in heads and midguts, and throughout development, except early embryogenesis. AaegPTEN6 was expressed in fat body, ovaries, and throughout development. Intron retention variants were weakly expressed in most samples. These expression patterns suggest that AaegPTEN variants play unique roles in regulating insulin's pleiotropic effects.
Collapse
|
68
|
Mirth CK, Riddiford LM. Size assessment and growth control: how adult size is determined in insects. Bioessays 2007; 29:344-55. [PMID: 17373657 DOI: 10.1002/bies.20552] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Size control depends on both the regulation of growth rate and the control over when to stop growing. Studies of Drosophila melanogaster have shown that insulin and Target of Rapamycin (TOR) pathways play principal roles in controlling nutrition-dependent growth rates. A TOR-mediated nutrient sensor in the fat body detects nutrient availability, and regulates insulin signaling in peripheral tissues, which in turn controls larval growth rates. After larvae initiate metamorphosis, growth stops. For growth to stop at the correct time, larvae need to surpass a critical weight. Recently, it was found that the insulin-dependent growth of the prothoracic gland is involved in assessing when critical weight has been reached. Furthermore, mutations in DHR4, a repressor of ecdysone signaling, reduce critical weight and adult size. Thus, the mechanisms that control growth rates converge on those assessing size to ensure that the larvae attain the appropriate size at metamorphosis.
Collapse
|
69
|
Sugiyama S, Moritoh S, Furukawa Y, Mizuno T, Lim YM, Tsuda L, Nishida Y. Involvement of the mitochondrial protein translocator component tim50 in growth, cell proliferation and the modulation of respiration in Drosophila. Genetics 2007; 176:927-36. [PMID: 17435247 PMCID: PMC1894619 DOI: 10.1534/genetics.107.072074] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Allelic mutants exhibiting growth defects in Drosophila were isolated. Molecular cloning identified the responsible gene as a budding yeast Tim50 ortholog, and thus it was named tiny tim 50 (ttm50). The weak allele (ttm50(Gp99)) produced small flies due to reduced cell size and number, and growth terminated at the larval stage in the strong alleles (ttm50(IE1) and ttm50(IE2)). Twin-spot analysis showed fewer cells in ttm50(Gp99) clones, whereas ttm50(IE1) clones did not proliferate, suggesting that the gene has an essential cellular function. Tim50 is known to maintain mitochondrial membrane potential (MMP) while facilitating inner-membrane protein transport. We found that tagged Ttm50 also localized to mitochondria and that mitochondrial morphology and MMP were affected in mutants, indicating that mitochondrial dysfunction causes the developmental phenotype. Conversely, ttm50 overexpression increased MMP and apoptosis. Co-expression of p35 suppressed this apoptosis, resulting in cell overproliferation. Interestingly, ttm50 transcription was tissue specific, corresponding to elevated MMP in the larval midgut, which was decreased in the mutant. The correlation of ttm50 expression levels with differences in MMP match its proposed role in mitochondrial permeability barrier maintenance. Thus a mitochondrial protein translocase component can play active roles in regulating metabolic levels, possibly for modulation of physiological function or growth in development.
Collapse
Affiliation(s)
- Shin Sugiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Satoru Moritoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Yoshimi Furukawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Tomohiko Mizuno
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Young-Mi Lim
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Leo Tsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
| | - Yasuyoshi Nishida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan and Department of Mechanism of Aging, National Institute for Longevity Sciences, Morioka-Cho, Obu City, Aichi 474-8522, Japan
- Corresponding author: Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan. E-mail:
| |
Collapse
|
70
|
Song Z, Saghafi N, Gokhale V, Brabant M, Meuillet EJ. Regulation of the activity of the tumor suppressor PTEN by thioredoxin in Drosophila melanogaster. Exp Cell Res 2007; 313:1161-71. [PMID: 17316609 PMCID: PMC3232035 DOI: 10.1016/j.yexcr.2007.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 12/17/2006] [Accepted: 01/04/2007] [Indexed: 12/29/2022]
Abstract
Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies.
Collapse
Affiliation(s)
- Zuohe Song
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Blvd., Tucson, AZ. 85724, USA
- Nutritional Sciences Department, University of Arizona, 1177 E. 4th Street, Tucson, AZ. 85721, USA
| | - Negin Saghafi
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Blvd., Tucson, AZ. 85724, USA
| | - Vijay Gokhale
- Arizona Cancer Center, Molecular Modeling Core Facility, Tucson, AZ 85724, USA
| | - Marc Brabant
- Arizona Cancer Center, Model Organisms Shared Service, Tucson, AZ 85724, USA
| | - Emmanuelle J. Meuillet
- Arizona Cancer Center, University of Arizona, 1515 N. Campbell Blvd., Tucson, AZ. 85724, USA
- Nutritional Sciences Department, University of Arizona, 1177 E. 4th Street, Tucson, AZ. 85721, USA
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
71
|
Abstract
Body size affects important fitness variables such as mate selection, predation and tolerance to heat, cold and starvation. It is therefore subject to intense evolutionary selection. Recent genetic and physiological studies in insects are providing predictions as to which gene systems are likely to be targeted in selecting for changes in body size. These studies highlight genes and pathways that also control size in mammals: insects use insulin-like growth factor (IGF) and Target of rapamycin (TOR) kinase signalling to coordinate nutrition with cell growth, and steroid and neuropeptide hormones to terminate feeding after a genetically encoded target weight is achieved. However, we still understand little about how size is actually sensed, or how organ-intrinsic size controls interface with whole-body physiology.
Collapse
Affiliation(s)
- Bruce A Edgar
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, B-2152, Seattle, Washington 98109, USA.
| |
Collapse
|
72
|
Wheeler DE, Buck N, Evans JD. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. INSECT MOLECULAR BIOLOGY 2006; 15:597-602. [PMID: 17069635 PMCID: PMC1761130 DOI: 10.1111/j.1365-2583.2006.00681.x] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Female honeybees have two castes, queens and workers. Developmental fate is determined by larval diet. Coding sequences made available through the Honey Bee Genome Sequencing Consortium allow for a pathway-based approach to understanding caste determination. We examined the expression of several genes of the insulin signalling pathway, which is central to regulation of growth based on nutrition. We found one insulin-like peptide expressed at very high levels in queen but not worker larvae. Also, the gene for an insulin receptor was expressed at higher levels in queen larvae during the 2nd larval instar. These results demonstrate that the insulin pathway is a compelling candidate for pursing the relationship between diet and downstream signals involved in caste determination and differentiation.
Collapse
Affiliation(s)
- D E Wheeler
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| | | | | |
Collapse
|
73
|
Trejo JL, Carro E, Burks DJ. Experimental models for understanding the role of insulin-like growth factor-I and its receptor during development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 567:27-53. [PMID: 16370135 DOI: 10.1007/0-387-26274-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
74
|
Reddy KL, Rovani MK, Wohlwill A, Katzen A, Storti RV. The Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth, mitosis and endoreplication. Dev Biol 2006; 289:100-14. [PMID: 16313897 DOI: 10.1016/j.ydbio.2005.10.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 09/30/2005] [Accepted: 10/17/2005] [Indexed: 12/17/2022]
Abstract
PDP1 is a basic leucine zipper (bZip) transcription factor that is expressed at high levels in the muscle, epidermis, gut and fat body of the developing Drosophila embryo. We have identified three mutant alleles of Pdp1, each having a similar phenotype. Here, we describe in detail the Pdp1 mutant allele, Pdp1(p205), which is null for both Pdp1 RNA and protein. Interestingly, homozygous Pdp1(p205) embryos develop normally, hatch and become viable larvae. Analyses of Pdp1 null mutant embryos reveal that the overall muscle pattern is normal as is the patterning of the gut and fat body. Pdp1(p205) larvae also appear to have normal muscle and gut function and respond to ecdysone. These larvae, however, are severely growth delayed and arrested. Furthermore, although Pdp1 null larvae live a normal life span, they do not form pupae and thus do not give rise to eclosed flies. The stunted growth of Pdp1(p205) larvae is accompanied by defects in mitosis and endoreplication similar to that associated with nutritional deprivation. The cellular defects resulting from the Pdp1(p205) mutation are not cell autonomous. Moreover, PDP1 expression is sensitive to nutritional conditions, suggesting a link between nutrition, PDP1 isotype expression and growth. These results indicate that Pdp1 has a critical role in coordinating growth and DNA replication.
Collapse
Affiliation(s)
- Karen L Reddy
- Department of Biochemistry and Molecular Genetics M/C 669, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | |
Collapse
|
75
|
Mirth C, Truman JW, Riddiford LM. The Role of the Prothoracic Gland in Determining Critical Weight for Metamorphosis in Drosophila melanogaster. Curr Biol 2005; 15:1796-807. [PMID: 16182527 DOI: 10.1016/j.cub.2005.09.017] [Citation(s) in RCA: 346] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 09/11/2005] [Accepted: 09/12/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND The timely onset of metamorphosis in holometabolous insects depends on their reaching the appropriate size known as critical weight. Once critical weight is reached, juvenile hormone (JH) titers decline, resulting in the release of prothoracicotropic hormone (PTTH) at the next photoperiod gate and thereby inducing metamorphosis. How individuals determine when they have reached critical weight is unknown. We present evidence that in Drosophila, a component of the ring gland, the prothoracic gland (PG), assesses growth to determine when critical weight has been achieved. RESULTS We used the GAL4/UAS system to suppress or enhance growth by overexpressing PTEN or Dp110, respectively, in various components of the ring gland. Suppression of the growth of the PG and CA, but not of the CA alone, produced larger-than-normal larvae and adults. Suppression of only PG growth resulted in nonviable larvae, but larvae with enlarged PGs produced significantly smaller larvae and adults. Rearing larvae with enlarged PGs under constant light enhanced these effects, suggesting a role for photoperiod-gated PTTH secretion. These larvae are smaller, in part as a result of their repressed growth rates, a phenotype that could be rescued through nutritional supplementation (yeast paste). Most importantly, larvae with enlarged PGs overestimated size so that they initiated metamorphosis before surpassing the minimal viable weight necessary to survive pupation. CONCLUSIONS The PG acts as a size-assessing tissue by using insulin-dependent PG cell growth to determine when critical weight has been reached.
Collapse
Affiliation(s)
- Christen Mirth
- Department of Biology, Box 351800, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
76
|
Wittwer F, Jaquenoud M, Brogiolo W, Zarske M, Wüstemann P, Fernandez R, Stocker H, Wymann MP, Hafen E. Susi, a negative regulator of Drosophila PI3-kinase. Dev Cell 2005; 8:817-27. [PMID: 15935772 DOI: 10.1016/j.devcel.2005.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 04/06/2005] [Accepted: 04/12/2005] [Indexed: 12/22/2022]
Abstract
The Phosphatidylinositol-3 kinase/Protein Kinase B (PI3K/PKB) signaling pathway controls growth, metabolism, and lifespan in animals, and deregulation of its activity is associated with diabetes and cancer in humans. Here, we describe Susi, a coiled-coil domain protein that acts as a negative regulator of insulin signaling in Drosophila. Whereas loss of Susi function increases body size, overexpression of Susi reduces growth. We provide genetic evidence that Susi negatively regulates dPI3K activity. Susi directly binds to dP60, the regulatory subunit of dPI3K. Since Susi has no overt similarity to known inhibitors of PI3K/PKB signaling, it defines a novel mechanism by which this signaling cascade is kept in check. The fact that Susi is expressed in a circadian rhythm, with highest levels during the night, suggests that Susi attenuates insulin signaling during the fasting period.
Collapse
Affiliation(s)
- Franz Wittwer
- Zoologisches Institut, Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Tu MP, Yin CM, Tatar M. Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster. Gen Comp Endocrinol 2005; 142:347-56. [PMID: 15935161 DOI: 10.1016/j.ygcen.2005.02.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 02/01/2005] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
Juvenile hormone (JH) is a key endocrine regulator of insect metamorphosis, reproduction, and aging. The synthesis of JH is regulated by neuropeptides and biogenic amines, but the molecular and cellular basis of this control remains largely unknown. Genetic analysis of JH synthesis in Drosophila melanogaster mutant for insulin signaling may provide new and powerful insights. Mutants of the insulin receptor (InR) are slow to develop, small, infertile, and long-lived. We previously reported that mutants of InR had reduced JH synthesis as young adults, and that normal longevity and vitellogenesis were restored by topical application of a JH analog [Science 292 (2001) 107]. Here, we describe the 10-day adult age course of JH synthesis from isolated corpus allatum (CA) of InR and of chico, the insulin receptor substrate homolog. JH synthesis increased in wildtype flies to a maximum of 30fmol/gland/h at day 10. In contrast, homozygous InR mutants produced no more than 3 fmol/gland/h JH within the first 5 days, and only 7 fmol/gland/h at day 10. InR mutation disproportionately reduced the synthesis of JH III-bisepoxide, the major JH subtype of the fly. Mutation of chico also reduces body size and extends longevity [Science 292 (2001) 104; Aging Cell 1 (2002a) 75]. Both homozygous and heterozygous chico genotypes reduced JH synthesis, but only to 47 and 67%, respectively, of wildtype and without influencing the ratio of JH subtypes. Because JH synthetic rate does not correlate with the size of CA, it is not likely that insulin signaling mediates JH by impeding endocrine tissue development. Alternatively, we find allatotropin-positive axons to be abundant in the adult brain and in the corpora cardiaca-corpus allatum complex but these neurons are less immunoreactive in the InR mutant genotype, suggesting that insulin signaling may affect JH synthesis through control of JH regulatory neuropeptides.
Collapse
Affiliation(s)
- Meng-Ping Tu
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
78
|
Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121:115-25. [PMID: 15820683 DOI: 10.1016/j.cell.2005.02.030] [Citation(s) in RCA: 413] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/20/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
Aging of a eukaryotic organism is affected by its nutrition state and by its ability to prevent or repair oxidative damage. Consequently, signal transduction systems that control metabolism and oxidative stress responses influence life span. When nutrients are abundant, the insulin/IGF signaling (IIS) pathway promotes growth and energy storage but shortens life span. The transcription factor Foxo, which is inhibited by IIS, extends life span in conditions of low IIS activity. Life span can also be increased by activating the stress-responsive Jun-N-terminal kinase (JNK) pathway. Here we show that JNK requires Foxo to extend life span in Drosophila. JNK antagonizes IIS, causing nuclear localization of Foxo and inducing its targets, including growth control and stress defense genes. JNK and Foxo also restrict IIS activity systemically by repressing IIS ligand expression in neuroendocrine cells. The convergence of JNK signaling and IIS on Foxo provides a model to explain the effects of stress and nutrition on longevity.
Collapse
Affiliation(s)
- Meng C Wang
- Department of Biomedical Genetics, The Aab Institute of Biomedical Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 633, Rochester, New York 14642, USA
| | | | | |
Collapse
|
79
|
Easton RM, Cho H, Roovers K, Shineman DW, Mizrahi M, Forman MS, Lee VMY, Szabolcs M, de Jong R, Oltersdorf T, Ludwig T, Efstratiadis A, Birnbaum MJ. Role for Akt3/protein kinase Bgamma in attainment of normal brain size. Mol Cell Biol 2005; 25:1869-78. [PMID: 15713641 PMCID: PMC549378 DOI: 10.1128/mcb.25.5.1869-1878.2005] [Citation(s) in RCA: 465] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies of Drosophila and mammals have revealed the importance of insulin signaling through phosphatidylinositol 3-kinase and the serine/threonine kinase Akt/protein kinase B for the regulation of cell, organ, and organismal growth. In mammals, three highly conserved proteins, Akt1, Akt2, and Akt3, comprise the Akt family, of which the first two are required for normal growth and metabolism, respectively. Here we address the function of Akt3. Like Akt1, Akt3 is not required for the maintenance of normal carbohydrate metabolism but is essential for the attainment of normal organ size. However, in contrast to Akt1-/- mice, which display a proportional decrease in the sizes of all organs, Akt3-/- mice present a selective 20% decrease in brain size. Moreover, although Akt1- and Akt3-deficient brains are reduced in size to approximately the same degree, the absence of Akt1 leads to a reduction in cell number, whereas the lack of Akt3 results in smaller and fewer cells. Finally, mammalian target of rapamycin signaling is attenuated in the brains of Akt3-/- but not Akt1-/- mice, suggesting that differential regulation of this pathway contributes to an isoform-specific regulation of cell growth.
Collapse
Affiliation(s)
- Rachael M Easton
- Department of Medicine, University of Pennsylvania School of Medicine, Clinical Research Building 322, 415 Curie Blvd., Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Sustar A, Schubiger G. A Transient Cell Cycle Shift in Drosophila Imaginal Disc Cells Precedes Multipotency. Cell 2005; 120:383-93. [PMID: 15707896 DOI: 10.1016/j.cell.2004.12.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 11/23/2004] [Accepted: 12/08/2004] [Indexed: 01/01/2023]
Abstract
When Drosophila imaginal discs regenerate, specific groups of cells can switch disc identity so that, for example, cells determined for leg identity switch to wing. Such switches in cell determination are known as transdetermination. We have developed a system by which individual cells are marked and monitored in vivo as they transdetermine so that their proliferation, cell sizes, and differentiation are accurately traced. Here, we document that when cells transdetermine, they do not convert to a younger cell cycle. Instead, cell cycle changes precede transdetermination and are different from those observed at any time in normal development. We propose that it is not a younger but a unique cell cycle progression and a big cell size that conditions the cells for developmental plasticity.
Collapse
Affiliation(s)
- Anne Sustar
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
81
|
Reiling JH, Doepfner KT, Hafen E, Stocker H. Diet-Dependent Effects of the Drosophila Mnk1/Mnk2 Homolog Lk6 on Growth via eIF4E. Curr Biol 2005; 15:24-30. [PMID: 15649360 DOI: 10.1016/j.cub.2004.12.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/11/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
The control of cellular growth is tightly linked to the regulation of protein synthesis. A key function in translation initiation is fulfilled by the 5' cap binding eukaryotic initiation factor 4E (eIF4E), and dysregulation of eIF4E is associated with malignant transformation and tumorigenesis . In mammals, the activity of eIF4E is modulated by phosphorylation at Ser209 by mitogen-activated protein kinases (MAPK)-interacting kinases 1 and 2 (Mnk1 and Mnk2) , which themselves are activated by ERK and p38 MAPK in response to mitogens, cytokines or cellular stress . Whether phosphorylation of eIF4E at Ser209 exerts a positive or inhibitory effect on translation efficiency has remained controversial. Here we provide a genetic characterization of the Drosophila homolog of Mnk1/2, Lk6. Lk6 function is dispensable under a high protein diet, consistent with the recent finding that mice lacking both Mnk1 and Mnk2 are not growth-impaired . Interestingly, loss of Lk6 function causes a significant growth reduction when the amino acid content in the diet is reduced. Overexpression of Lk6 also results in growth inhibition in an eIF4E-dependent manner. We propose a model of eIF4E regulation that may reconcile the contradictory findings with regard to the role of phosphorylation by Mnk1/2.
Collapse
Affiliation(s)
- Jan H Reiling
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
82
|
Goto S, Loeb MJ, Takeda M. BOMBYXIN STIMULATES PROLIFERATION OF CULTURED STEM CELLS DERIVED FROM HELIOTHIS VIRESCENS AND MAMESTRA BRASSICAE LARVAE1. ACTA ACUST UNITED AC 2005; 41:38-42. [PMID: 15926858 DOI: 10.1290/0312092.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bombyxin stimulated proliferation of cultured midgut stem cells that were derived from two noctuiid moth larvae, Heliothis virescens and Mamestra brassicae. Bombyxin exhibited the highest activity at 10(-12) M. The number of cells increased for 3 d after the addition of bombyxin. Although a single addition of bombyxin did not maintain proliferation, a second addition, made 3 d after the first treatment, retained the effect. Results suggest that the decline of effect after the first addition was not due to the loss of sensitivity of the cultured cells but to the loss of effect of the growth factor added. Addition of bombyxin at more than 10(-10) M was less effective. Bombyxin did not affect the number of cultured midgut cells without pupal fat body extract (FBX). The data suggest that FBX contains the factors that maintain sensitivity of midgut cells to proliferate in the presence of bombyxin. Bombyxin must be a unique growth factor that stimulates proliferation of midgut stem cells in vitro from lepidopteran larvae.
Collapse
Affiliation(s)
- Shintaro Goto
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | | | | |
Collapse
|
83
|
Wessells RJ, Fitzgerald E, Cypser JR, Tatar M, Bodmer R. Insulin regulation of heart function in aging fruit flies. Nat Genet 2004; 36:1275-81. [PMID: 15565107 DOI: 10.1038/ng1476] [Citation(s) in RCA: 220] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 10/25/2004] [Indexed: 01/26/2023]
Abstract
Insulin-IGF receptor (InR) signaling has a conserved role in regulating lifespan, but little is known about the genetic control of declining organ function. Here, we describe progressive changes of heart function in aging fruit flies: from one to seven weeks of a fly's age, the resting heart rate decreases and the rate of stress-induced heart failure increases. These age-related changes are minimized or absent in long-lived flies when systemic levels of insulin-like peptides are reduced and by mutations of the only receptor, InR, or its substrate, chico. Moreover, interfering with InR signaling exclusively in the heart, by overexpressing the phosphatase dPTEN or the forkhead transcription factor dFOXO, prevents the decline in cardiac performance with age. Thus, insulin-IGF signaling influences age-dependent organ physiology and senescence directly and autonomously, in addition to its systemic effect on lifespan. The aging fly heart is a model for studying the genetics of age-sensitive organ-specific pathology.
Collapse
Affiliation(s)
- Robert J Wessells
- The Burnham Institute, Center for Neuroscience and Aging, 10901 Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
84
|
Reiling JH, Hafen E. The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 2004; 18:2879-92. [PMID: 15545626 PMCID: PMC534649 DOI: 10.1101/gad.322704] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Diverse extrinsic and intrinsic cues must be integrated within a developing organism to ensure appropriate growth at the cellular and organismal level. In Drosophila, the insulin receptor/TOR/S6K signaling network plays a fundamental role in the control of metabolism and cell growth. Here we show that scylla and charybdis, two homologous genes identified as growth suppressors in an EP (enhancer/promoter) overexpression screen, act as negative regulators of growth. The simultaneous loss of both genes generates flies that are more susceptible to reduced oxygen concentrations (hypoxia) and that show mild overgrowth phenotypes. Conversely, scylla or charybdis overactivation reduces growth. Growth inhibition is associated with a reduction in S6K but not PKB/Akt activity. Together, genetic and biochemical analysis places Scylla/Charybdis downstream of PKB and upstream of TSC. Furthermore, we show that scylla and charybdis are induced under hypoxic conditions and that scylla is a target of Drosophila HIF-1 (hypoxia-inducible factor-1) like its mammalian counterpart RTP801/REDD1, thus establishing a potential cross-talk between growth and oxygen sensing.
Collapse
Affiliation(s)
- Jan H Reiling
- Zoologisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland
| | | |
Collapse
|
85
|
Abstract
Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the approximately 700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR.
Collapse
Affiliation(s)
- Jennifer K Inlow
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson 85721-0077, USA
| | | |
Collapse
|
86
|
Tanega C, Radman DP, Flowers B, Sterba T, Wagner GF. Evidence for stanniocalcin and a related receptor in annelids. Peptides 2004; 25:1671-9. [PMID: 15476934 DOI: 10.1016/j.peptides.2004.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Stanniocalcin (STC) is a prime example of a hormone whose discovery in fish led to its subsequent discovery in mammals. STC is considered to be first and foremost a vertebrate polypeptide hormone with regulatory effects on ion transport, mitochondrial function and steroid hormone synthesis. The gene is widely expressed in both fishes and mammals, and the hormone can operate via both local and endocrine signaling pathways. In spite of the growing catalogue of vertebrate hormones and receptors with homologues in invertebrates, the notion that there might be an invertebrate STC homolog has received scant attention to date. In the present study, we have provided evidence for STC in annelid worms (freshwater leeches). Western blot analysis revealed the presence of two STC immunoreactive (STCir) proteins in leech tissue extracts of 100 and 193 kDa. These same extracts significantly lowered the rate of gill calcium transport upon injection into fish. Similarly, fish STC increased the rate of whole body calcium uptake when administered to leeches, and STC receptors of high affinity were identified on isolated leech plasma membranes. Two discrete populations of STC-positive cells were also identified in leeches using antibodies to fish STC and fish STC cRNA probes. One of the cell types was confined to the skin. The second cell type was confined to the coelomic cavity and identified as an adipose cell, which in leeches is a major repository of fat. Collectively, the data constitutes compelling evidence for the existence of STC-related proteins and receptors in annelids that share structural and functional similarities with those in vertebrates.
Collapse
Affiliation(s)
- Cherry Tanega
- Department of Physiology and Pharmacology, Faculty of Medicine and Dentistry, University of Western Ontario, London, Ont., Canada N6A 5C1
| | | | | | | | | |
Collapse
|
87
|
Bikopoulos G, Ceddia RB, Sweeney G, Hilliker AJ. Insulin reduces apoptosis and increases DNA synthesis and cell size via distinct signalling pathways in Drosophila Kc cells. Cell Prolif 2004; 37:307-16. [PMID: 15245566 PMCID: PMC6496170 DOI: 10.1111/j.1365-2184.2004.00314.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During development of Drosophila, cell proliferation and size are known to be regulated by insulin. Here we use Drosophila Kc cells to examine the molecular basis for the control of cell growth by insulin. Growing cells in the presence of insulin increased cell number above control levels at 16, 24, 48 and 72 h. We have demonstrated a novel anti-apoptotic effect of insulin (approximately 50%) in these cells, measured by caspase 3-like activity, which contributed to the increase in cell number. The anti-apoptotic effect was observed both in control cells and those in which apoptosis was induced by ultraviolet irradiation. An approximately 2-fold stimulation of bromodeoxyuridine incorporation demonstrated that insulin also increased Kc cell proliferation by stimulating new DNA synthesis. The ability of insulin to increase cell number, stimulate bromodeoxyuridine incorporation and reduce caspase 3-like activity was prevented by PD98059, which inhibits activation of the Drosophila extracellular signal regulated kinase (DERK) pathway, and was unaffected by wortmannin, an inhibitor of Drosophila phosphatidylinositol 3-kinase (DPI3K). Insulin also increased cell size approximately 2-fold and this was prevented by wortmannin and rapamycin, an inhibitor of Drosphilia target of rapamycin (DTOR). In summary, we show that DERK plays an important role in mediating the effect of insulin to reduce apoptosis and increase DNA synthesis whereas the DPI3K/DTOR/Dp70S6 kinase pathway mediates effects of insulin on cell size in Drosophila Kc cells.
Collapse
Affiliation(s)
- G. Bikopoulos
- Department of Biology, York University, Toronto, Canada
| | - R. B. Ceddia
- Department of Biology, York University, Toronto, Canada
| | - G. Sweeney
- Department of Biology, York University, Toronto, Canada
| | | |
Collapse
|
88
|
Papadopoulou D, Bianchi MW, Bourouis M. Functional studies of shaggy/glycogen synthase kinase 3 phosphorylation sites in Drosophila melanogaster. Mol Cell Biol 2004; 24:4909-19. [PMID: 15143183 PMCID: PMC416399 DOI: 10.1128/mcb.24.11.4909-4919.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Early studies of glycogen synthase kinase 3 (GSK-3) in mammalian systems focused on its pivotal role in glycogen metabolism and insulin-mediated signaling. It is now recognized that GSK-3 is central to a number of diverse signaling systems. Here, we show that the major form of the kinase Shaggy (Sgg), the GSK-3 fly ortholog, is negatively regulated during insulin-like/phosphatidylinositol 3-kinase (PI3K) signaling in vivo. Since genetic studies of Drosophila melanogaster had previously shown that Wingless (Wg) signaling also acts to antagonize Sgg, we investigate how the kinase might integrate, or else discriminate, signaling inputs by Wg and insulin. Using Drosophila cell line assays, we found, in contrast to previous reports, that Wg induces accumulation of its transducer Armadillo (Arm)/beta-catenin without significant alteration of global Sgg-specific activity. In agreement with a previous study using human GSK-3beta, Wg did not cause phosphorylation changes of the Ser9 or Tyr214 regulatory phosphorylated sites of Sgg. Conversely, as shown in mammalian systems, insulin-induced inhibition of Sgg-specific activity by phosphorylation at the N-terminal pseudosubstrate site (Ser9) did not induce Arm/beta-catenin accumulation, showing selectivity in response to the different signaling pathways. Interestingly, a minigene bearing a Ser9-to-Ala change rescued mutant sgg without causing abnormal development, suggesting that the regulation of Sgg via the inhibitory pseudosubstrate domain is dispensable for many aspects of its function. Our studies of Drosophila show that Wg and insulin or PI3K pathways do not converge on Sgg but that they exhibit cross-regulatory interactions.
Collapse
Affiliation(s)
- Deppie Papadopoulou
- ISBDC, CNRS-UMR 6543 Centre de Biochimie, Université de Nice, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
89
|
Maehama T, Kosaka N, Okahara F, Takeuchi KI, Umeda M, Dixon JE, Kanaho Y. Suppression of a phosphatidylinositol 3-kinase signal by a specific spliced variant of Drosophila PTEN. FEBS Lett 2004; 565:43-7. [PMID: 15135050 DOI: 10.1016/j.febslet.2004.03.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 03/18/2004] [Accepted: 03/18/2004] [Indexed: 01/11/2023]
Abstract
Drosophila PTEN (dPTEN) plays indispensable roles in the development of Drosophila melanogaster by controlling cell size and number. Although three potential spliced forms of dPTEN have been isolated, functional distinction among these forms remains elusive. In this study, we demonstrate that all spliced forms of dPTEN dephosphorylate phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)); however, PI(3,4,5)P(3)-dependent activation of Drosophila Akt is suppressed specifically by one of three spliced forms, dPTEN3. Further, dPTEN3 dramatically changes its expression during the Drosophila development, while the other forms are expressed throughout the development. Our results suggest that dPTEN3 is the predominant spliced form that participates in PI(3,4,5)P(3)-mediated signaling pathways.
Collapse
Affiliation(s)
- Tomohiko Maehama
- Department of Pharmacology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Tokyo 113-8613, Japan.
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Abstract
Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the ∼700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR.
Collapse
Affiliation(s)
- Jennifer K Inlow
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077
| | - Linda L Restifo
- Arizona Research Laboratories Division of Neurobiology, University of Arizona, Tucson, Arizona 85721-0077
- Department of Neurology, University of Arizona, Tucson, Arizona 85721-0077
- Genetics Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona 85721-0077
| |
Collapse
|
91
|
Miron M, Lasko P, Sonenberg N. Signaling from Akt to FRAP/TOR targets both 4E-BP and S6K in Drosophila melanogaster. Mol Cell Biol 2004; 23:9117-26. [PMID: 14645523 PMCID: PMC309682 DOI: 10.1128/mcb.23.24.9117-9126.2003] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eIF4E-binding proteins (4E-BPs) interact with translation initiation factor 4E to inhibit translation. Their binding to eIF4E is reversed by phosphorylation of several key Ser/Thr residues. In Drosophila, S6 kinase (dS6K) and a single 4E-BP (d4E-BP) are phosphorylated via the insulin and target of rapamycin (TOR) signaling pathways. Although S6K phosphorylation is independent of phosphoinositide 3-OH kinase (PI3K) and serine/threonine protein kinase Akt, that of 4E-BP is dependent on PI3K and Akt. This difference prompted us to examine the regulation of d4E-BP in greater detail. Analysis of d4E-BP phosphorylation using site-directed mutagenesis and isoelectric focusing-sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the regulatory interplay between Thr37 and Thr46 of d4E-BP is conserved in flies and that phosphorylation of Thr46 is the major phosphorylation event that regulates d4E-BP activity. We used RNA interference (RNAi) to target components of the PI3K, Akt, and TOR pathways. RNAi experiments directed at components of the insulin and TOR signaling cascades show that d4E-BP is phosphorylated in a PI3K- and Akt-dependent manner. Surprisingly, RNAi of dAkt also affected insulin-stimulated phosphorylation of dS6K, indicating that dAkt may also play a role in dS6K phosphorylation.
Collapse
Affiliation(s)
- Mathieu Miron
- Department of Biochemistry and McGill Cancer Center, McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada
| | | | | |
Collapse
|
92
|
Botelho RJ, Scott CC, Grinstein S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr Top Microbiol Immunol 2004; 282:1-30. [PMID: 14594212 DOI: 10.1007/978-3-642-18805-3_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cells of the innate immune system engulf invading microorganisms into plasma membrane-derived vacuoles called phagosomes. Newly formed phagosomes gradually acquire microbicidal properties by a maturation process which involves sequential and coordinated rounds of fusion with endomembranes and concomitant fission. Some pathogens interfere with this maturation sequence and thereby evade killing by the immune cells, managing to survive intracellularly as parasites. Phosphoinositides seem to be intimately involved in the processes of phagosome formation and maturation, and initial observations suggest that the ability of some microorganisms to survive intracellularly is associated with alterations in phosphoinositide metabolism. This chapter presents a brief overview of phosphoinositides in cells of the immune system, their metabolism in the context of phagocytosis and phagosome maturation and their possible derangements during infectious pathogenosis.
Collapse
Affiliation(s)
- R J Botelho
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
93
|
Hafen E. Interplay between growth factor and nutrient signaling: lessons from Drosophila TOR. Curr Top Microbiol Immunol 2003; 279:153-67. [PMID: 14560957 DOI: 10.1007/978-3-642-18930-2_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
During normal development, cellular and organismal growth is coordinately regulated. Each cell and each individual organ integrates information about nutrient availability, hormonal signals, and intrinsic growth programs. Describing the signaling pathways involved in these processes and how they are integrated is important to understand how growth is controlled during development and may also permit the development of means to curb uncontrolled growth in disease. In recent years, the biochemical analysis of cellular growth in cultured cells and the genetic dissection of growth control in model organisms has identified two conserved signaling pathways dedicated to cellular growth. The target of rapamycin (TOR) pathway regulates growth in response to nutrients, and the insulin/IGF pathways are involved in coordinating cellular growth in response to endocrine signals. This review discusses recent advances in the understanding of the interaction between these pathways, with a special focus on the contribution of the genetic analysis of these pathways in Drosophila.
Collapse
Affiliation(s)
- E Hafen
- Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
94
|
Goberdhan DCI, Wilson C. PTEN: tumour suppressor, multifunctional growth regulator and more. Hum Mol Genet 2003; 12 Spec No 2:R239-48. [PMID: 12928488 DOI: 10.1093/hmg/ddg288] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The tumour suppressor gene PTEN is mutated in a wide range of human cancers at a frequency roughly comparable with p53. In addition, germline PTEN mutations are associated with several dominant growth disorders. The molecular and cellular basis of these disorders has been elucidated by detailed in vivo genetic analysis in model organisms, in particular the fruit fly and mouse. Studies in the fly have shown that PTEN's growth regulatory functions are primarily mediated via its lipid phosphatase activity, which specifically reduces the cellular levels of phosphatidylinositol 3,4,5-trisphosphate. This activity antagonizes the effects of activated PI3-kinase in the nutritionally controlled insulin receptor pathway, thereby reducing protein synthesis and restraining cell and organismal growth, while also regulating other biological processes, such as fertility and ageing. Remarkably, this range of functions appears to be conserved in all higher organisms. PTEN also plays a role as a specialized cytoskeletal regulator, which, for example, is involved in directional movement of some migratory cells and may be important in metastasis. Furthermore, conditional knockouts in the mouse have recently revealed functions for PTEN in other processes, such as cell type specification and cardiac muscle contractility. Genetic approaches have therefore revealed a surprising diversity of global and cell type-specific PTEN-regulated functions that appear to be primarily controlled by modulation of a single phosphoinositide. Together with evidence from studies in cell culture that suggests links between PTEN and other growth regulatory genes such as p53, these studies provide new insights into PTEN-linked disorders and are beginning to suggest potential clinical strategies to combat these and other diseases.
Collapse
|
95
|
Abstract
Mammalian insulin and insulin-like growth factors (IGFs) signal through several receptors with different ligand specificities to regulate metabolism and growth. This regulation is defective in diabetes and in a wide variety of human tumors. Recent analysis in Drosophila melanogaster has revealed that insulin-like molecules (known as DILPs in flies) also control growth and metabolism, but probably do so by signaling through a single insulin receptor (InR). The intracellular signaling molecules regulated by this receptor are highly evolutionarily conserved. Work in flies has helped to dissect the network of InR-regulated intracellular signaling pathways and identify some of the critical players in these pathways and in interacting signaling cascades. Surprisingly, these studies have shown that DILPs control tissue and body growth primarily by regulating cell growth and cell size. Changes in cell growth produced by these molecules may subsequently modulate the rate of cell proliferation in a cell type-specific fashion. At least part of this growth effect is mediated by two small groups of neurons in the Drosophila brain, which secrete DILPs into the circulatory system at levels that are modulated by nutrition. This signaling center is also involved in DILP-dependent control of the fly's rate of development, fertility, and life span. These surprisingly diverse functions of InR signaling, which appear to be conserved in all higher animals, reflect a central role for this pathway in coordinating development, physiology, and properly proportioned growth of the organism in response to its nutritional state. Studies in flies are providing important new insights into the biology of this system, and the identification of novel components in the InR-regulated signaling cascade is already beginning to inform the development of new therapeutic strategies for insulin-linked diseases in the clinic.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, United Kingdom
| | | |
Collapse
|
96
|
Abstract
Control mechanisms that regulate body size and tissue size have been sought at both the cellular and organismal level. Cell-level studies have revealed much about the control of cell growth and cell division, and how these processes are regulated by nutrition. Insulin signaling is the key mediator between nutrition and the growth of internal organs, such as imaginal disks, and is required for the normal proportional growth of the body and its various parts. The insulin-related peptides of insects do not appear to control growth by themselves, but act in conjunction with other hormones and signaling molecules, such as ecdysone and IDGFs. Size regulation cannot be understood solely on the basis of the mechanisms that control cell size and cell number. Size regulation requires mechanisms that gather information on a scale appropriate to the tissue or organ being regulated. A new model mechanism, using autocrine signaling, is outlined by which tissue and organ size regulation can be achieved. Body size regulation likewise requires a mechanism that integrates information at an appropriate scale. In insects, this mechanism operates by controlling the secretion of ecdysone, which is the signal that terminates the growth phase of development. The mechanisms for size assessment and the pathways by which they trigger ecdysone secretion are diverse and can be complex. The ways in which these higher-level regulatory mechanisms interact with cell- and molecular- level mechanisms are beginning to be elucidated.
Collapse
Affiliation(s)
- H F Nijhout
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
97
|
Goldsmith MI, Fisher S, Waterman R, Johnson SL. Saltatory control of isometric growth in the zebrafish caudal fin is disrupted in long fin and rapunzel mutants. Dev Biol 2003; 259:303-17. [PMID: 12871703 DOI: 10.1016/s0012-1606(03)00186-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Zebrafish fins grow by sequentially adding new segments of bone to the distal end of each fin ray. In wild type zebrafish, segment addition is regulated such that an isometric relationship is maintained between fin length and body length over the lifespan of the growing fish. Using a novel, surrogate marker for fin growth in conjunction with cell proliferation assays, we demonstrate here that segment addition is not continuous, but rather proceeds by saltation. Saltation is a fundamental growth mechanism shared by disparate vertebrates, including humans. We further demonstrate that segment addition proceeds in conjunction with cyclic bursts of cell proliferation in the distal fin ray mesenchyme. In contrast, cells in the distal fin epidermis proliferate at a constant rate throughout the fin ray growth cycle. Finally, we show that two separate fin overgrowth mutants, long fin and rapunzel, bypass the stasis phase of the fin ray growth cycle to develop asymmetrical and symmetrical fin overgrowth, respectively.
Collapse
Affiliation(s)
- Matthew I Goldsmith
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
98
|
Klowden MJ. Contributions of insect research toward our understanding of neurosecretion. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2003; 53:101-114. [PMID: 12811763 DOI: 10.1002/arch.10093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The process of neurosecretion is an important and widespread method of biological communication among animals. Although insects and vertebrates appear to be very different, neurosecretory mechanisms and the neuropeptides themselves are often the same. The gradual acceptance of neurosecretion as a biological phenomenon, largely as a result of research done with insects, is discussed.
Collapse
Affiliation(s)
- Marc J Klowden
- Division of Entomology, University of Idaho, Moscow 83844, USA.
| |
Collapse
|
99
|
Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P, Breuer S, Thomas G, Hafen E. Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 2003; 5:559-65. [PMID: 12766775 DOI: 10.1038/ncb995] [Citation(s) in RCA: 401] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 04/24/2003] [Indexed: 12/20/2022]
Abstract
Understanding the mechanisms through which multicellular organisms regulate cell, organ and body growth is of relevance to developmental biology and to research on growth-related diseases such as cancer. Here we describe a new effector in growth control, the small GTPase Rheb (Ras homologue enriched in brain). Mutations in the Drosophila melanogaster Rheb gene were isolated as growth-inhibitors, whereas overexpression of Rheb promoted cell growth. Our genetic and biochemical analyses suggest that Rheb functions downstream of the tumour suppressors Tsc1 (tuberous sclerosis 1)-Tsc2 in the TOR (target of rapamycin) signalling pathway to control growth, and that a major effector of Rheb function is ribosomal S6 kinase (S6K).
Collapse
Affiliation(s)
- Hugo Stocker
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Insulin signaling controls organ growth and final body size in insects. Recent results have begun to clarify how insulin signaling drives organ growth to match nutrient levels, but have not yet elucidated how insulin signaling controls final body size.
Collapse
Affiliation(s)
- David Stern
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|