51
|
Hamasaki K, Matsumoto T, Cologne J, Mukai M, Kodama Y, Noda A, Nakamura N. Translocations are induced in hematopoietic stem cells after irradiation of fetal mice. JOURNAL OF RADIATION RESEARCH 2023; 64:99-104. [PMID: 36420765 PMCID: PMC9855322 DOI: 10.1093/jrr/rrac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Although mammalian fetuses have been suggested to be sensitive to radiation, an increased frequency of translocations was not observed in blood lymphocytes from atomic bomb (A-bomb) survivors who were exposed to the bomb in utero and examined as adults. Since experiments using hematopoietic cells of mice and rats confirmed this finding, it was hypothesized that either irradiated fetal hematopoietic stem cells (f-HSCs) cannot generate exchange-type chromosomal aberrations or cells bearing induced aberrations are eliminated before the animals reach adulthood. In the present study, pregnant mice (12.5-15.5 days post coitum [dpc]) were irradiated with 2 Gy of X-rays and long-term HSCs (LT-HSCs) were isolated 24 h later. Multicolor fluorescence in situ hybridization (mFISH) analysis of LT-HSC clones proliferated in vitro showed that nine out of 43 (21%) clones from fetuses and 21 out of 41 (51%) clones from mothers bore translocations. These results indicate that cells with translocations can arise in mouse f-HSCs but exist at a lower frequency than in the mothers 24 h after X-ray exposure. Thus, it seems likely that translocation-bearing f-HSCs are generated but subsequently disappear, so that the frequency of lymphocyte translocations may decrease and reach the control level by the time the animals reach adulthood.
Collapse
Affiliation(s)
- Kanya Hamasaki
- Corresponding author. Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan, , Tel: +81-82-261-3131, Fax +81-82-263-7279
| | - Tomoko Matsumoto
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan
| | - John Cologne
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Mayumi Mukai
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Yoshiaki Kodama
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Asao Noda
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-ku, Hiroshima 732-0815, Japan
| |
Collapse
|
52
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
53
|
Mazzarini M, Arciprete F, Picconi O, Valeri M, Verachi P, Martelli F, Migliaccio AR, Falchi M, Zingariello M. Single cell analysis of the localization of the hematopoietic stem cells within the bone marrow architecture identifies niche-specific proliferation dynamics. Front Med (Lausanne) 2023; 10:1166758. [PMID: 37188088 PMCID: PMC10175646 DOI: 10.3389/fmed.2023.1166758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Hematopoietic stem cells (HSC) reside in the bone marrow (BM) in specialized niches which provide support for their self-replication and differentiation into the blood cells. Recently, numerous studies using sophisticated molecular and microscopic technology have provided snap-shots information on the identity of the BM niches in mice. In adults, HSC are localized around arterioles and sinusoids/venules whereas in juvenile mice they are in close to the osteoblasts. However, although it is well recognized that in mice the nature of the hematopoietic niche change with age or after exposure to inflammatory insults, much work remains to be done to identify changes occurring under these conditions. The dynamic changes occurring in niche/HSC interactions as HSC enter into cycle are also poorly defined. Methods We exploit mice harboring the hCD34tTA/Tet-O-H2BGFP transgene to establish the feasibility to assess interactions of the HSC with their niche as they cycle. In this model, H2BGFP expression is driven by the TET trans-activator under the control of the human CD34 promoter which in mice is active only in the HSC. Since Doxycycline inhibits TET, HSC exposed to this drug no longer express H2BGFP and loose half of their label every division allowing establishing the dynamics of their first 1-3 divisions. To this aim, we first validated user-friendly confocal microscopy methods to determine HSC divisions by hemi-decrement changes in levels of GFP expression. We then tracked the interaction occurring in old mice between the HSC and their niche during the first HSC divisions. Results We determined that in old mice, most of the HSC are located around vessels, both arterioles which sustain quiescence and self-replication, and venules/sinusoids, which sustain differentiation. After just 1 week of exposure to Doxycycline, great numbers of the HSC around the venules lost most of their GFP label, indicating that they had cycled. By contrast, the few HSC surrounding the arterioles retained maximal levels of GFP expression, indicating that they are either dormant or cycle at very low rates. Conclusion These results reveal that in old mice, HSC cycle very dynamically and are biased toward interactions with the niche that instructs them to differentiate.
Collapse
Affiliation(s)
- Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Orietta Picconi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
- *Correspondence: Anna Rita Migliaccio ;
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Zingariello
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| |
Collapse
|
54
|
Sureshchandra S, Chan CN, Robino JJ, Parmelee LK, Nash MJ, Wesolowski SR, Pietras EM, Friedman JE, Takahashi D, Shen W, Jiang X, Hennebold JD, Goldman D, Packwood W, Lindner JR, Roberts CT, Burwitz BJ, Messaoudi I, Varlamov O. Maternal Western-style diet remodels the transcriptional landscape of fetal hematopoietic stem and progenitor cells in rhesus macaques. Stem Cell Reports 2022; 17:2595-2609. [PMID: 36332628 PMCID: PMC9768582 DOI: 10.1016/j.stemcr.2022.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Maternal obesity adversely impacts the in utero metabolic environment, but its effect on fetal hematopoiesis remains incompletely understood. During late development, the fetal bone marrow (FBM) becomes the major site where macrophages and B lymphocytes are produced via differentiation of hematopoietic stem and progenitor cells (HSPCs). Here, we analyzed the transcriptional landscape of FBM HSPCs at single-cell resolution in fetal macaques exposed to a maternal high-fat Western-style diet (WSD) or a low-fat control diet. We demonstrate that maternal WSD induces a proinflammatory response in FBM HSPCs and fetal macrophages. In addition, maternal WSD consumption suppresses the expression of B cell development genes and decreases the frequency of FBM B cells. Finally, maternal WSD leads to poor engraftment of fetal HSPCs in nonlethally irradiated immunodeficient NOD/SCID/IL2rγ-/- mice. Collectively, these data demonstrate for the first time that maternal WSD impairs fetal HSPC differentiation and function in a translationally relevant nonhuman primate model.
Collapse
Affiliation(s)
- Suhas Sureshchandra
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA
| | - Chi N Chan
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Jacob J Robino
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Lindsay K Parmelee
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Michael J Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Stephanie R Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric M Pietras
- Department of Immunology and Microbiology, Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob E Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Diana Takahashi
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006
| | - Weining Shen
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Xiwen Jiang
- Department of Statistics, University of California-Irvine, Irvine, CA 92697, USA
| | - Jon D Hennebold
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Devorah Goldman
- Stem Cell Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jonathan R Lindner
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles T Roberts
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006; Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J Burwitz
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR 97006; Vaccine & Gene Therapy Institute, Beaverton, OR 97006, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, Institute for Immunology, Center for Virus Research, University of California-Irvine, Irvine, CA 92697, USA; Department of Immunology, Microbiology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Oleg Varlamov
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Beaverton, OR 97006.
| |
Collapse
|
55
|
Zheng Z, He H, Tang XT, Zhang H, Gou F, Yang H, Cao J, Shi S, Yang Z, Sun G, Xie X, Zeng Y, Wen A, Lan Y, Zhou J, Liu B, Zhou BO, Cheng T, Cheng H. Uncovering the emergence of HSCs in the human fetal bone marrow by single-cell RNA-seq analysis. Cell Stem Cell 2022; 29:1562-1579.e7. [DOI: 10.1016/j.stem.2022.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/24/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
56
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
57
|
Azzoni E, Fantin A. Fetal liver hematopoiesis revisited: a precast hierarchy. NATURE CARDIOVASCULAR RESEARCH 2022; 1:872-873. [PMID: 36605232 PMCID: PMC7614020 DOI: 10.1038/s44161-022-00142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Late fetal liver hematopoiesis was thought to primarily rely on hematopoietic stem cells (HSCs). Using new genetic-tracing tools, a study shows that EVI1-positive HSCs mainly undergo expansion in the fetal liver, while differentiated blood cell production depends on HSC-independent intermediate hematopoietic progenitors.
Collapse
Affiliation(s)
- Emanuele Azzoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | | |
Collapse
|
58
|
Phadke I, Pouzolles M, Machado A, Moraly J, Gonzalez-Menendez P, Zimmermann VS, Kinet S, Levine M, Violet PC, Taylor N. Vitamin C deficiency reveals developmental differences between neonatal and adult hematopoiesis. Front Immunol 2022; 13:898827. [PMID: 36248829 PMCID: PMC9562198 DOI: 10.3389/fimmu.2022.898827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoiesis, a process that results in the differentiation of all blood lineages, is essential throughout life. The production of 1x1012 blood cells per day, including 200x109 erythrocytes, is highly dependent on nutrient consumption. Notably though, the relative requirements for micronutrients during the perinatal period, a critical developmental window for immune cell and erythrocyte differentiation, have not been extensively studied. More specifically, the impact of the vitamin C/ascorbate micronutrient on perinatal as compared to adult hematopoiesis has been difficult to assess in animal models. Even though humans cannot synthesize ascorbate, due to a pseudogenization of the L-gulono-γ-lactone oxidase (GULO) gene, its generation from glucose is an ancestral mammalian trait. Taking advantage of a Gulo-/- mouse model, we show that ascorbic acid deficiency profoundly impacts perinatal hematopoiesis, resulting in a hypocellular bone marrow (BM) with a significant reduction in hematopoietic stem cells, multipotent progenitors, and hematopoietic progenitors. Furthermore, myeloid progenitors exhibited differential sensitivity to vitamin C levels; common myeloid progenitors and megakaryocyte-erythrocyte progenitors were markedly reduced in Gulo-/- pups following vitamin C depletion in the dams, whereas granulocyte-myeloid progenitors were spared, and their frequency was even augmented. Notably, hematopoietic cell subsets were rescued by vitamin C repletion. Consistent with these data, peripheral myeloid cells were maintained in ascorbate-deficient Gulo-/- pups while other lineage-committed hematopoietic cells were decreased. A reduction in B cell numbers was associated with a significantly reduced humoral immune response in ascorbate-depleted Gulo-/- pups but not adult mice. Erythropoiesis was particularly sensitive to vitamin C deprivation during both the perinatal and adult periods, with ascorbate-deficient Gulo-/- pups as well as adult mice exhibiting compensatory splenic differentiation. Furthermore, in the pathological context of hemolytic anemia, vitamin C-deficient adult Gulo-/- mice were not able to sufficiently increase their erythropoietic activity, resulting in a sustained anemia. Thus, vitamin C plays a pivotal role in the maintenance and differentiation of hematopoietic progenitors during the neonatal period and is required throughout life to sustain erythroid differentiation under stress conditions.
Collapse
Affiliation(s)
- Ira Phadke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alice Machado
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie S. Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| |
Collapse
|
59
|
Murine fetal bone marrow does not support functional hematopoietic stem and progenitor cells until birth. Nat Commun 2022; 13:5403. [PMID: 36109585 PMCID: PMC9477881 DOI: 10.1038/s41467-022-33092-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
While adult bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) and their extrinsic regulation is well studied, little is known about the composition, function, and extrinsic regulation of the first HSPCs to enter the BM during development. Here, we functionally interrogate murine BM HSPCs from E15.5 through P0. Our work reveals that fetal BM HSPCs are present by E15.5, but distinct from the HSPC pool seen in fetal liver, both phenotypically and functionally, until near birth. We also generate a transcriptional atlas of perinatal BM HSPCs and the BM niche in mice across ontogeny, revealing that fetal BM lacks HSPCs with robust intrinsic stem cell programs, as well as niche cells supportive of HSPCs. In contrast, stem cell programs are preserved in neonatal BM HSPCs, which reside in a niche expressing HSC supportive factors distinct from those seen in adults. Collectively, our results provide important insights into the factors shaping hematopoiesis during this understudied window of hematopoietic development. Relatively little is known about the first hematopoietic stem and progenitor cells to arrive in the fetal bone marrow. Here they characterize the frequency, function, and molecular identity of fetal BM HSPCs and their bone marrow niche, and show that most BM HSPCs have little hematopoietic function until birth.
Collapse
|
60
|
Li Y, Yao R, Ren M, Yuan K, Du Y, He Y, Kang H, Yuan S, Ju W, Qiao J, Xu K, Zeng L. Liposomes trigger bone marrow niche macrophage "foam" cell formation and affect hematopoiesis in mice. J Lipid Res 2022; 63:100273. [PMID: 36084713 PMCID: PMC9587404 DOI: 10.1016/j.jlr.2022.100273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Liposomes are the most widely used nanocarrier platform for the delivery of therapeutic and diagnostic agents, and a number of liposomes have been approved for use in clinical practice. After systemic administration, most liposomes are cleared by macrophages in the mononuclear phagocyte system, such as the liver and bone marrow (BM). However, the majority of studies have focused on investigating the therapeutic results of liposomal drugs, and too few studies have evaluated the potential side effects of empty nanocarriers on the functions of macrophages in the mononuclear phagocyte system. Here, we evaluate the potential effects of empty liposomes on the functions of BM niche macrophages. Following liposome administration, we observed lipid droplet (LD) accumulation in cultured primary macrophages and BM niche macrophages. We found that these LD-accumulating macrophages, similar to foam cells, exhibited increased expression of inflammatory cytokines, such as IL-1β and IL-6. We further provided evidence that liposome deposition and degradation induced LD biogenesis on the endoplasmic reticulum membrane and subsequently disturbed endoplasmic reticulum homeostasis and activated the inositol-requiring transmembrane kinase/endoribonuclease 1α/NF-κB signaling pathway, which is responsible for the inflammatory activation of macrophages after liposome engulfment. Finally, we also showed the side effects of dysfunctional BM niche macrophages on hematopoiesis in mice, such as the promotion of myeloid-biased output and impairment of erythropoiesis. This study not only draws attention to the safety of liposomal drugs in clinical practice but also provides new directions for the design of lipid-based drug carriers in preclinical studies.
Collapse
Affiliation(s)
- Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ran Yao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Miao Ren
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan He
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiquan Kang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shengnan Yuan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
61
|
Shi C, Pan L, Hu Z. Experimental and clinical progress of in utero hematopoietic cell transplantation therapy for congenital disorders. Front Pharmacol 2022; 13:851375. [PMID: 36120324 PMCID: PMC9478511 DOI: 10.3389/fphar.2022.851375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
In utero hematopoietic cell transplantation (IUHCT) is considered a potentially efficient therapeutic approach with relatively few side effects, compared to adult hematopoietic cell transplantation, for various hematological genetic disorders. The principle of IUHCT has been extensively studied in rodent models and in some large animals with close evolutionary similarities to human beings. However, IUHCT has only been used to rebuild human T cell immunity in certain patients with inherent immunodeficiencies. This review will first summarize the animal models utilized for IUHCT investigations and describe the associated outcomes. Recent advances and potential barriers for successful IUHCT are discussed, followed by possible strategies to overcome these barriers experimentally. Lastly, we will outline the progress made towards utilizing IUHCT to treat inherent disorders for patients, list out associated limitations and propose feasible means to promote the efficacy of IUHCT clinically.
Collapse
Affiliation(s)
- Chunyu Shi
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lu Pan
- Department of Pediatric Immunology, Allergy and Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zheng Hu,
| |
Collapse
|
62
|
Akindona FA, Frederico SC, Hancock JC, Gilbert MR. Exploring the origin of the cancer stem cell niche and its role in anti-angiogenic treatment for glioblastoma. Front Oncol 2022; 12:947634. [PMID: 36091174 PMCID: PMC9454306 DOI: 10.3389/fonc.2022.947634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells are thought to be the main drivers of tumorigenesis for malignancies such as glioblastoma (GBM). They are maintained through a close relationship with the tumor vasculature. Previous literature has well-characterized the components and signaling pathways for maintenance of this stem cell niche, but details on how the niche initially forms are limited. This review discusses development of the nonmalignant neural and hematopoietic stem cell niches in order to draw important parallels to the malignant environment. We then discuss what is known about the cancer stem cell niche, its relationship with angiogenesis, and provide a hypothesis for its development in GBM. A better understanding of the mechanisms of development of the tumor stem cell niche may provide new insights to potentially therapeutically exploit.
Collapse
Affiliation(s)
- Funto A. Akindona
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
| | - Stephen C. Frederico
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John C. Hancock
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark R. Gilbert,
| |
Collapse
|
63
|
Lai CW, Bagadia P, Barisas DAG, Jarjour NN, Wong R, Ohara T, Muegge BD, Lu Q, Xiong S, Edelson BT, Murphy KM, Stappenbeck TS. Mesothelium-Derived Factors Shape GATA6-Positive Large Cavity Macrophages. THE JOURNAL OF IMMUNOLOGY 2022; 209:742-750. [DOI: 10.4049/jimmunol.2200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The local microenvironment shapes macrophage differentiation in each tissue. We hypothesized that in the peritoneum, local factors in addition to retinoic acid can support GATA6-driven differentiation and function of peritoneal large cavity macrophages (LCMs). We found that soluble proteins produced by mesothelial cells lining the peritoneal cavity maintained GATA6 expression in cultured LCMs. Analysis of global gene expression of isolated mesothelial cells highlighted mesothelin (Msln) and its binding partner mucin 16 (Muc16) as candidate secreted ligands that potentially regulate GATA6 expression in peritoneal LCMs. Mice deficient for either of these molecules showed diminished GATA6 expression in peritoneal and pleural LCMs that was most prominent in aged mice. The more robust phenotype in older mice suggested that monocyte-derived macrophages were the target of Msln and Muc16. Cell transfer and bone marrow chimera experiments supported this hypothesis. We found that lethally irradiated Msln−/− and Muc16−/− mice reconstituted with wild-type bone marrow had lower levels of GATA6 expression in peritoneal and pleural LCMs. Similarly, during the resolution of zymosan-induced inflammation, repopulated peritoneal LCMs lacking expression of Msln or Muc16 expressed diminished GATA6. These data support a role for mesothelial cell–produced Msln and Muc16 in local macrophage differentiation within large cavity spaces such as the peritoneum. The effect appears to be most prominent on monocyte-derived macrophages that enter into this location as the host ages and also in response to infection.
Collapse
Affiliation(s)
- Chin-Wen Lai
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Prachi Bagadia
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Derek A. G. Barisas
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Nicholas N. Jarjour
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Rachel Wong
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Takahiro Ohara
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Brian D. Muegge
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Qiuhe Lu
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Shanshan Xiong
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Brian T. Edelson
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | - Kenneth M. Murphy
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, MO
| | | |
Collapse
|
64
|
A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Mol Psychiatry 2022; 27:3343-3354. [PMID: 35491410 DOI: 10.1038/s41380-022-01566-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/08/2022]
Abstract
Immune dysregulation plays a key role in the pathogenesis of autism. Changes occurring at the systemic level, from brain inflammation to disturbed innate/adaptive immune in the periphery, are frequently observed in patients with autism; however, the intrinsic mechanisms behind them remain elusive. We hypothesize a common etiology may lie in progenitors of different types underlying widespread immune dysregulation. By single-cell RNA sequencing (sc-RNA seq), we trace the developmental origins of immune dysregulation in a mouse model of idiopathic autism. It is found that both in aorta-gonad-mesonephros (AGM) and yolk sac (YS) progenitors, the dysregulation of HDAC1-mediated epigenetic machinery alters definitive hematopoiesis during embryogenesis and downregulates the expression of the AP-1 complex for microglia development. Subsequently, these changes result in the dysregulation of the immune system, leading to gut dysbiosis and hyperactive microglia in the brain. We further confirm that dysregulated immune profiles are associated with specific microbiota composition, which may serve as a biomarker to identify autism of immune-dysregulated subtypes. Our findings elucidate a shared mechanism for the origin of immune dysregulation from the brain to the gut in autism and provide new insight to dissecting the heterogeneity of autism, as well as the therapeutic potential of targeting immune-dysregulated autism subtypes.
Collapse
|
65
|
Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road? Cells 2022; 11:cells11152312. [PMID: 35954155 PMCID: PMC9367594 DOI: 10.3390/cells11152312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed.
Collapse
|
66
|
Torres LS, Asada N, Weiss MJ, Trumpp A, Suda T, Scadden DT, Ito K. Recent advances in "sickle and niche" research - Tribute to Dr. Paul S Frenette. Stem Cell Reports 2022; 17:1509-1535. [PMID: 35830837 PMCID: PMC9287685 DOI: 10.1016/j.stemcr.2022.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022] Open
Abstract
In this retrospective, we review the two research topics that formed the basis of the outstanding career of Dr. Paul S. Frenette. In the first part, we focus on sickle cell disease (SCD). The defining feature of SCD is polymerization of the deoxygenated mutant hemoglobin, which leads to a vicious cycle of hemolysis and vaso-occlusion. We survey important discoveries in SCD pathophysiology that have led to recent advances in treatment of SCD. The second part focuses on the hematopoietic stem cell (HSC) niche, the complex microenvironment within the bone marrow that controls HSC function and homeostasis. We detail the cells that constitute this niche, and the factors that these cells use to exert control over hematopoiesis. Here, we trace the scientific paths of Dr. Frenette, highlight key aspects of his research, and identify his most important scientific contributions in both fields.
Collapse
Affiliation(s)
- Lidiane S Torres
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - David T Scadden
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA; Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
67
|
Tumor-Associated Inflammation: The Tumor-Promoting Immunity in the Early Stages of Tumorigenesis. J Immunol Res 2022; 2022:3128933. [PMID: 35733919 PMCID: PMC9208911 DOI: 10.1155/2022/3128933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Tumorigenesis is a multistage progressive oncogenic process caused by alterations in the structure and expression level of multiple genes. Normal cells are continuously endowed with new capabilities in this evolution, leading to subsequent tumor formation. Immune cells are the most important components of inflammation, which is closely associated with tumorigenesis. There is a broad consensus in cancer research that inflammation and immune response facilitate tumor progression, infiltration, and metastasis via different mechanisms; however, their protumor effects are equally important in tumorigenesis at earlier stages. Previous studies have demonstrated that during the early stages of tumorigenesis, certain immune cells can promote the formation and proliferation of premalignant cells by inducing DNA damage and repair inhibition, releasing trophic/supporting signals, promoting immune escape, and activating inflammasomes, as well as enhance the characteristics of cancer stem cells. In this review, we focus on the potential mechanisms by which immune cells can promote tumor initiation and promotion in the early stages of tumorigenesis; furthermore, we discuss the interaction of the inflammatory environment and protumor immune cells with premalignant cells and cancer stem cells, as well as the possibility of early intervention in tumor formation by targeting these cellular mechanisms.
Collapse
|
68
|
Zhang Y, Zhong Y, Zou L, Liu X. Significance of Placental Mesenchymal Stem Cell in Placenta Development and Implications for Preeclampsia. Front Pharmacol 2022; 13:896531. [PMID: 35721156 PMCID: PMC9198303 DOI: 10.3389/fphar.2022.896531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
The well-developed placentation is fundamental for the reproductive pregnancy while the defective placental development is the pathogenetic basis of preeclampsia (PE), a dangerous complication of pregnancy comprising the leading causes of maternal and perinatal morbidity and mortality. Placenta-derived mesenchymal stem cells (PMSCs) are a group of multipotent stem cells that own a potent capacity of differentiating into constitutive cells of vessel walls. Additionally, with the paracrine secretion of various factors, PMSCs inextricably link and interact with other component cells in the placenta, collectively improving the placental vasculature, uterine spiral artery remolding, and uteroplacental interface immunoregulation. Recent studies have further indicated that preeclamptic PMSCs, closely implicated in the abnormal crosstalk between other ambient cells, disturb the homeostasis and development in the placenta. Nevertheless, PMSCs transplantation or PMSCs exosome therapies tend to improve the placental vascular network and trophoblastic functions in the PE model, suggesting PMSCs may be a novel and putative therapeutic strategy for PE. Herein, we provide an overview of the multifaceted contributions of PMSCs in early placental development. Thereinto, the intensive interactions between PMSCs and other component cells in the placenta were particularly highlighted and further extended to the implications in the pathogenesis and therapeutic strategies of PE.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
69
|
Garcia-Gerique L, García M, Garrido-Garcia A, Gómez-González S, Torrebadell M, Prada E, Pascual-Pasto G, Muñoz O, Perez-Jaume S, Lemos I, Salvador N, Vila-Ubach M, Doncel-Requena A, Suñol M, Carcaboso AM, Mora J, Lavarino C. MIF/CXCR4 signaling axis contributes to survival, invasion, and drug resistance of metastatic neuroblastoma cells in the bone marrow microenvironment. BMC Cancer 2022; 22:669. [PMID: 35715791 PMCID: PMC9206243 DOI: 10.1186/s12885-022-09725-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bone marrow (BM) is the most common site of dissemination in patients with aggressive, metastatic neuroblastoma (NB). However, the molecular mechanisms underlying the aggressive behavior of NB cells in the BM niche are still greatly unknown. In the present study, we explored biological mechanisms that play a critical role in NB cell survival and progression in the BM and investigated potential therapeutic targets. METHODS Patient-derived bone marrow (BM) primary cultures were generated using fresh BM aspirates obtained from NB patients. NB cell lines were cultured in the presence of BM conditioned media containing cell-secreted factors, and under low oxygen levels (1% O2) to mimic specific features of the BM microenvironment of high-risk NB patients. The BM niche was explored using cytokine profiling assays, cell migration-invasion and viability assays, flow cytometry and analysis of RNA-sequencing data. Selective pharmacological inhibition of factors identified as potential mediators of NB progression within the BM niche was performed in vitro and in vivo. RESULTS We identified macrophage migration inhibitory factor (MIF) as a key inflammatory cytokine involved in BM infiltration. Cytokine profiling and RNA-sequencing data analysis revealed NB cells as the main source of MIF in the BM, suggesting a potential role of MIF in tumor invasion. Exposure of NB cells to BM-conditions increased NB cell-surface expression of the MIF receptor CXCR4, which was associated with increased cell viability, enhanced migration-invasion, and activation of PI3K/AKT and MAPK/ERK signaling pathways. Moreover, subcutaneous co-injection of NB and BM cells enhanced tumor engraftment in mice. MIF inhibition with 4-IPP impaired in vitro NB aggressiveness, and improved drug response while delayed NB growth, improving survival of the NB xenograft model. CONCLUSIONS Our findings suggest that BM infiltration by NB cells may be mediated, in part, by MIF-CXCR4 signaling. We demonstrate the antitumor efficacy of MIF targeting in vitro and in vivo that could represent a novel therapeutic target for patients with disseminated high-risk NB.
Collapse
Affiliation(s)
- Laura Garcia-Gerique
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Marta García
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alícia Garrido-Garcia
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Soledad Gómez-González
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Torrebadell
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Estela Prada
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Guillem Pascual-Pasto
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Oscar Muñoz
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sara Perez-Jaume
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Isadora Lemos
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Noelia Salvador
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Monica Vila-Ubach
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Doncel-Requena
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Mariona Suñol
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.,Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Barcelona, Spain. .,Laboratory of Molecular Oncology, Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
70
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
71
|
Chen Z, Guo Q, Song G, Hou Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol Life Sci 2022; 79:218. [PMID: 35357574 PMCID: PMC11072845 DOI: 10.1007/s00018-022-04200-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance, which is essential for the homeostasis of hematopoietic system. Dysregulation of quiescence causes HSC dysfunction and may result in aberrant hematopoiesis (e.g., myelodysplastic syndrome and bone marrow failure syndromes) and leukemia transformation. Accumulating evidence indicates that both intrinsic molecular networks and extrinsic signals regulate HSC quiescence, including cell-cycle regulators, transcription factors, epigenetic factors, and niche factors. Further, the transition between quiescence and activation of HSCs is a continuous developmental path driven by cell metabolism (e.g., protein synthesis, glycolysis, oxidative phosphorylation, and autophagy). Elucidating the complex regulatory networks of HSC quiescence will expand the knowledge of HSC hemostasis and benefit for clinical HSC use. Here, we review the current understanding and progression on the molecular and metabolic regulation of HSC quiescence, providing a more complete picture regarding the mechanisms of HSC quiescence maintenance.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Guo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
72
|
Watt SM. The long and winding road: homeostatic and disordered haematopoietic microenvironmental niches: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:31-54. [PMID: 35837343 PMCID: PMC9255786 DOI: 10.12336/biomatertransl.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Haematopoietic microenvironmental niches have been described as the 'gatekeepers' for the blood and immune systems. These niches change during ontogeny, with the bone marrow becoming the predominant site of haematopoiesis in post-natal life under steady state conditions. To determine the structure and function of different haematopoietic microenvironmental niches, it is essential to clearly define specific haematopoietic stem and progenitor cell subsets during ontogeny and to understand their temporal appearance and anatomical positioning. A variety of haematopoietic and non-haematopoietic cells contribute to haematopoietic stem and progenitor cell niches. The latter is reported to include endothelial cells and mesenchymal stromal cells (MSCs), skeletal stem cells and/or C-X-C motif chemokine ligand 12-abundant-reticular cell populations, which form crucial components of these microenvironments under homeostatic conditions. Dysregulation or deterioration of such cells contributes to significant clinical disorders and diseases worldwide and is associated with the ageing process. A critical appraisal of these issues and of the roles of MSC/C-X-C motif chemokine ligand 12-abundant-reticular cells and the more recently identified skeletal stem cell subsets in bone marrow haematopoietic niche function under homeostatic conditions and during ageing will form the basis of this research review. In the context of haematopoiesis, clinical translation will deal with lessons learned from the vast experience garnered from the development and use of MSC therapies to treat graft versus host disease in the context of allogeneic haematopoietic transplants, the recent application of these MSC therapies to treating emerging and severe coronavirus disease 2019 (COVID-19) infections, and, given that skeletal stem cell ageing is one proposed driver for haematopoietic ageing, the potential contributions of these stem cells to haematopoiesis in healthy bone marrow and the benefits and challenges of using this knowledge for rejuvenating the age-compromised bone marrow haematopoietic niches and restoring haematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
73
|
Liu Y, Chen Q, Jeong HW, Koh BI, Watson EC, Xu C, Stehling M, Zhou B, Adams RH. A specialized bone marrow microenvironment for fetal haematopoiesis. Nat Commun 2022; 13:1327. [PMID: 35288551 PMCID: PMC8921288 DOI: 10.1038/s41467-022-28775-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
In adult mammalian bone marrow (BM), vascular endothelial cells and perivascular reticular cells control the function of haematopoietic stem and progenitor cells (HSPCs). During fetal development, the mechanisms regulating the de novo haematopoietic cell colonization of BM remain largely unknown. Here, we show that fetal and adult BM exhibit fundamental differences in cellular composition and molecular interactions by single cell RNA sequencing. While fetal femur is largely devoid of leptin receptor-expressing cells, arterial endothelial cells (AECs) provide Wnt ligand to control the initial HSPC expansion. Haematopoietic stem cells and c-Kit+ HSPCs are reduced when Wnt secretion by AECs is genetically blocked. We identify Wnt2 as AEC-derived signal that activates β-catenin-dependent proliferation of fetal HSPCs. Treatment of HSPCs with Wnt2 promotes their proliferation and improves engraftment after transplantation. Our work reveals a fundamental switch in the cellular organization and molecular regulation of BM niches in the embryonic and adult organism. The colonization of bone marrow by haematopoietic stem and progenitor cells is critical for lifelong blood cell formation. Here the authors report distinct features of fetal bone marrow and show that artery-derived signals promote haematopoietic colonization.
Collapse
|
74
|
Owen-Woods C, Kusumbe A. Fundamentals of bone vasculature: Specialization, interactions and functions. Semin Cell Dev Biol 2022; 123:36-47. [PMID: 34281770 DOI: 10.1016/j.semcdb.2021.06.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023]
Abstract
Angiogenesis, hematopoiesis and osteogenesis are fundamental processes mediating complex and essential biological functions. In the bone marrow, endothelial cells (ECs) are a principal mediator of regulatory signals that govern hematopoietic and mesenchymal stem cells. EC and osteoblast interactions and niche functions of ECs are fundamental in maintaining bone health and coordinating repair and regeneration following injury. These cellular interactions are subject to dysregulation and deterioration under stress, aging, chronic disease states and malignancy. Thus, the prospect of manipulating the bone vasculature has tremendous potential to advance therapeutic interventions for the management of bone diseases. This review discusses the current state of vascular-skeletal tissue interactions focusing on osteoblast and hematopoietic stem cells interaction with ECs.
Collapse
Affiliation(s)
- Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK
| | - Anjali Kusumbe
- Tissue and Tumor Microenvironments Group, NDORMS, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
75
|
Zhang P, Li X, Pan C, Zheng X, Hu B, Xie R, Hu J, Shang X, Yang H. Single-cell RNA sequencing to track novel perspectives in HSC heterogeneity. Stem Cell Res Ther 2022; 13:39. [PMID: 35093185 PMCID: PMC8800338 DOI: 10.1186/s13287-022-02718-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2022] [Indexed: 12/21/2022] Open
Abstract
As the importance of cell heterogeneity has begun to be emphasized, single-cell sequencing approaches are rapidly adopted to study cell heterogeneity and cellular evolutionary relationships of various cells, including stem cell populations. The hematopoietic stem and progenitor cell (HSPC) compartment contains HSC hematopoietic stem cells (HSCs) and distinct hematopoietic cells with different abilities to self-renew. These cells perform their own functions to maintain different hematopoietic lineages. Undeniably, single-cell sequencing approaches, including single-cell RNA sequencing (scRNA-seq) technologies, empower more opportunities to study the heterogeneity of normal and pathological HSCs. In this review, we discuss how these scRNA-seq technologies contribute to tracing origin and lineage commitment of HSCs, profiling the bone marrow microenvironment and providing high-resolution dissection of malignant hematopoiesis, leading to exciting new findings in HSC biology.
Collapse
|
76
|
Wen B, Wang G, Li E, Kolesnichenko OA, Tu Z, Divanovic S, Kalin TV, Kalinichenko VV. In vivo generation of bone marrow from embryonic stem cells in interspecies chimeras. eLife 2022; 11:74018. [PMID: 36178184 PMCID: PMC9578712 DOI: 10.7554/elife.74018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Generation of bone marrow (BM) from embryonic stem cells (ESCs) promises to accelerate the development of future cell therapies for life-threatening disorders. However, such approach is limited by technical challenges to produce a mixture of functional BM progenitor cells able to replace all hematopoietic cell lineages. Herein, we used blastocyst complementation to simultaneously produce BM cell lineages from mouse ESCs in a rat. Based on fluorescence-activated cell sorting analysis and single-cell RNA sequencing, mouse ESCs differentiated into multiple hematopoietic and stromal cell types that were indistinguishable from normal mouse BM cells based on gene expression signatures and cell surface markers. Receptor-ligand interactions identified Cxcl12-Cxcr4, Lama2-Itga6, App-Itga6, Comp-Cd47, Col1a1-Cd44, and App-Il18rap as major signaling pathways between hematopoietic progenitors and stromal cells. Multiple hematopoietic progenitors, including hematopoietic stem cells (HSCs) in mouse-rat chimeras derived more efficiently from mouse ESCs, whereas chondrocytes predominantly derived from rat cells. In the dorsal aorta and fetal liver of mouse-rat chimeras, mouse HSCs emerged and expanded faster compared to endogenous rat cells. Sequential BM transplantation of ESC-derived cells from mouse-rat chimeras rescued lethally irradiated syngeneic mice and demonstrated long-term reconstitution potential of donor HSCs. Altogether, a fully functional BM was generated from mouse ESCs using rat embryos as 'bioreactors'.
Collapse
Affiliation(s)
- Bingqiang Wen
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Guolun Wang
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Enhong Li
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Olena A Kolesnichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Zhaowei Tu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine of the University of CincinnatiCincinnatiUnited States
| | - Tanya V Kalin
- Department of Pediatrics, College of Medicine of the University of CincinnatiCincinnatiUnited States,Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| | - Vladimir V Kalinichenko
- Center for Lung Regenerative Medicine, Perinatal Institute, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Department of Pediatrics, College of Medicine of the University of CincinnatiCincinnatiUnited States,Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States,Division of Developmental Biology, Cincinnati Children’s Hospital Medical CenterCincinnatiUnited States
| |
Collapse
|
77
|
Nash MJ, Dobrinskikh E, Newsom SA, Messaoudi I, Janssen RC, Aagaard KM, McCurdy CE, Gannon M, Kievit P, Friedman JE, Wesolowski SR. Maternal Western diet exposure increases periportal fibrosis beginning in utero in nonhuman primate offspring. JCI Insight 2021; 6:e154093. [PMID: 34935645 PMCID: PMC8783685 DOI: 10.1172/jci.insight.154093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/29/2022] Open
Abstract
Maternal obesity affects nearly one-third of pregnancies and is a major risk factor for nonalcoholic fatty liver disease (NAFLD) in adolescent offspring, yet the mechanisms behind NAFLD remain poorly understood. Here, we demonstrate that nonhuman primate fetuses exposed to maternal Western-style diet (WSD) displayed increased fibrillar collagen deposition in the liver periportal region, with increased ACTA2 and TIMP1 staining, indicating localized hepatic stellate cell (HSC) and myofibroblast activation. This collagen deposition pattern persisted in 1-year-old offspring, despite weaning to a control diet (CD). Maternal WSD exposure increased the frequency of DCs and reduced memory CD4+ T cells in fetal liver without affecting systemic or hepatic inflammatory cytokines. Switching obese dams from WSD to CD before conception or supplementation of the WSD with resveratrol decreased fetal hepatic collagen deposition and reduced markers of portal triad fibrosis, oxidative stress, and fetal hypoxemia. These results demonstrate that HSCs and myofibroblasts are sensitive to maternal WSD-associated oxidative stress in the fetal liver, which is accompanied by increased periportal collagen deposition, indicative of early fibrogenesis beginning in utero. Alleviating maternal WSD-driven oxidative stress in the fetal liver holds promise for halting steatosis and fibrosis and preventing developmental programming of NAFLD.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean A. Newsom
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Kjersti M. Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, and Departments of Molecular and Human Genetics and Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Carrie E. McCurdy
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Maureen Gannon
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paul Kievit
- Division of Cardiometabolic Health, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
78
|
Soukup AA, Matson DR, Liu P, Johnson KD, Bresnick EH. Conditionally pathogenic genetic variants of a hematopoietic disease-suppressing enhancer. SCIENCE ADVANCES 2021; 7:eabk3521. [PMID: 34890222 PMCID: PMC8664263 DOI: 10.1126/sciadv.abk3521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/22/2021] [Indexed: 05/11/2023]
Abstract
Human genetic variants are classified on the basis of potential pathogenicity to guide clinical decisions. However, mechanistic uncertainties often preclude definitive categorization. Germline coding and enhancer variants within the hematopoietic regulator GATA2 create a bone marrow failure and leukemia predisposition. The conserved murine enhancer promotes hematopoietic stem cell (HSC) genesis, and a single-nucleotide human variant in an Ets motif attenuates chemotherapy-induced hematopoietic regeneration. We describe “conditionally pathogenic” (CP) enhancer motif variants that differentially affect hematopoietic development and regeneration. The Ets motif variant functioned autonomously in hematopoietic cells to disrupt hematopoiesis. Because an epigenetically silenced normal allele can exacerbate phenotypes of a pathogenic heterozygous variant, we engineered a bone marrow failure model harboring the Ets motif variant and a severe enhancer mutation on the second allele. Despite normal developmental hematopoiesis, regeneration in response to chemotherapy, inflammation, and a therapeutic HSC mobilizer was compromised. The CP paradigm informs mechanisms underlying phenotypic plasticity and clinical genetics.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel R. Matson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- University of Wisconsin Carbone Cancer Center, Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
79
|
Weijts B, Yvernogeau L, Robin C. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Front Immunol 2021; 12:790379. [PMID: 34899758 PMCID: PMC8652083 DOI: 10.3389/fimmu.2021.790379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
The journey of a hematopoietic stem cell (HSC) involves the passage through successive anatomical sites where HSCs are in direct contact with their surrounding microenvironment, also known as niche. These spatial and temporal cellular interactions throughout development are required for the acquisition of stem cell properties, and for maintaining the HSC pool through balancing self-renewal, quiescence and lineage commitment. Understanding the context and consequences of these interactions will be imperative for our understanding of HSC biology and will lead to the improvement of in vitro production of HSCs for clinical purposes. The aorta-gonad-mesonephros (AGM) region is in this light of particular interest since this is the cradle of HSC emergence during the embryonic development of all vertebrate species. In this review, we will focus on the developmental origin of HSCs and will discuss the novel technological approaches and recent progress made to identify the cellular composition of the HSC supportive niche and the underlying molecular events occurring in the AGM region.
Collapse
Affiliation(s)
- Bart Weijts
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Laurent Yvernogeau
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) & University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
80
|
Differentiation of fetal hematopoietic stem cells requires ARID4B to restrict autocrine KITLG/KIT-Src signaling. Cell Rep 2021; 37:110036. [PMID: 34818550 PMCID: PMC8722094 DOI: 10.1016/j.celrep.2021.110036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/15/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022] Open
Abstract
Balance between the hematopoietic stem cell (HSC) duality to either possess self-renewal capacity or differentiate into multipotency progenitors (MPPs) is crucial for maintaining homeostasis of the hematopoietic stem/progenitor cell (HSPC) compartment. To retain the HSC self-renewal activity, KIT, a receptor tyrosine kinase, in HSCs is activated by its cognate ligand KITLG originating from niche cells. Here, we show that AT-rich interaction domain 4B (ARID4B) interferes with KITLG/KIT signaling, consequently allowing HSC differentiation. Conditional Arid4b knockout in mouse hematopoietic cells blocks fetal HSC differentiation, preventing hematopoiesis. Mechanistically, ARID4B-deficient HSCs self-express KITLG and overexpress KIT. As to downstream pathways of KITLG/KIT signaling, inhibition of Src family kinases rescues the HSC differentiation defect elicited by ARID4B loss. In summary, the intrinsic ARID4B-KITLG/KIT-Src axis is an HSPC regulatory program that enables the differentiation state, while KIT stimulation by KITLG from niche cells preserves the HSPC undifferentiated pool. Hematopoietic stem cells (HSCs) at the top of the hematopoietic hierarchy are able to self-renew and differentiate to mature blood cells. Young et al. report that an HSC self-control mechanism established by ARID4B ensures HSC differentiation. ARID4B-deficient HSCs produce KITLG to stimulate KIT, leading to blockage of HSC differentiation and eventual hematopoietic failure.
Collapse
|
81
|
Vasam G, S SJ, Miyat SY, Adam H, Jarajapu YP. Early onset of aging phenotype in vascular repair by Mas receptor deficiency. GeroScience 2021; 44:311-327. [PMID: 34661816 DOI: 10.1007/s11357-021-00473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022] Open
Abstract
Aging is associated with impaired vascular repair following ischemic insult, largely due to reparative dysfunctions of progenitor cells. Activation of Mas receptor (MasR) was shown to reverse aging-associated vasoreparative dysfunction. This study tested the impact of MasR-deficiency on mobilization and vasoreparative functions with aging. Wild type (WT) or MasR-deficient mice (MasR-/- or MasR+/-) at 12-14 weeks (young) or middle age (11-12 months) (MA) were used in the study. Mobilization of lineage-negative, Sca-1-positive cKit-positive (LSK) cells in response to G-CSF or plerixafor was determined. Hindlimb ischemia (HLI) was induced by femoral artery ligation. Mobilization and blood flow recovery were monitored post-HLI. Radiation chimeras were made by lethal irradiation of WT or MasR-/- mice followed by administration of bone marrow cells from MasR-/- or WT mice, respectively. Nitric oxide (NO) generation by stromal-derived factor-1α (SDF) and mitochondrial reactive oxygen species (mitoROS) levels were determined by flow cytometry. Effect of A779 treatment on mobilization, blood flow recovery, and NO and ROS levels were determined in young WT and MasR+/- mice. Circulating LSK cells in basal or in response to plerixafor or G-CSF or in response to ischemic injury were lower in MasR-/- mice compared to the WT. Responses in MasR+/- mice were similar to the WT at young age but at the middle age, impairments were observed. Impaired mobilization to ischemia or G-CSF was rescued in WT → MasR-/- chimeras. NO levels were lower and mitoROS were higher in MasR-/- LSK cells compared to WT cells. A779 precipitated dysfunctions in young-MasR+/- mice similar to that observed in MA-MasR+/-, and this accompanied decreased NO generation by SDF and enhanced mitoROS levels. This study shows that mice at MA do not exhibit vasoreparative dysfunction. Either partial or total loss of MasR precipitates advanced-aging phenotype likely due to lack of NO and oxidative stress.
Collapse
Affiliation(s)
- Goutham Vasam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi S
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Su Yamin Miyat
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Hashim Adam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
82
|
Elmore SA. Prenatal Evaluations: A Prologue to Postnatal Pathology Interpretations. Toxicol Pathol 2021; 49:1425-1436. [PMID: 34652981 DOI: 10.1177/01926233211046540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Animal models are commonly used to investigate the developmental basis of human birth defects. Such models may be used for safety assessment studies designed to reveal xenobiotic-related alterations in juvenile animals, or to investigate gene function or generate models of human disease, as with transgenics. Therefore, the evaluation of rodent embryos and placentas can be used to provide insight into various postnatal abnormalities such as structural or cellular abnormalities and early death. Depending on the defect, pups may be born dead, survive for only a short period of time, survive but with poor growth, or survive and be clinically normal. Mice are generally used to generate genetic alterations that can help in identifying genes involved in embryogenesis. Rats are more commonly used for toxicology studies. This article aims to share information on the importance of, and strategies for, mouse embryo, placenta, and metrial gland evaluations. Information on early postnatal development is also provided as well as select examples of developmental information on organ systems needed for postnatal evaluations. A list of additional studies that can aid in the evaluation of prenatal and postnatal phenotypes is also provided.
Collapse
Affiliation(s)
- Susan A Elmore
- National Toxicology Program, 6857NIEHS, Comparative and Molecular Pathogenesis Branch, Research Triangle Park, NC, USA
| |
Collapse
|
83
|
Sun S, Jin C, Si J, Lei Y, Chen K, Cui Y, Liu Z, Liu J, Zhao M, Zhang X, Tang F, Rondina MT, Li Y, Wang QF. Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis. Blood 2021; 138:1211-1224. [PMID: 34115843 PMCID: PMC8499048 DOI: 10.1182/blood.2021010697] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Megakaryocytes (MKs), the platelet progenitor cells, play important roles in hematopoietic stem cell (HSC) maintenance and immunity. However, it is not known whether these diverse programs are executed by a single population or by distinct subsets of cells. Here, we manually isolated primary CD41+ MKs from the bone marrow (BM) of mice and human donors based on ploidy (2N-32N) and performed single-cell RNA sequencing analysis. We found that cellular heterogeneity existed within 3 distinct subpopulations that possess gene signatures related to platelet generation, HSC niche interaction, and inflammatory responses. In situ immunostaining of mouse BM demonstrated that platelet generation and the HSC niche-related MKs were in close physical proximity to blood vessels and HSCs, respectively. Proplatelets, which could give rise to platelets under blood shear forces, were predominantly formed on a platelet generation subset. Remarkably, the inflammatory responses subpopulation, consisting generally of low-ploidy LSP1+ and CD53+ MKs (≤8N), represented ∼5% of total MKs in the BM. These MKs could specifically respond to pathogenic infections in mice. Rapid expansion of this population was accompanied by strong upregulation of a preexisting PU.1- and IRF-8-associated monocytic-like transcriptional program involved in pathogen recognition and clearance as well as antigen presentation. Consistently, isolated primary CD53+ cells were capable of engulfing and digesting bacteria and stimulating T cells in vitro. Together, our findings uncover new molecular, spatial, and functional heterogeneity within MKs in vivo and demonstrate the existence of a specialized MK subpopulation that may act as a new type of immune cell.
Collapse
Affiliation(s)
- Shu Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia Si
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Lei
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kunying Chen
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueli Cui
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
- Biomedical Institute for Pioneering Investigation via Convergence, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhenbo Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Jiang Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
- National Clinical Research Center for Hematologic Disease, Beijing, China
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, College of Life Sciences, Peking University, Beijing, China
- Biomedical Institute for Pioneering Investigation via Convergence, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Matthew T Rondina
- Department of Internal Medicine and Pathology, and the Molecular Medicine Program, University of Utah, Salt Lake City, UT; and
- Geriatric Research Education and Clinical Center, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Yueying Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Fei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, CAS, Beijing, China
- China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
84
|
Arhgef2 regulates mitotic spindle orientation in hematopoietic stem cells and is essential for productive hematopoiesis. Blood Adv 2021; 5:3120-3133. [PMID: 34406376 DOI: 10.1182/bloodadvances.2020002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 11/20/2022] Open
Abstract
How hematopoietic stem cells (HSCs) coordinate their divisional axis and whether this orientation is important for stem cell-driven hematopoiesis is poorly understood. Single-cell RNA sequencing data from patients with Shwachman-Diamond syndrome (SDS), an inherited bone marrow failure syndrome, show that ARHGEF2, a RhoA-specific guanine nucleotide exchange factor and determinant of mitotic spindle orientation, is specifically downregulated in SDS hematopoietic stem and progenitor cells (HSPCs). We demonstrate that transplanted Arhgef2-/- fetal liver and bone marrow cells yield impaired hematopoietic recovery and a production deficit from long-term HSCs, phenotypes that are not the result of differences in numbers of transplanted HSCs, their cell cycle status, level of apoptosis, progenitor output, or homing ability. Notably, these defects are functionally restored in vivo by overexpression of ARHGEF2 or its downstream activated RHOA GTPase. By using live imaging of dividing HSPCs, we show an increased frequency of misoriented divisions in the absence of Arhgef2. ARHGEF2 knockdown in human HSCs also impairs their ability to regenerate hematopoiesis, culminating in significantly smaller xenografts. Together, these data demonstrate a conserved role for Arhgef2 in orienting HSPC division and suggest that HSCs may divide in certain orientations to establish hematopoiesis, the loss of which could contribute to HSC dysfunction in bone marrow failure.
Collapse
|
85
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
86
|
Lu Y, Liu M, Yang J, Weissman SM, Pan X, Katz SG, Wang S. Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discov 2021; 7:47. [PMID: 34183665 PMCID: PMC8238952 DOI: 10.1038/s41421-021-00266-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche has been extensively studied in bone marrow, yet a more systematic investigation into the microenvironment regulation of hematopoiesis in fetal liver is necessary. Here we investigate the spatial organization and transcriptional profile of individual cells in both wild type (WT) and Tet2−/− fetal livers, by multiplexed error robust fluorescence in situ hybridization. We find that specific pairs of fetal liver cell types are preferentially positioned next to each other. Ligand-receptor signaling molecule pairs such as Kitl and Kit are enriched in neighboring cell types. The majority of HSCs are in direct contact with endothelial cells (ECs) in both WT and Tet2−/− fetal livers. Loss of Tet2 increases the number of HSCs, and upregulates Wnt and Notch signaling genes in the HSC niche. Two subtypes of ECs, arterial ECs and sinusoidal ECs, and other cell types contribute distinct signaling molecules to the HSC niche. Collectively, this study provides a comprehensive picture and bioinformatic foundation for HSC spatial regulation in fetal liver.
Collapse
Affiliation(s)
- Yanfang Lu
- Department of Genetics, Yale School of Medicine, New Haven, USA.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China
| | - Miao Liu
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Jennifer Yang
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | | | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong, China.
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, USA.
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, New Haven, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, USA.
| |
Collapse
|
87
|
The Bone Marrow as Sanctuary for Plasma Cells and Memory T-Cells: Implications for Adaptive Immunity and Vaccinology. Cells 2021; 10:cells10061508. [PMID: 34203839 PMCID: PMC8232593 DOI: 10.3390/cells10061508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
The bone marrow (BM) is key to protective immunological memory because it harbors a major fraction of the body’s plasma cells, memory CD4+ and memory CD8+ T-cells. Despite its paramount significance for the human immune system, many aspects of how the BM enables decade-long immunity against pathogens are still poorly understood. In this review, we discuss the relationship between BM survival niches and long-lasting humoral immunity, how intrinsic and extrinsic factors define memory cell longevity and show that the BM is also capable of adopting many responsibilities of a secondary lymphoid organ. Additionally, with more and more data on the differentiation and maintenance of memory T-cells and plasma cells upon vaccination in humans being reported, we discuss what factors determine the establishment of long-lasting immunological memory in the BM and what we can learn for vaccination technologies and antigen design. Finally, using these insights, we touch on how this holistic understanding of the BM is necessary for the development of modern and efficient vaccines against the pandemic SARS-CoV-2.
Collapse
|
88
|
VEGF-C protects the integrity of the bone marrow perivascular niche in mice. Blood 2021; 136:1871-1883. [PMID: 32842144 DOI: 10.1182/blood.2020005699] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/31/2020] [Indexed: 01/10/2023] Open
Abstract
Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) stem cell niche, which provides a vital source of HSC regulatory signals. Radiation and chemotherapy disrupt the HSC niche, including its sinusoidal vessels and perivascular cells, contributing to delayed hematopoietic recovery. Thus, identification of factors that can protect the HSC niche during an injury could offer a significant therapeutic opportunity to improve hematopoietic regeneration. In this study, we identified a critical function for vascular endothelial growth factor-C (VEGF-C), that of maintaining the integrity of the BM perivascular niche and improving BM niche recovery after irradiation-induced injury. Both global and conditional deletion of Vegfc in endothelial or leptin receptor-positive (LepR+) cells led to a disruption of the BM perivascular niche. Furthermore, deletion of Vegfc from the microenvironment delayed hematopoietic recovery after transplantation by decreasing endothelial proliferation and LepR+ cell regeneration. Exogenous administration of VEGF-C via an adenoassociated viral vector improved hematopoietic recovery after irradiation by accelerating endothelial and LepR+ cell regeneration and by increasing the expression of hematopoietic regenerative factors. Our results suggest that preservation of the integrity of the perivascular niche via VEGF-C signaling could be exploited therapeutically to enhance hematopoietic regeneration.
Collapse
|
89
|
Hwang JW, Desterke C, Loisel-Duwattez J, Griscelli F, Bennaceur-Griscelli A, Turhan AG. Detection of Hematopoietic Stem Cell Transcriptome in Human Fetal Kidneys and Kidney Organoids Derived From Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2021; 9:668833. [PMID: 34178994 PMCID: PMC8226023 DOI: 10.3389/fcell.2021.668833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND In mammalians, hematopoietic stem cells (HSCs) arise in the dorsal aorta from the hemogenic endothelium, followed by their migration to the fetal liver and to the bone marrow. In zebrafish, the kidney is the site of primary hematopoiesis. In humans, the presence of HSCs in the fetal or adult kidney has not been established. METHODS We analyzed the presence of HSC markers in the human fetal kidneys by analysis of single-cell datasets. We then analyzed in kidney organoids derived from induced pluripotent stem cells (iPSCs) the presence of hematopoietic markers using transcriptome analyses. RESULTS Twelve clusters were identified as stromal, endothelial, and nephron cell type-specific markers in the two fetal stage (17 weeks) kidney datasets. Among these, the expression of hematopoietic cells in cluster 9 showed an expression of primitive markers. Moreover, whole transcriptome analysis of our iPSC-derived kidney organoids revealed induction of the primitive hematopoietic transcription factor RUNX1 as found in the human fetal kidney cortex. CONCLUSION These finding support the presence of cells expressing HSC transcriptome in the human kidney. The mechanisms of the appearance of the cells with the same transcriptional features during iPSC-derived kidney organoid generation require further investigation.
Collapse
Affiliation(s)
- Jin Wook Hwang
- INSERM U935/UA09, Université Paris-Saclay, Villejuif, France
- ESTeam Paris Sud, Université Paris Sud, Villejuif, France
| | - Christophe Desterke
- INSERM U935/UA09, Université Paris-Saclay, Villejuif, France
- ESTeam Paris Sud, Université Paris Sud, Villejuif, France
| | - Julien Loisel-Duwattez
- INSERM U1195, AP-HP, Service de Neurologie, Faculté de Médecine, Hôpital Bicêtre, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Frank Griscelli
- INSERM U935/UA09, Université Paris-Saclay, Villejuif, France
- ESTeam Paris Sud, Université Paris Sud, Villejuif, France
- INGESTEM National IPSC Infrastructure, Villejuif, France
- Division of Hematology, AP-HP Paris Saclay, Le Kremlin-Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- INSERM U935/UA09, Université Paris-Saclay, Villejuif, France
- ESTeam Paris Sud, Université Paris Sud, Villejuif, France
- INGESTEM National IPSC Infrastructure, Villejuif, France
- Division of Hematology, AP-HP Paris Saclay, Le Kremlin-Bicêtre, France
| | - Ali G. Turhan
- INSERM U935/UA09, Université Paris-Saclay, Villejuif, France
- ESTeam Paris Sud, Université Paris Sud, Villejuif, France
- INGESTEM National IPSC Infrastructure, Villejuif, France
- Division of Hematology, AP-HP Paris Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
90
|
Choi YJ, Heck AM, Hayes BJ, Lih D, Rayner SG, Hadland B, Zheng Y. WNT5A from the fetal liver vascular niche supports human fetal liver hematopoiesis. Stem Cell Res Ther 2021; 12:321. [PMID: 34090485 PMCID: PMC8180064 DOI: 10.1186/s13287-021-02380-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The human fetal liver is a critical organ for prenatal hematopoiesis, the study of which offers insights into niche signals that regulate the fates of hematopoietic stem and progenitor cells (HSPCs) during fetal development. Here, we demonstrate that human fetal liver endothelium uniquely supports the maturation and expansion of multilineage HSPCs. Specifically, co-culture of fetal liver-derived immature CD43+CD45- hematopoietic cells with human fetal liver endothelial cells (ECs) led to a profound increase in the numbers of phenotypic CD45+CD34+ HSPCs and multilineage colony-forming progenitors generated in vitro, when compared to co-culture with ECs derived from other organs. We further identified a supportive role for EC-derived WNT5A in this process via gain- and loss-of-function studies within ECs. Our study emphasizes the importance of the organ-specific endothelial niche in supporting hematopoietic development and provides novel insight into signals that may facilitate HSPC expansion in vitro for clinical applications.
Collapse
Affiliation(s)
- Yoon Jung Choi
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Adam M Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian J Hayes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel Lih
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel G Rayner
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Center for Cardiovascular Biology, and Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
91
|
Bousounis P, Bergo V, Trompouki E. Inflammation, Aging and Hematopoiesis: A Complex Relationship. Cells 2021; 10:1386. [PMID: 34199874 PMCID: PMC8227236 DOI: 10.3390/cells10061386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
All vertebrate blood cells descend from multipotent hematopoietic stem cells (HSCs), whose activity and differentiation depend on a complex and incompletely understood relationship with inflammatory signals. Although homeostatic levels of inflammatory signaling play an intricate role in HSC maintenance, activation, proliferation, and differentiation, acute or chronic exposure to inflammation can have deleterious effects on HSC function and self-renewal capacity, and bias their differentiation program. Increased levels of inflammatory signaling are observed during aging, affecting HSCs either directly or indirectly via the bone marrow niche and contributing to their loss of self-renewal capacity, diminished overall functionality, and myeloid differentiation skewing. These changes can have significant pathological consequences. Here, we provide an overview of the current literature on the complex interplay between HSCs and inflammatory signaling, and how this relationship contributes to age-related phenotypes. Understanding the mechanisms and outcomes of this interaction during different life stages will have significant implications in the modulation and restoration of the hematopoietic system in human disease, recovery from cancer and chemotherapeutic treatments, stem cell transplantation, and aging.
Collapse
Affiliation(s)
- Pavlos Bousounis
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Veronica Bergo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; (P.B.); (V.B.)
- Centre for Integrative Biological Signaling Studies (CIBSS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
92
|
Bagheri-Mohammadi S. Protective effects of mesenchymal stem cells on ischemic brain injury: therapeutic perspectives of regenerative medicine. Cell Tissue Bank 2021; 22:249-262. [PMID: 33231840 DOI: 10.1007/s10561-020-09885-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemic injury as the main manifestation of stroke can occur in stroke patients (70-80%). Nowadays, the main therapeutic strategy used for ischemic brain injury treatment aims to achieve reperfusion, neuroprotection, and neurorecovery. Also, angiogenesis as a therapeutic approach maybe represents a promising tool to enhance the prognosis of cerebral ischemic stroke. Unfortunately, although many therapeutic approaches as a life-saving gateway for cerebral ischemic injuries like pharmacotherapy and surgical treatments are widely used, they all fail to restore or regenerate damaged neurons in the brain. So, the suitable therapeutic approach would focus on regenerating the lost cells and restore the normal function of the brain. Currently, stem cell-based regenerative medicine introduced a new paradigm approach in cerebral ischemic injuries treatment. Today, in experimental researches, different types of stem cells such as mesenchymal stem cells have been applied. Therefore, stem cell-based regenerative medicine provides the opportunity to inquire and develop a more effective and safer therapeutic approach with the capability to produce and regenerate new neurons in damaged tissues.
Collapse
Affiliation(s)
- Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Departments of Applied Cell Sciences, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
93
|
Gao J, Hou S, Yuan S, Wang Y, Gao Y, Sun X, Wang W, Chu Y, Zhou Y, Feng X, Luo HR, Cheng T, Shi J, Yuan W, Wang X. Rheb1-Deficient Neutrophils Promote Hematopoietic Stem/Progenitor Cell Proliferation via Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650599. [PMID: 34124040 PMCID: PMC8191467 DOI: 10.3389/fcell.2021.650599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid cells have been identified as hematopoietic stem cell (HSC)-regulating cells. However, the mechanisms by which myeloid cells regulate the function of HSCs are not fully defined. Our previous study indicated that the HSCs are over-expanded in Vav1-Cre;Rheb1 f l/fl mice. Here, using in vivo and in vitro models, we found that Rheb1-deficient neutrophils remodeled the bone marrow environment and induced expansion of HSCs in vivo. Further studies showed that loss of Rheb1 impaired neutrophils' ability to secrete IL-6, led mesenchymal stem cells (MSCs) to produce more SCF, and promote HSC proliferation. We further found that IL-6 suppressed SCF mRNA expression in human MSCs. Interesting, the high level of IL-6 was also related with poor survival of chronic myeloid leukemia (CML) patients, and higher expression of IL-6 in CML cells is associated with the lower expression of SCF in MSCs in patients. Our studies suggested that blocking IL-6 signaling pathway might stimulate MSCs to secrete more SCF, and to support hematopoietic stem/progenitor cells proliferation.
Collapse
Affiliation(s)
- Juan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Eye Institute, Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuxia Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yanan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaolu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
94
|
Macrophage protease-activated receptor 2 regulates fetal liver erythropoiesis in mice. Blood Adv 2021; 4:5810-5824. [PMID: 33232477 DOI: 10.1182/bloodadvances.2020003299] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
Deficiencies in many coagulation factors and protease-activated receptors (PARs) affect embryonic development. We describe a defect in definitive erythropoiesis in PAR2-deficient mice. Embryonic PAR2 deficiency increases embryonic death associated with variably severe anemia in comparison with PAR2-expressing embryos. PAR2-deficient fetal livers display reduced macrophage densities, erythroblastic island areas, and messenger RNA expression levels of markers for erythropoiesis and macrophages. Coagulation factor synthesis in the liver coincides with expanding fetal liver hematopoiesis during midgestation, and embryonic factor VII (FVII) deficiency impairs liver macrophage development. Cleavage-insensitive PAR2-mutant mice recapitulate the hematopoiesis defect of PAR2-deficient embryos, and macrophage-expressed PAR2 directly supports erythroblastic island function and the differentiation of red blood cells in the fetal liver. Conditional deletion of PAR2 in macrophages impairs erythropoiesis, as well as increases inflammatory stress, as evidenced by upregulation of interferon-regulated hepcidin antimicrobial peptide. In contrast, postnatal macrophage PAR2 deficiency does not have any effect on steady-state Kupffer cells, bone marrow macrophage numbers, or erythropoiesis, but erythropoiesis in macrophages from PAR2-deficient mice is impaired following hemolysis. These data identify a novel function for macrophage PAR2 signaling in adapting to rapid increases in blood demand during gestational development and postnatal erythropoiesis under stress conditions.
Collapse
|
95
|
Fasouli ES, Katsantoni E. JAK-STAT in Early Hematopoiesis and Leukemia. Front Cell Dev Biol 2021; 9:669363. [PMID: 34055801 PMCID: PMC8160090 DOI: 10.3389/fcell.2021.669363] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) produce all the terminally differentiated blood cells and are controlled by extracellular signals from the microenvironment, the bone marrow (BM) niche, as well as intrinsic cell signals. Intrinsic signals include the tightly controlled action of signaling pathways, as the Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway. Activation of JAK-STAT leads to phosphorylation of members of the STAT family to regulate proliferation, survival, and self-renewal of HSCs. Mutations in components of the JAK-STAT pathway are linked with defects in HSCs and hematologic malignancies. Accumulating mutations in HSCs and aging contribute to leukemia transformation. Here an overview of hematopoiesis, and the role of the JAK-STAT pathway in HSCs and in the promotion of leukemic transformation is presented. Therapeutic targeting of JAK-STAT and clinical implications of the existing research findings are also discussed.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Eleni Katsantoni
- Basic Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
96
|
Karlsson G, Sommarin MNE, Böiers C. Defining the Emerging Blood System During Development at Single-Cell Resolution. Front Cell Dev Biol 2021; 9:660350. [PMID: 34055791 PMCID: PMC8158578 DOI: 10.3389/fcell.2021.660350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
Developmental hematopoiesis differs from adult and is far less described. In the developing embryo, waves of lineage-restricted blood precede the ultimate emergence of definitive hematopoietic stem cells (dHSCs) capable of maintaining hematopoiesis throughout life. During the last two decades, the advent of single-cell genomics has provided tools to circumvent previously impeding characteristics of embryonic hematopoiesis, such as cell heterogeneity and rare cell states, allowing for definition of lineage trajectories, cellular hierarchies, and cell-type specification. The field has rapidly advanced from microfluidic platforms and targeted gene expression analysis, to high throughput unbiased single-cell transcriptomic profiling, single-cell chromatin analysis, and cell tracing-offering a plethora of tools to resolve important questions within hematopoietic development. Here, we describe how these technologies have been implemented to address a wide range of aspects of embryonic hematopoiesis ranging from the gene regulatory network of dHSC formation via endothelial to hematopoietic transition (EHT) and how EHT can be recapitulated in vitro, to hematopoietic trajectories and cell fate decisions. Together, these studies have important relevance for regenerative medicine and for our understanding of genetic blood disorders and childhood leukemias.
Collapse
Affiliation(s)
| | | | - Charlotta Böiers
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
97
|
Abstract
Heart regeneration, a relatively new field of biology, is one of the most active and controversial areas of biomedical research. The potential impact of successful human heart regeneration therapeutics cannot be overstated, given the magnitude and prognosis of heart failure. However, the regenerative process is highly complex, and premature claims of successful heart regeneration have both fueled interest and created controversy. The field as a whole is now in the process of course correction, and a clearer picture is beginning to emerge. Despite the challenges, fundamental principles in developmental biology have provided a framework for hypothesis-driven approaches toward the ultimate goal of adult heart regeneration and repair. In this review, we discuss the current state of the field and outline the potential paths forward toward regenerating the human myocardium.
Collapse
Affiliation(s)
- Hesham Sadek
- Department of Medicine (Cardiology), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
98
|
Guidi N, Marka G, Sakk V, Zheng Y, Florian MC, Geiger H. An aged bone marrow niche restrains rejuvenated hematopoietic stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1101-1106. [PMID: 33847429 DOI: 10.1002/stem.3372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Aging-associated leukemia and aging-associated immune remodeling are in part caused by aging of hematopoietic stem cells (HSCs). An increase in the activity of the small RhoGTPase cell division control protein 42 (Cdc42) within HSCs causes aging of HSCs. Old HSCs, treated ex vivo with a specific inhibitor of Cdc42 activity termed CASIN, stay rejuvenated upon transplantation into young recipients. We determined in this study the influence of an aged niche on the function of ex vivo rejuvenated old HSCs, as the relative contribution of HSCs intrinsic mechanisms vs extrinsic mechanisms (niche) for aging of HSCs still remain unknown. Our results show that an aged niche restrains the function of ex vivo rejuvenated HSCs, which is at least in part linked to a low level of the cytokine osteopontin found in aged niches. The data imply that sustainable rejuvenation of the function of aged HSCs in vivo will need to address the influence of an aged niche on rejuvenated HSCs.
Collapse
Affiliation(s)
- Novella Guidi
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Gina Marka
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Yi Zheng
- Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, Ohio, USA
| | | | - Hartmut Geiger
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
99
|
Barcia Durán JG, Lu T, Houghton S, Geng F, Schreiner R, Xiang J, Rafii S, Redmond D, Lis R. Endothelial Jak3 expression enhances pro-hematopoietic angiocrine function in mice. Commun Biol 2021; 4:406. [PMID: 33767339 PMCID: PMC7994450 DOI: 10.1038/s42003-021-01846-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Jak3 is the only non-promiscuous member of the Jak family of secondary messengers. Studies to date have focused on understanding and targeting the cell-autonomous role of Jak3 in immunity, while functional Jak3 expression outside the hematopoietic system remains largely unreported. We show that Jak3 is expressed in endothelial cells across hematopoietic and non-hematopoietic organs, with heightened expression in the bone marrow. The bone marrow niche is understood as a network of different cell types that regulate hematopoietic function. We show that the Jak3-/- bone marrow niche is deleterious for the maintenance of long-term repopulating hematopoietic stem cells (LT-HSCs) and that JAK3-overexpressing endothelial cells have increased potential to expand LT-HSCs in vitro. This work may serve to identify a novel function for a highly specific tyrosine kinase in the bone marrow vascular niche and to further characterize the LT-HSC function of sinusoidal endothelium.
Collapse
Affiliation(s)
- José Gabriel Barcia Durán
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tyler Lu
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sean Houghton
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Fuqiang Geng
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ryan Schreiner
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - David Redmond
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Raphaël Lis
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
100
|
Multispecies RNA tomography reveals regulators of hematopoietic stem cell birth in the embryonic aorta. Blood 2021; 136:831-844. [PMID: 32457985 DOI: 10.1182/blood.2019004446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
The defined location of a stem cell within a niche regulates its fate, behavior, and molecular identity via a complex extrinsic regulation that is far from being fully elucidated. To explore the molecular characteristics and key components of the aortic microenvironment, where the first hematopoietic stem cells are generated during development, we performed genome-wide RNA tomography sequencing on zebrafish, chicken, mouse, and human embryos. The resulting anterior-posterior and dorsal-ventral transcriptional maps provided a powerful resource for exploring genes and regulatory pathways active in the aortic microenvironment. By performing interspecies comparative RNA sequencing analyses and functional assays, we explored the complexity of the aortic microenvironment landscape and the fine-tuning of various factors interacting to control hematopoietic stem cell generation, both in time and space in vivo, including the ligand-receptor couple ADM-RAMP2 and SVEP1. Understanding the regulatory function of the local environment will pave the way for improved stem cell production in vitro and clinical cell therapy.
Collapse
|