51
|
Liboska R, Ligasová A, Strunin D, Rosenberg I, Koberna K. Most anti-BrdU antibodies react with 2'-deoxy-5-ethynyluridine -- the method for the effective suppression of this cross-reactivity. PLoS One 2012; 7:e51679. [PMID: 23272138 PMCID: PMC3525573 DOI: 10.1371/journal.pone.0051679] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/05/2012] [Indexed: 12/24/2022] Open
Abstract
5-Bromo-2'-deoxyuridine (BrdU) and 2'-deoxy-5-ethynyluridine (EdU) are widely used as markers of replicated DNA. While BrdU is detected using antibodies, the click reaction typically with fluorescent azido-dyes is used for EdU localisation. We have performed an analysis of ten samples of antibodies against BrdU with respect to their reactivity with EdU. Except for one sample all the others evinced reactivity with EdU. A high level of EdU persists in nuclear DNA even after the reaction of EdU with fluorescent azido-dyes if the common concentration of dye is used. Although a ten-time increase of azido-dye concentration resulted in a decrease of the signal provided by anti-BrdU antibodies, it also resulted in a substantial increase of the non-specific signal. We have shown that this unwanted reactivity is effectively suppressed by non-fluorescent azido molecules. In this respect, we have tested two protocols of the simultaneous localisation of incorporated BrdU and EdU. They differ in the mechanism of the revelation of incorporated BrdU for the reaction with antibodies. The first one was based on the use of hydrochloric acid, the second one on the incubation of samples with copper(I) ions. The use of hydrochloric acid resulted in a significant increase of the non-specific signal. In the case of the second method, no such effect was observed.
Collapse
Affiliation(s)
- Radek Liboska
- Oligonucleotide Group, Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Prague, Czech Republic
| | - Anna Ligasová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, ASCR, v.v.i., Brno, Czech Republic
- Department of RNA Biology, Institute of Molecular Genetics, ASCR, v.v.i., Prague, Czech Republic
- * E-mail:
| | - Dmytro Strunin
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, ASCR, v.v.i., Brno, Czech Republic
- Department of RNA Biology, Institute of Molecular Genetics, ASCR, v.v.i., Prague, Czech Republic
| | - Ivan Rosenberg
- Oligonucleotide Group, Institute of Organic Chemistry and Biochemistry, ASCR, v.v.i., Prague, Czech Republic
| | - Karel Koberna
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, ASCR, v.v.i., Brno, Czech Republic
- Department of RNA Biology, Institute of Molecular Genetics, ASCR, v.v.i., Prague, Czech Republic
| |
Collapse
|
52
|
Pliss A, Malyavantham KS, Bhattacharya S, Berezney R. Chromatin dynamics in living cells: Identification of oscillatory motion. J Cell Physiol 2012; 228:609-16. [DOI: 10.1002/jcp.24169] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/13/2023]
|
53
|
Iliou MS, Kotantaki P, Karamitros D, Spella M, Taraviras S, Lygerou Z. Reduced Geminin levels promote cellular senescence. Mech Ageing Dev 2012; 134:10-23. [PMID: 23142824 DOI: 10.1016/j.mad.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Revised: 09/25/2012] [Accepted: 10/20/2012] [Indexed: 01/01/2023]
Abstract
Cellular senescence is a permanent out-of-cycle state regulated by molecular circuits acting during the G1 phase of the cell cycle. Cdt1 is a central regulator of DNA replication licensing acting during the G1 phase and it is negatively controlled by Geminin. Here, we characterize the cell cycle expression pattern of Cdt1 and Geminin during successive passages of primary fibroblasts and compare it to tumour-derived cell lines. Cdt1 and Geminin are strictly expressed in distinct subpopulations of young fibroblasts, similarly to cancer cells, with Geminin accumulating shortly after the onset of S phase. Cdt1 and Geminin are down-regulated when primary human and mouse fibroblasts undergo replicative or stress-induced senescence. RNAi-mediated Geminin knock-down in human cells enhances the appearance of phenotypic and molecular features of senescence. Mouse embryonic fibroblasts heterozygous for Geminin exhibit accelerated senescence compared to control fibroblasts. In contrast, ectopic expression of Geminin in mouse embryonic fibroblasts delays the appearance of the senescent phenotype. Taken together, our data suggest that changes in Geminin expression levels affect the establishment of senescence pathways.
Collapse
Affiliation(s)
- Maria S Iliou
- Laboratory of General Biology, School of Medicine, University of Patras, Rio, Patras, Greece
| | | | | | | | | | | |
Collapse
|
54
|
Krishnan N, Lam TT, Fritz A, Rempinski D, O'Loughlin K, Minderman H, Berezney R, Marzluff WF, Thapar R. The prolyl isomerase Pin1 targets stem-loop binding protein (SLBP) to dissociate the SLBP-histone mRNA complex linking histone mRNA decay with SLBP ubiquitination. Mol Cell Biol 2012; 32:4306-22. [PMID: 22907757 PMCID: PMC3486140 DOI: 10.1128/mcb.00382-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 08/13/2012] [Indexed: 01/04/2023] Open
Abstract
Histone mRNAs are rapidly degraded at the end of S phase, and a 26-nucleotide stem-loop in the 3' untranslated region is a key determinant of histone mRNA stability. This sequence is the binding site for stem-loop binding protein (SLBP), which helps to recruit components of the RNA degradation machinery to the histone mRNA 3' end. SLBP is the only protein whose expression is cell cycle regulated during S phase and whose degradation is temporally correlated with histone mRNA degradation. Here we report that chemical inhibition of the prolyl isomerase Pin1 or downregulation of Pin1 by small interfering RNA (siRNA) increases the mRNA stability of all five core histone mRNAs and the stability of SLBP. Pin1 regulates SLBP polyubiquitination via the Ser20/Ser23 phosphodegron in the N terminus. siRNA knockdown of Pin1 results in accumulation of SLBP in the nucleus. We show that Pin1 can act along with protein phosphatase 2A (PP2A) in vitro to dephosphorylate a phosphothreonine in a conserved TPNK sequence in the SLBP RNA binding domain, thereby dissociating SLBP from the histone mRNA hairpin. Our data suggest that Pin1 and PP2A act to coordinate the degradation of SLBP by the ubiquitin proteasome system and the exosome-mediated degradation of the histone mRNA by regulating complex dissociation.
Collapse
Affiliation(s)
| | - TuKiet T. Lam
- W. M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, Connecticut, USA
| | - Andrew Fritz
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York, USA
| | | | - Kieran O'Loughlin
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Hans Minderman
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ronald Berezney
- Department of Biological Sciences, SUNY at Buffalo, Buffalo, New York, USA
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Roopa Thapar
- Hauptman Woodward Medical Research Institute
- Department of Structural Biology, SUNY at Buffalo, Buffalo, New York, USA
| |
Collapse
|
55
|
Di Paola D, Zannis-Hadjopoulos M. Comparative analysis of pre-replication complex proteins in transformed and normal cells. J Cell Biochem 2012; 113:1333-47. [PMID: 22134836 DOI: 10.1002/jcb.24006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study examines the abundance of the major protein constituents of the pre-replication complex (pre-RC), both genome-wide and in association with specific replication origins, namely the lamin B2, c-myc, 20mer1, and 20mer2 origins. Several pre-RC protein components, namely ORC1-6, Cdc6, Cdt1, MCM4, MCM7, as well as additional replication proteins, such as Ku70/86, 14-3-3, Cdc45, and PCNA, were comparatively and quantitatively analyzed in both transformed and normal cells. The results show that these proteins are overexpressed and more abundantly bound to chromatin in the transformed compared to normal cells. Interestingly, the 20mer1, 20mer2, and c-myc origins exhibited a two- to threefold greater origin activity and a two- to threefold greater in vivo association of the pre-RC proteins with these origins in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited both similar levels of activity and in vivo association of these pre-RC proteins in both cell types. Overall, the results indicate that cellular transformation is associated with an overexpression and increased chromatin association of the pre-RC proteins. This study is significant, because it represents the most systematic comprehensive analysis done to date, using multiple replication proteins and different replication origins in both normal and transformed cell lines.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | |
Collapse
|
56
|
Pliss A, Zhao L, Ohulchanskyy TY, Qu J, Prasad PN. Fluorescence lifetime of fluorescent proteins as an intracellular environment probe sensing the cell cycle progression. ACS Chem Biol 2012; 7:1385-92. [PMID: 22594453 DOI: 10.1021/cb300065w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The fluorescence lifetime of fluorescent proteins is affected by the concentration of solutes in a medium, in inverse correlation with local refractive index. In this paper, we introduce the concept of using this dependence to probe cellular molecular environment and its transformation during cellular processes. We employ the fluorescence lifetime of Green Fluorescent Protein and tdTomato Fluorescent Protein expressed in cultured cells and probe the changes in the local molecular environment during the cell cycle progression. We report that the longest fluorescence lifetimes occurred during mitosis. Following the cell division, the fluorescence lifetimes of these proteins were rapidly shortened. Furthermore the fluorescence lifetime of tdTomato in the nucleoplasm gradually increased throughout the span of S-phase and remained constantly long until the end of interphase. We interpret the observed fluorescence lifetime changes to be derived from changes in concentration of macromolecular solutes in the cell interior throughout cell cycle progression.
Collapse
Affiliation(s)
- Artem Pliss
- Institute for Lasers, Photonics
and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Lingling Zhao
- Institute for Lasers, Photonics
and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Tymish Y. Ohulchanskyy
- Institute for Lasers, Photonics
and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Junle Qu
- Key Laboratory of Optoelectronic
Devices and Systems of Ministry of Education and Guangdong Province,
Institute of Optoelectronics, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong Province 518060, PR China
| | - Paras N. Prasad
- Institute for Lasers, Photonics
and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
57
|
Chapman JR, Sossick AJ, Boulton SJ, Jackson SP. BRCA1-associated exclusion of 53BP1 from DNA damage sites underlies temporal control of DNA repair. J Cell Sci 2012; 125:3529-34. [PMID: 22553214 PMCID: PMC3445322 DOI: 10.1242/jcs.105353] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2012] [Indexed: 12/18/2022] Open
Abstract
Following irradiation, numerous DNA-damage-responsive proteins rapidly redistribute into microscopically visible subnuclear aggregates, termed ionising-radiation-induced foci (IRIF). How the enrichment of proteins on damaged chromatin actually relates to DNA repair remains unclear. Here, we use super-resolution microscopy to examine the spatial distribution of BRCA1 and 53BP1 proteins within single IRIF at subdiffraction-limit resolution, yielding an unprecedented increase in detail that was not previously apparent by conventional microscopy. Consistent with a role for 53BP1 in promoting DNA double-strand break repair by non-homologous end joining, 53BP1 enrichment in IRIF is most prominent in the G0/G1 cell cycle phases, where it is enriched in dense globular structures. By contrast, as cells transition through S phase, the recruitment of BRCA1 into the core of IRIF is associated with an exclusion of 53BP1 to the focal periphery, leading to an overall reduction of 53BP1 occupancy at DNA damage sites. Our data suggest that the BRCA1-associated IRIF core corresponds to chromatin regions associated with repair by homologous recombination, and the enrichment of BRCA1 in IRIF represents a temporal switch in the DNA repair program. We propose that BRCA1 antagonises 53BP1-dependent DNA repair in S phase by inhibiting its interaction with chromatin proximal to damage sites. Furthermore, the genomic instability exhibited by BRCA1-deficient cells might result from a failure to efficiently exclude 53BP1 from such regions during S phase.
Collapse
Affiliation(s)
- J. Ross Chapman
- Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Alex J. Sossick
- Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| | - Simon J. Boulton
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | - Stephen P. Jackson
- Wellcome Trust and Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
58
|
Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H. Rif1 regulates the replication timing domains on the human genome. EMBO J 2012; 31:3667-77. [PMID: 22850674 DOI: 10.1038/emboj.2012.180] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/13/2012] [Indexed: 11/09/2022] Open
Abstract
DNA replication is spatially and temporally regulated during S-phase. DNA replication timing is established in early-G1-phase at a point referred to as timing decision point. However, how the genome-wide replication timing domains are established is unknown. Here, we show that Rif1 (Rap1-interacting-factor-1), originally identified as a telomere-binding factor in yeast, is a critical determinant of the replication timing programme in human cells. Depletion of Rif1 results in specific loss of mid-S replication foci profiles, stimulation of initiation events in early-S-phase and changes in long-range replication timing domain structures. Analyses of replication timing show replication of sequences normally replicating early is delayed, whereas that normally replicating late is advanced, suggesting that replication timing regulation is abrogated in the absence of Rif1. Rif1 tightly binds to nuclear-insoluble structures at late-M-to-early-G1 and regulates chromatin-loop sizes. Furthermore, Rif1 colocalizes specifically with the mid-S replication foci. Thus, Rif1 establishes the mid-S replication domains that are restrained from being activated at early-S-phase. Our results indicate that Rif1 plays crucial roles in determining the replication timing domain structures in human cells through regulating higher-order chromatin architecture.
Collapse
Affiliation(s)
- Satoshi Yamazaki
- Genome Dynamics Project, Department of Genome Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 2012; 31:3678-90. [PMID: 22850673 DOI: 10.1038/emboj.2012.214] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/13/2012] [Indexed: 12/25/2022] Open
Abstract
The eukaryotic genome is replicated according to a specific spatio-temporal programme. However, little is known about both its molecular control and biological significance. Here, we identify mouse Rif1 as a key player in the regulation of DNA replication timing. We show that Rif1 deficiency in primary cells results in an unprecedented global alteration of the temporal order of replication. This effect takes place already in the first S-phase after Rif1 deletion and is neither accompanied by alterations in the transcriptional landscape nor by major changes in the biochemical identity of constitutive heterochromatin. In addition, Rif1 deficiency leads to both defective G1/S transition and chromatin re-organization after DNA replication. Together, these data offer a novel insight into the global regulation and biological significance of the replication-timing programme in mammalian cells.
Collapse
|
60
|
Wu P, Takai H, de Lange T. Telomeric 3' overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 2012; 150:39-52. [PMID: 22748632 DOI: 10.1016/j.cell.2012.05.026] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/12/2012] [Accepted: 05/01/2012] [Indexed: 11/18/2022]
Abstract
A 3' overhang is critical for the protection and maintenance of mammalian telomeres, but its synthesis must be regulated to avoid excessive resection of the 5' end, which could cause telomere shortening. How this balance is achieved in mammals has not been resolved. Here, we determine the mechanism for 3' overhang synthesis in mouse cells by evaluating changes in telomeric overhangs throughout the cell cycle and at leading- and lagging-end telomeres. Apollo, a nuclease bound to the shelterin subunit TRF2, initiates formation of the 3' overhang at leading-, but not lagging-end telomeres. Hyperresection by Apollo is blocked at both ends by the shelterin protein POT1b. Exo1 extensively resects both telomere ends, generating transient long 3' overhangs in S/G2. CST/AAF, a DNA polα.primase accessory factor, binds POT1b and shortens the extended overhangs produced by Exo1, likely through fill-in synthesis. 3' overhang formation is thus a multistep, shelterin-controlled process, ensuring functional telomeric overhangs at chromosome ends.
Collapse
Affiliation(s)
- Peng Wu
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
61
|
Valenzuela MS, Hu L, Lueders J, Walker R, Meltzer PS. Broader utilization of origins of DNA replication in cancer cell lines along a 78 kb region of human chromosome 2q34. J Cell Biochem 2012; 113:132-40. [PMID: 21898540 DOI: 10.1002/jcb.23336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human DNA replication depends on the activation of thousands of origins distributed within the genome. The actual distribution of origins is not known, nor whether this distribution is unique to a cell type, or if it changes with the proliferative state of the cell. In this study, we have employed a real-time PCR-based nascent strand DNA abundance assay, to determine the location of origins along a 78 kb region on Chr2q34. Preliminary studies using nascent DNA strands isolated from either HeLa and normal skin fibroblast cells showed that in both cell lines peaks of high origin activity mapped in similar locations. However, the overall origin profile in HeLa cells corresponded to broad origin activation zones, whereas in fibroblasts a more punctuated profile of origin activation was observed. To investigate the relevance of this differential origin profile, we compared the origin distribution profiles in breast cancer cell lines MDA-MB-231, BT-474, and MCF-7, to their normal counterpart MCF-10A. In addition, the CRL7250 cell line was also used as a normal control. Our results validated our earlier observation and showed that the origin profile in normal cell lines exhibited a punctuated pattern, in contrast to broader zone profiles observed in the cancer cell lines. A quantitative analysis of origin peaks revealed that the number of activated origins in cancer cells is statistically larger than that obtained in normal cells, suggesting that the flexibility of origin usage is significantly increased in cancer cells compared to their normal counterparts.
Collapse
Affiliation(s)
- Manuel S Valenzuela
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.
| | | | | | | | | |
Collapse
|
62
|
Musri MM, Gomis R, Párrizas M. A chromatin perspective of adipogenesis. Organogenesis 2012; 6:15-23. [PMID: 20592861 DOI: 10.4161/org.6.1.10226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/01/2009] [Indexed: 12/11/2022] Open
Abstract
The transcriptional cascade governing adipogenesis has been thoroughly examined throughout the years. Transcription factors PPARγ and C/EBPα are universally recognized as the master regulators of adipocyte differentiation and together they direct the establishment of the gene expression pattern of mature adipose cells. However, this familiar landscape has been considerably broadened in recent years by the identification of novel factors that participate in the regulation of adipogenesis, either favoring or inhibiting it, through their effects on chromatin. Epigenetic signals and chromatin-modifying proteins contribute to adipogenesis and, through regulation of the phenotypic maintenance of the mature adipocytes, to the control of metabolism. In this review we intend to summarize the recently described epigenetic events that participate in adipogenesis and their connections with the main factors that constitute the classical transcriptional cascade.
Collapse
Affiliation(s)
- Melina M Musri
- Endocrinology and Nutrition Unit, IDIBAPS, CIBERDEM, Barcelona, Spain
| | | | | |
Collapse
|
63
|
Lubelsky Y, MacAlpine HK, MacAlpine DM. Genome-wide localization of replication factors. Methods 2012; 57:187-95. [PMID: 22465279 DOI: 10.1016/j.ymeth.2012.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/12/2012] [Accepted: 03/18/2012] [Indexed: 01/21/2023] Open
Abstract
Chromatin Immunoprecipitation (ChIP) is a powerful tool for the identification and characterization of protein-DNA interactions in vivo. ChIP has been utilized to study diverse nuclear processes such as transcription regulation, chromatin modification, DNA recombination and DNA replication at specific loci and, more recently, across the entire genome. Advances in genomic approaches, and whole genome sequencing in particular, have made it possible and affordable to comprehensively identify specific protein binding sites throughout the genomes of higher eukaryotes. The dynamic nature of the DNA replication program and the transient occupancy of many replication factors throughout the cell cycle present additional challenges that may not pertain to the mapping of site specific transcription factors. Here we discuss the specific considerations that need to be addressed in the application of ChIP to the genome-wide location analysis of protein factors involved in DNA replication.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
64
|
DNA breaks and chromosome pulverization from errors in mitosis. Nature 2012; 482:53-8. [PMID: 22258507 PMCID: PMC3271137 DOI: 10.1038/nature10802] [Citation(s) in RCA: 946] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 12/20/2011] [Indexed: 12/14/2022]
Abstract
The involvement of whole-chromosome aneuploidy in tumorigenesis is the subject of debate, in large part because of the lack of insight into underlying mechanisms. Here we identify a mechanism by which errors in mitotic chromosome segregation generate DNA breaks via the formation of structures called micronuclei. Whole-chromosome-containing micronuclei form when mitotic errors produce lagging chromosomes. We tracked the fate of newly generated micronuclei and found that they undergo defective and asynchronous DNA replication, resulting in DNA damage and often extensive fragmentation of the chromosome in the micronucleus. Micronuclei can persist in cells over several generations but the chromosome in the micronucleus can also be distributed to daughter nuclei. Thus, chromosome segregation errors potentially lead to mutations and chromosome rearrangements that can integrate into the genome. Pulverization of chromosomes in micronuclei may also be one explanation for 'chromothripsis' in cancer and developmental disorders, where isolated chromosomes or chromosome arms undergo massive local DNA breakage and rearrangement.
Collapse
|
65
|
Super-resolution fluorescence imaging of chromosomal DNA. J Struct Biol 2011; 177:344-8. [PMID: 22226957 DOI: 10.1016/j.jsb.2011.12.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/04/2011] [Accepted: 12/21/2011] [Indexed: 12/14/2022]
Abstract
Super-resolution microscopy is a powerful tool for understanding cellular function. However one of the most important biomolecules - DNA - remains somewhat inaccessible because it cannot be effectively and appropriately labeled. Here, we demonstrate that robust and detailed super-resolution images of DNA can be produced by combining 5-ethynyl-2'-deoxyuridine (EdU) labeling using the 'click chemistry' approach and direct stochastic optical reconstruction microscopy (dSTORM). This method can resolve fine chromatin structure, and - when used in conjunction with pulse labeling - can reveal the paths taken by individual fibers through the nucleus. This technique should provide a useful tool for the study of nuclear structure and function.
Collapse
|
66
|
Kliszczak AE, Rainey MD, Harhen B, Boisvert FM, Santocanale C. DNA mediated chromatin pull-down for the study of chromatin replication. Sci Rep 2011; 1:95. [PMID: 22355613 PMCID: PMC3216581 DOI: 10.1038/srep00095] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/02/2011] [Indexed: 12/03/2022] Open
Abstract
Chromatin replication involves duplicating DNA while maintaining epigenetic information. These processes are critical for genome stability and for preserving cell-type identity. Here we describe a simple experimental approach that allows chromatin to be captured and its content analysed after in vivo replication and labeling of DNA by cellular DNA polymerases. We show that this technique is highly specific and that proteins bound to the replicated DNA can be analyzed by both immunological techniques and large scale mass spectrometry. As proof of concept we have used this novel procedure to begin investigating the relationship between chromatin protein composition and the temporal programme of DNA replication in human cells. It is expected that this technique will become a widely used tool to address how chromatin proteins assemble onto newly replicated DNA after passage of a replication fork and how chromatin maturation is coupled to DNA synthesis.
Collapse
Affiliation(s)
- Anna E Kliszczak
- National Centre of Biomedical Engineering and Science, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | |
Collapse
|
67
|
Sasaki T, Li A, Gillespie PJ, Blow JJ, Gilbert DM. Evidence for a mammalian late-G1 phase inhibitor of replication licensing distinct from geminin or Cdk activity. Nucleus 2011; 2:455-64. [PMID: 21983086 DOI: 10.4161/nucl.2.5.17859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pre-replication complexes (pre-RCs) are assembled onto DNA during late mitosis and G1 to license replication origins for use in S phase. In order to prevent re-replication of DNA, licensing must be completely shutdown prior to entry into S phase. While mechanisms preventing re-replication during S phase and mitosis have been elucidated, the means by which cells first prevent licensing during late G1 phase are poorly understood. We have employed a hybrid mammalian / Xenopus egg extract replication system to dissect activities that inhibit replication licensing at different stages of the cell cycle in Chinese Hamster Ovary (CHO) cells. We find that soluble extracts from mitotic cells inhibit licensing through a combination of geminin and Cdk activities, while extracts from S-phase cells inhibit licensing predominantly through geminin alone. Surprisingly however, geminin did not accumulate until after cells enter S phase. Unlike extracts from cells in early G1 phase, extracts from late G1 phase and early S phase cells contained an inhibitor of licensing that could not be accounted for by either geminin or Cdk. Moreover, inhibiting cyclin and geminin protein synthesis or inhibiting Cdk activity early in G1 phase did not prevent the appearance of inhibitory activity. These results suggest that a soluble inhibitor of replication licensing appears prior to entry into S phase that is distinct from either geminin or Cdk activity. Our hybrid system should permit the identification of this and other novel cell cycle regulatory activities.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
68
|
Sekhar KR, Reddy YT, Reddy PN, Crooks PA, Venkateswaran A, McDonald WH, Geng L, Sasi S, Van Der Waal RP, Roti JLR, Salleng KJ, Rachakonda G, Freeman ML. The novel chemical entity YTR107 inhibits recruitment of nucleophosmin to sites of DNA damage, suppressing repair of DNA double-strand breaks and enhancing radiosensitization. Clin Cancer Res 2011; 17:6490-9. [PMID: 21878537 DOI: 10.1158/1078-0432.ccr-11-1054] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Radiation therapy continues to be an important therapeutic strategy for providing definitive local/regional control of human cancer. However, oncogenes that harbor driver mutations and/or amplifications can compromise therapeutic efficacy. Thus, there is a need for novel approaches that enhance the DNA damage produced by ionizing radiation. EXPERIMENTAL DESIGN A forward chemical genetic approach coupled with cell-based phenotypic screening of several tumor cell lines was used to identify a novel chemical entity (NCE) that functioned as a radiation sensitizer. Proteomics, comet assays, confocal microscopy, and immunoblotting were used to identify the biological target. RESULTS The screening process identified a 5-((N-benzyl-1H-indol-3-yl)-methylene)pyrimidine-2,4,6(1H,3H,5H)trione as an NCE that radiosensitized cancer cells expressing amplified and/or mutated RAS, ErbB, PIK3CA, and/or BRAF oncogenes. Affinity-based solid-phase resin capture followed by liquid chromatography/tandem mass spectrometry identified the chaperone nucleophosmin (NPM) as the NCE target. SiRNA suppression of NPM abrogated radiosensitization by the NCE. Confocal microscopy showed that the NCE inhibited NPM shuttling to radiation-induced DNA damage repair foci, and the analysis of comet assays indicated a diminished rate of DNA double-strand break repair. CONCLUSION These data support the hypothesis that inhibition of DNA repair due to inhibition of NPM shuttling increases the efficacy of DNA-damaging therapeutic strategies.
Collapse
Affiliation(s)
- Konjeti R Sekhar
- Department of Radiation Oncology, Division of Animal Care, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Dimitrova DS. DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci. J Cell Sci 2011; 124:2743-52. [DOI: 10.1242/jcs.082230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Typically, only a fraction of the ≥600 ribosomal RNA (rRNA) gene copies in human cells are transcriptionally active. Expressed rRNA genes coalesce in specialized nuclear compartments – the nucleoli – and are believed to replicate during the first half of S phase. Paradoxically, attempts to visualize replicating rDNA during early S phase have failed. Here, I show that, in human (HeLa) cells, early-replicating rDNA is detectable at the nucleolar periphery and, more rarely, even outside nucleoli. Early-replicated rDNA relocates to the nucleolar interior and reassociates with the transcription factor UBF, implying that it predominantly represents expressed rDNA units. Contrary to the established model for active gene loci, replication initiates randomly throughout the early-replicating rDNA. By contrast, mostly silent rDNA copies replicate inside the nucleoli during mid and late S phase. At this stage, replication origins are fired preferentially within the non-transcribed intergenic spacers (NTSs), and ongoing rDNA transcription is required to maintain this specific initiation pattern. I propose that the unexpected spatial dynamics of the early-replicating rDNA repeats serve to ensure streamlined efficient replication of the most heavily transcribed genomic loci while simultaneously reducing the risk of chromosome breaks and rDNA hyper-recombination.
Collapse
|
70
|
Toyokawa G, Masuda K, Daigo Y, Cho HS, Yoshimatsu M, Takawa M, Hayami S, Maejima K, Chino M, Field HI, Neal DE, Tsuchiya E, Ponder BAJ, Maehara Y, Nakamura Y, Hamamoto R. Minichromosome Maintenance Protein 7 is a potential therapeutic target in human cancer and a novel prognostic marker of non-small cell lung cancer. Mol Cancer 2011; 10:65. [PMID: 21619671 PMCID: PMC3125391 DOI: 10.1186/1476-4598-10-65] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 05/28/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The research emphasis in anti-cancer drug discovery has always been to search for a drug with the greatest antitumor potential but fewest side effects. This can only be achieved if the drug used is against a specific target located in the tumor cells. In this study, we evaluated Minichromosome Maintenance Protein 7 (MCM7) as a novel therapeutic target in cancer. RESULTS Immunohistochemical analysis showed that MCM7 was positively stained in 196 of 331 non-small cell lung cancer (NSCLC), 21 of 29 bladder tumor and 25 of 70 liver tumor cases whereas no significant staining was observed in various normal tissues. We also found an elevated expression of MCM7 to be associated with poor prognosis for patients with NSCLC (P = 0.0055). qRT-PCR revealed a higher expression of MCM7 in clinical bladder cancer tissues than in corresponding non-neoplastic tissues (P < 0.0001), and we confirmed that a wide range of cancers also overexpressed MCM7 by cDNA microarray analysis. Suppression of MCM7 using specific siRNAs inhibited incorporation of BrdU in lung and bladder cancer cells overexpressing MCM7, and suppressed the growth of those cells more efficiently than that of normal cell strains expressing lower levels of MCM7. CONCLUSIONS Since MCM7 expression was generally low in a number of normal tissues we examined, MCM7 has the characteristics of an ideal candidate for molecular targeted cancer therapy in various tumors and also as a good prognostic biomarker for NSCLC patients.
Collapse
Affiliation(s)
- Gouji Toyokawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken Masuda
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yataro Daigo
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Medical Oncology, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Hyun-Soo Cho
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masanori Yoshimatsu
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masashi Takawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shinya Hayami
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kazuhiro Maejima
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Chino
- Specialty Chemicals & International Division Pharmaceuticals Group, Nippon Kayaku Co., Ltd., 11-2, Fujimi 1 Chome, Chiyoda-ku, Tokyo, 102-8172, Japan
| | - Helen I Field
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - David E Neal
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Eiju Tsuchiya
- Department of Pathology, Saitama Cancer Center, Saitama 362-0806, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Kanagawa 241-0815, Japan
| | - Bruce AJ Ponder
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Science, Kyusyu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Ryuji Hamamoto
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Oncology, Cancer Research UK Cambridge Research Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
71
|
Rowbotham SP, Barki L, Neves-Costa A, Santos F, Dean W, Hawkes N, Choudhary P, Will WR, Webster J, Oxley D, Green CM, Varga-Weisz P, Mermoud JE. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol Cell 2011; 42:285-96. [PMID: 21549307 DOI: 10.1016/j.molcel.2011.02.036] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/11/2011] [Accepted: 02/25/2011] [Indexed: 01/20/2023]
Abstract
Epigenetic marks such as posttranslational histone modifications specify the functional states of underlying DNA sequences, though how they are maintained after their disruption during DNA replication remains a critical question. We identify the mammalian SWI/SNF-like protein SMARCAD1 as a key factor required for the re-establishment of repressive chromatin. The ATPase activity of SMARCAD1 is necessary for global deacetylation of histones H3/H4. In this way, SMARCAD1 promotes methylation of H3K9, the establishment of heterochromatin, and faithful chromosome segregation. SMARCAD1 associates with transcriptional repressors including KAP1, histone deacetylases HDAC1/2 and the histone methyltransferase G9a/GLP and modulates the interaction of HDAC1 and KAP1 with heterochromatin. SMARCAD1 directly interacts with PCNA, a central component of the replication machinery, and is recruited to sites of DNA replication. Our findings suggest that chromatin remodeling by SMARCAD1 ensures that silenced loci, such as pericentric heterochromatin, are correctly perpetuated.
Collapse
Affiliation(s)
- Samuel P Rowbotham
- Nuclear Dynamics and Function, Babraham Institute, Cambridge CB22 3AT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Stein GS, Stein JL, van Wijnen AJ, Lian JB, Zaidi SK, Nickerson JA, Montecino MA, Young DW. An architectural genetic and epigenetic perspective. Integr Biol (Camb) 2011; 3:297-303. [PMID: 21184003 PMCID: PMC3251170 DOI: 10.1039/c0ib00103a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The organization and intranuclear localization of nucleic acids and regulatory proteins contribute to both genetic and epigenetic parameters of biological control. Regulatory machinery in the cell nucleus is functionally compartmentalized in microenvironments (focally organized sites where regulatory factors reside) that provide threshold levels of factors required for transcription, replication, repair and cell survival. The common denominator for nuclear organization of regulatory machinery is that each component of control is architecturally configured and every component of control is embedded in architecturally organized networks that provide an infrastructure for integration and transduction of regulatory signals. It is realistic to anticipate emerging mechanisms that account for the organization and assembly of regulatory complexes within the cell nucleus can provide novel options for cancer diagnosis and therapy with maximal specificity, reduced toxicity and minimal off-target complications.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Kuipers MA, Stasevich TJ, Sasaki T, Wilson KA, Hazelwood KL, McNally JG, Davidson MW, Gilbert DM. Highly stable loading of Mcm proteins onto chromatin in living cells requires replication to unload. ACTA ACUST UNITED AC 2011; 192:29-41. [PMID: 21220507 PMCID: PMC3019549 DOI: 10.1083/jcb.201007111] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Components of the minichromosome maintenance complex (Mcm2-7) remain indefinitely bound to chromatin during G1 phase and replication arrest. The heterohexameric minichromosome maintenance protein complex (Mcm2-7) functions as the eukaryotic helicase during DNA replication. Mcm2-7 loads onto chromatin during early G1 phase but is not converted into an active helicase until much later during S phase. Hence, inactive Mcm complexes are presumed to remain stably bound from early G1 through the completion of S phase. Here, we investigated Mcm protein dynamics in live mammalian cells. We demonstrate that Mcm proteins are irreversibly loaded onto chromatin cumulatively throughout G1 phase, showing no detectable exchange with a gradually diminishing soluble pool. Eviction of Mcm requires replication; during replication arrest, Mcm proteins remained bound indefinitely. Moreover, the density of immobile Mcms is reduced together with chromatin decondensation within sites of active replication, which provides an explanation for the lack of colocalization of Mcm with replication fork proteins. These results provide in vivo evidence for an exceptionally stable lockdown mechanism to retain all loaded Mcm proteins on chromatin throughout prolonged cell cycles.
Collapse
Affiliation(s)
- Marjorie A Kuipers
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Bourgo RJ, Ehmer U, Sage J, Knudsen ES. RB deletion disrupts coordination between DNA replication licensing and mitotic entry in vivo. Mol Biol Cell 2011; 22:931-9. [PMID: 21289097 PMCID: PMC3069018 DOI: 10.1091/mbc.e10-11-0895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) is functionally inactivated at high frequency in nearly all tumor types. Herein the acute deletion of RB in the liver reveals an immediate and profound dysregulation of spatiotemporal coordination in cell-cycle phases, resulting in robust DNA damage and aneuploidy that is not found in other tissues. The integrity of the retinoblastoma tumor suppressor (RB) pathway is critical for restraining inappropriate proliferation and suppressing tumor development in a plethora of tissues. Here adenovirus-mediated RB deletion in the liver of adult mice led to DNA replication in the absence of productive mitotic condensation. The replication induced by RB loss was E2F-mediated and associated with the induction of DNA damage and a nontranscriptional G2/M checkpoint that targeted the accumulation of Cyclin B1. In the context of RB deletion or E2F activation, there was an increase in hepatocyte ploidy that was accompanied by hyperphysiological assembly of prereplication complexes. In keeping with this dysregulation, initiation of DNA replication was readily observed in hepatocytes that were phenotypically in G2/M. Under such conditions, uncoupling of replication initiation from mitotic progression led to altered genome ploidy in the liver. Interestingly, these findings in hepatocytes were not recapitulated in the basally proliferative tissues of the gastrointestinal tract, where RB deletion, while increasing DNA replication, did not lead to a profound uncoupling from mitosis. Combined, these findings demonstrate the critical role of RB in controlling cell-cycle transitions and underscore the importance of intrinsic tissue environments in resultant phenotypes.
Collapse
Affiliation(s)
- Ryan J Bourgo
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
75
|
Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ, Zhong CZ, Lee SC, Tan BCM. WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res 2011; 39:4048-62. [PMID: 21266480 PMCID: PMC3105424 DOI: 10.1093/nar/gkq1338] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The centromere is a highly specialized chromosomal element that is essential for chromosome segregation during mitosis. Centromere integrity must therefore be properly preserved and is strictly dependent upon the establishment and maintenance of surrounding chromatin structure. Here we identify WDHD1, a WD40-domain and HMG-domain containing protein, as a key regulator of centromere function. We show that WDHD1 associates with centromeres in a cell cycle-dependent manner, coinciding with mid-to-late S phase. WDHD1 down-regulation compromises HP1α localization to pericentric heterochromatin and leads to altered expression of epigenetic markers associated with this chromatin region. As a consequence, such reduced epigenetic silencing is manifested in disrupted heterochromatic state of the centromere and a defective mitosis. Moreover, we demonstrate that a possible underlying mechanism of WDHD1's involvement lies in the proper generation of the small non-coding RNAs encoded by the centromeric satellite repeats. This role is mediated at the post-transcriptional level and likely through stabilizing Dicer association with centromeric RNA. Collectively, these findings suggest that WDHD1 may be a critical component of the RNA-dependent epigenetic control mechanism that sustains centromere integrity and genomic stability.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
The nucleus is organized and compartmentalized into a highly ordered structure that contains DNA, RNA, chromosomal and histone proteins. The dynamics associated with these various components are responsible for making sure that the DNA is properly duplicated, genes are properly transcribed, and the genome is stabilized. It is no surprise that alterations in these various components are directly associated with pathologies like cancer. This Point of View focuses on the role the chromatin modification landscape, especially histone 3 lysine 9 methylation (H3K9me), and heterochromatin proteins (HP1) play in regulating DNA-templated processes, with a particular focus on their role at non-genic regions and effects on chromatin structure. These observations will be further extended to the role that alterations in chromatin landscape will contribute to diseases. This Point of View emphasizes that alterations in histone modification landscapes are not only relevant to transcription but have broad range implications in chromatin structure, nuclear architecture, cell cycle, genome stability and disease progression.
Collapse
Affiliation(s)
- Joshua C Black
- Department of Medicine, Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | | |
Collapse
|
77
|
Ligasová A, Koberna K. In situ reverse transcription: the magic of strength and anonymity. Nucleic Acids Res 2010; 38:e167. [PMID: 20627869 PMCID: PMC2938209 DOI: 10.1093/nar/gkq619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we describe an approach that enables a highly specific, effective and fast detection of polyadenylated RNA sequences in situ at the light and electron microscopy levels. The method developed is based on the incorporation of 5-bromo-2′-deoxyuridine into the growing cDNA strand by means of the reverse transcriptase. We have shown that unlike the previously used deoxyuridine tagged with biotin or digoxigenin, 5-bromo-2′-deoxyuridine is ‘invisible’ in the DNA–DNA duplex but easily detectable in the DNA–RNA duplex. This feature is an important pre-requisite for the correct interpretation of the data obtained, as our results strongly indicate that reverse transcriptase uses DNA breaks as primers efficiently. We have also shown that the replacement of deoxythymidine by 5-bromo-2′-deoxyuridine considerably stabilizes the growing DNA–RNA duplex, thus enabling the one-step detection of polyadenylated RNA in structurally well-preserved cells. The method developed provides a highly specific signal with the signal/noise ratio higher than 130 for permeabilized cells and 25 for conventional acrylic resin sections under the conditions used. When the high pressure freezing technique followed by the freeze substitution is employed for the cell's preparation, the ratio is higher than 80.
Collapse
Affiliation(s)
- Anna Ligasová
- Laboratory of Cell Biology, Institute of Experimental Medicine, v.v.i., AS CR, Vídenská 1083, 142 20 Prague 4, Czech Republic.
| | | |
Collapse
|
78
|
Abstract
Studies of replication timing provide a handle into previously impenetrable higher-order levels of chromosome organization and their plasticity during development. Although mechanisms regulating replication timing are not clear, novel genome-wide studies provide a thorough survey of the extent to which replication timing is regulated during most of the early cell fate transitions in mammals, revealing coordinated changes of a defined set of 400-800 kb chromosomal segments that involve at least half the genome. Furthermore, changes in replication time are linked to changes in sub-nuclear organization and domain-wide transcriptional potential, and tissue-specific replication timing profiles are conserved from mouse to human, suggesting that the program has developmental significance. Hence, these studies have provided a solid foundation for linking megabase level chromosome structure to function, and suggest a central role for replication in domain-level genome organization.
Collapse
|
79
|
Di Paola D, Rampakakis E, Chan MK, Arvanitis DN, Zannis-Hadjopoulos M. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation. Nucleic Acids Res 2010; 38:2314-31. [PMID: 20064876 PMCID: PMC2853114 DOI: 10.1093/nar/gkp1192] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 12/03/2009] [Accepted: 12/07/2009] [Indexed: 01/05/2023] Open
Abstract
Using libraries of replication origins generated previously, we identified three clones that supported the autonomous replication of their respective plasmids in transformed, but not in normal cells. Assessment of their in vivo replication activity by in situ chromosomal DNA replication assays revealed that the chromosomal loci corresponding to these clones coincided with chromosomal replication origins in all cell lines, which were more active by 2-3-fold in the transformed by comparison to the normal cells. Evaluation of pre-replication complex (pre-RC) protein abundance at these origins in transformed and normal cells by chromatin immunoprecipitation assays, using anti-ORC2, -cdc6 and -cdt1 antibodies, showed that they were bound by these pre-RC proteins in all cell lines, but a 2-3-fold higher abundance was observed in the transformed by comparison to the normal cells. Electrophoretic mobility shift assays (EMSAs) performed on the most efficiently replicating clone, using nuclear extracts from the transformed and normal cells, revealed the presence of a DNA replication complex in transformed cells, which was barely detectable in normal cells. Subsequent supershift EMSAs suggested the presence of transformation-specific complexes. Mass spectrometric analysis of these complexes revealed potential new protein players involved in DNA replication that appear to correlate with cellular transformation.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Emmanouil Rampakakis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Man Kid Chan
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Dina N. Arvanitis
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | - Maria Zannis-Hadjopoulos
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| |
Collapse
|
80
|
Buonomo SBC, Wu Y, Ferguson D, de Lange T. Mammalian Rif1 contributes to replication stress survival and homology-directed repair. ACTA ACUST UNITED AC 2010; 187:385-98. [PMID: 19948482 PMCID: PMC2779251 DOI: 10.1083/jcb.200902039] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rif1, originally recognized for its role at telomeres in budding yeast, has been implicated in a wide variety of cellular processes in mammals, including pluripotency of stem cells, response to double-strand breaks, and breast cancer development. As the molecular function of Rif1 is not known, we examined the consequences of Rif1 deficiency in mouse cells. Rif1 deficiency leads to failure in embryonic development, and conditional deletion of Rif1 from mouse embryo fibroblasts affects S-phase progression, rendering cells hypersensitive to replication poisons. Rif1 deficiency does not alter the activation of the DNA replication checkpoint but rather affects the execution of repair. RNA interference to human Rif1 decreases the efficiency of homology-directed repair (HDR), and Rif1 deficiency results in aberrant aggregates of the HDR factor Rad51. Consistent with a role in S-phase progression, Rif1 accumulates at stalled replication forks, preferentially around pericentromeric heterochromatin. Collectively, these findings reveal a function for Rif1 in the repair of stalled forks by facilitating HDR.
Collapse
Affiliation(s)
- Sara B C Buonomo
- Laboratory of Cell Biology and Genetics, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
81
|
Thomson AM, Gillespie PJ, Blow JJ. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. ACTA ACUST UNITED AC 2010; 188:209-21. [PMID: 20083602 PMCID: PMC2812520 DOI: 10.1083/jcb.200911037] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cdk activity can differentially regulate the number of active replication factories, replication rates, and the rate of progression through the timing program during S phase. In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase.
Collapse
Affiliation(s)
- Alexander M Thomson
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
82
|
Frum RA, Khondker ZS, Kaufman DG. Temporal differences in DNA replication during the S phase using single fiber analysis of normal human fibroblasts and glioblastoma T98G cells. Cell Cycle 2010; 8:3133-48. [PMID: 19738421 DOI: 10.4161/cc.8.19.9682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have recently shown that replication forks pause near origins in normal human fibroblasts (NHF1-hTERT) but not glioblastoma T98G cells. This observation led us to question whether other differences in the replication program may exist between these cell types that may relate to their genetic integrity. To identify differences, we detected immunoflourescently the sequential incorporation of the nucleotide analogs IdU and CldU into replicating DNA at the start of every hour of a synchronized S phase. We then characterized the patterns of labeled replicating DNA tracks and quantified the percentages and lengths of the tracks found at these hourly intervals. From the directionality of labeling in single extended replicating DNA fibers, tracks were categorized as single bidirectional origins, unidirectional elongations, clusters of origins firing in tandem, or merging forks (terminations). Our analysis showed that the start of S phase is enriched in single bidirectional origins in NHF1-hTERT cells, followed by an increase in clustering during mid S phase and an increase in merging forks during late S phase. Early S phase in T98G cells also largely consisted of single bidirectional origin initiations; however, an increase in clustering was delayed until an hour later, and clusters were shorter in mid/late S phase than in NHF1-hTERT cells. The spike in merging forks also did not occur until an hour later in T98G cells. Our observations suggest models to explain the temporal replication of single and clustered origins, and suggest differences in the replication program in a normal and cancer cell line.
Collapse
Affiliation(s)
- Rebecca A Frum
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|
83
|
Rivera-Mulia JC, Aranda-Anzaldo A. Determination of the in vivo structural DNA loop organization in the genomic region of the rat albumin locus by means of a topological approach. DNA Res 2010; 17:23-35. [PMID: 20047947 PMCID: PMC2818189 DOI: 10.1093/dnares/dsp027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear DNA of metazoans is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). DNA is anchored to the NM by non-coding sequences known as matrix attachment regions (MARs). There are no consensus sequences for identification of MARs and not all potential MARs are actually bound to the NM constituting loop attachment regions (LARs). Fundamental processes of nuclear physiology occur at macromolecular complexes organized on the NM; thus, the topological organization of DNA loops must be important. Here, we describe a general method for determining the structural DNA loop organization in any large genomic region with a known sequence. The method exploits the topological properties of loop DNA attached to the NM and elementary topological principles such as that points in a deformable string (DNA) can be positionally mapped relative to a position-reference invariant (NM), and from such mapping, the configuration of the string in third dimension can be deduced. Therefore, it is possible to determine the specific DNA loop configuration without previous characterization of the LARs involved. We determined in hepatocytes and B-lymphocytes of the rat the DNA loop organization of a genomic region that contains four members of the albumin gene family.
Collapse
Affiliation(s)
- Juan Carlos Rivera-Mulia
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de México, Apartado Postal 428, Toluca, Edo. Méx., México
| | | |
Collapse
|
84
|
Hiratani I, Gilbert DM. Autosomal Lyonization of Replication Domains During Early Mammalian Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:41-58. [DOI: 10.1007/978-1-4419-7037-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
85
|
|
86
|
Uwada J, Tanaka N, Yamaguchi Y, Uchimura Y, Shibahara KI, Nakao M, Saitoh H. The p150 subunit of CAF-1 causes association of SUMO2/3 with the DNA replication foci. Biochem Biophys Res Commun 2010; 391:407-13. [DOI: 10.1016/j.bbrc.2009.11.071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
87
|
Chadwick LH, Chadwick BP, Jaye DL, Wade PA. The Mi-2/NuRD complex associates with pericentromeric heterochromatin during S phase in rapidly proliferating lymphoid cells. Chromosoma 2009; 118:445-57. [PMID: 19296121 PMCID: PMC2808998 DOI: 10.1007/s00412-009-0207-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 11/28/2022]
Abstract
Chromosomal replication results in the duplication not only of DNA sequence but also of the patterns of histone modification, DNA methylation, and nucleoprotein structure that constitute epigenetic information. Pericentromeric heterochromatin in human cells is characterized by unique patterns of histone and DNA modification. Here, we describe association of the Mi-2/NuRD complex with specific segments of pericentromeric heterochromatin consisting of Satellite II/III DNA located on human chromosomes 1, 9, and 16 in some but not all cell types. This association is linked in part to DNA replication and chromatin assembly and may suggest a role in these processes. Mi-2/NuRD accumulation is independent of Polycomb association and is characterized by a unique pattern of histone modification. We propose that Mi-2/NuRD constitutes an enzymatic component of a pathway for assembly and maturation of chromatin utilized by rapidly proliferating lymphoid cells for replication of constitutive heterochromatin.
Collapse
Affiliation(s)
- Lisa Helbling Chadwick
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences. Research Triangle Park, NC 27709, USA
| | - Brian P. Chadwick
- Institute for Genome Sciences and Policy and Department of Cell Biology, Duke University. Durham, NC 27710, USA
| | - David L. Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine. Atlanta, GA 30322, USA
| | - Paul A. Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences. Research Triangle Park, NC 27709, USA
| |
Collapse
|
88
|
Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma 2009; 118:693-709. [PMID: 19609548 DOI: 10.1007/s00412-009-0228-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 02/04/2023]
Abstract
The cell cycle-associated phosphorylation of histone H1.5 is manifested as three discrete phosphorylated forms, occurring exclusively on Ser(17), Ser(172), and Ser(188) during interphase. During late G2 and mitosis the up-phosphorylation occurs exclusively on threonine at either Thr(137) or Thr(154) to build the tetraphosphorylated forms of H1.5, whereas the pentaphosphorylated forms result from phosphorylation at Thr(10). To determine the kinetic and spatial distribution of histone H1 phosphorylation within the nucleus of synchronized Hela cells we localized three distinct phosphorylation sites of histone subtype H1.5 using affinity-purified polyclonal antibodies generated against phosphorylated Ser(17), Ser(172), and Thr(10). Immunofluorescence labeling of synchronized HeLa cells using the specific antibodies revealed that phosphorylation of H1.5 Ser(17) appeared early in G1 at discrete speckles followed by phosphorylation of Ser(172). Thr(10) phosphorylation started during prophase, showed highest phosphorylation levels during metaphase, and disappeared clearly before chromatin decondensation occurred. Experiments using the kinase inhibitor staurosporine indicate the involvement of different kinases at the various phospho-sites. Colocalization studies revealed that Ser(172) phosphorylation of H1.5 and H1.2 does colocalize to DNA replication and transcription sites. These results favor the idea that the various site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different functions during the cell cycle.
Collapse
|
89
|
A new epigenetic marker: The replication-coupled, cell cycle-dependent, dual modification of the histone H4 tail. J Struct Biol 2009; 167:76-82. [DOI: 10.1016/j.jsb.2009.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/25/2009] [Accepted: 03/28/2009] [Indexed: 10/20/2022]
|
90
|
Deniaud E, Bickmore WA. Transcription and the nuclear periphery: edge of darkness? Curr Opin Genet Dev 2009; 19:187-91. [PMID: 19231154 DOI: 10.1016/j.gde.2009.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/06/2009] [Accepted: 01/15/2009] [Indexed: 01/01/2023]
Abstract
The nuclear periphery has conventionally been considered as a zone of inactive chromatin and transcriptional repression. Recent studies have shed new light on the types of sequences associated with proteins of the nuclear periphery in mammalian cells and have investigated the functional significance of artificially locating genes there. The results of these studies reveal a complex picture. Whilst the edge of the nucleus does seem to have a direct effect on the expression of some genes, other genes seem unaffected by their proximity to the nuclear periphery. Moreover, the nuclear periphery itself is heterogeneous, with microdomains of differing compositions, associating with different genomic regions and probably having differential effects on genome function.
Collapse
Affiliation(s)
- Emmanuelle Deniaud
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
91
|
Zeitz MJ, Marella NRV, Malyavantham KS, Goetze S, Bode J, Raska I, Berezney R. Organization of the amplified type I interferon gene cluster and associated chromosome regions in the interphase nucleus of human osteosarcoma cells. Chromosome Res 2009; 17:305-19. [PMID: 19283497 PMCID: PMC2688705 DOI: 10.1007/s10577-009-9023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Revised: 12/01/2008] [Accepted: 12/01/2008] [Indexed: 12/13/2022]
Abstract
The organization of the amplified type I interferon (IFN) gene cluster and surrounding chromosomal regions was studied in the interphase cell nucleus of the human osteosarcoma cell line MG63. Rather than being arranged in a linear ladder-like array as in mitotic chromosomes, a cluster of approximately 15 foci was detected that was preferentially associated along the periphery of both the cell nucleus and a chromosome territory containing components of chromosomes 4, 8, and 9. Interspersed within the IFN gene foci were corresponding foci derived from amplified centromere 4 and 9 sequences. Other copies of chromosomes 4 and 8 were frequently detected in pairs or higher-order arrays lacking discrete borders between the chromosomes. In contrast, while chromosomes 4 and 8 in normal WI38 human fibroblast and osteoblast cells were occasionally found to associate closely, discrete boundaries were always detected between the two. DNA replication timing of the IFN gene cluster in early- to mid-S phase of WI38 cells was conserved in the amplified IFN gene cluster of MG63. Quantitative RT-PCR demonstrated a approximately 3-fold increase in IFN beta transcripts in MG63 compared with WI38 and RNA/DNA FISH experiments revealed 1-5 foci of IFN beta transcripts per cell with only approximately 5% of the cells showing foci within the highly amplified IFN gene cluster.
Collapse
Affiliation(s)
- Michael J. Zeitz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Narasimha Rao V. Marella
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kishore S. Malyavantham
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sandra Goetze
- HZI, Helmholtz Centre for Infection Research / Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Juergen Bode
- HZI, Helmholtz Centre for Infection Research / Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Ivan Raska
- First Faculty of Medicine, Charles University in Prague and Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Albertov 4, 128 00 Prague, Czech Republic
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
92
|
Casteel DE, Zhuang S, Zeng Y, Perrino FW, Boss GR, Goulian M, Pilz RB. A DNA polymerase-{alpha}{middle dot}primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells. J Biol Chem 2009; 284:5807-18. [PMID: 19119139 PMCID: PMC2645831 DOI: 10.1074/jbc.m807593200] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/04/2008] [Indexed: 02/03/2023] Open
Abstract
alpha-Accessory factor (AAF) stimulates the activity of DNA polymerase-alpha.primase, the only enzyme known to initiate DNA replication in eukaryotic cells ( Goulian, M., Heard, C. J., and Grimm, S. L. (1990) J. Biol. Chem. 265, 13221-13230 ). We purified the AAF heterodimer composed of 44- and 132-kDa subunits from cultured cells and identified full-length cDNA clones using amino acid sequences from internal peptides. AAF-132 demonstrated no homologies to known proteins; AAF-44, however, is evolutionarily related to the 32-kDa subunit of replication protein A (RPA-32) and contains an oligonucleotide/oligosaccharide-binding (OB) fold domain similar to the OB fold domains of RPA involved in single-stranded DNA binding. Epitope-tagged versions of AAF-44 and -132 formed a complex in intact cells, and purified recombinant AAF-44 bound to single-stranded DNA and stimulated DNA primase activity only in the presence of AAF-132. Mutations in conserved residues within the OB fold of AAF-44 reduced DNA binding activity of the AAF-44.AAF-132 complex. Immunofluorescence staining of AAF-44 and AAF-132 in S phase-enriched HeLa cells demonstrated punctate nuclear staining, and AAF co-localized with proliferating cell nuclear antigen, a marker for replication foci containing DNA polymerase-alpha.primase and RPA. Small interfering RNA-mediated depletion of AAF-44 in tumor cell lines inhibited [methyl-(3)H]thymidine uptake into DNA but did not affect cell viability. We conclude that AAF shares structural and functional similarities with RPA-32 and regulates DNA replication, consistent with its ability to increase polymerase-alpha.primase template affinity and stimulate both DNA primase and polymerase-alpha activities in vitro.
Collapse
Affiliation(s)
- Darren E. Casteel
- Department of Medicine and
Cancer Center of the University of California, San Diego, La Jolla, California
92093 and the Department of
Biochemistry, Cancer Center of Wake Forest University, Winston-Salem, North
Carolina 27157
| | - Shunhui Zhuang
- Department of Medicine and
Cancer Center of the University of California, San Diego, La Jolla, California
92093 and the Department of
Biochemistry, Cancer Center of Wake Forest University, Winston-Salem, North
Carolina 27157
| | - Ying Zeng
- Department of Medicine and
Cancer Center of the University of California, San Diego, La Jolla, California
92093 and the Department of
Biochemistry, Cancer Center of Wake Forest University, Winston-Salem, North
Carolina 27157
| | - Fred W. Perrino
- Department of Medicine and
Cancer Center of the University of California, San Diego, La Jolla, California
92093 and the Department of
Biochemistry, Cancer Center of Wake Forest University, Winston-Salem, North
Carolina 27157
| | - Gerry R. Boss
- Department of Medicine and
Cancer Center of the University of California, San Diego, La Jolla, California
92093 and the Department of
Biochemistry, Cancer Center of Wake Forest University, Winston-Salem, North
Carolina 27157
| | - Mehran Goulian
- Department of Medicine and
Cancer Center of the University of California, San Diego, La Jolla, California
92093 and the Department of
Biochemistry, Cancer Center of Wake Forest University, Winston-Salem, North
Carolina 27157
| | - Renate B. Pilz
- Department of Medicine and
Cancer Center of the University of California, San Diego, La Jolla, California
92093 and the Department of
Biochemistry, Cancer Center of Wake Forest University, Winston-Salem, North
Carolina 27157
| |
Collapse
|
93
|
The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 2009; 15:972-9. [PMID: 19172751 DOI: 10.1038/nsmb.1470] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heterochromatin protein 1 (HP1)-rich heterochromatin domains next to centromeres are crucial for chromosome segregation during mitosis. This mitotic function requires their faithful reproduction during the preceding S phase, a process whose mechanism and regulation are current puzzles. Here we show that p150, a subunit of chromatin assembly factor 1, has a key role in the replication of pericentric heterochromatin and S-phase progression in mouse cells, independently of its known function in histone deposition. By a combination of depletion and complementation assays in vivo, we link this unique function of p150 to its ability to interact with HP1. Absence of this functional interaction triggers S-phase arrest at the time of replication of pericentromeric heterochromatin, without eliciting known DNA-based checkpoint pathways. Notably, in cells lacking the histone methylases Suv39h, in which pericentric domains do not show HP1 accumulation, p150 is dispensable for S-phase progression.
Collapse
|
94
|
Tchélidzé P, Chatron-Colliet A, Thiry M, Lalun N, Bobichon H, Ploton D. Tomography of the cell nucleus using confocal microscopy and medium voltage electron microscopy. Crit Rev Oncol Hematol 2009; 69:127-43. [DOI: 10.1016/j.critrevonc.2008.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 07/18/2008] [Indexed: 12/18/2022] Open
|
95
|
Abstract
DNA replication takes place at discrete sites in the cell nucleus, named replication foci. The spatial arrangements of these foci change in the course of S phase in a temporally regulated and reproducible fashion forming five distinct and highly conserved replication patterns. The organization of nuclear replication sites can be studied by electron and light microscopy techniques. This chapter describes several procedures for detection of replication foci in mammalian nuclei via indirect immunofluorescence microscopy.
Collapse
|
96
|
Braden WA, McClendon AK, Knudsen ES. Cyclin-dependent kinase 4/6 activity is a critical determinant of pre-replication complex assembly. Oncogene 2008; 27:7083-93. [PMID: 18776921 DOI: 10.1038/onc.2008.319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclin-dependent kinases (CDKs) are important in regulating cell cycle transitions, particularly in coordinating DNA replication. Although the role of CDK2 activity on the replication apparatus has been extensively studied, the role of CDK4/6 in DNA replication control is less understood. Through targeted inhibition of CDK4/6 activity, we demonstrate that CDK4/6 kinase activity promotes cdc6 and cdt1 expression, and pre-replication complex (pre-RC) assembly in cycling cells. Conversely, CDK2 inhibition had no effect on the pre-RC assembly. The inhibition of pre-RC assembly is dependent on a functional retinoblastoma (RB) protein, which mediates downstream effects. As such, CDK4/6 inhibition has minimal effect on the replication apparatus in the absence of RB. The requirement of CDK4/6 was further interrogated using cells lacking D-type cyclins, in which replication complexes form normally, and correspondingly CDK4/6 inhibition had no effect on cell cycle or replication control. However, in the absence of D-type cyclins, CDK2 inhibition resulted in the attenuation of cdc6 and cdt1 levels, suggesting overlapping roles for CDK4/6 and CDK2 in regulating replication protein activity. Finally, CDK4/6 inhibition prevented the accumulation of cdc6 and cdt1 as cells progressed from mitosis through the subsequent G(1). Combined, these studies indicate that CDK4/6 activity is important in regulating the expression of these critical mediators of DNA replication.
Collapse
Affiliation(s)
- W A Braden
- Department of Cancer Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
97
|
Malyavantham KS, Bhattacharya S, Barbeitos M, Mukherjee L, Xu J, Fackelmayer FO, Berezney R. Identifying functional neighborhoods within the cell nucleus: proximity analysis of early S-phase replicating chromatin domains to sites of transcription, RNA polymerase II, HP1gamma, matrin 3 and SAF-A. J Cell Biochem 2008; 105:391-403. [PMID: 18618731 PMCID: PMC2705756 DOI: 10.1002/jcb.21834] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Higher order chromatin organization in concert with epigenetic regulation is a key process that determines gene expression at the global level. The organization of dynamic chromatin domains and their associated protein factors is intertwined with nuclear function to create higher levels of functional zones within the cell nucleus. As a step towards elucidating the organization and dynamics of these functional zones, we have investigated the spatial proximities among a constellation of functionally related sites that are found within euchromatic regions of the cell nucleus including: HP1gamma, nascent transcript sites (TS), active DNA replicating sites in early S-phase (PCNA) and RNA polymerase II sites. We report close associations among these different sites with proximity values specific for each combination. Analysis of matrin 3 and SAF-A sites demonstrates that these nuclear matrix proteins are highly proximal with the functionally related sites as well as to each other and display closely aligned and overlapping regions following application of the minimal spanning tree (MST) algorithm to visualize higher order network-like patterns. Our findings suggest that multiple factors within the nuclear microenvironment collectively form higher order combinatorial arrays of function. We propose a model for the organization of these functional neighborhoods which takes into account the proximity values of the individual sites and their spatial organization within the nuclear architecture.
Collapse
Affiliation(s)
| | - Sambit Bhattacharya
- Dept. of Mathematics & Computer Sciences, Fayetteville State Univ., Fayetteville, NC 28311
| | - Marcos Barbeitos
- Dept. of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| | - Lopamudra Mukherjee
- Dept. of Computer Sciences and Engineering, University at Buffalo, Buffalo, NY 14260
| | - Jinhui Xu
- Dept. of Computer Sciences and Engineering, University at Buffalo, Buffalo, NY 14260
| | - Frank O Fackelmayer
- Biomedical Research Institute, Foundation for Research & Technology –Hellas, 45110 Ioannina, Greece
| | - Ronald Berezney
- Dept. of Biological Sciences, University at Buffalo, Buffalo, NY 14260
| |
Collapse
|
98
|
Abstract
The nuclear architecture plays an important role in the temporal and spatial control of complex functional processes within the nucleus. Alterations in nuclear structures are characteristic of cancer cells and the mechanisms underlying these perturbations may directly contribute to tumor development and progression. In this review, we will highlight aspects of the nuclear microenvironment that are perturbed during tumorigenesis and discuss how a greater understanding of the role of nuclear structure in the control of gene expression can provide new options for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Rossanna C. Pezo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York
| |
Collapse
|
99
|
Tokuyasu N, Shomori K, Nishihara K, Kawaguchi H, Fujioka S, Yamaga K, Ikeguchi M, Ito H. Minichromosome maintenance 2 (MCM2) immunoreactivity in stage III human gastric carcinoma: clinicopathological significance. Gastric Cancer 2008; 11:37-46. [PMID: 18373176 DOI: 10.1007/s10120-008-0451-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 01/08/2008] [Indexed: 02/07/2023]
Abstract
BACKGROUND The origin licensing factor minichromosome maintenance 2 (MCM2) has recently been identified as a critical regulator of proliferation in both normal and neoplastic cells. This study examined whether MCM2 expression was of prognostic relevance in patients with stage III gastric carcinoma and whether the expression of this marker showed any correlation with clinicopathological characteristics. In addition, we evaluated whether the expression of this proliferation marker was correlated with that of another marker, Ki-67, in gastric carcinoma. METHODS We examined the immunohistochemical expression of MCM2, Ki-67, and p53 in 103 surgically removed stage III gastric carcinomas, which consisted of 60 intestinal-type and 43 diffuse-type carcinomas. The labeling indices (LIs) of MCM2 and Ki-67 in cancer cells were compared with clinicopathological characteristics, p53 expression, and overall survival rates. RESULTS The mean MCM2 and Ki-67 LIs were 69.1 +/- 11.8% and 48.2 +/- 14.5%, respectively, in the intestinal carcinomas, and 43.7 +/- 9.9% and 24.9 +/- 11.0%, respectively, in the diffuse carcinomas. The LIs of these proteins revealed no significant association with clinicopathological characteristics or with p53 expression in the carcinomas. Kaplan-Meier survival curves showed that, in the patients with diffuse carcinoma, those with higher MCM2 LIs had a poorer prognosis (P < 0.05), but the MCM2 LI was not correlated with prognosis for those with intestinal carcinoma (P = 0.25). Ki-67 expression had no significant correlation with prognosis in either intestinal-type or diffuse-type carcinomas. Multivariate Cox regression analysis confirmed that MCM2 was an independent prognostic factor in patients with diffuse carcinoma. CONCLUSION Our data suggest that MCM2 is a useful prognostic marker in patients stage III diffuse-type gastric carcinoma.
Collapse
Affiliation(s)
- Naruo Tokuyasu
- Division of Organ Pathology, Department of Microbiology and Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Papait R, Pistore C, Grazini U, Babbio F, Cogliati S, Pecoraro D, Brino L, Morand AL, Dechampesme AM, Spada F, Leonhardt H, McBlane F, Oudet P, Bonapace IM. The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin. Mol Biol Cell 2008; 19:3554-63. [PMID: 18508923 DOI: 10.1091/mbc.e07-10-1059] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heterochromatic chromosomal regions undergo large-scale reorganization and progressively aggregate, forming chromocenters. These are dynamic structures that rapidly adapt to various stimuli that influence gene expression patterns, cell cycle progression, and differentiation. Np95-ICBP90 (m- and h-UHRF1) is a histone-binding protein expressed only in proliferating cells. During pericentromeric heterochromatin (PH) replication, Np95 specifically relocalizes to chromocenters where it highly concentrates in the replication factories that correspond to less compacted DNA. Np95 recruits HDAC and DNMT1 to PH and depletion of Np95 impairs PH replication. Here we show that Np95 causes large-scale modifications of chromocenters independently from the H3:K9 and H4:K20 trimethylation pathways, from the expression levels of HP1, from DNA methylation and from the cell cycle. The PHD domain is essential to induce this effect. The PHD domain is also required in vitro to increase access of a restriction enzyme to DNA packaged into nucleosomal arrays. We propose that the PHD domain of Np95-ICBP90 contributes to the opening and/or stabilization of dense chromocenter structures to support the recruitment of modifying enzymes, like HDAC and DNMT1, required for the replication and formation of PH.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Structural and Functional Biology, University of Insubria, 21052 Busto Arsizio (VA), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|