51
|
Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 2010; 21:3041-53. [PMID: 20610657 PMCID: PMC2929997 DOI: 10.1091/mbc.e10-04-0313] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/22/2022] Open
Abstract
Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.
Collapse
Affiliation(s)
- Jian Jing
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | | | - Christine Wu
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Jemima Burden
- MRC Cell Biology Unit, University College London, London, WC1E 6BT, United Kingdom
| | - Hugo Matern
- Exelixis Inc., South San Francisco, CA 94080; and
| | - Andrew A. Peden
- University of Cambridge, Cambridge Institute for Medical Research, Hills Road, CB20XY, United Kingdom
| | - Rytis Prekeris
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
52
|
A Dyn2-CIN85 complex mediates degradative traffic of the EGFR by regulation of late endosomal budding. EMBO J 2010; 29:3039-53. [PMID: 20711168 DOI: 10.1038/emboj.2010.190] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 07/14/2010] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is over-expressed in a variety of human cancers. Downstream signalling of this receptor is tightly regulated both spatially and temporally by controlling its internalization and subsequent degradation. Internalization of the EGFR requires dynamin 2 (Dyn2), a large GTPase that deforms lipid bilayers, leading to vesicle scission. The adaptor protein CIN85 (cbl-interacting protein of 85 kDa), which has been proposed to indirectly link the EGFR to the endocytic machinery at the plasma membrane, is also thought to be involved in receptor internalization. Here, we report a novel and direct interaction between Dyn2 and CIN85 that is induced by EGFR stimulation and, most surprisingly, occurs late in the endocytic process. Importantly, disruption of the CIN85-Dyn2 interaction results in accumulation of internalized EGFR in late endosomes that become aberrantly elongated into distended tubules. Consistent with the accumulation of this receptor is a sustention of downstream signalling cascades. These findings provide novel insights into a previously unknown protein complex that can regulate EGFR traffic at very late stages of the endocytic pathway.
Collapse
|
53
|
Gorbea C, Pratt G, Ustrell V, Bell R, Sahasrabudhe S, Hughes RE, Rechsteiner M. A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J Biol Chem 2010; 285:31616-33. [PMID: 20682791 DOI: 10.1074/jbc.m110.154120] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ecm29 is a 200-kDa HEAT repeat protein that binds the 26 S proteasome. Genome-wide two-hybrid screens and mass spectrometry have identified molecular motors, endosomal components, and ubiquitin-proteasome factors as Ecm29-interacting proteins. The C-terminal half of human Ecm29 binds myosins and kinesins; its N-terminal region binds the endocytic proteins, Vps11, Rab11-FIP4, and rabaptin. Whereas full-length FLAG-Ecm29, its C-terminal half, and a small central fragment of Ecm29 remain bound to glycerol-gradient-separated 26 S proteasomes, the N-terminal half of Ecm29 does not. Confocal microscopy showed that Ecm-26 S proteasomes are present on flotillin-positive endosomes, but they are virtually absent from caveolin- and clathrin-decorated endosomes. Expression of the small central fragment of Ecm29 markedly reduces proteasome association with flotillin-positive endosomes. Identification of regions within Ecm29 capable of binding molecular motors, endosomal proteins, and the 26 S proteasome supports the hypothesis that Ecm29 serves as an adaptor for coupling 26 S proteasomes to specific cellular compartments.
Collapse
Affiliation(s)
- Carlos Gorbea
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Shiga toxins: intracellular trafficking to the ER leading to activation of host cell stress responses. Toxins (Basel) 2010; 2:1515-35. [PMID: 22069648 PMCID: PMC3153247 DOI: 10.3390/toxins2061515] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/18/2010] [Accepted: 06/01/2010] [Indexed: 12/25/2022] Open
Abstract
Despite efforts to improve hygenic conditions and regulate food and drinking water safety, the enteric pathogens, Shiga toxin-producing Escherichia coli (STEC) and Shigella dysenteriae serotype 1 remain major public health concerns due to widespread outbreaks and the severity of extra-intestinal diseases they cause, including acute renal failure and central nervous system complications. Shiga toxins are the key virulence factors expressed by these pathogens mediating extra-intestinal disease. Delivery of the toxins to the endoplasmic reticulum (ER) results in host cell protein synthesis inhibition, activation of the ribotoxic stress response, the ER stress response, and in some cases, the induction of apoptosis. Intrinsic and/or extrinsic apoptosis inducing pathways are involved in executing cell death following intoxication. In this review we provide an overview of the current understanding Shiga toxin intracellular trafficking, host cellular responses to the toxin and ER stress-induced apoptosis with an emphasis on recent findings.
Collapse
|
55
|
Shiba Y, Römer W, Mardones GA, Burgos PV, Lamaze C, Johannes L. AGAP2 regulates retrograde transport between early endosomes and the TGN. J Cell Sci 2010; 123:2381-90. [PMID: 20551179 DOI: 10.1242/jcs.057778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The retrograde transport route links early endosomes and the TGN. Several endogenous and exogenous cargo proteins use this pathway, one of which is the well-explored bacterial Shiga toxin. ADP-ribosylation factors (Arfs) are approximately 20 kDa GTP-binding proteins that are required for protein traffic at the level of the Golgi complex and early endosomes. In this study, we expressed mutants and protein fragments that bind to Arf-GTP to show that Arf1, but not Arf6 is required for transport of Shiga toxin from early endosomes to the TGN. We depleted six Arf1-specific ARF-GTPase-activating proteins and identified AGAP2 as a crucial regulator of retrograde transport for Shiga toxin, cholera toxin and the endogenous proteins TGN46 and mannose 6-phosphate receptor. In AGAP2-depleted cells, Shiga toxin accumulates in transferrin-receptor-positive early endosomes, suggesting that AGAP2 functions in the very early steps of retrograde sorting. A number of other intracellular trafficking pathways are not affected under these conditions. These results establish that Arf1 and AGAP2 have key trafficking functions at the interface between early endosomes and the TGN.
Collapse
Affiliation(s)
- Yoko Shiba
- Institut Curie - Centre de Recherche, Traffic, Signaling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
56
|
Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Lett 2010; 584:2626-34. [DOI: 10.1016/j.febslet.2010.04.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/07/2010] [Indexed: 01/07/2023]
|
57
|
Römer W, Pontani LL, Sorre B, Rentero C, Berland L, Chambon V, Lamaze C, Bassereau P, Sykes C, Gaus K, Johannes L. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 2010; 140:540-53. [PMID: 20178746 DOI: 10.1016/j.cell.2010.01.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 07/29/2009] [Accepted: 12/31/2009] [Indexed: 01/09/2023]
Abstract
Nascent transport intermediates detach from donor membranes by scission. This process can take place in the absence of dynamin, notably in clathrin-independent endocytosis, by mechanisms that are yet poorly defined. We show here that in cells scission of Shiga toxin-induced tubular endocytic membrane invaginations is preceded by cholesterol-dependent membrane reorganization and correlates with the formation of membrane domains on model membranes, suggesting that domain boundary forces are driving tubule membrane constriction. Actin triggers scission by inducing such membrane reorganization process. Tubule occurrence is indeed increased upon cellular depletion of the actin nucleator component Arp2, and the formation of a cortical actin shell in liposomes is sufficient to trigger the scission of Shiga toxin-induced tubules in a cholesterol-dependent but dynamin-independent manner. Our study suggests that membranes in tubular Shiga toxin-induced invaginations are poised to undergo actin-triggered reorganization leading to scission by a physical mechanism that may function independently from or in synergy with pinchase activity.
Collapse
Affiliation(s)
- Winfried Römer
- Institut Curie, Centre de Recherche, CNRS UMR, Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Abrami L, Bischofberger M, Kunz B, Groux R, van der Goot FG. Endocytosis of the anthrax toxin is mediated by clathrin, actin and unconventional adaptors. PLoS Pathog 2010; 6:e1000792. [PMID: 20221438 PMCID: PMC2832758 DOI: 10.1371/journal.ppat.1000792] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/26/2010] [Indexed: 11/21/2022] Open
Abstract
The anthrax toxin is a tripartite toxin, where the two enzymatic subunits require the third subunit, the protective antigen (PA), to interact with cells and be escorted to their cytoplasmic targets. PA binds to cells via one of two receptors, TEM8 and CMG2. Interestingly, the toxin times and triggers its own endocytosis, in particular through the heptamerization of PA. Here we show that PA triggers the ubiquitination of its receptors in a β-arrestin-dependent manner and that this step is required for clathrin-mediated endocytosis. In addition, we find that endocytosis is dependent on the heterotetrameric adaptor AP-1 but not the more conventional AP-2. Finally, we show that endocytosis of PA is strongly dependent on actin. Unexpectedly, actin was also found to be essential for efficient heptamerization of PA, but only when bound to one of its 2 receptors, TEM8, due to the active organization of TEM8 into actin-dependent domains. Endocytic pathways are highly modular systems. Here we identify some of the key players that allow efficient heptamerization of PA and subsequent ubiquitin-dependent, clathrin-mediated endocytosis of the anthrax toxin. Bacillus anthracis is the bacterium responsible for the anthrax disease. Its virulence is mainly due to 2 factors, the anthrax toxin and the anti-phagocytic capsule. This toxin is composed of three independent polypeptide chains. Two of these have enzymatic activity and are responsible for the effects of the toxin. The third has no activity but is absolutely required to bring the 2 enzymatic subunits into the cell where they act. If one blocks entry into the cells, one blocks the effects of these toxins, which is why it is important to understand how the toxin enters into the cell at the molecular level. Here we identified various molecules that are involved in efficiently bringing the toxin into the cell. First, we found that the actin cytoskeleton plays an important role in organizing one of the two anthrax toxin receptors at the cell surface. Second, we found a cytosolic protein, β-arrestin, that is required to modify the intracellular part of the toxin receptor, to allow uptake. Finally, we directly show, for the first time, that anthrax toxin uptake is mediated by the so-called clathrin-dependent pathway, a very modular entry pathway, but that the toxin utilizes this pathway in an unconventional way.
Collapse
Affiliation(s)
- Laurence Abrami
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Mirko Bischofberger
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Béatrice Kunz
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - Romain Groux
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
| | - F. Gisou van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Faculty of Life Sciences, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
59
|
Johannes L, Römer W. Shiga toxins--from cell biology to biomedical applications. Nat Rev Microbiol 2009; 8:105-16. [PMID: 20023663 DOI: 10.1038/nrmicro2279] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shiga toxin-producing Escherichia coli is an emergent pathogen that can induce haemolytic uraemic syndrome. The toxin has received considerable attention not only from microbiologists but also in the field of cell biology, where it has become a powerful tool to study intracellular trafficking. In this Review, we summarize the Shiga toxin family members and their structures, receptors, trafficking pathways and cellular targets. We discuss how Shiga toxin affects cells not only by inhibiting protein biosynthesis but also through the induction of signalling cascades that lead to apoptosis. Finally, we discuss how Shiga toxins might be exploited in cancer therapy and immunotherapy.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie - Centre de Recherche and CNRS UMR144, Traffic, Signalling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
60
|
Popoff V, Mardones GA, Bai SK, Chambon V, Tenza D, Burgos PV, Shi A, Benaroch P, Urbé S, Lamaze C, Grant BD, Raposo G, Johannes L. Analysis of articulation between clathrin and retromer in retrograde sorting on early endosomes. Traffic 2009; 10:1868-80. [PMID: 19874558 DOI: 10.1111/j.1600-0854.2009.00993.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans-Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes-TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069-7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.
Collapse
Affiliation(s)
- Vincent Popoff
- Institut Curie - Centre de Recherche, Traffic, Signaling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Dyve AB, Bergan J, Utskarpen A, Sandvig K. Sorting nexin 8 regulates endosome-to-Golgi transport. Biochem Biophys Res Commun 2009; 390:109-14. [PMID: 19782049 DOI: 10.1016/j.bbrc.2009.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 09/20/2009] [Indexed: 11/25/2022]
Abstract
Sorting nexin 8 (SNX8) belongs to the sorting nexin protein family, whose members are involved in endocytosis and endosomal sorting and signaling. The function of SNX8 has so far been unknown. Here, we have investigated the role of SNX8 in intracellular transport of the bacterial toxin Shiga toxin (Stx) and the plant toxin ricin. After being endocytosed, these toxins are transported retrogradely from endosomes, via the Golgi apparatus and the endoplasmic reticulum (ER), into the cytosol, where they exert their toxic effect. Interestingly, our experiments show that SNX8 regulates the transport of Stx and ricin differently; siRNA-mediated knockdown of SNX8 significantly increased the Stx transport to the trans-Golgi network (TGN), whereas ricin transport was slightly inhibited. We also found that SNX8 colocalizes with early endosome antigen 1 (EEA1) and with retromer components, suggesting an endosomal localization of SNX8 and supporting our finding that SNX8 is involved in endosomal sorting.
Collapse
Affiliation(s)
- Anne Berit Dyve
- Faculty Division The Norwegian Radium Hospital, Centre for Cancer Biomedicine, University of Oslo, 0316 Oslo, Norway
| | | | | | | |
Collapse
|
62
|
Regulation of endosomal clathrin and retromer-mediated endosome to Golgi retrograde transport by the J-domain protein RME-8. EMBO J 2009; 28:3290-302. [PMID: 19763082 DOI: 10.1038/emboj.2009.272] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 07/28/2009] [Indexed: 12/11/2022] Open
Abstract
After endocytosis, most cargo enters the pleiomorphic early endosomes in which sorting occurs. As endosomes mature, transmembrane cargo can be sequestered into inwardly budding vesicles for degradation, or can exit the endosome in membrane tubules for recycling to the plasma membrane, the recycling endosome, or the Golgi apparatus. Endosome to Golgi transport requires the retromer complex. Without retromer, recycling cargo such as the MIG-14/Wntless protein aberrantly enters the degradative pathway and is depleted from the Golgi. Endosome-associated clathrin also affects the recycling of retrograde cargo and has been shown to function in the formation of endosomal subdomains. Here, we find that the Caemorhabditis elegans endosomal J-domain protein RME-8 associates with the retromer component SNX-1. Loss of SNX-1, RME-8, or the clathrin chaperone Hsc70/HSP-1 leads to over-accumulation of endosomal clathrin, reduced clathrin dynamics, and missorting of MIG-14 to the lysosome. Our results indicate a mechanism, whereby retromer can regulate endosomal clathrin dynamics through RME-8 and Hsc70, promoting the sorting of recycling cargo into the retrograde pathway.
Collapse
|
63
|
Hehnly H, Longhini KM, Chen JL, Stamnes M. Retrograde Shiga toxin trafficking is regulated by ARHGAP21 and Cdc42. Mol Biol Cell 2009; 20:4303-12. [PMID: 19692570 DOI: 10.1091/mbc.e09-02-0155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Shiga-toxin-producing Escherichia coli remain a food-borne health threat. Shiga toxin is endocytosed by intestinal epithelial cells and transported retrogradely through the secretory pathway. It is ultimately translocated to the cytosol where it inhibits protein translation. We found that Shiga toxin transport through the secretory pathway was dependent on the cytoskeleton. Recent studies reveal that Shiga toxin activates signaling pathways that affect microtubule reassembly and dynein-dependent motility. We propose that Shiga toxin alters cytoskeletal dynamics in a way that facilitates its transport through the secretory pathway. We have now found that Rho GTPases regulate the endocytosis and retrograde motility of Shiga toxin. The expression of RhoA mutants inhibited endocytosis of Shiga toxin. Constitutively active Cdc42 or knockdown of the Cdc42-specific GAP, ARHGAP21, inhibited the transport of Shiga toxin to the juxtanuclear Golgi apparatus. The ability of Shiga toxin to stimulate microtubule-based transferrin transport also required Cdc42 and ARHGAP21 function. Shiga toxin addition greatly decreases the levels of active Cdc42-GTP in an ARHGAP21-dependent manner. We conclude that ARHGAP21 and Cdc42-based signaling regulates the dynein-dependent retrograde transport of Shiga toxin to the Golgi apparatus.
Collapse
Affiliation(s)
- Heidi Hehnly
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
64
|
Wen Y, Stavrou I, Bersuker K, Brady RJ, De Lozanne A, O'Halloran TJ. AP180-mediated trafficking of Vamp7B limits homotypic fusion of Dictyostelium contractile vacuoles. Mol Biol Cell 2009; 20:4278-88. [PMID: 19692567 DOI: 10.1091/mbc.e09-03-0243] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clathrin-coated vesicles play an established role in endocytosis from the plasma membrane, but they are also found on internal organelles. We examined the composition of clathrin-coated vesicles on an internal organelle responsible for osmoregulation, the Dictyostelium discoideum contractile vacuole. Clathrin puncta on contractile vacuoles contained multiple accessory proteins typical of plasma membrane-coated pits, including AP2, AP180, and epsin, but not Hip1r. To examine how these clathrin accessory proteins influenced the contractile vacuole, we generated cell lines that carried single and double gene knockouts in the same genetic background. Single or double mutants that lacked AP180 or AP2 exhibited abnormally large contractile vacuoles. The enlarged contractile vacuoles in AP180-null mutants formed because of excessive homotypic fusion among contractile vacuoles. The SNARE protein Vamp7B was mislocalized and enriched on the contractile vacuoles of AP180-null mutants. In vitro assays revealed that AP180 interacted with the cytoplasmic domain of Vamp7B. We propose that AP180 directs Vamp7B into clathrin-coated vesicles on contractile vacuoles, creating an efficient mechanism for regulating the internal distribution of fusion-competent SNARE proteins and limiting homotypic fusions among contractile vacuoles. Dictyostelium contractile vacuoles offer a valuable system to study clathrin-coated vesicles on internal organelles within eukaryotic cells.
Collapse
Affiliation(s)
- Yujia Wen
- Department of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
65
|
Windschiegl B, Orth A, Römer W, Berland L, Stechmann B, Bassereau P, Johannes L, Steinem C. Lipid reorganization induced by Shiga toxin clustering on planar membranes. PLoS One 2009; 4:e6238. [PMID: 19606209 PMCID: PMC2705791 DOI: 10.1371/journal.pone.0006238] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 06/01/2009] [Indexed: 02/04/2023] Open
Abstract
The homopentameric B-subunit of bacterial protein Shiga toxin (STxB) binds to the glycolipid Gb(3) in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3) clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3) lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/cholesterol/Gb(3) (65:30:5) bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3) (40:35:20:5) phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3), STxB-Gb(3) complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.
Collapse
Affiliation(s)
- Barbara Windschiegl
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Göttingen, Germany
| | - Alexander Orth
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Göttingen, Germany
| | - Winfried Römer
- Institut Curie, Centre de Recherche, CNRS UMR 144, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, Paris, France
| | - Ludwig Berland
- Institut Curie, Centre de Recherche, CNRS UMR 168, Laboratoire Physico-Chimie, Paris, France
| | - Bahne Stechmann
- Institut Curie, Centre de Recherche, CNRS UMR 144, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, Paris, France
| | - Patricia Bassereau
- Institut Curie, Centre de Recherche, CNRS UMR 168, Laboratoire Physico-Chimie, Paris, France
| | - Ludger Johannes
- Institut Curie, Centre de Recherche, CNRS UMR 144, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, Paris, France
| | - Claudia Steinem
- Institut für Organische und Biomolekulare Chemie, Georg-August Universität, Göttingen, Germany
| |
Collapse
|
66
|
Raa H, Grimmer S, Schwudke D, Bergan J, Wälchli S, Skotland T, Shevchenko A, Sandvig K. Glycosphingolipid requirements for endosome-to-Golgi transport of Shiga toxin. Traffic 2009; 10:868-82. [PMID: 19453975 DOI: 10.1111/j.1600-0854.2009.00919.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Shiga toxin binds to globotriaosylceramide (Gb3) receptors on the target cell surface. To enter the cytosol, Shiga toxin is dependent on endocytic uptake, retrograde transport to the Golgi apparatus and further to the endoplasmic reticulum before translocation of the enzymatically active moiety to the cytosol. Here, we have investigated the importance of newly synthesized glycosphingolipids for the uptake and intracellular transport of Shiga toxin in HEp-2 cells. Inhibition of glycosphingolipid synthesis by treatment with either PDMP or Fumonisin B(1) for 24-48 h strongly reduced the transport of Gb3-bound Shiga toxin from endosomes to the Golgi apparatus. This was associated with a change in localization of sorting nexins 1 and 2, and accompanied by a protection against the toxin. In contrast, there was no effect on transport or toxicity of the plant toxin ricin. High-resolution mass spectrometry revealed a 2-fold reduction in Gb3 at conditions giving a 10-fold inhibition of Shiga toxin transport to the Golgi. Furthermore, mass spectrometry showed that the treatment with PDMP (DL-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) and Fumonisin B(1) among other changes of the lipidome, affected the relative content of the different glycosphingolipid species. The largest depletion was observed for the hexosylceramide species with the N-amidated fatty acid 16:0, whereas hexosylceramide species with 24:1 were less affected. Quantitative lipid profiling with mass spectrometry demonstrated that PDMP did not influence the content of sphingomyelins, phospholipids and plasmalogens. In contrast, Fumonisin B(1) affected the amount and composition of sphingomyelin and glycolipids and altered the profiles of phospholipids and plasmalogens.
Collapse
Affiliation(s)
- Hilde Raa
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Skånland SS, Wälchli S, Brech A, Sandvig K. SNX4 in complex with clathrin and dynein: implications for endosome movement. PLoS One 2009; 4:e5935. [PMID: 19529763 PMCID: PMC2691479 DOI: 10.1371/journal.pone.0005935] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022] Open
Abstract
Background Sorting nexins (SNXs) constitute a family of proteins classified by their phosphatidylinositol (PI) binding Phox homology (PX) domain. Some members regulate intracellular trafficking. We have here investigated mechanisms underlying SNX4 mediated endosome to Golgi transport. Methodology/Principal Findings We show that SNX4 forms complexes with clathrin and dynein. The interactions were inhibited by wortmannin, a PI3-kinase inhibitor, suggesting that they form when SNX4 is associated with PI(3)P on endosomes. We further localized the clathrin interacting site on SNX4 to a clathrin box variant. A short peptide containing this motif was sufficient to pull down both clathrin and dynein. Knockdown studies demonstrated that clathrin is not required for the SNX4/dynein interaction. Moreover, clathrin knockdown led to increased Golgi transport of the toxin ricin, as well as redistribution of endosomes. Conclusions/Significance We discuss the possibility of clathrin serving as a regulator of SNX4-dependent transport. Upon clathrin release, dynein may bind SNX4 and mediate retrograde movement.
Collapse
Affiliation(s)
- Sigrid S. Skånland
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Sébastien Wälchli
- Department of Immunology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty Division Norwegian Radium Hospital, University of Oslo, Oslo, Norway
- Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet University Hospital, Montebello, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
68
|
Wälchli S, Aasheim HC, Skånland SS, Spilsberg B, Torgersen ML, Rosendal KR, Sandvig K. Characterization of clathrin and Syk interaction upon Shiga toxin binding. Cell Signal 2009; 21:1161-8. [PMID: 19289168 DOI: 10.1016/j.cellsig.2009.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/05/2009] [Indexed: 11/19/2022]
Abstract
Shiga toxin (Stx) is a bacterial toxin that binds to its receptor Gb3 at the plasma membrane. It is taken up by endocytosis and transported retrogradely via the Golgi apparatus to the endoplasmic reticulum. The toxin is then translocated to the cytosol where it exerts its toxic effect. We have previously shown that phosphorylation of clathrin heavy chain (CHC) is an early event following Stx binding to HeLa cells, and that this requires the activity of the tyrosine kinase Syk. Here, we have investigated this event in more detail in the B lymphoid cell line Ramos, which expresses high endogenous levels of both Syk and Gb3. We report that efficient endocytosis of Stx in Ramos cells requires Syk activity and that Syk is recruited to the uptake site of Stx. Furthermore, in response to Stx treatment, CHC and Syk were rapidly phosphorylated in a Src family kinase dependent manner at Y1477 and Y352, respectively. We show that these phosphorylated residues act as binding sites for the direct interaction between Syk and CHC. Interestingly, Syk-CHC complex formation could be induced by both Stx and B cell receptor stimulation.
Collapse
Affiliation(s)
- Sébastien Wälchli
- Department of Biochemistry, Institute for Cancer Research, Faculty Division: The Norwegian Radium Hospital, Montebello, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Retrograde transport, in which proteins and lipids are shuttled between endosomes and biosynthetic/secretory compartments such as the Golgi apparatus, is crucial for a diverse range of cellular functions. Mechanistic studies that explore the molecular machinery involved in this retrograde trafficking route are shedding light on the functions of transport proteins and are providing fresh insights into possible new therapeutic directions.
Collapse
Affiliation(s)
- Ludger Johannes
- CNRS UMR144, Centre de Recherche, Traffic, Signaling, and Delivery Laboratory, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
70
|
Scheiring J, Andreoli SP, Zimmerhackl LB. Treatment and outcome of Shiga-toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol 2008; 23:1749-60. [PMID: 18704506 PMCID: PMC6901419 DOI: 10.1007/s00467-008-0935-6] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 12/28/2022]
Abstract
Hemolytic uremic syndrome (HUS) is the most common cause of acute renal failure in childhood and the reason for chronic renal replacement therapy. It leads to significant morbidity and mortality during the acute phase. In addition to acute morbidity and mortality, long-term renal and extrarenal complications can occur in a substantial number of children years after the acute episode of HUS. The most common infectious agents causing HUS are enterohemorrhagic Escherichia coli (EHEC)-producing Shiga toxin (and belonging to the serotype O157:H7) and several non-O157:H7 serotypes. D(+) HUS is an acute disease characterized by prodromal diarrhea followed by acute renal failure. The classic clinical features of HUS include the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. HUS mortality is reported to be between 3% and 5%, and death due to HUS is nearly always associated with severe extrarenal disease, including severe central nervous system (CNS) involvement. Approximately two thirds of children with HUS require dialysis therapy, and about one third have milder renal involvement without the need for dialysis therapy. General management of acute renal failure includes appropriate fluid and electrolyte management, antihypertensive therapy if necessary, and initiation of renal replacement therapy when appropriate. The prognosis of HUS depends on several contributing factors. In general "classic" HUS, induced by EHEC, has an overall better outcome. Totally different is the prognosis in patients with atypical and particularly recurrent HUS. However, patients with severe disease should be screened for genetic disorders of the complement system or other underlying diseases.
Collapse
Affiliation(s)
- Johanna Scheiring
- Department of Pediatrics I, Medical University Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | | | - Lothar Bernd Zimmerhackl
- Department of Pediatrics I, Medical University Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| |
Collapse
|
71
|
Sens P, Johannes L, Bassereau P. Biophysical approaches to protein-induced membrane deformations in trafficking. Curr Opin Cell Biol 2008; 20:476-82. [PMID: 18539448 DOI: 10.1016/j.ceb.2008.04.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 04/15/2008] [Accepted: 04/19/2008] [Indexed: 01/23/2023]
Abstract
Membrane traffic requires membrane deformation to generate vesicles and tubules. Strong evidence suggests that assembly of curvature-active proteins can drive such membrane shape changes. Well-documented pathways often involve protein scaffolds, in particular coats (clathrin or COP). However, membrane curvature should, in principle, be influenced by any protein binding asymmetrically on a membrane; large membrane morphological changes could result from their aggregation. In the case of Shiga toxin or viral matrix proteins, tubules and buds appear to result from the cargo-driven formation of protein-lipid nanodomains, showing that collective protein behaviour is crucial in the process. We argue here that a combination of in vitro experiments on giant unilamellar vesicles and theoretical modelling based on statistical physics is ideally suited to tackle these collective effects.
Collapse
Affiliation(s)
- Pierre Sens
- Laboratoire Gulliver, ESPCI, CNRS-UMR 7083, 10 rue Vauquelin, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
72
|
Amessou M, Popoff V, Yelamos B, Saint-Pol A, Johannes L. Measuring retrograde transport to the trans-Golgi network. ACTA ACUST UNITED AC 2008; Chapter 15:Unit 15.10. [PMID: 18228477 DOI: 10.1002/0471143030.cb1510s32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recently described retrograde transport route is a highly selective pathway that allows some internalized molecules to reach the trans-Golgi network from early/recycling endosomes, bypassing the recycling route to the plasma membrane and the late endocytic pathway. The non-toxic receptor-binding B-subunit of bacterial Shiga toxin has played an important role in the discovery and molecular dissection of membrane trafficking at the early/recycling endosomes-TGN interface. This unit describes several recent methods for quantitative biochemical and morphological analysis of retrograde transport. The sulfation assay permits the detection and quantification of cargo protein transport from endosomes to the TGN, describing how sulfation-site peptides can be chemically coupled to cargo proteins. Furthermore, a variant of the sulfation assay on permeabilized cells is presented. The chemical crosslinking theme is extended to horseradish peroxidase for the ultrastructural study of the Shiga toxin-containing early/recycling endosomes by whole mount analysis. Finally, an endocytosis assay describes concomitant analysis of cellular uptake of Shiga toxin and transferrin.
Collapse
|
73
|
Pavelka M, Neumüller J, Ellinger A. Retrograde traffic in the biosynthetic-secretory route. Histochem Cell Biol 2008; 129:277-88. [PMID: 18270728 PMCID: PMC2248610 DOI: 10.1007/s00418-008-0383-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2008] [Indexed: 02/04/2023]
Abstract
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments' balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations.
Collapse
Affiliation(s)
- Margit Pavelka
- Department of Cell Biology and Ultrastructure Research, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, Austria.
| | | | | |
Collapse
|
74
|
McKenzie J, Johannes L, Taguchi T, Sheff D. Passage through the Golgi is necessary for Shiga toxin B subunit to reach the endoplasmic reticulum. FEBS J 2008; 276:1581-95. [PMID: 19220458 DOI: 10.1111/j.1742-4658.2009.06890.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Both Shiga holotoxin and the isolated B subunit, navigate a retrograde pathway from the plasma membrane to the endoplasmic reticulum (ER) of mammalian cells to deliver catalytic A subunits into the cytosol. This route passes through early/recycling endosomes and then through the Golgi. Although passage through the endosomes takes only 30 min, passage through the Golgi is much slower, taking hours. This suggests that Golgi passage is a key step in retrograde traffic. However, there is no empirical data demonstrating that Golgi passage is required for the toxins to enter the ER. In fact, an alternate pathway bypassing the Golgi is utilized by SV40 virus. Here we find that blocking Shiga toxin B access to the entire Golgi with AlF(4)(-) treatment, temperature block or subcellular surgery prevented Shiga toxin B from reaching the ER. This suggests that there is no direct endosome to ER route available for retrograde traffic. Curiously, when Shiga toxin B was trapped in endosomes, it entered the cytosol directly from the endosomal compartment. Our results suggest that trafficking through the Golgi apparatus is required for Shiga toxin B to reach the ER and that diversion into the Golgi may prevent toxin escape from endosomes into the cytosol.
Collapse
Affiliation(s)
- Jenna McKenzie
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-2600, USA
| | | | | | | |
Collapse
|
75
|
Vergés M. Retromer: multipurpose sorting and specialization in polarized transport. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 271:153-98. [PMID: 19081543 DOI: 10.1016/s1937-6448(08)01204-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Retromer is an evolutionary conserved protein complex required for endosome-to-Golgi retrieval of lysosomal hydrolases' receptors. A dimer of two sorting nexins-typically, SNX1 and/or SNX2-deforms the membrane and thus cooperates with retromer to ensure cargo sorting. Research in various model organisms indicates that retromer participates in sorting of additional molecules whose proper transport has important repercussions in development and disease. The role of retromer as well as SNXs in endosomal protein (re)cycling and protein targeting to specialized plasma membrane domains in polarized cells adds further complexity and has implications in growth control, the establishment of developmental patterns, cell adhesion, and migration. This chapter will discuss the functions of retromer described in various model systems and will focus on relevant aspects in polarized transport.
Collapse
Affiliation(s)
- Marcel Vergés
- Laboratory of Epithelial Cell Biology, Centro de Investigación Príncipe Felipe, C/E.P. Avda. Autopista del Saler, Valencia, Spain
| |
Collapse
|
76
|
Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MRE, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L. Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 2007; 450:670-5. [PMID: 18046403 DOI: 10.1038/nature05996] [Citation(s) in RCA: 448] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/05/2007] [Indexed: 02/06/2023]
|
77
|
Popoff V, Mardones GA, Tenza D, Rojas R, Lamaze C, Bonifacino JS, Raposo G, Johannes L. The retromer complex and clathrin define an early endosomal retrograde exit site. J Cell Sci 2007; 120:2022-31. [PMID: 17550971 DOI: 10.1242/jcs.003020] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have indicated a role for clathrin, the clathrin adaptors AP1 and epsinR, and the retromer complex in retrograde sorting from early/recycling endosomes to the trans Golgi network (TGN). However, it has remained unclear whether these protein machineries function on the same or parallel pathways. We show here that clathrin and the retromer subunit Vps26 colocalize at the ultrastructural level on early/recycling endosomes containing Shiga toxin B-subunit, a well-studied retrograde transport cargo. As previously described for clathrin, we find that interfering with Vps26 expression inhibits retrograde transport of the Shiga toxin B-subunit to the TGN. Under these conditions, endosomal tubules that take the Shiga toxin B-subunit out of transferrin-containing early/recycling endosomes appear to be stabilized. This situation differs from that previously described for low-temperature incubation and clathrin-depletion conditions under which Shiga toxin B-subunit labeling was found to overlap with that of the transferrin receptor. In addition, we find that the Shiga toxin B-subunit and the transferrin receptor accumulate close to multivesicular endosomes in clathrin-depleted cells, suggesting that clathrin initiates retrograde sorting on vacuolar early endosomes, and that retromer is then required to process retrograde tubules. Our findings thus establish a role for the retromer complex in retrograde transport of the B-subunit of Shiga toxin, and strongly suggest that clathrin and retromer function in consecutive retrograde sorting steps on early endosomes.
Collapse
Affiliation(s)
- Vincent Popoff
- Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Bujny MV, Popoff V, Johannes L, Cullen PJ. The retromer component sorting nexin-1 is required for efficient retrograde transport of Shiga toxin from early endosome to the trans Golgi network. J Cell Sci 2007; 120:2010-21. [PMID: 17550970 DOI: 10.1242/jcs.003111] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mammalian retromer complex is a multi-protein complex that regulates retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR) from early endosomes to the trans Golgi network (TGN). It consists of two subcomplexes: a membrane-bound coat comprising sorting nexin-1 (SNX1) and possibly sorting nexin-2 (SNX2), and a cargo-selective subcomplex, composed of VPS26, VPS29 and VPS35. In addition to the retromer, a variety of other protein complexes has been suggested to regulate endosome-to-TGN transport of not only the CI-MPR but a wide range of other cargo proteins. Here, we have examined the role of SNX1 and SNX2 in endosomal sorting of Shiga and cholera toxins, two toxins that undergo endosome-to-TGN transport en route to their cellular targets located within the cytosol. By using small interfering RNA (siRNA)-mediated silencing combined with single-cell fluorescent-toxin-uptake assays and well-established biochemical assays to analyze toxin delivery to the TGN, we have established that suppression of SNX1 leads to a significant reduction in the efficiency of endosome-to-TGN transport of the Shiga toxin B-subunit. Furthermore, we show that for the B subunit of cholera toxin, retrograde endosome-to-TGN transport is less reliant upon SNX1. Overall, our data establish a role for SNX1 in the endosome-to-TGN transport of Shiga toxin and are indicative for a fundamental difference between endosomal sorting of Shiga and cholera toxins into endosome-to-TGN retrograde transport pathways.
Collapse
Affiliation(s)
- Miriam V Bujny
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
79
|
Tarragó-Trani MT, Storrie B. Alternate routes for drug delivery to the cell interior: pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev 2007; 59:782-97. [PMID: 17669543 PMCID: PMC2134838 DOI: 10.1016/j.addr.2007.06.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 06/12/2007] [Indexed: 11/29/2022]
Abstract
The targeted delivery of drugs to the cell interior can be accomplished by taking advantage of the various receptor-mediated endocytic pathways operating in a particular cell. Among these pathways, the retrograde trafficking pathway from endosomes to the Golgi apparatus, and endoplasmic reticulum is of special importance since it provides a route to deliver drugs bypassing the acid pH, hydrolytic environment of the lysosome. The existence of pathways for drug or antigen delivery to the endoplasmic reticulum and Golgi apparatus has been to a large extent an outcome of research on the trafficking of A/B type-bacterial or plant toxins such as Shiga toxin within the cell. The targeting properties of these toxins reside in their B subunit. In this article we present an overview of the multiplicity of pathways to deliver drugs intracellularly. We highlight the retrograde trafficking pathway illustrated by Shiga toxin and Shiga-like toxin, and the potential role of the B subunit of these toxins as carriers of drugs, antigens and imaging agents.
Collapse
Affiliation(s)
- Maria Teresa Tarragó-Trani
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
80
|
Saenz JB, Doggett TA, Haslam DB. Identification and characterization of small molecules that inhibit intracellular toxin transport. Infect Immun 2007; 75:4552-61. [PMID: 17576758 PMCID: PMC1951202 DOI: 10.1128/iai.00442-07] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Shiga toxin (Stx), cholera toxin (Ctx), and the plant toxin ricin are among several toxins that reach their intracellular destinations via a complex route. Following endocytosis, these toxins travel in a retrograde direction through the endosomal system to the trans-Golgi network, Golgi apparatus, and endoplasmic reticulum (ER). There the toxins are transported across the ER membrane to the cytosol, where they carry out their toxic effects. Transport via the ER from the cell surface to the cytosol is apparently unique to pathogenic toxins, raising the possibility that various stages in the transport pathway can be therapeutically targeted. We have applied a luciferase-based high-throughput screen to a chemical library of small-molecule compounds in order to identify inhibitors of Stx. We report two novel compounds that protect against Stx and ricin inhibition of protein synthesis, and we demonstrate that these compounds reversibly inhibit bacterial transport at various stages in the endocytic pathway. One compound (compound 75) inhibited transport at an early stage of Stx and Ctx transport and also provided protection against diphtheria toxin, which enters the cytosol from early endosomes. In contrast, compound 134 inhibited transport from recycling endosomes through the Golgi apparatus and protected only against toxins that access the ER. Small-molecule compounds such as these will provide insight into the mechanism of toxin transport and lead to the identification of compounds with therapeutic potential against toxins routed through the ER.
Collapse
Affiliation(s)
- Jose B Saenz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
81
|
Fuchs E, Haas AK, Spooner RA, Yoshimura SI, Lord JM, Barr FA. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. ACTA ACUST UNITED AC 2007; 177:1133-43. [PMID: 17562788 PMCID: PMC2064371 DOI: 10.1083/jcb.200612068] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rab family guanosine triphosphatases (GTPases) together with their regulators define specific pathways of membrane traffic within eukaryotic cells. In this study, we have investigated which Rab GTPase-activating proteins (GAPs) can interfere with the trafficking of Shiga toxin from the cell surface to the Golgi apparatus and studied transport of the epidermal growth factor (EGF) from the cell surface to endosomes. This screen identifies 6 (EVI5, RN-tre/USP6NL, TBC1D10A–C, and TBC1D17) of 39 predicted human Rab GAPs as specific regulators of Shiga toxin but not EGF uptake. We show that Rab43 is the target of RN-tre and is required for Shiga toxin uptake. In contrast, RabGAP-5, a Rab5 GAP, was unique among the GAPs tested and reduced the uptake of EGF but not Shiga toxin. These results suggest that Shiga toxin trafficking to the Golgi is a multistep process controlled by several Rab GAPs and their target Rabs and that this process is discrete from ligand-induced EGF receptor trafficking.
Collapse
Affiliation(s)
- Evelyn Fuchs
- Department of Cell Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | | | | | | | | | |
Collapse
|
82
|
Utskarpen A, Slagsvold HH, Dyve AB, Skånland SS, Sandvig K. SNX1 and SNX2 mediate retrograde transport of Shiga toxin. Biochem Biophys Res Commun 2007; 358:566-70. [PMID: 17498660 DOI: 10.1016/j.bbrc.2007.04.159] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/26/2007] [Indexed: 01/13/2023]
Abstract
The bacterial toxin Shiga toxin (Stx) is transported retrogradely from early endosomes to the Golgi apparatus on its way to the endoplasmic reticulum (ER) and the cytosol. In this study we explored the functions of the two phosphoinositide binding proteins Sorting nexin 1 (SNX1) and Sorting nexin 2 (SNX2) in endosomal sorting of the toxin. When Vero cells were depleted of either SNX1 or SNX2 by small interfering RNA (siRNA), Stx transport to the trans-Golgi network (TGN) was impaired by > or = 40%, whereas combined depletion of SNX1 and SNX2 gave a total inhibition of approximately 80%. Inhibition of PI(3)P formation by wortmannin resulted in a similar reduction. Thus, although being partly redundant, both SNX1 and SNX2 are required for efficient Stx trafficking to the Golgi apparatus.
Collapse
Affiliation(s)
- Audrun Utskarpen
- Institute for Cancer Research, Centre for Cancer Biomedicine, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | | | | | |
Collapse
|
83
|
Amessou M, Fradagrada A, Falguières T, Lord JM, Smith DC, Roberts LM, Lamaze C, Johannes L. Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J Cell Sci 2007; 120:1457-68. [PMID: 17389686 PMCID: PMC1863825 DOI: 10.1242/jcs.03436] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retrograde transport allows proteins and lipids to leave the endocytic pathway to reach other intracellular compartments, such as trans-Golgi network (TGN)/Golgi membranes, the endoplasmic reticulum and, in some instances, the cytosol. Here, we have used RNA interference against the SNARE proteins syntaxin 5 and syntaxin 16, combined with recently developed quantitative trafficking assays, morphological approaches and cell intoxication analysis to show that these SNARE proteins are not only required for efficient retrograde transport of Shiga toxin, but also for that of an endogenous cargo protein - the mannose 6-phosphate receptor - and for the productive trafficking into cells of cholera toxin and ricin. We have found that the function of syntaxin 16 was specifically required for, and restricted to, the retrograde pathway. Strikingly, syntaxin 5 RNA interference protected cells particularly strongly against Shiga toxin. Since our trafficking analysis showed that apart from inhibiting retrograde endosome-to-TGN transport, the silencing of syntaxin 5 had no additional effect on Shiga toxin endocytosis or trafficking from TGN/Golgi membranes to the endoplasmic reticulum, we hypothesize that syntaxin 5 also has trafficking-independent functions. In summary, our data demonstrate that several cellular and exogenous cargo proteins use elements of the same SNARE machinery for efficient retrograde transport between early/recycling endosomes and TGN/Golgi membranes.
Collapse
Affiliation(s)
- Mohamed Amessou
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Alexandre Fradagrada
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Thomas Falguières
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - J. Michael Lord
- Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Daniel C. Smith
- Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Lynne M. Roberts
- Molecular Cell Biology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Christophe Lamaze
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | - Ludger Johannes
- Traffic and Signaling Laboratory, UMR144Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| |
Collapse
|
84
|
Skånland SS, Wälchli S, Utskarpen A, Wandinger-Ness A, Sandvig K. Phosphoinositide-Regulated Retrograde Transport of Ricin: Crosstalk Between hVps34 and Sorting Nexins. Traffic 2006; 8:297-309. [PMID: 17319803 DOI: 10.1111/j.1600-0854.2006.00527.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The plant toxin ricin is transported from the plasma membrane via early endosomes and the Golgi apparatus to the endoplasmic reticulum. From this compartment, it enters the cytosol and inhibits protein synthesis. Lipid phosphorylation is an important regulator of vesicular transport, and in the present study we have investigated the role of the phosphatidylinositol (PI) 3-kinase hVps34 in retrograde transport of ricin. Our data demonstrate that transport of ricin from endosomes to the Golgi apparatus in human embryonic kidney cells (HEK 293) is dependent on PI(3)P. By using PI 3-kinase inhibitors, by sequestering the hVps34 product PI(3)P and by expressing mutants of hVps34 or small interfering RNA targeted against its messenger RNA, we show that hVps34 and its product PI(3)P are involved in transport of ricin from endosome to Golgi apparatus. Furthermore, we identify two effector proteins in the hVps34-dependent pathway, namely sorting nexin (SNX) 2 and SNX4. Knockdown of SNX2 or SNX4 inhibits ricin transport to the Golgi apparatus to the same extent as when hVps34 is perturbed. Furthermore, inhibition or knockdown of hVps34 redistributes these proteins. Interestingly, knocking down both SNX2 and SNX4 results in a better inhibition than knocking down only one of them, suggesting that they may act on separate pathways.
Collapse
Affiliation(s)
- Sigrid S Skånland
- Department of Biochemistry, Institute for Cancer Research, University of Oslo, Faculty Department The Norwegian Radium Hospital, Montebello, N-0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
85
|
Warnier M, Römer W, Geelen J, Lesieur J, Amessou M, van den Heuvel L, Monnens L, Johannes L. Trafficking of Shiga toxin/Shiga-like toxin-1 in human glomerular microvascular endothelial cells and human mesangial cells. Kidney Int 2006; 70:2085-91. [PMID: 17063173 DOI: 10.1038/sj.ki.5001989] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study has determined the intracellular transport route of Shiga-like toxin (Stx) and the highly related Shiga toxin in human glomerular microvascular endothelial cells (GMVECs) and mesangial cells. In addition, the effect of tumor necrosis factor-alpha (TNF-alpha), which contributes to the pathogenesis of hemolytic-uremic syndrome, was evaluated more profound. Establishing the transport route will provide better understanding of the cytotoxic effect of Stx on renal cells. For our studies, we used receptor-binding B-subunit (StxB), which is identical between Shiga toxin and Stx-1. The transport route of StxB was studied by immunofluorescence microscopy and biochemical assays that allow quantitative analysis of retrograde transport from plasma membrane to Golgi apparatus and endoplasmic reticulum (ER). In both cell types, StxB was detergent-resistant membrane associated and followed the retrograde route. TNF-alpha upregulated Gb3 expression in mesangial cells and GMVECs, without affecting the efficiency of StxB transport to the ER. In conclusion, our study shows that in human GMVECs and mesangial cells, StxB follows the retrograde route to the Golgi apparatus and the ER. TNF-alpha treatment increases the amount of cell-associated StxB, but not retrograde transport as such, making it likely that the strong TNF-alpha-induced sensitization of mesangial cells and GMVECs for the toxic action of Stx is not due to a direct effect on the intracellular trafficking of the toxin.
Collapse
Affiliation(s)
- M Warnier
- Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Falguières T, Römer W, Amessou M, Afonso C, Wolf C, Tabet JC, Lamaze C, Johannes L. Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. FEBS J 2006; 273:5205-18. [PMID: 17059464 DOI: 10.1111/j.1742-4658.2006.05516.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many studies have investigated the intracellular trafficking of Shiga toxin, but very little is known about the underlying dynamics of its cellular receptor, the glycosphingolipid globotriaosyl ceramide. In this study, we show that globotriaosyl ceramide is required not only for Shiga toxin binding to cells, but also for its intracellular trafficking. Shiga toxin induces globotriaosyl ceramide recruitment to detergent-resistant membranes, and subsequent internalization of the lipid. The globotriaosyl ceramide pool at the plasma membrane is then replenished from internal stores. Whereas endocytosis is not affected in the recovery condition, retrograde transport of Shiga toxin to the Golgi apparatus and the endoplasmic reticulum is strongly inhibited. This effect is specific, as cholera toxin trafficking on GM(1) and protein biosynthesis are not impaired. The differential behavior of both toxins is also paralleled by the selective loss of Shiga toxin association with detergent-resistant membranes in the recovery condition, and comparison of the molecular species composition of plasma membrane globotriaosyl ceramide indicates subtle changes in favor of unsaturated fatty acids. In conclusion, this study demonstrates the dynamic behavior of globotriaosyl ceramide at the plasma membrane and suggests that globotriaosyl ceramide-specific determinants, possibly its molecular species composition, are selectively required for efficient retrograde sorting on endosomes, but not for endocytosis.
Collapse
Affiliation(s)
- Thomas Falguières
- Laboratoire Trafic et Signalisation, Unité Mixte de Recherche 144, Institut Curie/CNRS, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Bonifacino JS, Rojas R. Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 2006; 7:568-79. [PMID: 16936697 DOI: 10.1038/nrm1985] [Citation(s) in RCA: 489] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A subset of intracellular transmembrane proteins such as acid-hydrolase receptors, processing peptidases and SNAREs, as well as extracellular protein toxins such as Shiga toxin and ricin, undergoes 'retrograde' transport from endosomes to the trans-Golgi network. Here, we discuss recent studies that have begun to unravel the molecular machinery that is involved in this process. We also propose a central role for a 'tubular endosomal network' in sorting to recycling pathways that lead not only to the trans-Golgi network but also to different plasma-membrane domains and to specialized storage vesicles.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
88
|
Reig N, van der Goot FG. About lipids and toxins. FEBS Lett 2006; 580:5572-9. [PMID: 16962591 DOI: 10.1016/j.febslet.2006.08.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/08/2006] [Accepted: 08/09/2006] [Indexed: 11/25/2022]
Abstract
Many mono or multicellular organisms secrete soluble proteins, referred to as protein toxins, which alter the behavior of foreign, or target cells, possibly leading to their death. These toxins affect either the cell membrane by forming pores or modifying lipids, or some intracellular target. To reach this target, they must cross one of the cellular membranes, generally that of an intracellular organelle. As described in this minireview, lipids play crucial roles in the intoxication process of most if not all toxins, by allowing/promoting binding, endocytosis, trafficking and/or translocation into the cytoplasm.
Collapse
Affiliation(s)
- Núria Reig
- Ecole Polytechnique de Lausanne, Institute of Global Health, 1015 Lausanne, Switzerland
| | | |
Collapse
|
89
|
Rybakin V, Gounko NV, Späte K, Höning S, Majoul IV, Duden R, Noegel AA. Crn7 interacts with AP-1 and is required for the maintenance of Golgi morphology and protein export from the Golgi. J Biol Chem 2006; 281:31070-8. [PMID: 16905771 DOI: 10.1074/jbc.m604680200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Crn7 is a novel cytosolic mammalian WD-repeat protein of unknown function that associates with Golgi membranes. Here, we demonstrate that Crn7 knockdown by small interfering RNA results in dramatic changes in the Golgi morphology and function. First, the Golgi ribbon is disorganized in Crn7 KD cells. Second, the Golgi export of several marker proteins including VSV envelope G glycoprotein is greatly reduced but not the retrograde protein import into the Golgi complex. We further establish that Crn7 co-precipitates with clathrin adaptor AP-1 but is not required for AP-1 targeting to Golgi membranes. We identify tyrosine 288-based motif as part of a canonical YXXPhi sorting signal and a major mu1-adaptin binding site in vitro. This study provides the first insight into the function of mammalian Crn7 protein in the Golgi complex.
Collapse
Affiliation(s)
- Vasily Rybakin
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, D-50931 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
90
|
Hehnly H, Sheff D, Stamnes M. Shiga toxin facilitates its retrograde transport by modifying microtubule dynamics. Mol Biol Cell 2006; 17:4379-89. [PMID: 16885418 PMCID: PMC1635369 DOI: 10.1091/mbc.e06-04-0310] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bacterial exotoxin Shiga toxin is endocytosed by mammalian host cells and transported retrogradely through the secretory pathway before entering the cytosol. Shiga toxin also increases the levels of microfilaments and microtubules (MTs) upon binding to the cell surface. The purpose for this alteration in cytoskeletal dynamics is unknown. We have investigated whether Shiga toxin-induced changes in MT levels facilitate its intracellular transport. We have tested the effects of the Shiga toxin B subunit (STB) on MT-dependent and -independent transport steps. STB increases the rate of MT-dependent Golgi stack repositioning after nocodazole treatment. It also enhances the MT-dependent accumulation of transferrin in a perinuclear recycling compartment. By contrast, the rate of MT-independent transferrin recycling is not significantly different when STB is present. We found that STB normally requires MTs and dynein for its retrograde transport to the juxtanuclear Golgi complex and that STB increases MT assembly. Furthermore, we find that MT polymerization is limiting for STB transport in cells. These results show that STB-induced changes in cytoskeletal dynamics influence intracellular transport. We conclude that the increased rate of MT assembly upon Shiga toxin binding facilitates the retrograde transport of the toxin through the secretory pathway.
Collapse
Affiliation(s)
| | - David Sheff
- Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
91
|
Abstract
Animal and plant cytokineses appear morphologically distinct. Recent studies, however, have revealed that these cellular processes have many things in common, including the requirement of co-ordinated membrane trafficking and cytoskeletal dynamics. At the intersection of these two processes are the members of the dynamin family of ubiquitous eukaryotic GTPases. In this review, we highlight the conserved contribution of classical dynamin and dynamin-related proteins during cytokinesis in both animal and plant systems.
Collapse
Affiliation(s)
- Catherine A. Konopka
- Department of Biochemistry and Program in Cellular and Molecular Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Justin B. Schleede
- Department of Genetics and Medical Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Ahna R. Skop
- Department of Genetics and Medical Genetics, University of Wisconsin – Madison, Madison, WI 53706, USA
- Corresponding author: Ahna R. Skop, ; Sebastian Y. Bednarek,
| | - Sebastian Y. Bednarek
- Department of Biochemistry and Program in Cellular and Molecular Biology, University of Wisconsin – Madison, Madison, WI 53706, USA
- Corresponding author: Ahna R. Skop, ; Sebastian Y. Bednarek,
| |
Collapse
|
92
|
Utskarpen A, Slagsvold HH, Iversen TG, Wälchli S, Sandvig K. Transport of Ricin from Endosomes to the Golgi Apparatus is Regulated by Rab6A and Rab6A′. Traffic 2006; 7:663-72. [PMID: 16683916 DOI: 10.1111/j.1600-0854.2006.00418.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus.
Collapse
Affiliation(s)
- Audrun Utskarpen
- Department of Biochemistry, Institute for Cancer Research, Faculty Division The Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo, Norway
| | | | | | | | | |
Collapse
|
93
|
Falguières T, Johannes L. Shiga toxin B-subunit binds to the chaperone BiP and the nucleolar protein B23. Biol Cell 2006; 98:125-34. [PMID: 15853775 DOI: 10.1042/bc20050001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND INFORMATION In many cell lines, such as HeLa cells, STxB (Shiga toxin B-subunit) is transported from the plasma membrane to the ER (endoplasmic reticulum), via early/recycling endosomes and the Golgi apparatus, bypassing the late endocytic pathway. In human monocyte-derived macrophages and dendritic cells that are not sensitive to Shiga toxin-induced protein biosynthesis inhibition, STxB is not detectably targeted to the retrograde route and is degraded in late endosomes/lysosomes. RESULTS We have identified B-subunit interacting proteins in HeLa cells and macrophages. In HeLa cells, the ER-localized chaperone BiP (binding protein) was co-immunoprecipitated with the B-subunit. This interaction was not observed in macrophages, consistent with our previous trafficking results. In both cell types, the B-subunit also interacted with the nucleolar protein B23. Consistently, the B-subunit could be detected on nucleoli, suggesting that it could serve to bring the holotoxin to the site of synthesis of its molecular target, rRNA. The nucleolar localization data are critically discussed. CONCLUSION The interaction of STxB with BiP, involved in the retrotranslocation process to the cytosol and nucleolar B23, as described in this study, might be of relevance for explaining the efficiency of even low doses of Shiga toxin to inactivate cellular ribosomes, and for the use of STxB as a vector for targeting antigens to cytosolic proteasomes of the MHC I-restricted antigen presentation pathway.
Collapse
Affiliation(s)
- Thomas Falguières
- Laboratoire Trafic et Signalisation, Unité Mixte de Recherche 144 Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | | |
Collapse
|
94
|
Liu Q, Zhan J, Chen X, Zheng S. Ricin A chain reaches the endoplasmic reticulum after endocytosis. Biochem Biophys Res Commun 2006; 343:857-63. [PMID: 16564502 DOI: 10.1016/j.bbrc.2006.02.194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 02/28/2006] [Indexed: 11/28/2022]
Abstract
Ricin is a potent ribosome inactivating protein and now has been widely used for synthesis of immunotoxins. To target ribosome in the mammalian cytosol, ricin must firstly retrograde transport from the endomembrane system to reach the endoplasmic reticulum (ER) where the ricin A chain (RTA) is recognized by ER components that facilitate its membrane translocation to the cytosol. In the study, the fusion gene of enhanced green fluorescent protein (EGFP)-RTA was expressed with the pET-28a (+) system in Escherichia coli under the control of a T7 promoter. The fusion protein showed a green fluorescence. The recombinant protein can be purified by metal chelated affinity chromatography on a column of NTA. The rabbit anti-GFP antibody can recognize the fusion protein of EGFP-RTA just like the EGFP protein. The cytotoxicity of EGFP-RTA and RTA was evaluated by the MTT assay in HeLa and HEP-G2 cells following fluid-phase endocytosis. The fusion protein had a similar cytotoxicity of RTA. After endocytosis, the subcellular location of the fusion protein can be observed with the laser scanning confocal microscopy and the immuno-gold labeling Electro Microscopy. This study provided important evidence by a visualized way to prove that RTA does reach the endoplasmic reticulum.
Collapse
Affiliation(s)
- Qiong Liu
- Department of Biochemistry and Molecular Biology, Zhejiang University Medical School, Hangzhou 310006, PR China
| | | | | | | |
Collapse
|
95
|
Abstract
The immunotoxin approach is based on the use of tumor-targeting ligands or antibodies that are linked to the catalytic (toxic) moieties of bacterial or plant protein toxins. In this review, we first discuss the current state of clinical development of immunotoxin approaches describing the results obtained with the two toxins most frequently used: diphtheria and Pseudomonas toxin-derived proteins. In the second part of the review, a novel concept will be presented in which the roles are inverted: nontoxic receptor-binding toxin moieties are used for the targeting of therapeutic and diagnostic compounds to cancer or immune cells. The cell biological basis of these novel types of toxin-based therapeutics will be discussed, and we will summarize ongoing preclinical and clinical testing.
Collapse
Affiliation(s)
- L Johannes
- Laboratoire Trafic et Signalisation, UMR144 Curie/CNRS, Institut Curie, 26 rue d'Ulm, F-75248 Paris Cedex 05, France
| | | |
Collapse
|
96
|
Lauvrak SU, Wälchli S, Iversen TG, Slagsvold HH, Torgersen ML, Spilsberg B, Sandvig K. Shiga toxin regulates its entry in a Syk-dependent manner. Mol Biol Cell 2005; 17:1096-109. [PMID: 16371508 PMCID: PMC1382301 DOI: 10.1091/mbc.e05-08-0766] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Shiga toxin (Stx) is composed of an A-moiety that inhibits protein synthesis after translocation into the cytosol, and a B-moiety that binds to Gb3 at the cell surface and mediates endocytosis of the toxin. After endocytosis, Stx is transported retrogradely to the endoplasmic reticulum, and then the A-fragment enters the cytosol. In this study, we have investigated whether toxin-induced signaling is involved in its entry. Stx was found to activate Syk and induce rapid tyrosine phosphorylation of several proteins, one protein being clathrin heavy chain. Toxin-induced clathrin phosphorylation required Syk activity, and in cells overexpressing Syk, a complex containing clathrin and Syk could be demonstrated. Depletion of Syk by small interfering RNA, expression of a dominant negative Syk mutant (Syk KD), or treatment with the Syk inhibitor piceatannol inhibited not only Stx-induced clathrin phosphorylation but also endocytosis of the toxin. Also, Golgi transport of Stx was inhibited under all these conditions. In conclusion, our data suggest that Stx regulates its entry into target cells.
Collapse
Affiliation(s)
- Silje Ugland Lauvrak
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
97
|
Torgersen ML, Lauvrak SU, Sandvig K. The A-subunit of surface-bound Shiga toxin stimulates clathrin-dependent uptake of the toxin. FEBS J 2005; 272:4103-13. [PMID: 16098193 DOI: 10.1111/j.1742-4658.2005.04835.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shiga toxin can be internalized by clathrin-dependent endocytosis in different cell lines, although it binds specifically to the glycosphingolipid Gb3. It has been demonstrated previously that the toxin can induce recruitment of the toxin-receptor complex to clathrin-coated pits, but whether this process is concentration-dependent or which part of the toxin molecule is involved in this process, have so far been unresolved issues. In this article, we show that the rate of Shiga toxin uptake is dependent on the toxin concentration in several cell lines [HEp-2, HeLa, Vero and baby hamster kidney (BHK)], and that the increased rate observed at higher concentrations is strictly dependent on the presence of the A-subunit of cell surface-bound toxin. Surface-bound B-subunit has no stimulatory effect. Furthermore, this increase in toxin endocytosis is dependent on functional clathrin, as it did not occur in BHK cells after induction of antisense to clathrin heavy chain, thereby blocking clathrin-dependent endocytosis. By immunofluorescence, we show that there is an increased colocalization between Alexa-labeled Shiga toxin and Cy5-labeled transferrin in HeLa cells upon addition of unlabeled toxin. In conclusion, the data indicate that the Shiga toxin A-subunit of cell surface-bound toxin stimulates clathrin-dependent uptake of the toxin. Possible explanations for this phenomenon are discussed.
Collapse
Affiliation(s)
- Maria L Torgersen
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | | | |
Collapse
|
98
|
Abstract
A number of protein toxins of bacterial and plant origin have cytosolic targets, and knowledge about these toxins have provided us with essential information about mechanisms that can be used to gain access to the cytosol as well as detailed knowledge about endocytosis and intracellular sorting. Such toxins include those that have two moieties, one (the B-moiety) that binds to cell surface receptors and another (the A-moiety) with enzymatic activity that enters the cytosol, as well as molecules that only have the enzymatically active moiety and therefore are inefficient in cell entry. The toxins discussed in the present article include bacterial toxins such as Shiga toxin and diphtheria toxin, as well as plant toxins such as ricin and ribosome-inactivating proteins without a binding moiety, such as gelonin. Toxins with a binding moiety can be used as vectors to translocate epitopes, intact proteins, and even nucleotides into the cytosol. The toxins fall into two main groups when it comes to cytosolic entry. Some toxins enter from endosomes in response to low endosomal pH, whereas others, including Shiga toxin and ricin, are transported all the way to the Golgi apparatus and the ER before they are translocated to the cytosol. Plant proteins such as gelonin that are without a binding moiety are taken up only by fluid-phase endocytosis, and normally they have a low toxicity. However, they can be used to test for disruption of endosomal membranes leading to cytosolic access of internalized molecules. Similarly to toxins with a binding moiety they are highly toxic when reaching the cytosol, thereby providing the investigator with an efficient tool to study endosomal disruption and induced transport to the cytosol. In conclusion, the protein toxins are useful tools to study transport and cytosolic translocation, and they can be used as vectors for transport to the interior of the cell.
Collapse
Affiliation(s)
- K Sandvig
- Institute for Cancer Research, The Norwegian Radium Hospital, University of Oslo, Montebello
| | | |
Collapse
|
99
|
Hammerschmidt S, Hacker J, Klenk HD. Threat of infection: microbes of high pathogenic potential--strategies for detection, control and eradication. Int J Med Microbiol 2005; 295:141-51. [PMID: 16044855 PMCID: PMC7129083 DOI: 10.1016/j.ijmm.2005.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Infectious diseases due to microbes of high pathogenic potential remain a constant and variable threat for human and animal health. The emergence of new diseases or the re-emergence of diseases that were previously under control complicates the situation to date. Infectious disease research, which has undergone a dramatic progress in understanding disease mechanisms such as host-pathogen interactions, is now focusing increasingly on new strategies for prevention and therapy. Significant progress has been achieved in the development of delivery systems for protective heterologous protein antigens and in veterinary vaccinology. A landmark of infectious diseases research is the chemical synthesis of genomes, a major new field of research referred to as "synthetic biology", that to date has resulted in the chemical synthesis of the poliovirus and of phage phiX174 genomes and their expression as infectious viruses. On the molecular level the evolution of pathogens and mechanisms of genome flexibility, which account for several pathogenic properties of infectious agents, have received increased attention. Bacterial toxins are an additional threat to human health and their interference with host cells and cellular functions is receiving more attention.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Research Center for Infectious Diseases, University of Würzburg, Germany.
| | | | | |
Collapse
|
100
|
|