51
|
Hydrogen sulfide supplement preserves mitochondrial function of retinal ganglion cell in a rat glaucoma model. Cell Tissue Res 2022; 389:171-185. [PMID: 35593936 DOI: 10.1007/s00441-022-03640-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Glaucoma is a neurodegenerative disease of visual system characterized by gradual loss of retinal ganglion cells (RGC). Since mitochondrial dysfunction of RGC is significantly involved in the pathological mechanisms of glaucoma, and hydrogen sulfide (H2S) takes part in the pathogeny of glaucoma and shows promising potential in restoring mitochondrial function in other neurons, the authors aimed to investigate the impact of H2S on mitochondrial function of RGC with a rat glaucoma model. An established chronic ocular hypertension (COH) rat model induced by injection of cross-linking hydrogel into anterior chamber was adopted, and a H2S donor, sodium hydrosulfide (NaHS), was selected to treat rats through intraperitoneal injection. After a period of 4 weeks, RGCs were isolated from the subjected rats with an immunopanning method and went through evaluations of mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) opening, intracellular Ca2 + level, reactive oxygen species (ROS) level, and cytosolic Cytochrome C distribution. The results showed that the mitochondrial function of RGC in experimental glaucoma was markedly improved by H2S supplement, being presented as stabilization of MMP, alleviation of MPTP opening, improvement of intracellular Ca2+ hemostasis, reduction of ROS accumulation, and inhibition of Cytochrome C release. Our study implicated that preservation of mitochondrial function by H2S probably plays a key role in protecting RGC in the context of glaucomatous neuropathy, and it is worth further deepgoing research to benefit the development of glaucoma treatment.
Collapse
|
52
|
Shrestha J, Santerre M, Allen CNS, Arjona SP, Merali C, Mukerjee R, Chitrala KN, Park J, Bagashev A, Bui V, Eugenin EA, Merali S, Kaul M, Chin J, Sawaya BE. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci 2022; 14:811481. [PMID: 35615594 PMCID: PMC9124804 DOI: 10.3389/fnagi.2022.811481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) remain an unsolved problem that persists despite using antiretroviral therapy. We have obtained data showing that HIV-gp120 protein contributes to neurodegeneration through metabolic reprogramming. This led to decreased ATP levels, lower mitochondrial DNA copy numbers, and loss of mitochondria cristae, all-important for mitochondrial biogenesis. gp120 protein also disrupted mitochondrial movement and synaptic plasticity. Searching for the mechanisms involved, we found that gp120 alters the cyclic AMP response element-binding protein (CREB) phosphorylation on serine residue 133 necessary for its function as a transcription factor. Since CREB regulates the promoters of PGC1α and BDNF genes, we found that CREB dephosphorylation causes PGC1α and BDNF loss of functions. The data was validated in vitro and in vivo. The negative effect of gp120 was alleviated in cells and animals in the presence of rolipram, an inhibitor of phosphodiesterase protein 4 (PDE4), restoring CREB phosphorylation. We concluded that HIV-gp120 protein contributes to HAND via inhibition of CREB protein function.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Charles N. S. Allen
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Sterling P. Arjona
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Carmen Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | | | - Jin Park
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
| | - Viet Bui
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
| | - Eliseo A. Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Salim Merali
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Jeannie Chin
- Memory and Brain Research Center, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Bassel E. Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Philadelphia, PA, United States
- Fels Cancer Institute for Personalized Medicine Institute, Philadelphia, PA, United States
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- *Correspondence: Bassel E. Sawaya,
| |
Collapse
|
53
|
Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J. The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. Exp Gerontol 2022; 164:111828. [DOI: 10.1016/j.exger.2022.111828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
54
|
Baron DM, Fenton AR, Saez-Atienzar S, Giampetruzzi A, Sreeram A, Shankaracharya, Keagle PJ, Doocy VR, Smith NJ, Danielson EW, Andresano M, McCormack MC, Garcia J, Bercier V, Van Den Bosch L, Brent JR, Fallini C, Traynor BJ, Holzbaur ELF, Landers JE. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep 2022; 39:110598. [PMID: 35385738 PMCID: PMC9134378 DOI: 10.1016/j.celrep.2022.110598] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore, mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adam R Fenton
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Anthony Giampetruzzi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aparna Sreeram
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pamela J Keagle
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Victoria R Doocy
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nathan J Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Eric W Danielson
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Megan Andresano
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mary C McCormack
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jaqueline Garcia
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Valérie Bercier
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jonathan R Brent
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Therapeutic Development Branch, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
55
|
Bhatia S, Rawal R, Sharma P, Singh T, Singh M, Singh V. Mitochondrial Dysfunction in Alzheimer's Disease: Opportunities for Drug Development. Curr Neuropharmacol 2022; 20:675-692. [PMID: 33998995 PMCID: PMC9878959 DOI: 10.2174/1570159x19666210517114016] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major reasons for 60-80% cases of senile dementia occurring as a result of the accumulation of plaques and tangles in the hippocampal and cortical neurons of the brain leading to neurodegeneration and cell death. The other pathological features of AD comprise abnormal microvasculature, network abnormalities, interneuronal dysfunction, increased β-amyloid production and reduced clearance, increased inflammatory response, elevated production of reactive oxygen species, impaired brain metabolism, hyperphosphorylation of tau, and disruption of acetylcholine signaling. Among all these pathologies, Mitochondrial Dysfunction (MD), regardless of it being an inciting insult or a consequence of the alterations, is related to all the associated AD pathologies. Observed altered mitochondrial morphology, distribution and movement, increased oxidative stress, dysregulation of enzymes involved in mitochondrial functioning, impaired brain metabolism, and impaired mitochondrial biogenesis in AD subjects suggest the involvement of mitochondrial malfunction in the progression of AD. Here, various pre-clinical and clinical evidence establishing MD as a key mediator in the progression of neurodegeneration in AD are reviewed and discussed with an aim to foster future MD based drug development research for the management of AD.
Collapse
Affiliation(s)
- Shiveena Bhatia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishi Rawal
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Pratibha Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India;,Address correspondence to this author at the Chitkara College of Pharmacy, Chitkara University, Punjab, India; E-mails: ;
| |
Collapse
|
56
|
Barmaver SN, Muthaiyan Shanmugam M, Chang Y, Bayansan O, Bhan P, Wu GH, Wagner OI. Loss of intermediate filament IFB-1 reduces mobility, density and physiological function of mitochondria in C. elegans sensory neurons. Traffic 2022; 23:270-286. [PMID: 35261124 DOI: 10.1111/tra.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Mitochondria and intermediate filament (IF) accumulations often occur during imbalanced axonal transport leading to various types of neurological diseases. It is still poorly understood whether a link between neuronal IFs and mitochondrial mobility exist. In C. elegans, among the 11 cytoplasmic IF family proteins, IFB-1 is of particular interest as it is expressed in a subset of sensory neurons. Depletion of IFB-1 leads to mild dye-filling and significant chemotaxis defects as well as reduced life span. Sensory neuron development is affected and mitochondria transport is slowed down leading to reduced densities of these organelles. Mitochondria tend to cluster in neurons of IFB-1 mutants likely independent of the fission and fusion machinery. Oxygen consumption and mitochondrial membrane potential is measurably reduced in worms carrying mutations in the ifb-1 gene. Membrane potential also seems to play a role in transport such as FCCP treatment led to increased directional switching of mitochondria. Mitochondria colocalize with IFB-1 in worm neurons and appear in a complex with IFB-1 in pull-down assays. In summary, we propose a model in which neuronal intermediate filaments may serve as critical (transient) anchor points for mitochondria during their long-range transport in neurons for steady and balanced transport. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Syed Nooruzuha Barmaver
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Muniesh Muthaiyan Shanmugam
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Yen Chang
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Odvogmed Bayansan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Prerana Bhan
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.).,Research Center for Healthy Aging, China Medical University, Taichung, Taiwan (R.O.C.)
| | - Gong-Her Wu
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| | - Oliver I Wagner
- National Tsing Hua University, Institute of Molecular and Cellular Biology, Department of Life Science, Hsinchu, Taiwan (R.O.C.)
| |
Collapse
|
57
|
Matsumoto N, Hori I, Kajita MK, Murase T, Nakamura W, Tsuji T, Miyake S, Inatani M, Konishi Y. Intermitochondrial signaling regulates the uniform distribution of stationary mitochondria in axons. Mol Cell Neurosci 2022; 119:103704. [DOI: 10.1016/j.mcn.2022.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022] Open
|
58
|
Trigo D, Avelar C, Fernandes M, Sá J, da Cruz E Silva O. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett 2022; 596:1095-1110. [PMID: 35088449 DOI: 10.1002/1873-3468.14298] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are associated with various cellular activities critical to homeostasis, particularly in the nervous system. The plastic architecture of the mitochondrial network and its dynamic structure play crucial roles in ensuring that varying energetic demands are rapidly met to maintain neuronal and axonal energy homeostasis. Recent evidence associates ageing and neurodegeneration with anomalous neuronal metabolism, as age-dependent alterations of neuronal metabolism are now believed to occur prior to neurodegeneration. The brain has a high energy demand, which makes it particularly sensitive to mitochondrial dysfunction. Distinct cellular events causing oxidative stress or disruption of metabolism and mitochondrial homeostasis can trigger a neuropathology. This review explores the bioenergetic hypothesis for the neurodegenerative pathomechanisms, discussing factors leading to age-related brain hypometabolism and its contribution to cognitive decline. Recent research on the mitochondrial network in healthy nervous system cells, its response to stress and how it is affected by pathology, as well as current contributions to novel therapeutic approaches will be highlighted.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Catarina Avelar
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Fernandes
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Juliana Sá
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.,Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
59
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
60
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
61
|
Air Plasma-Activated Medium Evokes a Death-Associated Perinuclear Mitochondrial Clustering. Int J Mol Sci 2022; 23:ijms23031124. [PMID: 35163042 PMCID: PMC8835529 DOI: 10.3390/ijms23031124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/01/2022] Open
Abstract
Intractable cancers such as osteosarcoma (OS) and oral cancer (OC) are highly refractory, recurrent, and metastatic once developed, and their prognosis is still disappointing. Tumor-targeted therapy, which eliminates cancers effectively and safely, is the current clinical choice. Since aggressive tumors are substantially resistant to multidisciplinary therapies that target apoptosis, tumor-specific activation of another cell death modality is a promising avenue for meeting this goal. Here, we report that a cold atmospheric air plasma-activated medium (APAM) can kill OS and OC by causing a unique mitochondrial clustering. This event was named monopolar perinuclear mitochondrial clustering (MPMC) based on its characteristic unipolar mitochondrial perinuclear accumulation. The APAM caused apoptotic and nonapoptotic cell death. The APAM increased mitochondrial ROS (mROS) and cell death, and the antioxidants such as N-acetylcysteine (NAC) prevented them. MPMC occurred following mitochondrial fragmentation, which coincided with nuclear damages. MPMC was accompanied by mitochondrial lipid peroxide (mLPO) accumulation and prevented by NAC, Ferrostatin-1, and Nocodazole. In contrast, the APAM induced minimal cell death, mROS generation, mLPO accumulation, and MPMC in fibroblasts. These results suggest that MPMC occurs in a tumor-specific manner via mitochondrial oxidative stress and microtubule-driven mitochondrial motility. MPMC induction might serve as a promising target for exerting tumor-specific cytotoxicity.
Collapse
|
62
|
Ding C, Wu Y, Dabas H, Hammarlund M. Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. eLife 2022; 11:73557. [PMID: 35285800 PMCID: PMC8920508 DOI: 10.7554/elife.73557] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial defects are tightly linked to axon degeneration, yet the underlying cellular mechanisms remain poorly understood. In Caenorhabditis elegans, PVQ axons that lack mitochondria degenerate spontaneously with age. Using an unbiased genetic screen, we found that cell-specific activation of CaMKII/UNC-43 suppresses axon degeneration due to loss of mitochondria. Unexpectedly, CaMKII/UNC-43 activates the conserved Sarm1/TIR-1-ASK1/NSY-1-p38 MAPK pathway and eventually the transcription factor CEBP-1 to protect against degeneration. In addition, we show that disrupting a trafficking complex composed of calsyntenin/CASY-1, Mint/LIN-10, and kinesin suppresses axon degeneration. Further analysis indicates that disruption of this trafficking complex activates the CaMKII-Sarm1-MAPK pathway through L-type voltage-gated calcium channels. Our findings identify CaMKII as a pivot point between mitochondrial defects and axon degeneration, describe how it is regulated, and uncover a surprising neuroprotective role for the Sarm1-p38 MAPK pathway in this context.
Collapse
Affiliation(s)
- Chen Ding
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States
| | - Youjun Wu
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Hadas Dabas
- Department of Genetics, Yale University School of MedicineNew HavenUnited States
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of MedicineNew HavenUnited States,Department of Genetics, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
63
|
Annuario E, Ng K, Vagnoni A. High-Resolution Imaging of Mitochondria and Mitochondrial Nucleoids in Differentiated SH-SY5Y Cells. Methods Mol Biol 2022; 2431:291-310. [PMID: 35412283 DOI: 10.1007/978-1-0716-1990-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondria are highly dynamic organelles which form intricate networks with complex dynamics. Mitochondrial transport and distribution are essential to ensure proper cell function, especially in cells with an extremely polarised morphology such as neurons. A layer of complexity is added when considering mitochondria have their own genome, packaged into nucleoids. Major mitochondrial morphological transitions, for example mitochondrial division, often occur in conjunction with mitochondrial DNA (mtDNA) replication and changes in the dynamic behaviour of the nucleoids. However, the relationship between mtDNA dynamics and mitochondrial motility in the processes of neurons has been largely overlooked. In this chapter, we describe a method for live imaging of mitochondria and nucleoids in differentiated SH-SY5Y cells by instant structured illumination microscopy (iSIM). We also include a detailed protocol for the differentiation of SH-SY5Y cells into cells with a pronounced neuronal-like morphology and show examples of coordinated mitochondrial and nucleoid motility in the long processes of these cells.
Collapse
Affiliation(s)
- Emily Annuario
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kristal Ng
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
64
|
Gavini CK, White CR, Mansuy-Aubert V, Aubert G. Loss of C2 Domain Protein (C2CD5) Alters Hypothalamic Mitochondrial Trafficking, Structure, and Function. Neuroendocrinology 2022; 112:324-337. [PMID: 34034255 DOI: 10.1159/000517273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Mitochondria are essential organelles required for several cellular processes ranging from ATP production to cell maintenance. To provide energy, mitochondria are transported to specific cellular areas in need. Mitochondria also need to be recycled. These mechanisms rely heavily on trafficking events. While mechanisms are still unclear, hypothalamic mitochondria are linked to obesity. METHODS We used C2 domain protein 5 (C2CD5, also called C2 domain-containing phosphoprotein [CDP138]) whole-body KO mice primary neuronal cultures and cell lines to perform electron microscopy, live cellular imaging, and oxygen consumption assay to better characterize mitochondrial alteration linked to C2CD5. RESULTS This study identified that C2CD5 is necessary for proper mitochondrial trafficking, structure, and function in the hypothalamic neurons. We previously reported that mice lacking C2CD5 were obese and displayed reduced functional G-coupled receptor, melanocortin receptor 4 (MC4R) at the surface of hypothalamic neurons. Our data suggest that in neurons, normal MC4R endocytosis/trafficking necessities functional mitochondria. DISCUSSION Our data show that C2CD5 is a new protein necessary for normal mitochondrial function in the hypothalamus. Its loss alters mitochondrial ultrastructure, localization, and activity within the hypothalamic neurons. C2CD5 may represent a new protein linking hypothalamic dysfunction, mitochondria, and obesity.
Collapse
Affiliation(s)
- Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Chelsea R White
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Gregory Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois, USA
- Division of Cardiology, Department of Internal Medicine, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
65
|
do Amaral MA, Paredes LC, Padovani BN, Mendonça-Gomes JM, Montes LF, Câmara NOS, Morales Fénero C. Mitochondrial connections with immune system in Zebrafish. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100019. [PMID: 36420514 PMCID: PMC9680083 DOI: 10.1016/j.fsirep.2021.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are organelles commonly associated with adenosine triphosphate (ATP) formation through the oxidative phosphorylation (OXPHOS) process. However, mitochondria are also responsible for functions such as calcium homeostasis, apoptosis, autophagy, and production of reactive oxygen species (ROS) that, in conjunction, can lead to different cell fate decisions. Mitochondrial morphology changes rely on nutrients' availability and the bioenergetics demands of the cells, in a process known as mitochondrial dynamics, which includes both fusion and fission. This organelle senses the microenvironment and can modify the cells to either a pro or anti-inflammatory profile. The zebrafish has been increasingly used to research mitochondrial dynamics and its connection with the immune system since the pathways and molecules involved in these processes are conserved on this fish. Several genetic tools and technologies are currently available to analyze the behavior of mitochondria in zebrafish. However, even though zebrafish presents several similar processes known in mammals, the effect of the mitochondria in the immune system has not been so broadly studied in this model. In this review, we summarize the current knowledge in zebrafish studies regarding mitochondrial function and immuno metabolism.
Collapse
Affiliation(s)
- Mariana Abrantes do Amaral
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Lais Cavalieri Paredes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Barbara Nunes Padovani
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Juliana Moreira Mendonça-Gomes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Luan Fávero Montes
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Clinical and Experimental Immunology, Nephrology Division, Department of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| | - Camila Morales Fénero
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, Department of Immunology, University of São Paulo, São Paulo, SP 05508-900, Brazil
| |
Collapse
|
66
|
Ganesan S, Parvathi VD. Deconstructing the molecular genetics behind the PINK1/Parkin axis in Parkinson’s disease using Drosophila melanogaster as a model organism. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00208-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder marked by the death of nigrostriatal dopaminergic neurons in response to the compounding effects of oxidative stress, mitochondrial dysfunction and protein aggregation. Transgenic Drosophila models have been used extensively to decipher the underlying genetic interactions that exacerbate neural health in PD. Autosomal recessive forms of the disease have been linked to mutations in the serine/threonine kinase PINK1(PTEN-Induced Putative Kinase 1) and E3 ligase Parkin, which function in an axis that is conserved in flies. This review aims to probe the current understanding of PD pathogenesis via the PINK1/Parkin axis while underscoring the importance of several molecular and pharmacologic rescues brought to light through studies in Drosophila.
Main body
Mutations in PINK1 and Parkin have been shown to affect the axonal transport of mitochondria within dopaminergic neurons and perturb the balance between mitochondrial fusion/fission resulting in abnormal mitochondrial morphology. As per studies in flies, ectopic expression of Fwd kinase and Atg-1 to promote fission and mitophagy while suppressing fusion via MUL1 E3 ligase may aid to halt mitochondrial aggregation and prolong the survival of dopaminergic neurons. Furthermore, upregulation of Hsp70/Hsp90 chaperone systems (Trap1, CHIP) to target misfolded mitochondrial respiratory complexes may help to preserve their bioenergetic capacity. Accumulation of reactive oxygen species as a consequence of respiratory complex dysfunction or antioxidant enzyme deficiency further escalates neural death by inducing apoptosis, lipid peroxidation and DNA damage. Fly studies have reported the induction of canonical Wnt signalling to enhance the activity of transcriptional co-activators (PGC1α, FOXO) which induce the expression of antioxidant enzymes. Enhancing the clearance of free radicals via uncoupling proteins (UCP4) has also been reported to ameliorate oxidative stress-induced cell death in PINK1/Parkin mutants.
Conclusion
While these novel mechanisms require validation through mammalian studies, they offer several explanations for the factors propagating dopaminergic death as well as promising insights into the therapeutic importance of transgenic fly models in PD.
Collapse
|
67
|
Microtubule-Based Mitochondrial Dynamics as a Valuable Therapeutic Target in Cancer. Cancers (Basel) 2021; 13:cancers13225812. [PMID: 34830966 PMCID: PMC8616325 DOI: 10.3390/cancers13225812] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.
Collapse
|
68
|
Waddell J, Banerjee A, Kristian T. Acetylation in Mitochondria Dynamics and Neurodegeneration. Cells 2021; 10:cells10113031. [PMID: 34831252 PMCID: PMC8616140 DOI: 10.3390/cells10113031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are a unique intracellular organelle due to their evolutionary origin and multifunctional role in overall cellular physiology and pathophysiology. To meet the specific spatial metabolic demands within the cell, mitochondria are actively moving, dividing, or fusing. This process of mitochondrial dynamics is fine-tuned by a specific group of proteins and their complex post-translational modifications. In this review, we discuss the mitochondrial dynamics regulatory enzymes, their adaptor proteins, and the effect of acetylation on the activity of fusion and fission machinery as a ubiquitous response to metabolic stresses. Further, we discuss the role of intracellular cytoskeleton structures and their post-translational modifications in the modulation of mitochondrial fusion and fission. Finally, we review the role of mitochondrial dynamics dysregulation in the pathophysiology of acute brain injury and the treatment strategies based on modulation of NAD+-dependent deacetylation.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.W.); (A.B.)
| | - Tibor Kristian
- Veterans Affairs Maryland Health Center System, 10 North Greene Street, Baltimore, MD 21201, USA
- Department of Anesthesiology and the Center for Shock, Trauma, and Anesthesiology Research (S.T.A.R.), University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3418
| |
Collapse
|
69
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
70
|
Ramonett A, Kwak EA, Ahmed T, Flores PC, Ortiz HR, Lee YS, Vanderah TW, Largent-Milnes T, Kashatus DF, Langlais PR, Mythreye K, Lee NY. Regulation of mitochondrial fission by GIPC-mediated Drp1 retrograde transport. Mol Biol Cell 2021; 33:ar4. [PMID: 34705526 PMCID: PMC8886816 DOI: 10.1091/mbc.e21-06-0286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dynamin-related protein 1 (Drp1) is a key regulator of mitochondrial fission, a large cytoplasmic GTPase recruited to the mitochondrial surface via transmembrane adaptors to initiate scission. While Brownian motion likely accounts for the local interactions between Drp1 and the mitochondrial adaptors, how this essential enzyme is targeted from more distal regions like the cell periphery remains unknown. Based on proteomic interactome screening and cell-based studies, we report that GAIP/RGS19-interacting protein (GIPC) mediates the actin-based retrograde transport of Drp1 toward the perinuclear mitochondria to enhance fission. Drp1 interacts with GIPC through its atypical C-terminal PDZ-binding motif. Loss of this interaction abrogates Drp1 retrograde transport resulting in cytoplasmic mislocalization and reduced fission despite retaining normal intrinsic GTPase activity. Functionally, we demonstrate that GIPC potentiates the Drp1-driven proliferative and migratory capacity in cancer cells. Together, these findings establish a direct molecular link between altered GIPC expression and Drp1 function in cancer progression and metabolic disorders.
Collapse
Affiliation(s)
- Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Eun-A Kwak
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA
| | - Hannah R Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Yeon Sun Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | - Todd W Vanderah
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | | - David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Paul R Langlais
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Nam Y Lee
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA.,Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724, USA.,Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
71
|
Yong Y, Hunter-Chang S, Stepanova E, Deppmann C. Axonal spheroids in neurodegeneration. Mol Cell Neurosci 2021; 117:103679. [PMID: 34678457 PMCID: PMC8742877 DOI: 10.1016/j.mcn.2021.103679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 10/20/2022] Open
Abstract
Axonal spheroids are bubble-like biological features that form on most degenerating axons, yet little is known about their influence on degenerative processes. Their formation and growth has been observed in response to various degenerative triggers such as injury, oxidative stress, inflammatory factors, and neurotoxic molecules. They often contain cytoskeletal elements and organelles, and, depending on the pathological insult, can colocalize with disease-related proteins such as amyloid precursor protein (APP), ubiquitin, and motor proteins. Initial formation of axonal spheroids depends on the disruption of axonal and membrane tension governed by cytoskeleton structure and calcium levels. Shortly after spheroid formation, the engulfment signal phosphatidylserine (PS) is exposed on the outer leaflet of spheroid plasma membrane, suggesting an important role for axonal spheroids in phagocytosis and debris clearance during degeneration. Spheroids can grow until they rupture, allowing pro-degenerative factors to exit the axon into extracellular space and accelerating neurodegeneration. Though much remains to be discovered in this area, axonal spheroid research promises to lend insight into the etiologies of neurodegenerative disease, and may be an important target for therapeutic intervention. This review summarizes over 100 years of work, describing what is known about axonal spheroid structure, regulation and function.
Collapse
Affiliation(s)
- Yu Yong
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Sarah Hunter-Chang
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Ekaterina Stepanova
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
72
|
Mitochondria and the Tumour Microenvironment in Blood Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:181-203. [PMID: 34664240 DOI: 10.1007/978-3-030-73119-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The bone marrow (BM) is a complex organ located within the cavities of bones. The main function of the BM is to produce all the blood cells required for a normal healthy blood system. As with any major organ, many diseases can arise from errors in bone marrow function, including non-malignant disorders such as anaemia and malignant disorders such as leukaemias. This article will explore the role of the bone marrow, in normal and diseased haematopoiesis, with an emphasis on the requirement for intercellular mitochondrial transfer in leukaemia.
Collapse
|
73
|
Gómez-Valadés AG, Pozo M, Varela L, Boudjadja MB, Ramírez S, Chivite I, Eyre E, Haddad-Tóvolli R, Obri A, Milà-Guasch M, Altirriba J, Schneeberger M, Imbernón M, Garcia-Rendueles AR, Gama-Perez P, Rojo-Ruiz J, Rácz B, Alonso MT, Gomis R, Zorzano A, D'Agostino G, Alvarez CV, Nogueiras R, Garcia-Roves PM, Horvath TL, Claret M. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca 2+ homeostasis with adipose tissue lipolysis. Cell Metab 2021; 33:1820-1835.e9. [PMID: 34343501 PMCID: PMC8432968 DOI: 10.1016/j.cmet.2021.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 01/21/2023]
Abstract
Appropriate cristae remodeling is a determinant of mitochondrial function and bioenergetics and thus represents a crucial process for cellular metabolic adaptations. Here, we show that mitochondrial cristae architecture and expression of the master cristae-remodeling protein OPA1 in proopiomelanocortin (POMC) neurons, which are key metabolic sensors implicated in energy balance control, is affected by fluctuations in nutrient availability. Genetic inactivation of OPA1 in POMC neurons causes dramatic alterations in cristae topology, mitochondrial Ca2+ handling, reduction in alpha-melanocyte stimulating hormone (α-MSH) in target areas, hyperphagia, and attenuated white adipose tissue (WAT) lipolysis resulting in obesity. Pharmacological blockade of mitochondrial Ca2+ influx restores α-MSH and the lipolytic program, while improving the metabolic defects of mutant mice. Chemogenetic manipulation of POMC neurons confirms a role in lipolysis control. Our results unveil a novel axis that connects OPA1 in POMC neurons with mitochondrial cristae, Ca2+ homeostasis, and WAT lipolysis in the regulation of energy balance.
Collapse
Affiliation(s)
- Alicia G Gómez-Valadés
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| | - Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Luis Varela
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PT Manchester, UK
| | - Sara Ramírez
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Iñigo Chivite
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Altirriba
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Marc Schneeberger
- Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mónica Imbernón
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Angela R Garcia-Rendueles
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain
| | - Pau Gama-Perez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Maria Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Ramon Gomis
- Diabetes and Obesity Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clínic, School of Medicine, University of Barcelona, 08036 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PT Manchester, UK
| | - Clara V Alvarez
- Neoplasia & Endocrine Differentiation, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Pablo M Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Spain
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anatomy and Histology, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; School of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| |
Collapse
|
74
|
Aung LHH, Jumbo JCC, Wang Y, Li P. Therapeutic potential and recent advances on targeting mitochondrial dynamics in cardiac hypertrophy: A concise review. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:416-443. [PMID: 34484866 PMCID: PMC8405900 DOI: 10.1016/j.omtn.2021.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pathological cardiac hypertrophy begins as an adaptive response to increased workload; however, sustained hemodynamic stress will lead it to maladaptation and eventually cardiac failure. Mitochondria, being the powerhouse of the cells, can regulate cardiac hypertrophy in both adaptive and maladaptive phases; they are dynamic organelles that can adjust their number, size, and shape through a process called mitochondrial dynamics. Recently, several studies indicate that promoting mitochondrial fusion along with preventing mitochondrial fission could improve cardiac function during cardiac hypertrophy and avert its progression toward heart failure. However, some studies also indicate that either hyperfusion or hypo-fission could induce apoptosis and cardiac dysfunction. In this review, we summarize the recent knowledge regarding the effects of mitochondrial dynamics on the development and progression of cardiac hypertrophy with particular emphasis on the regulatory role of mitochondrial dynamics proteins through the genetic, epigenetic, and post-translational mechanisms, followed by discussing the novel therapeutic strategies targeting mitochondrial dynamic pathways.
Collapse
Affiliation(s)
- Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Juan Carlos Cueva Jumbo
- School of Preclinical Medicine, Nanobody Research Center, Guangxi Medical University, Nanning 530021, China
| | - Yin Wang
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.,Center for Bioinformatics, Institute for Translational Medicine, School of Basic Science, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
75
|
Yang Y, Chen X, Feng Z, Cai X, Zhu X, Cao M, Yang L, Chen Y, Wang Y, Feng H. MEC17-induced α-tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice. J Neurochem 2021; 160:51-63. [PMID: 34407220 DOI: 10.1111/jnc.15493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 02/01/2023]
Abstract
Injury to long axonal projections is a central pathological feature at the early phase of intracerebral hemorrhage (ICH). It has been reported to contribute to persistent functional disability following ICH. However, the molecular mechanisms that drive axonal degeneration remain unclear. Autologous blood was injected into the striatum to mimic the pathology of ICH. Observed significant swollen axons with characteristic retraction bulbs were found around the striatal hematoma at 24 h after ICH. Electronic microscopic examination revealed highly disorganized microtubule and swollen mitochondria in the retraction bulbs. MEC17 is a specific α-tubulin acetyltransferase, ablation of acetylated α-tubulin in MEC17-/- mice aggravated axonal injury, axonal transport mitochondria dysfunction, and motor dysfunction. In contrast, treatment with tubastatin A (TubA), which promotes microtubule acetylation, significantly alleviated axonal injury and protected the integrity of the corticospinal tract and fine motor function after ICH. Moreover, results showed that 41% mitochondria were preferentially bundled to the acetylated α-tubulin in identifiable axons and dendrites in primary neurons. This impaired axonal transport of mitochondria in primary neurons of MEC17-/- mice. Given that opening of mitochondrial permeability transition pore (mPTP) induces mitochondrial dysfunction and impairs ATP supply thereby promoting axonal injury, we enhanced the availability of acetylated α-tubulin using TubA and inhibited mPTP opening with cyclosporin A. The results indicated that this combined treatment synergistically protected corticospinal tract integrity and promoted fine motor control recovery. These findings reveal key intracellular mechanisms that drive axonal degeneration after ICH and highlight the need to target multiple factors and respective regulatory mechanisms as an effective approach to prevent axonal degeneration and motor dysfunction after ICH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China.,Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China.,Wuxi Translational Medicine Center, Wuxi, Jiangsu, China
| | - Xuezhu Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China
| | - Zhizhong Feng
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Xianfeng Cai
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Xiaoming Zhu
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Ming Cao
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China.,Wuxi Translational Medicine Center, Wuxi, Jiangsu, China
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China
| | - Yuhai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, School of Medicine of Anhui Medical University, Wuxi, Jiangsu Province, China.,Wuxi Translational Medicine Center, Wuxi, Jiangsu, China
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University, Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Third Military Medical University (Army Medical University, Chongqing, China
| |
Collapse
|
76
|
Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-Course Evaluation of Brain Regional Mitochondrial Bioenergetics in a Pre-Clinical Model of Severe Penetrating Traumatic Brain Injury. J Neurotrauma 2021; 38:2323-2334. [PMID: 33544034 DOI: 10.1089/neu.2020.7379] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial dysfunction is a pivotal target for neuroprotection strategies for traumatic brain injury (TBI). However, comprehensive time-course evaluations of mitochondrial dysfunction are lacking in the pre-clinical penetrating TBI (PTBI) model. The current study was designed to characterize temporal responses of mitochondrial dysfunction from 30 min to 2 weeks post-injury after PTBI. Anesthetized adult male rats were subjected to either PTBI or sham craniectomy (n = 6 animals per group × 7 time points). Animals were euthanized at 30 min, 3 h, 6 h, 24 h, 3 days, 7 days, and 14 days post-PTBI, and mitochondria were isolated from the ipsilateral hemisphere of brain regions near the injury core (i.e., frontal cortex [FC] and striatum [ST]) and a more distant region from the injury core (i.e., hippocampus [HIP]). Mitochondrial bioenergetics parameters were measured in real time using the high-throughput procedures of the Seahorse Flux Analyzer (Agilent Technologies, Santa Clara, CA). The post-injury time course of FC + ST showed a biphasic mitochondrial bioenergetics dysfunction response, indicative of reduced adenosine triphosphate synthesis rate and maximal respiratory capacity after PTBI. An initial phase of energy crisis was detected at 30 min (-42%; p < 0.05 vs. sham), which resolved to baseline levels between 3 and 6 h (non-significant vs. sham). This was followed by a second and more robust phase of bioenergetics dysregulation detected at 24 h that remained unresolved out to 14 days post-injury (-55% to -90%; p < 0.05 vs. sham). In contrast, HIP mitochondria showed a delayed onset of mitochondrial dysfunction at 7 days (-74%; p < 0.05 vs. sham) that remained evident out to 14 days (-51%; p < 0.05 vs. sham) post-PTBI. Collectively, PTBI-induced mitochondrial dysfunction responses were time and region specific, evident differentially at the injury core and distant region of PTBI. The current results provide the basis that mitochondrial dysfunction may be targeted differentially based on region specificity post-PTBI. Even more important, these results suggest that therapeutic interventions targeting mitochondrial dysfunction may require extended dosing regimens to achieve clinical efficacy after TBI.
Collapse
Affiliation(s)
- Jignesh D Pandya
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Lai Yee Leung
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
- Department of Surgery, Uniformed Services University of the Health Science (USUHS), Bethesda, Maryland, USA
| | - Hye M Hwang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Xiaofang Yang
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Ying Deng-Bryant
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| | - Deborah A Shear
- Brain Trauma Neuroprotection (BTN) Branch, Center for Military Psychiatry and Neuroscience (CMPN), Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland, USA
| |
Collapse
|
77
|
Koklesova L, Liskova A, Samec M, Zhai K, AL-Ishaq RK, Bugos O, Šudomová M, Biringer K, Pec M, Adamkov M, Hassan STS, Saso L, Giordano FA, Büsselberg D, Kubatka P, Golubnitschaja O. Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention. Int J Mol Sci 2021; 22:ijms22168649. [PMID: 34445360 PMCID: PMC8395457 DOI: 10.3390/ijms22168649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Multi-factorial mitochondrial damage exhibits a “vicious circle” that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | - Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | | | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (D.B.); (P.K.); (O.G.)
| |
Collapse
|
78
|
Faitg J, Lacefield C, Davey T, White K, Laws R, Kosmidis S, Reeve AK, Kandel ER, Vincent AE, Picard M. 3D neuronal mitochondrial morphology in axons, dendrites, and somata of the aging mouse hippocampus. Cell Rep 2021; 36:109509. [PMID: 34380033 PMCID: PMC8423436 DOI: 10.1016/j.celrep.2021.109509] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
The brain's ability to process complex information relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments-the soma, dendrites, and projecting axons-which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. In this study, we apply quantitative three-dimensional electron microscopy to map mitochondrial network morphology and complexity in the mouse brain. We examine somatic, dendritic, and axonal mitochondria in the dentate gyrus and cornu ammonis 1 (CA1) of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho-function in the aging brain.
Collapse
Affiliation(s)
- Julie Faitg
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, NY 10032, USA
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Kathryn White
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Stylianos Kosmidis
- Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Department of Neuroscience, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eric R Kandel
- New York State Psychiatric Institute, New York, NY 10032, USA; Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Department of Neuroscience, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Martin Picard
- New York State Psychiatric Institute, New York, NY 10032, USA; Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, The Merritt Center and Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
79
|
Tamada H, Kiryu-Seo S, Sawada S, Kiyama H. Axonal injury alters the extracellular glial environment of the axon initial segment and allows substantial mitochondrial influx into axon initial segment. J Comp Neurol 2021; 529:3621-3632. [PMID: 34235750 DOI: 10.1002/cne.25212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022]
Abstract
The axon initial segment (AIS) is structurally and functionally distinct from other regions of the axon, yet alterations in the milieu of the AIS after brain injury have not been well characterized. In this study, we have examined extracellular and intracellular changes in the AIS after hypoglossal nerve injury. Microglial adhesions to the AIS were rarely observed in healthy controls, whereas microglial adhesions to the AIS became apparent in the axonal injury model. Regarding intra-AIS morphology, we focused on mitochondria because mitochondrial flow into the injured axon appears critical for axonal regeneration. To visualize mitochondria specifically in injured axons, we used Atf3:BAC transgenic mice whose mitochondria were labeled with GFP in response to nerve injury. These mice clearly showed mitochondrial localization in the AIS after nerve injury. To precisely confirm the light microscopic observations, we performed three-dimensional ultrastructural analysis using focused ion beam/scanning electron microscopy (FIB/SEM). Although the healthy AIS was not surrounded by microglia, tight microglial adhesions with thick processes adhering to the AIS were observed after injury. FIB/SEM simultaneously allowed the observation of mitochondrial localization in the AIS. In the AIS of non-injured neurons, few mitochondria were observed, whereas mitochondria were abundantly localized in the cell body, axon hillock, and axon. Intriguingly, in the injured AIS, numerous mitochondria were observed throughout the AIS. Taken together, axonal injury changes the extracellular glial environment surrounding the AIS and intracellular mitochondrial localization in the AIS. These changes would be crucial responses, perhaps for injured neurons to regenerate after axonal injury.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumiko Kiryu-Seo
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sohgo Sawada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
80
|
The Role of Lipids, Lipid Metabolism and Ectopic Lipid Accumulation in Axon Growth, Regeneration and Repair after CNS Injury and Disease. Cells 2021; 10:cells10051078. [PMID: 34062747 PMCID: PMC8147289 DOI: 10.3390/cells10051078] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Axons in the adult mammalian nervous system can extend over formidable distances, up to one meter or more in humans. During development, axonal and dendritic growth requires continuous addition of new membrane. Of the three major kinds of membrane lipids, phospholipids are the most abundant in all cell membranes, including neurons. Not only immature axons, but also severed axons in the adult require large amounts of lipids for axon regeneration to occur. Lipids also serve as energy storage, signaling molecules and they contribute to tissue physiology, as demonstrated by a variety of metabolic disorders in which harmful amounts of lipids accumulate in various tissues through the body. Detrimental changes in lipid metabolism and excess accumulation of lipids contribute to a lack of axon regeneration, poor neurological outcome and complications after a variety of central nervous system (CNS) trauma including brain and spinal cord injury. Recent evidence indicates that rewiring lipid metabolism can be manipulated for therapeutic gain, as it favors conditions for axon regeneration and CNS repair. Here, we review the role of lipids, lipid metabolism and ectopic lipid accumulation in axon growth, regeneration and CNS repair. In addition, we outline molecular and pharmacological strategies to fine-tune lipid composition and energy metabolism in neurons and non-neuronal cells that can be exploited to improve neurological recovery after CNS trauma and disease.
Collapse
|
81
|
Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. In vivo brain imaging of mitochondrial Ca 2+ in neurodegenerative diseases with multiphoton microscopy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118998. [PMID: 33684410 PMCID: PMC8057769 DOI: 10.1016/j.bbamcr.2021.118998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Mitochondria are involved in a large number of essential roles related to neuronal function. Ca2+ handling by mitochondria is critical for many of these functions, including energy production and cellular fate. Conversely, mitochondrial Ca2+ mishandling has been related to a variety of neurodegenerative diseases. Investigating mitochondrial Ca2+ dynamics is essential for advancing our understanding of the role of intracellular mitochondrial Ca2+ signals in physiology and pathology. Improved Ca2+ indicators, and the ability to target them to different cells and compartments, have emerged as useful tools for analysis of Ca2+ signals in living organisms. Combined with state-of-the-art techniques such as multiphoton microscopy, they allow for the study of mitochondrial Ca2+ dynamics in vivo in mouse models of the disease. Here, we provide an overview of the Ca2+ transporters/ion channels in mitochondrial membranes, and the involvement of mitochondrial Ca2+ in neurodegenerative diseases followed by a summary of the main tools available to evaluate mitochondrial Ca2+ dynamics in vivo using the aforementioned technique.
Collapse
Affiliation(s)
- Maria Calvo-Rodriguez
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA.
| | - Elizabeth K Kharitonova
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Alzheimer Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16th St, Charlestown, MA, 02129, USA
| |
Collapse
|
82
|
Perrone-Capano C, Volpicelli F, Penna E, Chun JT, Crispino M. Presynaptic protein synthesis and brain plasticity: From physiology to neuropathology. Prog Neurobiol 2021; 202:102051. [PMID: 33845165 DOI: 10.1016/j.pneurobio.2021.102051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
To form and maintain extremely intricate and functional neural circuitry, mammalian neurons are typically endowed with highly arborized dendrites and a long axon. The synapses that link neurons to neurons or to other cells are numerous and often too remote for the cell body to make and deliver new proteins to the right place in time. Moreover, synapses undergo continuous activity-dependent changes in their number and strength, establishing the basis of neural plasticity. The innate dilemma is then how a highly complex neuron provides new proteins for its cytoplasmic periphery and individual synapses to support synaptic plasticity. Here, we review a growing body of evidence that local protein synthesis in discrete sites of the axon and presynaptic terminals plays crucial roles in synaptic plasticity, and that deregulation of this local translation system is implicated in various pathologies of the nervous system.
Collapse
Affiliation(s)
- Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.
| | | | - Eduardo Penna
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
83
|
Perron NR, Nasarre C, Bandyopadhyay M, Beeson CC, Rohrer B. SAHA is neuroprotective in in vitro and in situ models of retinitis pigmentosa. Mol Vis 2021; 27:151-160. [PMID: 33907370 PMCID: PMC8056468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/31/2021] [Indexed: 10/25/2022] Open
Abstract
PURPOSE Recent reports linking HDAC6 to mitochondrial turnover and neurodegeneration led us to hypothesize that an inhibitor such as Vorinostat (suberoylanilide hydroxamic acid, SAHA) may reduce mitochondrial damage found in retinitis pigmentosa (RP), a progressive neurodegenerative disease of the eye. Here we tested the efficacy of SAHA for its ability to protect photoreceptors in in-vitro and in-situ models of RP. As the stressor, we focused on calcium overload. Calcium is one of the main drivers of cell death, and is associated with rod loss in the rd1 mouse retina, which harbors a mutation in the Pde6b gene similar to that found in human patients suffering from autosomal recessive RP. METHOD Murine photoreceptor cell line (661W) were exposed to agents that led to calcium stress. Cell survival and redox capacity were measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time changes in cellular metabolism were assessed using the Seahorse Biosciences XF24 analyzer, and mitochondrial fission-fusion using imaging. In-situ, neuroprotection was assessed in RPE/retina organ cultures of the rd1 mouse. SAHA effects on cell survival were compared in 661W cells with those of the specific HDAC6 inhibitor tubastatin A, and those on protein acetylation by Western blotting. RESULTS In stressed 661W cells, SAHA was found to increase cell survival that was associated with improved mitochondrial respiration and reduced mitochondrial fission. The protective effects of SAHA were also observed on photoreceptor cell survival in whole retinal organ explants of the rd1 mouse. Even though tubastatin A was ineffective in increasing cell survival in 661W cells, HDAC6 activity was confirmed in 661W cells after SAHA treatment with protein acetylation specific for HDAC6, defined by an increase in tubulin, but not histone acetylation. CONCLUSIONS SAHA was found to protect mitochondria from damage, and concomitantly reduced photoreceptor cell death in cell and organ cultures. The lack of activity of tubastatin A suggests that there must be an additional mechanism of action involved in the protective mechanism of SAHA that is responsible for its neuroprotection. Overall, SAHA may be a useful treatment for the prevention of photoreceptor degeneration associated with human RP. The results are discussed in the context of the effects of inhibitors that target different classes and members of the HDAC family and their effects on rod versus cone survival.
Collapse
Affiliation(s)
- Nathan R. Perron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | - Cécile Nasarre
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | | | - Craig C. Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC,Research Service, Ralph H Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
84
|
Jia J, Jin H, Nan D, Yu W, Huang Y. New insights into targeting mitochondria in ischemic injury. Apoptosis 2021; 26:163-183. [PMID: 33751318 DOI: 10.1007/s10495-021-01661-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Stroke is the leading cause of adult disability and death worldwide. Mitochondrial dysfunction has been recognized as a marker of neuronal death during ischemic stroke. Maintaining the function of mitochondria is important for improving the survival of neurons and maintaining neuronal function. Damaged mitochondria induce neuronal cell apoptosis by releasing reactive oxygen species (ROS) and pro-apoptotic factors. Mitochondrial fission and fusion processes and mitophagy are of great importance to mitochondrial quality control. This paper reviews the dynamic changes in mitochondria, the roles of mitochondria in different cell types, and related signaling pathways in ischemic stroke. This review describes in detail the role of mitochondria in the process of neuronal injury and protection in cerebral ischemia, and integrates neuroprotective drugs targeting mitochondria in recent years, which may provide a theoretical basis for the progress of treatment of ischemic stroke. The potential of mitochondrial-targeted therapy is also emphasized, which provides valuable insights for clinical research.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ding Nan
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Weiwei Yu
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
85
|
Cheng XT, Sheng ZH. Developmental regulation of microtubule-based trafficking and anchoring of axonal mitochondria in health and diseases. Dev Neurobiol 2021; 81:284-299. [PMID: 32302463 PMCID: PMC7572491 DOI: 10.1002/dneu.22748] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
Mitochondria are cellular power plants that supply most of the ATP required in the brain to power neuronal growth, function, and regeneration. Given their extremely polarized structures and extended long axons, neurons face an exceptional challenge to maintain energy homeostasis in distal axons, synapses, and growth cones. Anchored mitochondria serve as local energy sources; therefore, the regulation of mitochondrial trafficking and anchoring ensures that these metabolically active areas are adequately supplied with ATP. Chronic mitochondrial dysfunction is a hallmark feature of major aging-related neurodegenerative diseases, and thus, anchored mitochondria in aging neurons need to be removed when they become dysfunctional. Investigations into the regulation of microtubule (MT)-based trafficking and anchoring of axonal mitochondria under physiological and pathological circumstances represent an important emerging area. In this short review article, we provide an updated overview of recent in vitro and in vivo studies showing (1) how mitochondria are transported and positioned in axons and synapses during neuronal developmental and maturation stages, and (2) how altered mitochondrial motility and axonal energy deficits in aging nervous systems link to neurodegeneration and regeneration in a disease or injury setting. We also highlight a major role of syntaphilin as a key MT-based regulator of axonal mitochondrial trafficking and anchoring in mature neurons.
Collapse
Affiliation(s)
- Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
86
|
Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R. Understanding the Multiple Role of Mitochondria in Parkinson's Disease and Related Disorders: Lesson From Genetics and Protein-Interaction Network. Front Cell Dev Biol 2021; 9:636506. [PMID: 33869180 PMCID: PMC8047151 DOI: 10.3389/fcell.2021.636506] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
As neurons are highly energy-demanding cell, increasing evidence suggests that mitochondria play a large role in several age-related neurodegenerative diseases. Synaptic damage and mitochondrial dysfunction have been associated with early events in the pathogenesis of major neurodegenerative diseases, including Parkinson’s disease, atypical parkinsonisms, and Huntington disease. Disruption of mitochondrial structure and dynamic is linked to increased levels of reactive oxygen species production, abnormal intracellular calcium levels, and reduced mitochondrial ATP production. However, recent research has uncovered a much more complex involvement of mitochondria in such disorders than has previously been appreciated, and a remarkable number of genes and proteins that contribute to the neurodegeneration cascade interact with mitochondria or affect mitochondrial function. In this review, we aim to summarize and discuss the deep interconnections between mitochondrial dysfunction and basal ganglia disorders, with an emphasis into the molecular triggers to the disease process. Understanding the regulation of mitochondrial pathways may be beneficial in finding pharmacological or non-pharmacological interventions to delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Nicoletti
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
87
|
Jia F, Chibhabha F, Yang Y, Kuang Y, Zhang Q, Ullah S, Liang Z, Xie M, Li F. Detection and monitoring of the neuroprotective behavior of curcumin micelles based on an AIEgen probe. J Mater Chem B 2021; 9:731-745. [PMID: 33315037 DOI: 10.1039/d0tb02320e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the role of mitochondrial injury in the pathogenesis of Alzheimer's disease (AD) has attracted extensive attention. Studies have shown that curcumin (Cur) can protect nerve cells from beta-amyloid (Aβ)-induced mitochondrial damage. However, natural Cur encounters limited application due to its poor biocompatibility and bioavailability. To improve the solubility and biocompatibility of natural Cur, we prepared water-soluble curcumin micelles (CurM). Furthermore, the mitochondria-specific aggregation-induced emission (AIE) probe (TPE-Ph-In) was employed to observe the protective effect of CurM on the damage of mitochondrial morphology, distribution, and membrane potential caused by Aβ. Results showed that CurM had higher solubility, stronger stability and retention effect, and better cellular uptake than that of natural Cur. Furthermore, the inhibitory effects of CurM on mitochondrial morphology, distribution, and membrane potential damage induced by Aβ25-35 were observed utilizing TPE-Ph-In as an indicator of mitochondrial morphology and membrane potential. Thus, this method provides a useful strategy for experimental research and clinical treatment of AD with mitochondrial damage as the pathogenic mechanism.
Collapse
Affiliation(s)
- Fujie Jia
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Khan H, Beck C, Kunze A. Multi-curvature micropatterns unveil distinct calcium and mitochondrial dynamics in neuronal networks. LAB ON A CHIP 2021; 21:1164-1174. [PMID: 33543185 PMCID: PMC7990709 DOI: 10.1039/d0lc01205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tangential curvatures are a key geometric feature of tissue folds in the human cerebral cortex. In the brain, these smoother and firmer bends are called gyri and sulci and form distinctive curved tissue patterns imposing a mechanical stimulus on neuronal networks. This stimulus is hypothesized to be essential for proper brain cell function but lacks in most standard neuronal cell assays. A variety of soft lithographic micropatterning techniques can be used to integrate round geometries in cell assays. Most microfabricated patterns, however, focus only on a small set of defined curvatures. In contrast, curvatures in the brain span a wide physical range, leaving it unknown which precise role distinct curvatures may play on neuronal cell signaling. Here we report a hydrogel-based multi-curvature design consisting of over twenty bands of distinct parallel curvature ranges to precisely engineer neuronal networks' growth and signaling under patterns of arcs. Monitoring calcium and mitochondrial dynamics in primary rodent neurons grown over two weeks in the multi-curvature patterns, we found that static calcium signaling was locally attenuated under higher curvatures (k > 0.01 μm-1). In contrast, to randomize growth, transient calcium signaling showed higher synchronicity when neurons formed networks in confined multi-curvature patterns. Additionally, we found that mitochondria showed lower motility under high curvatures (k > 0.01 μm-1) than under lower curvatures (k < 0.01 μm-1). Our results demonstrate how sensitive neuronal cell function may be linked and controlled through specific curved geometric features. Furthermore, the hydrogel-based multi-curvature design possesses high compatibility with various surfaces, allowing a flexible integration of geometric features into next-generation neuro devices, cell assays, tissue engineering, and implants.
Collapse
Affiliation(s)
- Hammad Khan
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, USA.
| | | | | |
Collapse
|
89
|
Feng Y, Guo M, Zhao H, Han S, Hao Y, Yuan Y, Shen W, Sun J, Dong Q, Cui M. Dl-3-n-Butylphthalide Alleviates Demyelination and Improves Cognitive Function by Promoting Mitochondrial Dynamics in White Matter Lesions. Front Aging Neurosci 2021; 13:632374. [PMID: 33762923 PMCID: PMC7982723 DOI: 10.3389/fnagi.2021.632374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
White matter lesions (WMLs) are a type of cerebrovascular disorder accompanied by demyelination and cognitive decline. Dl-3-n-butylphthalide (D1-NBP) is a neuroprotective drug used for the treatment of ischemic cerebrovascular diseases, although the function of DI-NBP on WML is still not clear. This study aims to investigate whether DI-NBP affects cognitive function and ameliorates demyelination in a model of WML. The bilateral carotid artery stenosis (BCAS) mouse model and in vitro brain slice cultures with low glucose and low oxygen (LGLO) treatment were adopted. The Dl-NBP was administered intragastrically for 28 days after BCAS or added at a dose of 50 μm for 48 h after LGLO. Spatial learning and memory were evaluated by an eight-arm radial maze. Demyelination was detected using a TEM. Mitochondrial dynamics were assessed by time-lapse imaging in the cultured brain slices. The function of the synapse was evaluated by the patch clamp technique. In BCAS mice, obvious demyelination and cognitive decline were observed, while both were significantly relieved by a high-dose D1-NBP treatment (100 mg/kg). Along with demyelination, mitochondrial accumulation in the axons was significantly increased in the BCAS mice model, but with the treatment of a high-dose D1-NBP, mitochondrial accumulation was mitigated, and the anterograde/retrograde transport of mitochondria was increased. Following the improved anterograde/retrograde transport of mitochondria, the synapse activity was significantly upregulated while the reactive oxygen species (ROS) generation was remarkably decreased in the cultured brain slices. In addition, we identified syntaphilin (SNPH) as the downstream target of D1-NBP. The overexpression of SNPH mediated the effects of D1-NBP in mitigating axonal mitochondrial accumulation. In conclusion, the D1-NBP treatment significantly relieved demyelination and improved spatial learning and memory in the WML model by promoting mitochondrial dynamics. These neuroprotective effects of D1-NBP were mediated by inhibiting the mitochondrial arching protein, SNPH, which provided a potential therapeutic target for WML.
Collapse
Affiliation(s)
- Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongchen Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yining Hao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Yuan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Shen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
90
|
Hong JY, Kim H, Lee J, Jeon WJ, Baek SH, Ha IH. Neurotherapeutic Effect of Inula britannica var. Chinensis against H 2O 2-Induced Oxidative Stress and Mitochondrial Dysfunction in Cortical Neurons. Antioxidants (Basel) 2021; 10:antiox10030375. [PMID: 33802485 PMCID: PMC8001496 DOI: 10.3390/antiox10030375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 12/06/2022] Open
Abstract
Inula britannica var. chinensis (IBC) has been used as a traditional medicinal herb to treat inflammatory diseases. Although its anti-inflammatory and anti-oxidative effects have been reported, whether IBC exerts neuroprotective effects and the related mechanisms in cortical neurons remain unknown. In this study, we investigated the effects of different concentrations of IBC extract (5, 10, and 20 µg/mL) on cortical neurons using a hydrogen peroxide (H2O2)-induced injury model. Our results demonstrate that IBC can effectively enhance neuronal viability under in vitro-modeled reaction oxygen species (ROS)-generating conditions by inhibiting mitochondrial ROS production and increasing adenosine triphosphate level in H2O2-treated neurons. Additionally, we confirmed that neuronal death was attenuated by improving the mitochondrial membrane potential status and regulating the expression of cytochrome c, a protein related to cell death. Furthermore, IBC increased the expression of brain-derived neurotrophic factor and nerve growth factor. Furthermore, IBC inhibited the loss and induced the production of synaptophysin, a major synaptic vesicle protein. This study is the first to demonstrate that IBC exerts its neuroprotective effect by reducing mitochondria-associated oxidative stress and improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (J.Y.H.); (H.K.); (J.L.); (W.-J.J.)
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (J.Y.H.); (H.K.); (J.L.); (W.-J.J.)
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (J.Y.H.); (H.K.); (J.L.); (W.-J.J.)
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (J.Y.H.); (H.K.); (J.L.); (W.-J.J.)
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Korea;
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul 135-896, Korea; (J.Y.H.); (H.K.); (J.L.); (W.-J.J.)
- Correspondence: ; Tel.: +82-2-2222-2740; Fax: +82-2-527-1869
| |
Collapse
|
91
|
Misrani A, Tabassum S, Yang L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci 2021; 13:617588. [PMID: 33679375 PMCID: PMC7930231 DOI: 10.3389/fnagi.2021.617588] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondria play a pivotal role in bioenergetics and respiratory functions, which are essential for the numerous biochemical processes underpinning cell viability. Mitochondrial morphology changes rapidly in response to external insults and changes in metabolic status via fission and fusion processes (so-called mitochondrial dynamics) that maintain mitochondrial quality and homeostasis. Damaged mitochondria are removed by a process known as mitophagy, which involves their degradation by a specific autophagosomal pathway. Over the last few years, remarkable efforts have been made to investigate the impact on the pathogenesis of Alzheimer’s disease (AD) of various forms of mitochondrial dysfunction, such as excessive reactive oxygen species (ROS) production, mitochondrial Ca2+ dyshomeostasis, loss of ATP, and defects in mitochondrial dynamics and transport, and mitophagy. Recent research suggests that restoration of mitochondrial function by physical exercise, an antioxidant diet, or therapeutic approaches can delay the onset and slow the progression of AD. In this review, we focus on recent progress that highlights the crucial role of alterations in mitochondrial function and oxidative stress in the pathogenesis of AD, emphasizing a framework of existing and potential therapeutic approaches.
Collapse
Affiliation(s)
- Afzal Misrani
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sidra Tabassum
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
92
|
GDF11 alleviates secondary brain injury after intracerebral hemorrhage via attenuating mitochondrial dynamic abnormality and dysfunction. Sci Rep 2021; 11:3974. [PMID: 33597668 PMCID: PMC7889617 DOI: 10.1038/s41598-021-83545-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious public health problem with high rates of death and disability. The neuroprotective effect of Growth Differentiation Factor 11 (GDF11) in ICH has been initially proved by our previous study. Oxidative stress (OS) plays crucial roles in mediating subsequent damage of ICH. However, whether and how mitochondrial dynamic events and function participated in ICH pathophysiology, and how mitochondrial function and OS interreacted in the neuroprotective process of GDF11 in ICH remains unclarified. Based on the rat model of ICH and in vitro cell model, we demonstrated that GDF11 could alleviate ICH induced neurological deficits, brain edema, OS status, neuronal apoptosis and inflammatory reaction. In addition, mitochondrial functional and structural impairments were obviously restored by GDF11. Treatment with antioxidant protected against erythrocyte homogenate (EH) induced cell injury by restoring OS status and mitochondrial fusion fission imbalance, which was similar to the effect of GDF11 treatment. Further, inhibition of mitochondrial division with Mdivi-1 attenuated mitochondrial functional defects and neuronal damages. In conclusion, our results for the first time proposed that GDF11 protected the post-ICH secondary injury by suppressing the feedback loop between mitochondrial ROS production and mitochondrial dynamic alteration, resulting in attenuated mitochondrial function and amelioration of neural damage.
Collapse
|
93
|
Mehta AR, Gregory JM, Dando O, Carter RN, Burr K, Nanda J, Story D, McDade K, Smith C, Morton NM, Mahad DJ, Hardingham GE, Chandran S, Selvaraj BT. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol 2021; 141:257-279. [PMID: 33398403 PMCID: PMC7847443 DOI: 10.1007/s00401-020-02252-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
Axonal dysfunction is a common phenotype in neurodegenerative disorders, including in amyotrophic lateral sclerosis (ALS), where the key pathological cell-type, the motor neuron (MN), has an axon extending up to a metre long. The maintenance of axonal function is a highly energy-demanding process, raising the question of whether MN cellular energetics is perturbed in ALS, and whether its recovery promotes axonal rescue. To address this, we undertook cellular and molecular interrogation of multiple patient-derived induced pluripotent stem cell lines and patient autopsy samples harbouring the most common ALS causing mutation, C9orf72. Using paired mutant and isogenic expansion-corrected controls, we show that C9orf72 MNs have shorter axons, impaired fast axonal transport of mitochondrial cargo, and altered mitochondrial bioenergetic function. RNAseq revealed reduced gene expression of mitochondrially encoded electron transport chain transcripts, with neuropathological analysis of C9orf72-ALS post-mortem tissue importantly confirming selective dysregulation of the mitochondrially encoded transcripts in ventral horn spinal MNs, but not in corresponding dorsal horn sensory neurons, with findings reflected at the protein level. Mitochondrial DNA copy number was unaltered, both in vitro and in human post-mortem tissue. Genetic manipulation of mitochondrial biogenesis in C9orf72 MNs corrected the bioenergetic deficit and also rescued the axonal length and transport phenotypes. Collectively, our data show that loss of mitochondrial function is a key mediator of axonal dysfunction in C9orf72-ALS, and that boosting MN bioenergetics is sufficient to restore axonal homeostasis, opening new potential therapeutic strategies for ALS that target mitochondrial function.
Collapse
Affiliation(s)
- Arpan R Mehta
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jenna M Gregory
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Karen Burr
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Jyoti Nanda
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - David Story
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Karina McDade
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- MRC Edinburgh Brain Bank, Academic Department of Neuropathology, University of Edinburgh, Edinburgh, UK
- Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
- Centre for Brain Development and Repair, inStem, Bangalore, India.
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh bioQuarter, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
94
|
Zhang Z, Denans N, Liu Y, Zhulyn O, Rosenblatt HD, Wernig M, Barna M. Optogenetic manipulation of cellular communication using engineered myosin motors. Nat Cell Biol 2021; 23:198-208. [PMID: 33526902 PMCID: PMC7880895 DOI: 10.1038/s41556-020-00625-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Nicolas Denans
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Yingfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Institute of Neurobiology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Olena Zhulyn
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Hannah D Rosenblatt
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
95
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
96
|
Zhao Y, Song E, Wang W, Hsieh CH, Wang X, Feng W, Wang X, Shen K. Metaxins are core components of mitochondrial transport adaptor complexes. Nat Commun 2021; 12:83. [PMID: 33397950 PMCID: PMC7782850 DOI: 10.1038/s41467-020-20346-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Trafficking of mitochondria into dendrites and axons plays an important role in the physiology and pathophysiology of neurons. Mitochondrial outer membrane protein Miro and adaptor proteins TRAKs/Milton link mitochondria to molecular motors. Here we show that metaxins MTX-1 and MTX-2 contribute to mitochondrial transport into both dendrites and axons of C. elegans neurons. MTX1/2 bind to MIRO-1 and kinesin light chain KLC-1, forming a complex to mediate kinesin-1-based movement of mitochondria, in which MTX-1/2 are essential and MIRO-1 plays an accessory role. We find that MTX-2, MIRO-1, and TRAK-1 form another distinct adaptor complex to mediate dynein-based transport. Additionally, we show that failure of mitochondrial trafficking in dendrites causes age-dependent dendrite degeneration. We propose that MTX-2 and MIRO-1 form the adaptor core for both motors, while MTX-1 and TRAK-1 specify each complex for kinesin-1 and dynein, respectively. MTX-1 and MTX-2 are also required for mitochondrial transport in human neurons, indicative of their evolutionarily conserved function.
Collapse
Affiliation(s)
- Yinsuo Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Wenjuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Chung-Han Hsieh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, Stanford, CA, USA
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, Stanford, CA, USA
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangming Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
97
|
Gorabi AM, Aslani S, Barreto GE, Báez-Jurado E, Kiaie N, Jamialahmadi T, Sahebkar A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic Biol Med 2021; 162:471-477. [PMID: 33166649 DOI: 10.1016/j.freeradbiomed.2020.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Neuroglobin is the third member of the globin family to be identified in 2000 in neurons of both human and mouse nervous systems. Neuroglobin is an oxygen-binding globin found in neurons within the central nervous system as well as in peripheral neurons, that produces a protective effect against hypoxic/ischemic damage induced by promoting oxygen availability within the mitochondria. Numerous investigations have demonstrated that impaired neuroglobin functioning is implicated in the pathogenesis of multiple neurodegenerative disorders. Several in vitro and animal studies have reported the potential of neuroglobin upregulation in improving the neuroprotection through modulation of mitochondrial functions, such as ATP production, clearing reactive oxygen species (ROS), promoting the dynamics of mitochondria, and controlling apoptosis. Neuroglobin acts as a stress-inducible globin, which has been associated hypoxic/ischemic insults where it acts to protect the heart and brain, providing a wide range of applicability in the treatment of human disorders. This review article discusses normal physiological functions of neuroglobin in mitochondria-associated pathways, as well as outlining how dysregulation of neuroglobin is associated with the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eliana Báez-Jurado
- Departamento de Química, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
98
|
Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion 2021; 56:91-101. [PMID: 33221354 PMCID: PMC7810242 DOI: 10.1016/j.mito.2020.11.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Among the many brain abnormalities in schizophrenia are those related to mitochondrial functions such as oxidative stress, energy metabolism and synaptic efficacy. The aim of this paper is to provide a brief review of mitochondrial structure and function and then to present abnormalities in mitochondria in postmortem brain in schizophrenia with a focus on anatomy. Deficits in expression of various mitochondrial genes have been found in multiple schizophrenia cohorts. Decreased activity of complexes I and IV are prominent as well as abnormal levels of individual subunits that comprise the complexes of the electron transport chain. Ultrastructural studies have shown layer, input and cell specific decreases in mitochondria. In cortex, there are fewer mitochondria in axon terminals, neuronal somata of pyramidal neurons and oligodendrocytes in both grey and white matter. In the caudate and putamen mitochondrial number is linked with symptoms and symptom severity. While there is a decrease in the number of mitochondria in astrocytes, mitochondria are smaller in oligodendrocytes. In the nucleus accumbens and substantia nigra, mitochondria are similar in density, size and structural integrity in schizophrenia compared to controls. Mitochondrial production of ATP and calcium buffering are essential in maintaining synaptic strength and abnormalities in these processes could lead to decreased metabolism and defective synaptic activity. Abnormalities in mitochondria in oligodendrocytes might contribute to myelin pathology and underlie dysconnectivity in the brain. In schizophrenia, mitochondria are affected differentially depending on the brain region, cell type in which they reside, subcellular location, treatment status, treatment response and predominant symptoms.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States.
| |
Collapse
|
99
|
Retrograde Mitochondrial Transport Is Essential for Organelle Distribution and Health in Zebrafish Neurons. J Neurosci 2020; 41:1371-1392. [PMID: 33376159 PMCID: PMC7896009 DOI: 10.1523/jneurosci.1316-20.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
In neurons, mitochondria are transported by molecular motors throughout the cell to form and maintain functional neural connections. These organelles have many critical functions in neurons and are of high interest as their dysfunction is associated with disease. While the mechanics and impact of anterograde mitochondrial movement toward axon terminals are beginning to be understood, the frequency and function of retrograde (cell body directed) mitochondrial transport in neurons are still largely unexplored. While existing evidence indicates that some mitochondria are retrogradely transported for degradation in the cell body, the precise impact of disrupting retrograde transport on the organelles and the axon was unknown. Using long-term, in vivo imaging, we examined mitochondrial motility in zebrafish sensory and motor axons. We show that retrograde transport of mitochondria from axon terminals allows replacement of the axon terminal population within a day. By tracking these organelles, we show that not all mitochondria that leave the axon terminal are degraded; rather, they persist over several days. Disrupting retrograde mitochondrial flux in neurons leads to accumulation of aged organelles in axon terminals and loss of cell body mitochondria. Assays of neural circuit activity demonstrated that disrupting mitochondrial transport and function has no effect on sensory axon terminal activity but does negatively impact motor neuron axons. Taken together, our work supports a previously unappreciated role for retrograde mitochondrial transport in the maintenance of a homeostatic distribution of mitochondria in neurons and illustrates the downstream effects of disrupting this process on sensory and motor circuits. SIGNIFICANCE STATEMENT Disrupted mitochondrial transport has been linked to neurodegenerative disease. Retrograde transport of this organelle has been implicated in turnover of aged organelles through lysosomal degradation in the cell body. Consistent with this, we provide evidence that retrograde mitochondrial transport is important for removing aged organelles from axons; however, we show that these organelles are not solely degraded, rather they persist in neurons for days. Disrupting retrograde mitochondrial transport impacts the homeostatic distribution of mitochondria throughout the neuron and the function of motor, but not sensory, axon synapses. Together, our work shows the conserved reliance on retrograde mitochondrial transport for maintaining a healthy mitochondrial pool in neurons and illustrates the disparate effects of disrupting this process on sensory versus motor circuits.
Collapse
|
100
|
Bertens P, Lee SW. Network of evolvable neural units can learn synaptic learning rules and spiking dynamics. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-00267-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|