51
|
Mills J, Digicaylioglu M, Legg AT, Young CE, Young SS, Barr AM, Fletcher L, O'Connor TP, Dedhar S. Role of integrin-linked kinase in nerve growth factor-stimulated neurite outgrowth. J Neurosci 2003; 23:1638-48. [PMID: 12629168 PMCID: PMC6741947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The role of integrin-linked kinase (ILK), a kinase that is involved in various cellular processes, including adhesion and migration, has not been studied in primary neurons. Using mRNA dot blot and Western blot analysis of ILK in rat and human brain tissue, we found that ILK is expressed in various regions of the CNS. Immunohistochemical and immunocytochemical techniques revealed granular ILK staining that is enriched in neurons and colocalizes with the beta1 integrin subunit. The role of ILK in neurite growth promotion by NGF was studied in rat pheochromocytoma cells and dorsal root ganglion neurons using a pharmacological inhibitor of ILK (KP-392) or after overexpression of dominant-negative ILK (ILK-DN). Both molecular and pharmacological inhibition of ILK activity significantly reduced NGF-induced neurite outgrowth. Survival assays indicate that KP-392-induced suppression of neurite outgrowth occurred in the absence of cell death. ILK kinase activity was stimulated by NGF. NGF-mediated stimulation of phosphorylation of both AKT and the Tau kinase glycogen synthase kinase-3 (GSK-3) was inhibited in the presence of KP-392 and after overexpression of ILK-DN. Consequently, ILK inhibition resulted in an increase in the hyperphosphorylation of Tau, a substrate of GSK-3. Together these findings indicate that ILK is an important effector in NGF-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Julia Mills
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada V6T 123
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Shibata A, Laurent CE, Smithgall TE. The c-Fes protein-tyrosine kinase accelerates NGF-induced differentiation of PC12 cells through a PI3K-dependent mechanism. Cell Signal 2003; 15:279-88. [PMID: 12531426 DOI: 10.1016/s0898-6568(02)00089-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The c-fes protooncogene encodes a non-receptor protein-tyrosine kinase (Fes) that has been implicated in the differentiation of myeloid haematopoietic cells. Fes is also expressed in several neuronal cell types and the vascular endothelium, suggestive of a more general function in development. To examine the role of Fes in neuronal differentiation, we investigated the effect of Fes expression on process outgrowth in PC12 cells following stimulation with nerve growth factor (NGF). PC12 cells expressing wild-type and activated mutants of Fes extended processes faster and of greater length than control cells. In contrast, expression of kinase-inactive Fes was without effect, indicating that cooperation with NGF requires Fes kinase activity. Short-term treatment of PC12-Fes cells with NGF enhanced tyrosine phosphorylation of Fes, suggesting upstream regulation by the NGF receptor. Fes-mediated acceleration of neurite outgrowth was blocked by wortmannin and LY294002, implicating phosphatidylinositol 3-kinase (PI3K) activation in the Fes-induced response. In contrast, the MEK inhibitor PD98059 was without effect, suggesting that the Ras-Erk pathway is not involved. These data provide the first evidence that Fes may contribute to morphological differentiation of neuronal cells by enhancing NGF signalling through the PI3K pathway.
Collapse
Affiliation(s)
- Annemarie Shibata
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
53
|
Cai F, Helke CJ. Abnormal PI3 kinase/Akt signal pathway in vagal afferent neurons and vagus nerve of streptozotocin-diabetic rats. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:234-44. [PMID: 12591159 DOI: 10.1016/s0169-328x(02)00652-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The PI3 (phosphatidylinositol-3) kinase/Akt (protein kinase B) signal pathway is involved in the molecular signaling that regulates retrograde axonal transport of neurotrophins in the nervous system. Previous work showed that a reduced retrograde axonal transport of endogenous nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the vagus nerve of diabetic rats occurred in the presence of normal production of neurotrophins and neurotrophin receptors. To assess the potential involvement of an impaired PI3 kinase/Akt signal pathway in the diabetes-induced reduction in retrograde axonal transport of neurotrophins in the vagus nerve, we characterized diabetes-induced changes in the PI3 kinase/Akt signal pathway in the vagus nerve and vagal afferent neurons. Control and streptozotocin (STZ)-induced diabetic rats with a duration of 16 weeks, kinase assays, Western blotting, and immunocytochemistry were used to show that diabetes resulted in alterations in activity and protein expression of the PI3 kinase/Akt signal pathway in the vagus nerve and vagal afferent neurons. Diabetes caused a significant decrease in enzymatic activity of PI3 kinase and Akt (52 and 36% of control, respectively) in the vagus nerve. The reduced enzymatic activity was not associated with decreased protein expression of the p85 subunit of PI3 kinase, Akt and phosphorylation of Akt (ser473). In contrast, there was a significant increase in the phosphorylation of p70s6 kinase (thr421/ser424) along with a normal protein expression of p70s6 kinase in the vagus nerve of diabetic rats. However, diabetes induced an overall decrease in immunoreactivity of the p85 subunit of PI3 kinase, phospho-Akt (ser473) and phospho-p70s6/p85s6 kinase (thr421/ser424) in vagal afferent neurons. Thus, impaired PI3 kinase/Akt signal pathway may partly account for the reduced retrograde axonal transport of neurotrophins in the vagus nerve of STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Fang Cai
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | |
Collapse
|
54
|
Ditlevsen DK, Køhler LB, Pedersen MV, Risell M, Kolkova K, Meyer M, Berezin V, Bock E. The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival. J Neurochem 2003; 84:546-56. [PMID: 12558974 DOI: 10.1046/j.1471-4159.2003.01538.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural cell adhesion molecule, NCAM, is known to stimulate neurite outgrowth from primary neurones and PC12 cells presumably through signalling pathways involving the fibroblast growth factor receptor (FGFR), protein kinase A (PKA), protein kinase C (PKC), the Ras-mitogen activated protein kinase (MAPK) pathway and an increase in intracellular Ca2+ levels. Stimulation of neurones with the synthetic NCAM-ligand, C3, induces neurite outgrowth through signalling pathways similar to the pathways activated through physiological, homophilic NCAM-stimulation. We present here data indicating that phosphatidylinositol 3-kinase (PI3K) is required for NCAM-mediated neurite outgrowth from PC12-E2 cells and from cerebellar and dopaminergic neurones in primary culture, and that the thr/ser kinase Akt/protein kinase B (PKB) is phosphorylated downstream of PI3K after stimulation with C3. Moreover, we present data indicating a survival-promoting effect of NCAM-stimulation by C3 on cerebellar and dopaminergic neurones induced to undergo apoptosis. This protective effect of C3 included an inhibition of both DNA-fragmentation and caspase-3 activation. The survival-promoting effect of NCAM-stimulation was also shown to be dependent on PI3K.
Collapse
Affiliation(s)
- Dorte K Ditlevsen
- The Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Panum Institute, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Sutton G, Chandler LJ. Activity-dependent NMDA receptor-mediated activation of protein kinase B/Akt in cortical neuronal cultures. J Neurochem 2002; 82:1097-105. [PMID: 12358757 DOI: 10.1046/j.1471-4159.2002.01031.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The serine/threonine protein kinase B (PKB)/Akt is a phosphoinositide 3-kinase (PI3K) effector that is thought to play an important roll in a wide variety of cellular events. The present study examined whether PKB activation in cortical neuronal cultures is coupled with synaptic activity. A 1-h incubation of neuronal cultures with tetrodotoxin (TTX), the PI3K inhibitor wortmannin, the NMDA receptor antagonist MK-801 or removal of extracellular calcium significantly reduced basal levels of phospho(Ser473)-PKB, indicating that activity-dependent glutamate release maintains PKB activation through an NMDA receptor-PI3K pathway. A 5-min exposure to NMDA (50 micro m) in the presence of TTX increased phospho-PKB back to levels observed in the absence of TTX. NMDA stimulation of phospho-PKB was blocked by wortmannin, the CaMKII inhibitor KN-93, MK-801, and removal of extracellular calcium. We have previously shown that NMDA receptors can bi-directionally regulate activation of extracellular-signal regulated kinase (ERK), and NMDA receptor stimulation of PKB in the present study appeared to mirror activation of ERK. These results suggest that in cultured cortical neurons, PKB activity is dynamically regulated by synaptic activity and is coupled to NMDA receptor activation. In addition, NMDA receptor activation of ERK and PKB may occur through overlapping signaling pathways that bifurcate at the level of Ras.
Collapse
Affiliation(s)
- Greg Sutton
- Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston 29425, USA
| | | |
Collapse
|
56
|
Abstract
Nerve growth factor (NGF) induces dramatic axon growth from responsive embryonic peripheral neurons. However, the roles of the various NGF-triggered signaling cascades in determining specific axon morphological features remain unknown. Here, we transfected activated and inhibitory mutants of Trk effectors into sensory neurons lacking the proapoptotic protein Bax. This allowed axon growth to be studied in the absence of NGF, enabling us to observe the contributions of individual signaling mediators. While Ras was both necessary and sufficient for NGF-stimulated axon growth, the Ras effectors Raf and Akt induced distinct morphologies. Activated Raf-1 caused axon lengthening comparable to NGF, while active Akt increased axon caliber and branching. Our results suggest that the different Trk effector pathways mediate distinct morphological aspects of developing neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Size/genetics
- Female
- Fetus
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Gene Expression/physiology
- Growth Cones/metabolism
- Growth Cones/ultrastructure
- MAP Kinase Kinase 1
- Male
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase Kinases/genetics
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Nerve Growth Factor/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-bcl-2
- Proto-Oncogene Proteins c-raf/deficiency
- Proto-Oncogene Proteins c-raf/genetics
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Signal Transduction/genetics
- bcl-2-Associated X Protein
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Annette Markus
- Neuroscience Center, University of North Carolina, 103 Mason Farm Road, Chapel Hill 27599, USA
| | | | | |
Collapse
|
57
|
Abstract
In the nervous system, receptor regulated phosphoinositide (PI) 3-kinases (PI 3-kinases) participate in fundamental cellular activities that underlie development. Activated by trophic factors, growth factors, neuregulins, cytokines, or neurotransmitters, PI 3-kinases have been implicated in neuronal and glial survival and differentiation. PI 3-kinases produce inositol lipid second messengers that bind to pleckstrin homology (PH) domains in diverse groups of signal transduction proteins, and control their enzymatic activities, subcellular membrane localization, or both. Downstream targets of the inositol lipid messengers include protein kinases and regulators of small GTPases. The kinase Akt/PKB functions as a key component of the PI 3-kinase dependent survival pathway through its phosphorylation and regulation of apoptotic proteins and transcription factors. Furthermore, since members of the Rho GTPase and Arf GTPase families have been implicated in regulation of the actin cytoskeleton, vesicular trafficking, and transcription, the downstream targets of PI 3-kinase that control these GTPases are excellent candidates to mediate aspects of PI 3-kinase dependent neuronal and glial differentiation.
Collapse
Affiliation(s)
- Erin E Rodgers
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
58
|
Elowe S, Holland SJ, Kulkarni S, Pawson T. Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Mol Cell Biol 2001; 21:7429-41. [PMID: 11585923 PMCID: PMC99915 DOI: 10.1128/mcb.21.21.7429-7441.2001] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones.
Collapse
Affiliation(s)
- S Elowe
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
59
|
Buttery PC, ffrench-Constant C. Process extension and myelin sheet formation in maturing oligodendrocytes. PROGRESS IN BRAIN RESEARCH 2001; 132:115-30. [PMID: 11544981 DOI: 10.1016/s0079-6123(01)32070-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- P C Buttery
- Cambridge Centre for Brain Repair and Department of Medical Genetics, University Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | |
Collapse
|
60
|
Sanchez S, Sayas CL, Lim F, Diaz-Nido J, Avila J, Wandosell F. The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. J Neurochem 2001; 78:468-81. [PMID: 11483649 DOI: 10.1046/j.1471-4159.2001.00453.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been extensively described that neuronal differentiation involves the signalling through neurotrophin receptors to a Ras-dependent mitogen-activated protein kinase (MAPK) cascade. However, signalling pathways from other neuritogenic factors have not been well established. It has been reported that cAMP may activate protein kinase (PKA), and it has been shown that PKA-mediated stimulation of MAPK pathway regulates not only neuritogenesis but also survival. However, extracellular regulated kinases (ERKs) mediated pathways are not sufficient to explain all the processes which occur in neuronal differentiation. Our present data show that: in cAMP-mediated neuritogenesis, using the SH-SY5Y human neuroblastoma cell line, there exists a link between the activation of PKA and stimulation of phosphatidylinositol 3-kinase (PI3K). Both kinase activities are essential to the initial elongation steps. Surprisingly, this neuritogenic process appears to be independent of ERKs. While the activity of PI3K is essential for elongation and maintenance of neurites, its inhibition causes retraction. In this neurite retraction process, GSK3 is activated. Using both a pharmacological approach and gene transfer of a dominant negative form of GSK3, we conclude that this induced retraction is a GSK3-dependent process which in turn appears to be a common target for transduction pathways involved in lysophosphatidic acid-mediated and PI3K-mediated neurite retraction.
Collapse
Affiliation(s)
- S Sanchez
- Centro de Biología Molecular 'Severo Ochoa', CSIC-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
61
|
Yang H, Wang X, Raizada MK. Characterization of signal transduction pathway in neurotropic action of angiotensin II in brain neurons. Endocrinology 2001; 142:3502-11. [PMID: 11459796 DOI: 10.1210/endo.142.8.8348] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interaction of angiotensin II with the neuronal angiotensin type 1 receptor stimulates the PI3K signaling pathway. Our objective in this study was to investigate the hypothesis that the PI3K cascade regulates the neurotropic actions of angiotensin II in rat brain neurons. We followed growth associated protein-43 expression and neurite extension as markers of neurotropic activity. Angiotensin II, through its interaction with the angiotensin type 1 receptor, increased growth associated protein-43 expression and neurite extension. These effects were abolished by pretreatment of neurons with wortmannin and rapamycin, but not by PD 98059. Antisense oligonucleotides specific for p70(S6) kinase also inhibited angiotensin II-stimulated neurotropic activity. These data confirm the involvement of PI3K and p70(S6) kinase in angiotensin II-mediated neurotropic action. Further support for this was provided by the observation that angiotensin II caused a time-dependent stimulation of p70(S6) kinase by an angiotensin type 1 receptor-mediated process. We also found that the neurotropic actions of angiotensin II are mediated by plasminogen activator inhibitor-1. Evidence for this includes 1) angiotensin II-stimulated neuronal plasminogen activator inhibitor-1 gene expression, 2) potent neurotropic action of exogenous plasminogen activator inhibitor-1, and 3) inhibitory neurotropic effect of angiotensin II by antisense oligonucleotide-mediated depletion of plasminogen activator inhibitor-1. Finally, we found that the neurotropic action of plasminogen activator inhibitor-1 is not blocked by either angiotensin type 1 receptor antagonist or inhibitors of PI3K or p70(S6) kinase, indicating that the plasminogen activator inhibitor-1 step is downstream from the p70(S6) kinase. These observations demonstrate that angiotensin II is a neurotropic hormone that engages a distinct PI3K-p70(S6) kinase-plasminogen activator inhibitor-1 signaling pathway for this action.
Collapse
Affiliation(s)
- H Yang
- Department of Physiology, College of Medicine, and McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA
| | | | | |
Collapse
|
62
|
Rosário M, Paterson HF, Marshall CJ. Activation of the Ral and phosphatidylinositol 3' kinase signaling pathways by the ras-related protein TC21. Mol Cell Biol 2001; 21:3750-62. [PMID: 11340168 PMCID: PMC87018 DOI: 10.1128/mcb.21.11.3750-3762.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
TC21 is a member of the Ras superfamily of small GTP-binding proteins that, like Ras, has been implicated in the regulation of growth-stimulating pathways. We have previously identified the Raf/mitogen-activated protein kinase pathway as a direct TC21 effector pathway required for TC21-induced transformation (M. Rosário, H. F. Paterson, and C. J. Marshall, EMBO J. 18:1270-1279, 1999). In this study we have identified two further effector pathways for TC21, which contribute to TC21-stimulated transformation: the phosphatidylinositol 3' kinase (PI-3K) and Ral signaling pathways. Expression of constitutively active TC21 leads to the activation of Ral A and the PI-3K-dependent activation of Akt/protein kinase B. Strong activation of the PI-3K/Akt pathway is seen even with very low levels of TC21 expression, suggesting that TC21 may be a key small GTPase-regulator of PI-3K. TC21-induced alterations in cellular morphology in NIH 3T3 and PC12 cells are also PI-3K dependent. On the other hand, activation of the Ral pathway by TC21 is required for TC21-stimulated DNA synthesis but not transformed morphology. We show that inhibition of Ral signaling blocks DNA synthesis in human tumor cell lines containing activating mutations in TC21, demonstrating for the first time that this pathway is required for the proliferation of human tumor cells. Finally, we provide mechanisms for the activation of these pathways, namely, the direct in vivo interaction of TC21 with guanine nucleotide exchange factors for Ral, resulting in their translocation to the plasma membrane, and the direct interaction of TC21 with PI-3K. In both cases, the effector domain region of TC21 is required since point mutations in this region can interfere with activation of downstream signaling.
Collapse
Affiliation(s)
- M Rosário
- CRC Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | | | | |
Collapse
|
63
|
Yasui H, Katoh H, Yamaguchi Y, Aoki J, Fujita H, Mori K, Negishi M. Differential responses to nerve growth factor and epidermal growth factor in neurite outgrowth of PC12 cells are determined by Rac1 activation systems. J Biol Chem 2001; 276:15298-305. [PMID: 11278419 DOI: 10.1074/jbc.m008546200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurite outgrowth of PC12 cells is induced by nerve growth factor (NGF) but not by epidermal growth factor (EGF). This differential response has been explained by the duration of mitogen-activated protein kinase (MAPK) activation; NGF induces sustained MAPK activation but EGF leads short-lived activation. However, precise mechanisms have not yet been understood. Here we demonstrate the difference between NGF and EGF in regulation of Rac1, a small GTPase involved in neurite outgrowth, in PC12 cells. NGF phosphoinositide 3-kinase dependently induces transient activation of Rac1 and accumulation of active Rac1 at protrusion sites on the cell surface, inducing filamentous actin-rich protrusions and subsequent neurite formation in a Rac1-dependent manner. On the other hand, EGF phosphoinositide 3-kinase independently induces more transient Rac1 activation but neither accumulates active Rac1 nor forms Rac1- and filamentous actin-rich protrusions. Difference in the Rac1 localization between NGF and EGF was also observed with the localization of exogenously expressed green fluorescent protein-tagged Rac1. The Rac1-mediated protrusion by NGF is independent of MAPK cascade, but the subsequent neurite extension requires the cascade. Thus, the differential activation of Rac1 and localization of active Rac1 contribute to the difference in the ability of NGF and EGF to induce neurite outgrowth, and we propose that the MAPK cascade-independent prompt activation of Rac1 and recruitment of active Rac1 at the protrusion sites trigger the initiation of neurite formation.
Collapse
Affiliation(s)
- H Yasui
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Chen Q, Patel R, Sales A, Oji G, Kim J, Monreal AW, Brinton RD. Vasopressin-induced neurotrophism in cultured neurons of the cerebral cortex: dependency on calcium signaling and protein kinase C activity. Neuroscience 2001; 101:19-26. [PMID: 11068133 DOI: 10.1016/s0306-4522(00)00323-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuronal process outgrowth has been postulated to be one of the fundamental steps involved in neuronal development. To test whether vasopressin can influence neuronal development by acting on the outgrowth of neuronal processes, we determined the neurotrophic action of the memory-enhancing peptide, vasopressin, in neurons derived from the cerebral cortex, a site of integrative cognitive function and long-term memory. Exposure to V(1) receptor agonist significantly increased multiple features of nerve cell morphology, including neurite length, number of branches, branch length, number of branch bifurcation points and number of microspikes. The dose-response profile of V(1) receptor agonist-induced neurotrophism exhibited a biphasic function, with lower concentrations inducing a significant increase while higher concentrations generally induced no significant effect. The neurotrophic effect of V(1) receptor activation did not require growth factors present in serum. Analysis of the regional selectivity of the vasopressin-induced neurotrophic effect revealed significant V(1) receptor agonist-induced neurotrophism in occipital and parietal neurons, whereas frontal and temporal neurons were unresponsive. Results of experiments to determine the mechanism of vasopressin-induced neurotrophism demonstrated that vasopressin-induced neurotrophism is dependent on V(1)a receptor activation, requires L-type calcium channel activation and activation of both pathways of the phosphatidylinositol signaling cascade, inositol trisphosphate and protein kinase C. These studies are the first to describe a functional cellular response for vasopressin in the cerebral cortex. The findings are discussed with respect to their implications for understanding the role of vasopressin-induced neurotrophism, the associated signaling pathways required for this response, and the ability of vasopressin to enhance memory function.
Collapse
Affiliation(s)
- Q Chen
- Department of Molecular Pharmacology & Toxicology, Pharmaceutical Sciences Center, University of Southern California, CA 90033, Los Angeles, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Wakamatsu Y, Zhao X, Jin C, Day N, Shibahara M, Nomura N, Nakahara T, Murata T, Yokoyama KK. Mannosylerythritol lipid induces characteristics of neuronal differentiation in PC12 cells through an ERK-related signal cascade. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:374-83. [PMID: 11168372 DOI: 10.1046/j.1432-1033.2001.01887.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rat pheochromocytoma PC12 cells undergo neuronal differentiation in response to nerve growth factor (NGF). The differentiation involves protein kinase cascades that include the kinases MEK and ERK, as well as activation of the transcription factors c-Jun and c-Fos. We show here, that exposure of PC12 cells to mannosylerythritol lipid (MEL), a yeast extracellular glycolipid, enhances the activity of acetylcholinesterase and interrupts the cell cycle at the G1 phase, with resulting outgrowth of neurites and partial cellular differentiation. Treatment with MEL stimulates the phosphorylation of ERK to a similar extent as treatment with NGF, although, the appearance of phosphorylated ERK is somewhat delayed. Both the MEL-induced outgrowth of neurites and the increase in the activity of acetylcholinesterase are prevented by PD98059, a specific inhibitor of MEK. Northern blotting analysis of c-jun transcripts and analysis of transcription in PC12 cells of a c-jun/CAT reporter construct demonstrated a significant increase in the rate of transcription of the c-jun gene upon treatment with MEL. The sequence elements required for the MEL-mediated activation of transcription of the c-jun gene are located between nucleotides -126 and -79 in the 5' flanking region. Our results suggest that MEL induces characteristics of neuronal differentiation in PC12 cells, with transactivation of the c-jun gene, via an ERK-related signal cascade that is partially overlapping the pathways activated in response to NGF. These results might provide the groundwork for the use of microbial extracellular glycolipids as novel reagents for the treatment of cancer cells.
Collapse
Affiliation(s)
- Y Wakamatsu
- RIKEN (The Institute of Physical & Chemical Research), Tsukuba Institute, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Bang OS, Park EK, Yang SI, Lee SR, Franke TF, Kang SS. Overexpression of Akt inhibits NGF-induced growth arrest and neuronal differentiation of PC12 cells. J Cell Sci 2001; 114:81-88. [PMID: 11112692 DOI: 10.1242/jcs.114.1.81] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To investigate the role of Akt in nerve growth factor (NGF)-induced neuronal differentiation, PC12 cells ectopically expressing wild-type or dominant-inhibitory forms of Akt were analyzed. NGF-induced neurite outgrowth was greatly accelerated in cells expressing dominant-inhibitory Akt, compared to parental PC12 cells, but was almost completely blocked in cells expressing wild-type Akt. Since neuronal differentiation requires an arrest of cell growth, several aspects of cell growth of the different cell lines were compared. Cells expressing wild-type Akt were not susceptible to the growth-arresting effect of NGF, whereas parental PC12 cells and notably cells expressing mutant Akt were so affected. Accompanying this, the expressions of CDKs and p21(WAF1) were down- and up-regulated, respectively, in both parental PC12 cells and cells expressing mutant Akt. When treated with some growth arrest-inducing agents such as sodium nitroprusside, forskolin and butyrolactone I, cells expressing wild-type Akt regained their responsiveness to the effects of NGF on differentiation. In summary, our results indicate that Akt overrides the growth-arresting effect of NGF and thereby, negatively regulates neuronal differentiation.
Collapse
Affiliation(s)
- O S Bang
- Department of Biology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Initiation and elongation of neurites in PC12 cells has been shown to be stimulated by nerve growth factor (NGF). Initiation of NGF-stimulated neurites in a PC12 subclone (PC12-N09) is rapid, giving rise to short neurites that do not elongate after 1 day. To determine whether increasing activation of p21(ras) could restore neurite elongation in these cells and whether it would affect the phosphorylation of signaling proteins, the subclone PC12-N09 was transfected with constitutively active p21(ras61L) (PC12-N09ras61L) and neurite outgrowth with or without NGF was determined. Overexpression of wild-type p21(ras) (PC12-N09rasWT) did not lead to spontaneous neurite initiation but restored the ability of NGF to stimulate continuous neurite elongation. However, NGF-stimulated phosphorylation of ERK, p38, and Akt in PC12-N09rasWT cells is similar in duration to that in PC12-N09 cells, indicating that the p21(ras) signaling through ERK, p38, and Akt was not involved in the restoration of normal neurite elongation in PC12-N09 cells. These results show that p21(ras)-activated pathways other than ERK, p38, and Akt are necessary for appropriate NGF-stimulated neurite elongation in PC12 cells.
Collapse
Affiliation(s)
- R W Burry
- Department of Neuroscience, 4068 Graves Hall, College of Medicine and Public Health, The Ohio State University, 333 West Tenth Ave., Columbus, OH 43210.
| |
Collapse
|
68
|
Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ, Blackshaw S, Ferris CD, Snyder SH. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 2000; 103:919-30. [PMID: 11136977 DOI: 10.1016/s0092-8674(00)00195-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While cytoplasmic PI3Kinase (PI3K) is well characterized, regulation of nuclear PI3K has been obscure. A novel protein, PIKE (PI3Kinase Enhancer), interacts with nuclear PI3K to stimulate its lipid kinase activity. PIKE encodes a 753 amino acid nuclear GTPase. Dominant-negative PIKE prevents the NGF enhancement of PI3K and upregulation of cyclin D1. NGF treatment also leads to PIKE interactions with 4.1N, which has translocated to the nucleus, fitting with the initial identification of PIKE based on its binding 4.1N in a yeast two-hybrid screen. Overexpression of 4.1N abolishes PIKE effects on PI3K. Activation of nuclear PI3K by PIKE is inhibited by the NGF-stimulated 4.1N translocation to the nucleus. Thus, PIKE physiologically modulates the activation by NGF of nuclear PI3K.
Collapse
Affiliation(s)
- K Ye
- Johns Hopkins University School of Medicine, Department of Neuroscience, North Wolfe Street 21205, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJ. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 2000; 20:8069-83. [PMID: 11027277 PMCID: PMC86417 DOI: 10.1128/mcb.20.21.8069-8083.2000] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.
Collapse
Affiliation(s)
- R D York
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
70
|
Wooten MW, Seibenhener ML, Neidigh KB, Vandenplas ML. Mapping of atypical protein kinase C within the nerve growth factor signaling cascade: relationship to differentiation and survival of PC12 cells. Mol Cell Biol 2000; 20:4494-504. [PMID: 10848576 PMCID: PMC85825 DOI: 10.1128/mcb.20.13.4494-4504.2000] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pathway by which atypical protein kinase C (aPKC) contributes to nerve growth factor (NGF) signaling is poorly understood. We previously reported that in PC12 cells NGF-induced activation of mitogen-activated protein kinase (MAPK) occurs independently of classical and nonclassical PKC isoforms, whereas aPKC isoforms were shown to be required for NGF-induced differentiation. NGF-induced activation of PKC-iota was observed to be dependent on phosphatidylinositol 3-kinase (PI3K) and led to coassociation of PKC-iota with Ras and Src. Expression of dominant negative mutants of either Src (DN2) or Ras (Asn-17) impaired activation of PKC-iota by NGF. At the level of Raf-1, neither PKC-iota nor PI3 kinase was required for activation; however, PKC-iota could weakly activate MEK. Inhibitors of PKC-iota activity and PI3K had no effect on NGF-induced MAPK or p38 activation but reduced NGF-stimulated c-Jun N-terminal kinase activity. Src, PI3K, and PKC-iota were likewise required for NGF-induced NF-kappaB activation and cell survival, whereas Ras was not required for either survival or NF-kappaB activation but was required for differentiation. IKK existed as a complex with PKC-iota, Src and IkappaB. Consistent with a role for Src in regulating NF-kappaB activation, an absence of Src activity impaired recruitment of PKC-iota into an IKK complex and markedly impaired NGF-induced translocation of p65/NF-kappaB to the nucleus. These findings reveal that in PC12 cells, aPKCs comprise a molecular switch to regulate differentiation and survival responses coupled downstream to NF-kappaB. On the basis of these findings, Src emerges as a critical upstream regulator of both PKC-iota and the NF-kappaB pathway.
Collapse
Affiliation(s)
- M W Wooten
- Department of Biological Sciences, Program in Cell and Molecular Biosciences, Auburn University, AL 36849, USA.
| | | | | | | |
Collapse
|
71
|
Takuma K, Fujita T, Kimura Y, Tanabe M, Yamamuro A, Lee E, Mori K, Koyama Y, Baba A, Matsuda T. T-588 inhibits astrocyte apoptosis via mitogen-activated protein kinase signal pathway. Eur J Pharmacol 2000; 399:1-8. [PMID: 10876016 DOI: 10.1016/s0014-2999(00)00334-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of (1R)-1-benzo[b]thiophen-5-yl-2-[2-(diethylamino)ethoxy]ethan -1-ol hydrochloride (T-588), a cognition enhancer, on reperfusion injury was studied in cultured rat astrocytes. T-588 at 1-10 microM partially protected astrocytes against reperfusion injury after exposure to Ca(2+)-free medium or hydrogen peroxide. Nerve growth factor (NGF) had a similar protective effect. Addition of both T-588 and NGF resulted in complete protection against Ca(2+) reperfusion injury. T-588 did not stimulate NGF production in astrocytes. The effect of T-588 on Ca(2+) reperfusion injury including apoptosis was inhibited by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase inhibitor 2'-amino-3'-methoxyflavone (PD98059), but not by the phosphoinositide 3-kinase inhibitor wortmannin. The effect of NGF was inhibited by PD98059 and wortmannin. T-588 stimulated rapidly the phosphorylation of ERK, but did not affect that of Akt in astrocytes. These findings suggest that the ERK MAP kinase pathway has a role in the protective effects of T-588 and NGF.
Collapse
Affiliation(s)
- K Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, 651-2180, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P. GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 2000; 149:1455-72. [PMID: 10871285 PMCID: PMC2175130 DOI: 10.1083/jcb.149.7.1455] [Citation(s) in RCA: 493] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1999] [Accepted: 05/24/2000] [Indexed: 11/22/2022] Open
Abstract
The dynamic properties of the cell cortex and its actin cytoskeleton determine important aspects of cell behavior and are a major target of cell regulation. GAP43, myristoylated alanine-rich C kinase substrate (MARCKS), and CAP23 (GMC) are locally abundant, plasmalemma-associated PKC substrates that affect actin cytoskeleton. Their expression correlates with morphogenic processes and cell motility, but their role in cortex regulation has been difficult to define mechanistically. We now show that the three proteins accumulate at rafts, where they codistribute with PI(4,5)P(2), and promote its retention and clustering. Binding and modulation of PI(4, 5)P(2) depended on the basic effector domain (ED) of these proteins, and constructs lacking the ED functioned as dominant inhibitors of plasmalemmal PI(4,5)P(2) modulation. In the neuron-like cell line, PC12, NGF- and substrate-induced peripheral actin structures, and neurite outgrowth were greatly augmented by any of the three proteins, and suppressed by DeltaED mutants. Agents that globally mask PI(4,5)P(2) mimicked the effects of GMC on peripheral actin recruitment and cell spreading, but interfered with polarization and process formation. Dominant negative GAP43(DeltaED) also interfered with peripheral nerve regeneration, stimulus-induced nerve sprouting and control of anatomical plasticity at the neuromuscular junction of transgenic mice. These results suggest that GMC are functionally and mechanistically related PI(4,5)P(2) modulating proteins, upstream of actin and cell cortex dynamics regulation.
Collapse
Affiliation(s)
- Thorsten Laux
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland
| | - Kiyoko Fukami
- Department of Biochemistry, Institute of Medical Sciences, Tokyo, Japan
| | | | - Tamara Golub
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland
| | - Dunja Frey
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland
| | - Pico Caroni
- Friedrich Miescher Institute, CH-4058 Basel, Switzerland
| |
Collapse
|
73
|
Meberg PJ, Ono S, Minamide LS, Takahashi M, Bamburg JR. Actin depolymerizing factor and cofilin phosphorylation dynamics: response to signals that regulate neurite extension. CELL MOTILITY AND THE CYTOSKELETON 2000; 39:172-90. [PMID: 9484959 DOI: 10.1002/(sici)1097-0169(1998)39:2<172::aid-cm8>3.0.co;2-8] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The actin assembly-regulating activity of actin depolymerizing factor (ADF)/ cofilin is inhibited by phosphorylation. Studies were undertaken to characterize the signaling pathways and phosphatases involved in activating phosphorylated ADF (pADF), emphasizing signals related to neuronal process extension. Western blots using antibodies to ADF and cofilin, as well as an ADF/cofilin phosphoepitope-specific antibody characterized in this paper, were used to measure changes in the phosphorylation state and phosphate turnover of ADF/cofilin in response to inhibitors and agents known to influence growth cone motility. Increases in both [Ca2+]i and cAMP levels induced rapid pADF dephosphorylation in HT4 and cortical neurons. Calcium-dependent dephosphorylation depended on the activation of protein phosphatase 2B (PP2B), while cAMP-dependent dephosphorylation was likely through activation of PP1. Growth factors such as NGF and insulin also induced rapid pADF/pcofilin dephosphorylation, with NGF-stimulated dephosphorylation in PC12 cells correlated with the translocation of ADF/cofilin to ruffling membranes. Of special interest was the finding that the rate of phosphate turnover on both pADF and pcofilin could be enhanced by growth factors without changing net pADF levels, demonstrating that growth factors can activate bifurcating pathways that promote both phosphorylation and dephosphorylation of ADF/cofilin. All experimental results indicated that dynamics of phosphorylation on ADF and cofilin are coordinately regulated. Signals that decreased pADF levels are associated with increased process extension, while agents that increased pADF levels, such as lysophosphatidic acid, inhibit process extension. These data indicate that dephosphorylation/activation of pADF is a significant response to the activation of signal pathways that regulate actin dynamics and alter cell morphology and neuronal outgrowth.
Collapse
Affiliation(s)
- P J Meberg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins 80523-1870, USA
| | | | | | | | | |
Collapse
|
74
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
75
|
Ikegami K, Koike T. Membrane depolarization-mediated survival of sympathetic neurons occurs through both phosphatidylinositol 3-kinase- and CaM kinase II-dependent pathways. Brain Res 2000; 866:218-26. [PMID: 10825497 DOI: 10.1016/s0006-8993(00)02284-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been well established that the NGF-mediated survival of sympathetic neurons in culture occurs through the phosphatidylinositol (PI) 3-kinase/Akt-dependent pathway. In contrast, the mechanism by which membrane depolarization promotes neuronal survival independently of NGF remains unresolved. Here we show that LY294002, a specific inhibitor of PI 3-kinase, induced cell death of sympathetic neurons under depolarizing conditions with elevated K(+) (IC(50)= approximately 30 microM). Interestingly, lower concentrations of this agent (< or =10 microM) were sufficient to suppress Akt phosphorylation at Ser-473, a putative downstream target of PI 3-kinase, under these conditions. We also show that KN-62, a specific inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) suppressed depolarization-mediated survival in a does-dependent manner (IC(50)= approximately 2 microM) that paralleled attenuation of sustained levels of intracellular Ca(2+) evoked by depolarization. This IC(50) value is greater than that for CaMKII ( approximately 0.8 microM). These findings led us to hypothesize that depolarization-mediated survival occurs through both the PI 3-kinase/Akt and the CaMKII pathways. Indeed, combined treatment with LY294002 (25 microM) and KN-62 (0.5 microM) dramatically abolished depolarization-mediated survival, whereas each alone did not significantly attenuate it. Under these conditions, KN-62 neither impaired sustained levels of intracellular Ca(2+), nor inhibited the phosphorylation of Akt. It is thus likely that PI 3-kinase and CaMKII independently promote the membrane depolarization-mediated survival of sympathetic neurons in culture.
Collapse
Affiliation(s)
- K Ikegami
- Molecular Neurobiology Laboratory, Division of Biological Sciences, Graduate School of Science, Hokkaido University, North Ward N10 W8, 060-0810, Sapporo, Japan
| | | |
Collapse
|
76
|
Posern G, Saffrich R, Ansorge W, Feller SM. Rapid lamellipodia formation in nerve growth factor-stimulated PC12 cells is dependent on Rac and PI3K activity. J Cell Physiol 2000; 183:416-24. [PMID: 10797317 DOI: 10.1002/(sici)1097-4652(200006)183:3<416::aid-jcp15>3.0.co;2-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neuronal differentiation of PC12 cells is achieved by stimulation with nerve growth factor (NGF) but not by epidermal growth factor (EGF). However, features of differentiation such as neurite outgrowth are observable at the earliest after several hours. Using actin staining of the cells, we show here that NGF stimulation leads to lamellipodia formation within only 3 min at the periphery of the PC12 cells. EGF stimulation or microinjection of differentiation-inducing c-Crk I protein does not cause lamellipodia. The actin reorganization after NGF stimulation is blocked by microinjecting dominant negative Rac protein. The lamellipodia formation is also abolished by inhibitors of phosphatidylinositol 3-kinase, wortmannin and LY 294002 in a concentration-dependent manner. Phase-contrast time-lapse microscopy was used to analyze membrane dynamics in real time and to confirm the induction of lamellipodia by NGF and their inhibition by pretreatment with both wortmannin and LY 294002. The results indicate that NGF, but not EGF, leads to rapid lamellipodia formation in PC12 cells via phosphatidylinositol 3-kinase and the small GTPase Rac, thereby defining a novel role for these factors in early NGF signaling.
Collapse
Affiliation(s)
- G Posern
- Institut für Medizinische Strahlenkunde und Zellforschung (MSZ), Julius-Maximilians-University, Würzburg, Germany.
| | | | | | | |
Collapse
|
77
|
Sarner S, Kozma R, Ahmed S, Lim L. Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells. Mol Cell Biol 2000; 20:158-72. [PMID: 10594018 PMCID: PMC85071 DOI: 10.1128/mcb.20.1.158-172.2000] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A Ras(H40C;G12V) double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated Ras(G12V)-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42(G12V) was Rac1 dependent. Cdc42(G12V)-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42(G12V)-induced outgrowth did not need Ras or PI 3-kinase activity. Active Rho(G14V) reduced outgrowth promoted by Ras(G12V). Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells.
Collapse
Affiliation(s)
- S Sarner
- Department of Neurochemistry, Institute of Neurology, London WC1N 1PJ, United Kingdom
| | | | | | | |
Collapse
|
78
|
Sakai T, Furuyama T, Ohoka Y, Miyazaki N, Fujioka S, Sugimoto H, Amasaki M, Hattori S, Matsuya T, Inagaki S. Mouse semaphorin H induces PC12 cell neurite outgrowth activating Ras-mitogen-activated protein kinase signaling pathway via Ca(2+) influx. J Biol Chem 1999; 274:29666-71. [PMID: 10514436 DOI: 10.1074/jbc.274.42.29666] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently showed that mouse semaphorin H (MSH), a secreted semaphorin molecule, acts as a chemorepulsive factor on sensory neurites. In this study, we found for the first time that MSH induces neurite outgrowth in PC12 cells in a dose-dependent manner. Comparison of Ras-mitogen-activated protein kinase (MAPK) signaling pathways between MSH and nerve growth factor (NGF) revealed that these pathways are crucial for MSH action as well as NGF. K-252a, an inhibitor of tyrosine autophosphorylation of tyrosine kinase receptors (Trks), did not inhibit the action of MSH, suggesting that MSH action occurs via a different receptor than NGF. L- and N-types of voltage-dependent Ca(2+) channel blockers, diltiazem and omega-conotoxin, inhibited MSH-induced neurite outgrowth and MAPK phosphorylation in a Ca(2+)-dependent manner. A transient elevation in intracellular Ca(2+) level was observed upon MSH stimulation. These findings suggest that extracellular Ca(2+) influx, followed by activation of the Ras-MAPK signaling pathway, is required for MSH induced PC12 cell neurite outgrowth.
Collapse
Affiliation(s)
- T Sakai
- Group of Neurobiology, School of Allied Health Sciences, Osaka University Faculty of Medicine, Yamadaoka 1-7, Suita-shi, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Betarbet R, Greenamyre JT. Differential expression of glutamate receptors by the dopaminergic neurons of the primate striatum. Exp Neurol 1999; 159:401-8. [PMID: 10506511 DOI: 10.1006/exnr.1999.7154] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neostriatal neurons are targets of glutamatergic input from the cortex and thalamus. Glutamate receptors are abundantly, but differentially, expressed by the striatal neurons. We previously described the presence of dopaminergic cells intrinsic to the primate striatum that increase in number following MPTP treatment. In this study we have used double-label immunocytochemistry to analyze the expression of the glutamate receptor subunits GluR1, GluR2/3, NR1, mGluR1, and mGluR5 in the dopaminergic cells of the striatum. Our results show that 75% of these cells express GluR1 while 25% of them express NR1. They do not express GluR2/3 or the group 1 metabotropic receptors. Our results suggest that this potentially important population of cells expresses only calcium-permeable ionotropic glutamate receptors. We speculate that glutamate may play a role in regulating the number of these dopaminergic neurons after MPTP treatment and may also influence their ability to release dopamine.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Aging
- Animals
- Corpus Striatum/cytology
- Corpus Striatum/metabolism
- Dopamine/metabolism
- Gene Expression Regulation/drug effects
- Immunohistochemistry
- Macaca mulatta
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptors, AMPA/analysis
- Receptors, AMPA/genetics
- Receptors, Interleukin/analysis
- Receptors, Interleukin/genetics
- Receptors, Interleukin-11
- Receptors, Metabotropic Glutamate/analysis
- Receptors, Metabotropic Glutamate/genetics
- Tyrosine 3-Monooxygenase/analysis
Collapse
Affiliation(s)
- R Betarbet
- Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | | |
Collapse
|
80
|
Ashcroft M, Stephens RM, Hallberg B, Downward J, Kaplan DR. The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth. Oncogene 1999; 18:4586-97. [PMID: 10467403 DOI: 10.1038/sj.onc.1202814] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Trk/Nerve Growth Factor receptor mediates the rapid activation of a number of intracellular signaling proteins, including phosphatidylinositol 3-kinase (PI 3-kinase). Here, we describe a novel, NGF-inducible system that we used to specifically address the signaling potential of endogenous PI 3-kinase in NGF-mediated neuronal survival and differentiation processes. This system utilizes a Trk receptor mutant (Trk(def)) lacking sequences Y490, Y785 and KFG important for the activation of the major Trk targets; SHC, PLC-gammal, Ras, PI 3-kinase and SNT. Trk(def) was kinase active but defective for NGF-induced responses when stably expressed in PC12nnr5 cells (which lack detectable levels of TrkA and are non-responsive to NGF). The PI 3-kinase consensus binding site, YxxM (YVPM), was introduced into the insert region within the kinase domain of Trk(def). NGF-stimulated tyrosine phosphorylation of the Trk(def)+PI 3-kinase addback receptor, resulted in the direct association and selective activation of PI 3-kinase in vitro and the production of PI(3,4)P2 and PI(3,4,5)P3 in vivo (comparable to wild-type). PC12nnr5 cells stably expressing Trk(def) + PI 3-kinase, initiated neurite outgrowth but failed to stably extend and maintain these neurites in response to NGF as compared to PC12 parental cells, or PC12nnr5 cells overexpressing wild-type Trk. However, Trk(def) + PI 3-kinase was fully competent in mediating NGF-induced survival processes. We propose that while endogenous PI 3-kinase can contribute in part to neurite initiation processes, its selective activation and subsequent signaling to downstream effectors such as Akt, functions mainly to promote cell survival in the PC12 system.
Collapse
Affiliation(s)
- M Ashcroft
- ABL-Basic Research Program, NCI-FCRDC, West 7th Street, Frederick, Maryland, MD 21702, USA
| | | | | | | | | |
Collapse
|
81
|
Virdee K, Xue L, Hemmings BA, Goemans C, Heumann R, Tolkovsky AM. Nerve growth factor-induced PKB/Akt activity is sustained by phosphoinositide 3-kinase dependent and independent signals in sympathetic neurons. Brain Res 1999; 837:127-42. [PMID: 10433995 DOI: 10.1016/s0006-8993(99)01643-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phosphoinositide 3-kinase and its downstream effector kinase PKB/Akt have been suggested to have crucial roles in suppressing apoptosis in several classes of neurons. However, few studies have conducted a long-term investigation of either kinase activity, many studies relying instead on use of the phosphoinositide 3-kinase inhibitors wortmannin and LY294002. When we added LY294002 or wortmannin to sympathetic neurons, apoptosis in the presence of nerve growth factor (NGF) was very slow compared to that obtained by NGF deprivation. However, expression of a kinase-inactive mutant of PKB/Akt in the presence of NGF induced apoptosis in a significant proportion of the neurons. To understand this discrepancy, we investigated more closely the regulation of PKB/Akt activity by NGF. NGF stimulation induced a rapid increase in PKB/Akt activity which was sustained at approximately 6-fold up to 24 h. Phosphoinositide 3-kinase was also rapidly activated by NGF. However, concentrations of wortmannin which completely blocked phosphoinositide 3-kinase activity in the neurons inhibited no more than 50-70% of cellular PKB/Akt activity. Similarly, approximately 50% of maximal NGF-stimulated PKB/Akt activity remained elevated at concentrations of LY294002 which completely blocked neurite outgrowth, a process known to be phosphoinositide 3-kinase dependent. We suggest that a proportion of the sustained PKB/Akt activity induced by NGF is mediated by phosphoinositide 3-kinase-independent pathways. These results raise a cautionary note as to the usefulness of LY294002 or wortmannin as tools to dissect the role of PKB/Akt in neuronal survival.
Collapse
Affiliation(s)
- K Virdee
- Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, UK
| | | | | | | | | | | |
Collapse
|
82
|
Pastorino JG, Tafani M, Farber JL. Tumor necrosis factor induces phosphorylation and translocation of BAD through a phosphatidylinositide-3-OH kinase-dependent pathway. J Biol Chem 1999; 274:19411-6. [PMID: 10383455 DOI: 10.1074/jbc.274.27.19411] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF) induced the phosphorylation of BAD at serine 136 in HeLa cells under conditions that are not cytotoxic. BAD phosphorylation by TNF was dependent on phosphatidylinositide-3-OH kinase (PI3K) and was accompanied by the translocation of BAD from the mitochondria to the cytosol. Blocking the phosphorylation of BAD and its translocation to the cytosol with the PI3K inhibitor wortmannin activated caspase-3 and markedly potentiated the cytotoxicity of TNF. Transient transfection with a PI3K dominant negative mutant or a dominant negative mutant of the serine-threonine kinase Akt, the downstream target of PI3K and the enzyme that phosphorylates BAD, similarly potentiated the cytotoxicity of TNF. By contrast, transfection with a constitutively active Akt mutant protected against the cytotoxicity of TNF in the presence of wortmannin. Phosphorylation of BAD prevents its interaction with the antiapoptotic protein Bcl-XL. Transfection with a Bcl-XL expression vector protected against the cytotoxicity of TNF in the presence of wortmannin. The mechanism by which the inhibition of the phosphorylation of BAD is likely linked to the induction of lethal mitochondrial damage in TNF-intoxicated cells is discussed.
Collapse
Affiliation(s)
- J G Pastorino
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
83
|
Venkateswarlu K, Gunn-Moore F, Tavaré JM, Cullen PJ. EGF-and NGF-stimulated translocation of cytohesin-1 to the plasma membrane of PC12 cells requires PI 3-kinase activation and a functional cytohesin-1 PH domain. J Cell Sci 1999; 112 ( Pt 12):1957-65. [PMID: 10341214 DOI: 10.1242/jcs.112.12.1957] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADP-ribosylation factors (ARFs) are small GTP-binding proteins that function as regulators of eukaryotic vesicle trafficking. Cytohesin-1 is a member of a family of ARF guanine nucleotide-exchange factors that contain a C-terminal pleckstrin homology (PH) domain which has been proposed to bind the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3). Here we demonstrate that in vitro, recombinant cytohesin-1 binds, via its PH domain, the inositol head group of PIP3, inositol 1,3,4, 5-tetrakisphosphate (IP4), with an affinity greater than 200-fold higher than the inositol head group of either phosphatidylinositol 4, 5-bisphosphate or phosphatidylinositol 3,4-bisphosphate. Moreover, addition of glycerol or diacetylglycerol to the 1-phosphate of IP4 does not alter the ability to interact with cytohesin-1, data which is entirely consistent with cytohesin-1 functioning as a putative PIP3 receptor. To address whether cytohesin-1 binds PIP3 in vivo, we have expressed a chimera of green fluorescent protein (GFP) fused to the N terminus of cytohesin-1 in PC12 cells. Using laser scanning confocal microscopy we demonstrate that either EGF- or NGF-stimulation of transiently transfected PC12 cells results in a rapid translocation of GFP-cytohesin-1 from the cytosol to the plasma membrane. This translocation is dependent on the cytohesin-1 PH domain and occurs with a time course that parallels the rate of plasma membrane PIP3 production. Furthermore, the translocation requires the ability of either agonist to activate PI 3-kinase, since it is inhibited by wortmannin (100 nM), LY294002 (50 microM) and by coexpression with a dominant negative p85. This data therefore suggests that in vivo cytohesin-1 can interact with PIP3 via its PH domain.
Collapse
Affiliation(s)
- K Venkateswarlu
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
84
|
Sano M, Yoshida M, Fukui S, Kitajima S. Radicicol potentiates neurotrophin-mediated neurite outgrowth and survival of cultured sensory neurons from chick embryo. J Neurochem 1999; 72:2256-63. [PMID: 10349833 DOI: 10.1046/j.1471-4159.1999.0722256.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radicicol, an antifungal antibiotic with markedly low toxicity, is a potent inhibitor of the Src family of protein tyrosine kinases and causes morphological reversion of v-src-transformed fibroblasts. Recently, this antibiotic was also found to inhibit Raf kinase. In the present study, we found that nanomolar concentrations of radicicol (10 ng/ml) enhanced the survival and neurite outgrowth of neurons from embryonic chick dorsal root ganglia (DRGs) and sympathetic ganglia. It potentiated the trophic effects of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 on the cultured DRG neurons. This concentration of radicicol did not alter the tyrosine phosphorylation of Trk receptors or the activity of mitogen-activated protein (MAP) kinases. Wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), did not inhibit radicicol, excluding the involvement of PI3-kinase in the radicicol-dependent trophic actions. These results suggest that radicicol mediates neuronal growth presumably via a mechanism not involving the activation of Trk receptors, MAP kinase, or PI3-kinase.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/pharmacology
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cells, Cultured
- Chick Embryo
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/physiology
- Lactones/pharmacology
- Macrolides
- Nerve Growth Factors/pharmacology
- Neurites/drug effects
- Neurites/physiology
- Neurons, Afferent/drug effects
- Neurons, Afferent/physiology
- Neurons, Afferent/ultrastructure
- Neurotrophin 3
- Phosphotyrosine/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Ciliary Neurotrophic Factor
- Receptors, Nerve Growth Factor/metabolism
Collapse
Affiliation(s)
- M Sano
- Department of Biology, Kyoto Prefectural University of Medicine, Japan
| | | | | | | |
Collapse
|
85
|
Weisenhorn DM, Roback J, Young AN, Wainer BH. Cellular aspects of trophic actions in the nervous system. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:177-265. [PMID: 10333580 DOI: 10.1016/s0074-7696(08)61388-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past three decades the number of molecules exhibiting trophic actions in the brain has increased drastically. These molecules promote and/or control proliferation, differentiation, migration, and survival (sometimes even the death) of their target cells. In this review a comprehensive overview of small diffusible factors showing trophic actions in the central nervous system (CNS) is given. The factors discussed are neurotrophins, epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, insulin-like growth factors, ciliary neurotrophic factor and related molecules, glial-derived growth factor and related molecules, transforming growth factor-beta and related molecules, neurotransmitters, and hormones. All factors are discussed with respect to their trophic actions, their expression patterns in the brain, and molecular aspects of their receptors and intracellular signaling pathways. It becomes evident that there does not exist "the" trophic factor in the CNS but rather a multitude of them interacting with each other in a complicated network of trophic actions forming and maintaining the adult nervous system.
Collapse
Affiliation(s)
- D M Weisenhorn
- Wesley Woods Laboratory for Brain Science, Emory University School of Medicine, Atlanta, Georgia 30329, USA
| | | | | | | |
Collapse
|
86
|
Bartlett SE, Reynolds AJ, Tan T, Heydon K, Hendry IA. Differential mRNA expression and subcellular locations of PI3-kinase isoforms in sympathetic and sensory neurons. J Neurosci Res 1999; 56:44-53. [PMID: 10213474 DOI: 10.1002/(sici)1097-4547(19990401)56:1<44::aid-jnr6>3.0.co;2-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3-kinase) enzymes are key signalling molecules in the PC12 and neuronal cell survival pathway and are also involved in the regulation of retrograde axonal transport of nerve growth factor (NGF), with sympathetic neurons more sensitive to the effects of wortmannin/LY294002 than sensory neurons (Bartlett et al. [1997]; Brain Res. 761:257-262; Reynolds et al. [1998] Brain Res. 798:67-74). In this article, we characterized the mRNA expression of PI3-kinase isoforms in mouse sympathetic superior cervical ganglia (SCG) and sensory trigeminal ganglia (TGG) and examined the subcellular locations of immunoreactivity of the PI3-kinase isoforms in mouse cultured SCG and dorsal root ganglion (DRG) neurons. Both the SCG and the TGG express mRNA for the p110alpha, beta, gamma, delta, and vps34p PI3-kinase isoforms, but the TGG and not the SCG express mRNA for the p170 PI3-kinase isoform. In cultured SCG and DRG neurons, p110alpha, beta, and gamma immunoreactivity is in the SCG and DRG growth cones, and predominantly in puncta throughout the growth cone varicosity. However, in the cell bodies immunoreactivity varied, p110alpha is localized predominantly at the plasma membrane, while p110beta and gamma is localized in the perinuclear region of the cells. In addition, unlike other cell types, wortmannin has little effect on actin filament polymerization in either mouse cultured SCG or DRG neurons.
Collapse
Affiliation(s)
- S E Bartlett
- Developmental Neurobiology, Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra, ACT.
| | | | | | | | | |
Collapse
|
87
|
Klesse LJ, Meyers KA, Marshall CJ, Parada LF. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells. Oncogene 1999; 18:2055-68. [PMID: 10321730 DOI: 10.1038/sj.onc.1202524] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nerve growth factor induces differentiation and survival of rat PC12 pheochromocytoma cells. The activation of the erk cascade has been implicated in transducing the multitude of signals induced by NGF. In order to explore the role of this signaling cascade in NGF mediated survival, differentiation and proliferation, we generated recombinant adenoviruses which express the intermediates of the erk cascade in their wild type, dominant negative and constitutively activated forms. We show that differentiation of PC12 cells requires activity of the ras/erk pathway, whereas inhibition of this pathway had no effect on survival or proliferation. Constitutively active forms of ras, raf and mek induced PC12 cell differentiation, while dominant interfering forms inhibited differentiation. Survival of PC12 cells in serum-free medium did not require activity of the ras/erk pathway. Instead, PI3 Kinase signaling was necessary for PC12 cell survival. Interestingly, constitutively activated versions of raf and mek were able to promote survival, but again this was dependent on activation of PI3 Kinase. Therefore, at least two distinct signaling pathways are required in PC12 cells for mediation of NGF functions.
Collapse
Affiliation(s)
- L J Klesse
- Center for Developmental Biology, University of Texas, Southwestern Medical Center, Dallas 75235-9133, USA
| | | | | | | |
Collapse
|
88
|
Goi T, Rusanescu G, Urano T, Feig LA. Ral-specific guanine nucleotide exchange factor activity opposes other Ras effectors in PC12 cells by inhibiting neurite outgrowth. Mol Cell Biol 1999; 19:1731-41. [PMID: 10022860 PMCID: PMC83966 DOI: 10.1128/mcb.19.3.1731] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ras proteins can activate at least three classes of downstream target proteins: Raf kinases, phosphatidylinositol-3 phosphate (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (Ral-GEFs). In NIH 3T3 cells, activated Ral-GEFs contribute to Ras-induced cell proliferation and oncogenic transformation by complementing the activities of Raf and PI3 kinases. In PC12 cells, activated Raf and PI3 kinases mediate Ras-induced cell cycle arrest and differentiation into a neuronal phenotype. Here, we show that in PC12 cells, Ral-GEF activity acts opposite to other Ras effectors. Elevation of Ral-GEF activity induced by transfection of a mutant Ras protein that preferentially activates Ral-GEFs, or by transfection of the catalytic domain of the Ral-GEF Rgr, suppressed cell cycle arrest and neurite outgrowth induced by nerve growth factor (NGF) treatment. In addition, Rgr reduced neurite outgrowth induced by a mutant Ras protein that preferentially activates Raf kinases. Furthermore, inhibition of Ral-GEF activity by expression of a dominant negative Ral mutant accelerated cell cycle arrest and enhanced neurite outgrowth in response to NGF treatment. Ral-GEF activity may function, at least in part, through inhibition of the Rho family GTPases, CDC42 and Rac. In contrast to Ras, which was activated for hours by NGF treatment, Ral was activated for only approximately 20 min. These findings suggest that one function of Ral-GEF signaling induced by NGF is to delay the onset of cell cycle arrest and neurite outgrowth induced by other Ras effectors. They also demonstrate that Ras has the potential to promote both antidifferentiation and prodifferentiation signaling pathways through activation of distinct effector proteins. Thus, in some cell types the ratio of activities among Ras effectors and their temporal regulation may be important determinants for cell fate decisions between proliferation and differentiation.
Collapse
Affiliation(s)
- T Goi
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
89
|
Klesse LJ, Parada LF. p21 ras and phosphatidylinositol-3 kinase are required for survival of wild-type and NF1 mutant sensory neurons. J Neurosci 1998; 18:10420-8. [PMID: 9852579 PMCID: PMC6793354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Nerve growth factor (NGF) is a required differentiation and survival factor for sympathetic and a majority of neural crest-derived sensory neurons in the developing vertebrate peripheral nervous system. Although much is known about the function of NGF, the intracellular signaling cascade that it uses continues to be a subject of intense study. p21 ras signaling is considered necessary for sensory neuron survival. How additional intermediates downstream or in parallel may function has not been fully understood yet. Two intracellular signaling cascades, extra cellular regulated kinase (erk) and phosphatidylinositol-3 (PI 3) kinase, transduce NGF signaling in the pheochromocytoma cell line PC12. To elucidate the role these cascades play in survival and differentiation, we used a combination of recombinant adenoviruses and chemical inhibitors to perturb these pathways in sensory neurons from wild-type mice and mice deficient for neurofibromin in which the survival and differentiation pathway is constitutively active. We demonstrate that ras activity is both necessary and sufficient for the survival of embryonic sensory neurons. Downstream of ras, however, the erk cascade is neither required nor sufficient for neuron survival or overall differentiation. Instead, the activity of PI 3 kinase is necessary for the survival of the wild-type and neurofibromin-deficient neurons. Therefore, we conclude that in sensory neurons, NGF acts via a signaling pathway, which includes both ras and PI 3 kinase.
Collapse
Affiliation(s)
- L J Klesse
- Center for Developmental Biology, University of Texas, Southwestern Medical Center, Dallas, Texas 75235-9133, USA
| | | |
Collapse
|
90
|
Gill JS, Windebank AJ. Direct activation of the high-affinity nerve growth factor receptor by a non-peptide symmetrical polyanion. Neuroscience 1998; 87:855-60. [PMID: 9759973 DOI: 10.1016/s0306-4522(98)00206-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The high-affinity nerve growth factor receptor (gp140TrkA) is a tyrosine kinase receptor. The dimeric ligand, nerve growth factor, activates the receptor by stabilizing homodimer formation, which initiates transautophosphorylation. Suramin is a symmetrical planar polyanionic molecule which is being used as a novel experimental anti-neoplastic agent. Proposed mechanisms of the drug's anti-proliferative activity include blocking mitogenic stimulatory growth factors or inhibition of tumor-specific cellular enzymes. In PC12 cells and in dorsal root ganglion neurons, suramin has been shown to act as a partial agonist for gp140TrkA. We now demonstrate direct activation of gp140TrkA by suramin using in vitro protein kinase assays and receptor dimerization studies. Additionally, activation of phosphatidylinositol-3-kinase by suramin and nerve growth factor was observed with 10-min exposure. The addition of anti-nerve growth factor antibodies along with suramin did not reduce the level of gp140TrkA phosphorylation, excluding induction of an autocrine loop of nerve growth factor release and activation. This demonstrates that a small polyanion can directly activate gp140TrkA via receptor dimerization. Our study reveals a suramin-induced homodimerization of gp140TrkA. This finding correlated with significant neurite outgrowth in naive PC12 cells exposed to the drug. Studies will be initiated to design structural analogs of suramin which possess neurotrophic properties with no associated neurotoxicity.
Collapse
Affiliation(s)
- J S Gill
- Molecular Neuroscience Program, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
91
|
Kim B, Leventhal PS, White MF, Feldman EL. Differential regulation of insulin receptor substrate-2 and mitogen-activated protein kinase tyrosine phosphorylation by phosphatidylinositol 3-kinase inhibitors in SH-SY5Y human neuroblastoma cells. Endocrinology 1998; 139:4881-9. [PMID: 9832424 DOI: 10.1210/endo.139.12.6348] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.
Collapse
Affiliation(s)
- B Kim
- Department of Neurology, University of Michigan, Ann Arbor 48109-0588, USA
| | | | | | | |
Collapse
|
92
|
Yang XM, Toma JG, Bamji SX, Belliveau DJ, Kohn J, Park M, Miller FD. Autocrine hepatocyte growth factor provides a local mechanism for promoting axonal growth. J Neurosci 1998; 18:8369-81. [PMID: 9763480 PMCID: PMC6792841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
In this report, we describe a novel local mechanism necessary for optimal axonal growth that involves hepatocyte growth factor (HGF). Sympathetic neurons of the superior cervical ganglion coexpress bioactive HGF and its receptor, the Met tyrosine kinase, both in vivo and in vitro. Exogenous HGF selectively promotes the growth but not survival of cultured sympathetic neurons; the magnitude of this growth effect is similar to that observed with exogenous NGF. Conversely, HGF antibodies that inhibit endogenous HGF decrease sympathetic neuron growth but have no effect on survival. This autocrine HGF is required locally by sympathetic axons for optimal growth, as demonstrated using compartmented cultures. Thus, autocrine HGF provides a local, intrinsic mechanism for promoting neuronal growth without affecting survival, a role that may be essential during developmental axogenesis or after neuronal injury.
Collapse
Affiliation(s)
- X M Yang
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | | | | | | | | | | | | |
Collapse
|
93
|
Gallo G, Letourneau PC. Localized sources of neurotrophins initiate axon collateral sprouting. J Neurosci 1998; 18:5403-14. [PMID: 9651222 PMCID: PMC6793492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The sprouting of axon collateral branches is important in the establishment and refinement of neuronal connections during both development and regeneration. Collateral branches are initiated by the appearance of localized filopodial activity along quiescent axonal shafts. We report here that sensory neuron axonal shafts rapidly sprout filopodia at sites of contact with nerve growth factor-coated polystyrene beads. Some sprouts can extend up to at least 60 micro(m) through multiple bead contacts. Axonal filopodial sprouts often contained microtubules and exhibited a debundling of axonal microtubules at the site of bead-axon contact. Cytochalasin treatment abolished the filopodial sprouting, but not the accumulation of actin filaments at sites of bead-axon contact. The axonal sprouting response is mediated by the trkA receptor and likely acts through a phosphoinositide-3 kinase-dependent pathway, in a manner independent of intracellular Ca2+ fluctuations. These findings implicate neurotrophins as local cues that directly stimulate the formation of collateral axon branches.
Collapse
Affiliation(s)
- G Gallo
- University of Minnesota, Department of Cell Biology and Neuroanatomy, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
94
|
Plenz D, Kitai ST. Regulation of the nigrostriatal pathway by metabotropic glutamate receptors during development. J Neurosci 1998; 18:4133-44. [PMID: 9592093 PMCID: PMC6792817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dopamine neurons in the substantia nigra heavily innervate the striatum, making it the nucleus with the highest levels of dopamine in the adult brain. The present study analyzes the time course and the density of striatal innervation by nigral dopamine neurons and characterizes the role of the neurotransmitter glutamate during the development of the nigrostriatal pathway. For this purpose, organotypic cultures containing the cortex, the striatum, and the substantia nigra (triple cultures) were prepared from rat brains at postnatal day (PND) 0-2 and were cultured for up to 60 d in vitro (DIV). Dopamine fibers and neurons were labeled using tyrosine hydroxylase (TH) immunohistochemistry. Striatal TH-ir fiber density was quantitatively analyzed using confocal laser scanning microscopy (CLSM). In long-term triple cultures (44 +/- 3 DIV), the striatal dopamine fiber density was high and was weakly correlated with the number of nigral dopamine neurons. The high striatal dopamine fiber density mainly resulted from an enhanced ingrowth and ramification of dopamine fibers from nigral neurons during 8-17 DIV. The metabotropic glutamate receptor (mGluR) antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP-3) selectively inhibited this dopaminergic innervation of the striatum, whereas ionotropic GluR antagonists had no effect. The L-AP-3-mediated inhibition was prevented by the mGluR agonist 1S, 3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD). The inhibition of the striatal dopaminergic innervation by L-AP-3 was further confirmed by anterograde tracing of the nigrostriatal projection with Phaseolus vulgaris leucoagglutinin. These results indicate that glutamate, by acting on group I mGluRs, plays an important "trophic" role for the development of the nigrostriatal dopamine pathway.
Collapse
Affiliation(s)
- D Plenz
- University of Tennessee, College of Medicine, Department of Anatomy and Neurobiology, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
95
|
Kita Y, Kimura KD, Kobayashi M, Ihara S, Kaibuchi K, Kuroda S, Ui M, Iba H, Konishi H, Kikkawa U, Nagata S, Fukui Y. Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J Cell Sci 1998; 111 ( Pt 7):907-15. [PMID: 9490635 DOI: 10.1242/jcs.111.7.907] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that sustained phosphatidylinositol (PI)-3 kinase activity is necessary for neurite outgrowth of PC12 cells induced by nerve growth factor (NGF). Microinjection of a constitutively active mutant of PI-3 kinase induced process formation suggesting that PI-3 kinase is indeed involved in the neurite outgrowth. However, the processes appeared to be incomplete neurites as they had very poor organization of F-actin and GAP43 antigen. The microtubule network was enhanced in the process-bearing cells and process formation was inhibited by colchicine suggesting that microtubules play an important role in process formation downstream of PI-3 kinase. These cell responses were inhibited by dominant-negative mutants of Rac and Sek1/SAPK but not by a dominant-negative mutant Ras and PD98059, a MAP kinase kinase (MEK) inhibitor, suggesting that not the Ras-MAP kinase pathway but the Rac-Jun N-terminal kinase (JNK) pathway is involved in process formation.
Collapse
Affiliation(s)
- Y Kita
- Department of Biological Chemistry, Faculty of Agricultural and Life Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Lakkakorpi PT, Wesolowski G, Zimolo Z, Rodan GA, Rodan SB. Phosphatidylinositol 3-kinase association with the osteoclast cytoskeleton, and its involvement in osteoclast attachment and spreading. Exp Cell Res 1997; 237:296-306. [PMID: 9434625 DOI: 10.1006/excr.1997.3797] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Osteoclast activation involves attachment to the mineralized bone matrix and reorganization of the cytoskeleton, leading to polarization of the cell. Signaling molecules, PI3-kinase, rho A, and pp60c-src, were shown to be essential for osteoclastic bone resorption. In this study we have focused on the involvement of these signaling molecules in the early event of osteoclast activation: attachment, spreading, and organization of the cytoskeleton. Highly purified osteoclasts were fractionated into Triton X-100-soluble or cytosolic and Triton X-100-insoluble or cytoskeletal fractions, and the distribution of above-mentioned signaling molecules between the two fractions was examined. PI3-kinase, rho A, and pp60c-src all showed translocation to the cytoskeletal fraction upon osteoclast attachment to plastic. However, PI3-kinase and rho A, but not pp60c-src, showed further translocation of 2.4- and 3.2-fold, respectively, upon attachment of osteoclasts to bone. PI3-kinase translocation to the cytoskeleton was inhibited by either cytochalasin B or colchicine. Furthermore, treatment of osteoclasts with the PI3-kinase inhibitor wortmannin decreased its translocation, suggesting that PI3-kinase activity was needed for its translocation. Moreover, wortmannin inhibited osteoclast attachment to both bone and plastic and caused drastic changes in osteoclast morphology resulting in rounding of the cells, disappearance of F-actin structures or podosomes, and appearance of punctate or vesicular structures inside the cells. Osteoblastic MB1.8 cells and IC-21 macrophages did not show additional translocation of PI3-kinase or rho A upon attachment to bone or changes in attachment or morphology in response to wortmannin. Finally, PI3-kinase coimmunoprecipitated with alpha v beta 3 integrin from osteoclasts.
Collapse
Affiliation(s)
- P T Lakkakorpi
- Department of Bone Biology and Osteoporosis Research, Merck Research Laboratory, West Point, Pennsylvania 19486, USA
| | | | | | | | | |
Collapse
|
97
|
Philpott KL, McCarthy MJ, Klippel A, Rubin LL. Activated phosphatidylinositol 3-kinase and Akt kinase promote survival of superior cervical neurons. J Biophys Biochem Cytol 1997; 139:809-15. [PMID: 9348296 PMCID: PMC2141707 DOI: 10.1083/jcb.139.3.809] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The signaling pathways that mediate the ability of NGF to support survival of dependent neurons are not yet completely clear. However previous work has shown that the c-Jun pathway is activated after NGF withdrawal, and blocking this pathway blocks neuronal cell death. In this paper we show that over-expression in sympathetic neurons of phosphatidylinositol (PI) 3-kinase or its downstream effector Akt kinase blocks cell death after NGF withdrawal, in spite of the fact that the c-Jun pathway is activated. Yet, neither the PI 3-kinase inhibitor LY294002 nor a dominant negative PI 3-kinase cause sympathetic neurons to die if they are maintained in NGF. Thus, although NGF may regulate multiple pathways involved in neuronal survival, stimulation of the PI 3-kinase pathway is sufficient to allow cells to survive in the absence of this factor.
Collapse
Affiliation(s)
- K L Philpott
- Eisai London Research Laboratories Ltd., Bernard Katz Building, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
98
|
Bartlett SE, Reynolds AJ, Weible M, Heydon K, Hendry IA. In sympathetic but not sensory neurones, phosphoinositide-3 kinase is important for NGF-dependent survival and the retrograde transport of 125I-betaNGF. Brain Res 1997; 761:257-62. [PMID: 9252024 DOI: 10.1016/s0006-8993(97)00329-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The way in which the same ligands and receptors have different functional effects in different cell types must depend on subtle differences in the second messenger cascades. Sensory and sympathetic neurones both retrogradely transport nerve growth factor (NGF) and depend on NGF for their developmental survival. NGF binding to the high affinity tyrosine kinase (TrkA) receptors initiates second messenger signalling cascades, one of which includes the activation of phosphoinositide-3 kinase (PI3-kinase). We demonstrate that 100-fold higher concentrations of the PI3-kinase inhibitor, Wortmannin, are required to inhibit the survival effects and retrograde axonal transport of NGF in sensory neurones than in sympathetic neurones. Similarly, although less potently than Wortmannin, the PI3-kinase inhibitor LY294002 required a 10-fold higher concentration to inhibit the survival effects of NGF in sensory than in sympathetic neurones. Inhibitors of other second messengers, including staurosporine, pertussis and cholera toxins, failed to have an effect on the transport of the NGF receptor complex in both cell types. Also, Wortmannin did not affect the structural integrity of the sympathetic nerve terminals. As PI3-kinase is present in both neuronal populations, this suggests that the Wortmannin sensitive isoform of PI3-kinase (p110) is essential in sympathetic neurones both for survival and for NGF-TrkA receptor complex trafficking. As sensory neurones also depend on NGF for their developmental survival and endocytose and retrogradely transport the NGF-TrkA receptor complex, this population of neurones may either recruit a different isoform of PI3-kinase or utilize PI3-kinase independent signalling pathways for these cellular functions.
Collapse
Affiliation(s)
- S E Bartlett
- Developmental Neurobiology, John Curtin School of Medical Research, Australian National University, Canberra.
| | | | | | | | | |
Collapse
|
99
|
Fitzgerald EM, Dolphin AC. Regulation of rat neuronal voltage-dependent calcium channels by endogenous p21-ras. Eur J Neurosci 1997; 9:1252-61. [PMID: 9215709 DOI: 10.1111/j.1460-9568.1997.tb01480.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Influx of calcium through voltage-dependent calcium channels (VDCCs) has been implicated in the processes of cell growth and differentiation. Various signalling proteins, including nerve growth factor (NGF), p21-ras and src tyrosine kinases, have been suggested to have a role in the regulation of neuronal VDCCs. Using the whole-cell patch-clamp technique we have investigated the role of endogenous p21-ras in the regulation of VDCCs in primary cultured dorsal root ganglion (DRG) neurons obtained from neonatal rats. Neutralization of endogenous p21-ras by microinjection of p21-ras antibody (Y13-259) reduced the maximum peak barium current, I(max), whereas microinjection of oncogenic p21-K-ras increased the current. Thus, endogenous p21-ras is involved in the tonic regulation of calcium currents in these cells. Intracellular application of a phosphopeptide, Trk 490, which prevents the binding of the adaptor protein shc to the activated NGF receptor, so blocking p21-ras activation, reduced I(max). Similarly, deprivation of NGF by overnight incubation in NGF-free medium also reduced I(max). Together, these results suggest that NGF receptor tyrosine kinase activation of p21-ras is likely to be involved in the tonic regulation of VDCCs in DRG neurons. Deprivation of NGF combined with microinjection of p21-ras antibody (Y13-259), however, caused an even greater reduction of I(max). Thus, NGF activation can only partially explain the regulation of these currents by endogenous p21-ras. Src tyrosine kinases have been suggested to activate p21-ras. In DRG neurons, microinjection of purified src tyrosine kinase, pp60c-src, increased I(max) in these cells. However, co-microinjection of pp60c-src with Y13-259 antibody prevented the increase in I(max), implying that pp60c-src can also regulate calcium currents via the activation of endogenous p21-ras. Further support for the involvement of tyrosine kinases in VDCC regulation was provided by the application of the general tyrosine kinase inhibitor, genistein, which also reduced I(max). Thus, VDCCs in rat DRG neurons appear to be tonically up-regulated by endogenous p21-ras. This effect appears largely to involve NGF receptor tyrosine kinase activation of p21-ras. In addition, src tyrosine kinase may also regulate VDCCs, possibly via p21-ras.
Collapse
Affiliation(s)
- E M Fitzgerald
- Department of Pharmacology, Royal Free Hospital School of Medicine, London, UK
| | | |
Collapse
|
100
|
Buscà R, Bertolotto C, Ortonne JP, Ballotti R. Inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway induces B16 melanoma cell differentiation. J Biol Chem 1996; 271:31824-30. [PMID: 8943224 DOI: 10.1074/jbc.271.50.31824] [Citation(s) in RCA: 189] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
alpha-Melanocyte-stimulating hormone and cAMP-elevating agents are known to induce B16 cell differentiation, characterized by increased melanin synthesis and dendrite outgrowth. In order to elucidate intracellular signaling pathways involved in this differentiation process, we focused our interest on the phosphatidylinositol 3-kinase/p70(S6)-kinase pathway. The specific inhibition of phosphatidylinositol 3-kinase by LY294002 markedly stimulated dendrite outgrowth, thus mimicking the action of cAMP-elevating agents on B16 cell morphology. In addition, LY294002 and rapamycin, a specific p70(S6)-kinase inhibitor, were found to independently stimulate tyrosinase expression, thus increasing melanin synthesis. In an attempt to better dissect the molecular mechanisms triggered by cAMP to induce melanoma cell differentiation, we examined the effects of a cAMP-elevating agent forskolin, on both phosphatidylinositol 3-kinase and p70(S6)-kinase activities. Specific kinase assays revealed that forskolin partially inhibited phosphatidylinositol 3-kinase activity and completely blocked p70(S6)-kinase activity and phosphorylation. In conclusion, our results clearly demonstrate that the inhibition of phosphatidylinositol 3-kinase and p70(S6)-kinase is involved in the regulation of B16 cell differentiation. Furthermore, we provide evidence which suggests that cAMP-induced melanogenesis and dendricity are, at least partially, mediated by the cAMP inhibition of the phosphatidylinositol 3-kinase/p70(S6)-kinase signaling pathway.
Collapse
Affiliation(s)
- R Buscà
- INSERM U385, Faculté de Médecine, 06107 Nice, Cedex 02, France.
| | | | | | | |
Collapse
|