51
|
Ekholm-Reed S, Méndez J, Tedesco D, Zetterberg A, Stillman B, Reed SI. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. ACTA ACUST UNITED AC 2004; 165:789-800. [PMID: 15197178 PMCID: PMC2172392 DOI: 10.1083/jcb.200404092] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deregulation of cyclin E expression has been associated with a broad spectrum of human malignancies. Analysis of DNA replication in cells constitutively expressing cyclin E at levels similar to those observed in a subset of tumor-derived cell lines indicates that initiation of replication and possibly fork movement are severely impaired. Such cells show a specific defect in loading of initiator proteins Mcm4, Mcm7, and to a lesser degree, Mcm2 onto chromatin during telophase and early G1 when Mcm2-7 are normally recruited to license origins of replication. Because minichromosome maintenance complex proteins are thought to function as a heterohexamer, loading of Mcm2-, Mcm4-, and Mcm7-depleted complexes is likely to underlie the S phase defects observed in cyclin E-deregulated cells, consistent with a role for minichromosome maintenance complex proteins in initiation of replication and fork movement. Cyclin E-mediated impairment of DNA replication provides a potential mechanism for chromosome instability observed as a consequence of cyclin E deregulation.
Collapse
Affiliation(s)
- Susanna Ekholm-Reed
- Dept. of Molecular Biology, MB-7, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
The MCM2-7 complex, which may act as a replicative helicase during DNA synthesis, plays a central role in S-phase genome stability. MCM proteins are required for processive DNA replication and are a target of S-phase checkpoints. Loss of MCM function causes DNA damage and genome instability. MCM expression is upregulated in proliferating cells, providing a diagnostic marker for both cancerous cells and cells with the potential to become malignant. The role of the MCM complex in genome integrity reflects its activity both at active replication forks and away from forks.
Collapse
Affiliation(s)
- Julie M Bailis
- Molecular and Cell Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
53
|
Prasanth SG, Méndez J, Prasanth KV, Stillman B. Dynamics of pre-replication complex proteins during the cell division cycle. Philos Trans R Soc Lond B Biol Sci 2004; 359:7-16. [PMID: 15065651 PMCID: PMC1693299 DOI: 10.1098/rstb.2003.1360] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Replication of the human genome every time a cell divides is a highly coordinated process that ensures accurate and efficient inheritance of the genetic information. The molecular mechanism that guarantees that many origins of replication fire only once per cell-cycle has been the area of intense research. The origin recognition complex (ORC) marks the position of replication origins in the genome and serves as the landing pad for the assembly of a multiprotein, pre-replicative complex (pre-RC) at the origins, consisting of ORC, cell division cycle 6 (Cdc6), Cdc10-dependent transcript (Cdt1) and mini-chromosome maintenance (MCM) proteins. The MCM proteins serve as key participants in the mechanism that limits eukaryotic DNA replication to once-per-cell-cycle and its binding to the chromatin marks the final step of pre-RC formation, a process referred to as 'replication licensing'. We present data demonstrating how the MCM proteins associate with the chromatin during the G1 phase, probably defining pre-RCs and then anticipate replication fork movement in a precisely coordinated manner during the S phase of the cell cycle. The process of DNA replication must also be carefully coordinated with other cell-cycle processes including mitosis and cytokinesis. Some of the proteins that control initiation of DNA replication are likely to interact with the pathways that control these important cell-cycle transitions. Herein, we discuss the participation of human ORC proteins in other vital functions, in addition to their bona fide roles in replication.
Collapse
Affiliation(s)
- Supriya G Prasanth
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
54
|
Alexandrow MG, Hamlin JL. Cdc6 chromatin affinity is unaffected by serine-54 phosphorylation, S-phase progression, and overexpression of cyclin A. Mol Cell Biol 2004; 24:1614-27. [PMID: 14749377 PMCID: PMC344196 DOI: 10.1128/mcb.24.4.1614-1627.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ectopically expressed Cdc6 is translocated from the nucleus during S phase in a cyclin A-Cdk2-dependent process, suggesting that reinitiation of DNA replication is prevented by removal of phosphorylated Cdc6 from chromatin after origin firing. However, whether endogenous Cdc6 translocates during S phase remains controversial. To resolve the questions regarding regulation of endogenous Cdc6, we cloned the cDNA encoding the Chinese hamster Cdc6 homolog and specifically focused on analyzing the localizations and chromatin affinities of endogenous and exogenous proteins during S phase and following overexpression of cyclin A. In agreement with other reports, ectopically expressed Cdc6 translocates from the nucleus during S phase and in response to overexpressed cyclin A. In contrast, using a combination of biochemical and immunohistochemical assays, we show convincingly that endogenous Cdc6 remains nuclear and chromatin bound throughout the entire S period, while Mcm5 loses chromatin affinity during S phase. Overexpression of cyclin A is unable to alter the nuclear localization of Cdc6. Furthermore, using a phosphospecific antibody we show that phosphoserine-54 Cdc6 maintains a high affinity for chromatin during the S period. Considering recent in vitro studies, these data are consistent with a proposed model in which Cdc6 is serine-54 phosphorylated during S phase and functions as a chromatin-bound signal that prevents reformation of prereplication complexes.
Collapse
Affiliation(s)
- Mark G Alexandrow
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
55
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
56
|
Shin JH, Jiang Y, Grabowski B, Hurwitz J, Kelman Z. Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases. J Biol Chem 2003; 278:49053-62. [PMID: 12975364 DOI: 10.1074/jbc.m308599200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replicative DNA helicases are ring-shaped hexamers that play an essential role in DNA synthesis by separating the two strands of chromosomal DNA to provide the single-stranded (ss) substrate for replicative polymerases. Biochemical and structural studies suggest that these helicases translocate along one strand of the duplex, which passes through and interacts with the central channel of these ring-shaped hexamers, and displace the complementary strand. A number of these helicases were shown to also encircle both strands simultaneously and then translocate along double-stranded (ds)DNA. In this report it is shown that the Schizosaccharomyces pombe Mcm4,6,7 complex and archaeal minichromosome maintenance (MCM) helicase from Methanothermobacter thermautotrophicus move along duplex DNA. These two helicases, however, differ in the substrate required to support dsDNA translocation. Although the S. pombe Mcm4,6,7 complex required a 3'-overhang ssDNA region to initiate its association with the duplex, the archaeal protein initiated its transit along dsDNA in the absence of a 3'-overhang region, as well. Furthermore, DNA substrates containing a streptavidin-biotin steric block inhibited the movement of the eukaryotic helicase along ss and dsDNAs but not of the archaeal enzyme. The M. thermautotrophicus MCM helicase, however, was shown to displace a streptavidin-biotin complex from ss, as well as dsDNAs. The possible roles of dsDNA translocation by the MCM proteins during the initiation and elongation phases of chromosomal replication are discussed.
Collapse
Affiliation(s)
- Jae-Ho Shin
- University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology, Rockville, Maryland 20850 USA
| | | | | | | | | |
Collapse
|
57
|
Lea NC, Orr SJ, Stoeber K, Williams GH, Lam EWF, Ibrahim MAA, Mufti GJ, Thomas NSB. Commitment point during G0-->G1 that controls entry into the cell cycle. Mol Cell Biol 2003; 23:2351-61. [PMID: 12640120 PMCID: PMC150729 DOI: 10.1128/mcb.23.7.2351-2361.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Initiation of T-lymphocyte-mediated immune responses involves two cellular processes: entry into the cell cycle (G(0)-->G(1)) for clonal proliferation and coordinated changes in surface and secreted molecules that mediate effector functions. However, a point during G(0)-->G(1) beyond which T cells are committed to enter the cell cycle has not been defined. We define here a G(0)-->G(1) commitment point that occurs 3 to 5 h after CD3 and CD28 stimulation of human CD4 or CD8 T cells. Transition through this point requires cdk6/4-cyclin D, since inhibition with TAT-p16(INK4A) during the first 3 to 5 h prevents cell cycle entry and maintains both naive and memory T cells in G(0). Transition through the G(0)-->G(1) commitment point is also necessary for T cells to increase in size, i.e., to enter the cellular growth cycle. However, transition through this point is not required for the induction of effector functions. These can be initiated while cells are maintained in G(0) with TAT-p16(INK4A). We have termed this quiescent, activated state G(0(A)). Our data provide proof of the principle that entry of T cells into the cell cycle and cellular growth cycles are coupled at the G(0)-->G(1) commitment point but that these processes can be uncoupled from the early expression of molecules of effector functions.
Collapse
Affiliation(s)
- Nicholas C Lea
- Department of Haematological Medicine, Leukaemia Sciences Laboratories, Guy's, King's and St. Thomas' School of Medicine, London SE5 9NU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Kneissl M, Pütter V, Szalay AA, Grummt F. Interaction and assembly of murine pre-replicative complex proteins in yeast and mouse cells. J Mol Biol 2003; 327:111-28. [PMID: 12614612 DOI: 10.1016/s0022-2836(03)00079-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Eukaryotic cells coordinate chromosome duplication by the assembly of protein complexes at origins of DNA replication by sequential binding of member proteins of the origin recognition complex (ORC), CDC6, and minichromosome maintenance (MCM) proteins. These pre-replicative complexes (pre-RCs) are activated by cyclin-dependent kinases and DBF4/CDC7 kinase. Here, we carried out a comprehensive yeast two-hybrid screen to establish sequential interactions between two individual proteins of the mouse pre-RC that are probably required for the initiation of DNA replication. The studies revealed multiple interactions among ORC subunits and MCM proteins as well as interactions between individual ORC and MCM proteins. In particular CDC6 was found to bind strongly to ORC1 and ORC2, and to MCM7 proteins. DBF4 interacts with the subunits of ORC as well as with MCM proteins. It was also demonstrated that CDC7 binds to different ORC and MCM proteins. CDC45 interacts with ORC1 and ORC6, and weakly with MCM3, -6, and -7. The three subunits of the single-stranded DNA binding protein RPA show interactions with various ORC subunits as well as with several MCM proteins. The data obtained by yeast two-hybrid analysis were paradigmatically confirmed in synchronized murine FM3A cells by immunoprecipitation of the interacting partners. Some of the interactions were found to be cell-cycle-dependent; however, most of them were cell-cycle-independent. Altogether, 90 protein-protein interactions were detected in this study, 52 of them were found for the first time in any eukaryotic pre-RC. These data may help to understand the complex interplay of the components of the mouse pre-RC and should allow us to refine its structural architecture as well as its assembly in real time.
Collapse
Affiliation(s)
- Margot Kneissl
- Institute of Biochemistry, University of Würzburg, Biozentrum Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
59
|
Laskey RA, Madine MA. A rotary pumping model for helicase function of MCM proteins at a distance from replication forks. EMBO Rep 2003; 4:26-30. [PMID: 12524516 PMCID: PMC1315806 DOI: 10.1038/sj.embor.embor706] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Accepted: 10/30/2002] [Indexed: 02/05/2023] Open
Abstract
We propose an integrated model for eukaryotic DNA replication to explain the following problems: (1) How is DNA spooled through fixed sites of replication? (2) What and where are the helicases that unwind replicating DNA? (3) Why are the best candidates for replicative helicases, namely mini-chromosome maintenance (MCM) proteins, not concentrated at the replication fork? (4) How do MCM proteins spread away from loading sites at origins of replication? We draw on recent discoveries to argue that the MCM hexameric ring is a rotary motor that pumps DNA along its helical axis by simple rotation, such that the movement resembles that of a threaded bolt through a nut, and we propose that MCM proteins act at a distance from the replication fork to unwind DNA. This model would place DNA replication in a growing list of processes, such as recombination and virus packaging, that are mediated by ring-shaped ATPases pumping DNA by helical rotation.
Collapse
Affiliation(s)
- Ronald A Laskey
- MRC Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, UK.
| | | |
Collapse
|
60
|
Takei Y, Assenberg M, Tsujimoto G, Laskey R. The MCM3 acetylase MCM3AP inhibits initiation, but not elongation, of DNA replication via interaction with MCM3. J Biol Chem 2002; 277:43121-5. [PMID: 12226073 DOI: 10.1074/jbc.c200442200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins are essential components of pre-replication complexes, which limit DNA replication to once per cell cycle. MCM3 acetylating protein, MCM3AP, binds and acetylates MCM3 and inhibits cell cycle progression. In the present study, we examined inhibition of the cell cycle by MCM3AP in a cell-free system. We show here that wild type MCM3AP, but not the acetylase-deficient mutant, inhibits initiation of DNA replication, but not elongation. Both wild type and acetylase-deficient mutant MCM3AP, however, can bind to chromatin through interaction with MCM3. These results indicate that MCM3 acetylase activity of MCM3AP is required to inhibit initiation of DNA replication and that association of MCM3AP to chromatin alone is not sufficient for the inhibition. We also show that interaction between MCM3 and MCM3AP is essential for nuclear localization and chromatin binding of MCM3AP. Furthermore, the chromatin binding of MCM3AP is temporally correlated with that of endogenous MCM3 when cells were released from mitosis. Hence, MCM3AP is a potent natural inhibitor of the initiation of DNA replication whose action is mediated by interaction with MCM3.
Collapse
Affiliation(s)
- Yoshinori Takei
- Medical Research Council (MRC) Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 2XZ, United Kingdom.
| | | | | | | |
Collapse
|
61
|
Cheng IH, Roberts LA, Tye BK. Mcm3 is polyubiquitinated during mitosis before establishment of the pre-replication complex. J Biol Chem 2002; 277:41706-14. [PMID: 12200430 DOI: 10.1074/jbc.m205793200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To ensure fidelity in genome duplication, eukaryotes restrict DNA synthesis to once every cell division by a cascade of regulated steps. Central to this cascade is the periodic assembly of the hexameric MCM2-7 complex at replication origins. However, in Saccharomyces cerevisiae, only a fraction of each MCM protein is able to assemble into hexamers and associate with replication origins during M phase, suggesting that MCM complex assembly and recruitment may be regulated post-translationally. Here we show that a small fraction of Mcm3p is polyubiquitinated at the onset of MCM complex assembly. Reducing the rate of ubiquitination by uba1-165, a suppressor of mcm3-10, restored the interaction of Mcm3-10p with subunits of the MCM complex and its recruitment to the replication origin. Possible roles for ubiquitinated Mcm3p in the assembly of the MCM complex at replication origins are discussed.
Collapse
Affiliation(s)
- Irene H Cheng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
62
|
Dimitrova DS, Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 2002; 115:4037-51. [PMID: 12356909 DOI: 10.1242/jcs.00087] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the organization of DNA replication sites in primary (young or presenescent), immortalized and transformed mammalian cells. Four different methods were used to visualize replication sites: in vivo pulse-labeling with 5-bromo-2'-deoxyuridine (BrdU), followed by either acid depurination, or incubation in nuclease cocktail to expose single-stranded BrdU-substituted DNA regions for immunolabeling; biotin-dUTP labeling of nascent DNA by run-on replication within intact nuclei and staining with fluorescent streptavidin; and, finally, immunolabeling of the replication fork proteins PCNA and RPA. All methods produced identical results, demonstrating no fundamental differences in the spatio-temporal organization of replication patterns between primary, immortal or transformed mammalian cells. In addition, we did not detect a spatial coincidence between the early firing replicons and nuclear lamin proteins, the retinoblastoma protein or the nucleolus in primary human and rodent cells. The retinoblastoma protein does not colocalize in vivo with members of the Mcm family of proteins (Mcm2, 3 and 7) at any point of the cell cycle and neither in the chromatin-bound nor in the soluble nucleoplasmic fraction. These results argue against a direct role for the retinoblastoma or nuclear lamin proteins in mammalian DNA synthesis under normal physiological conditions.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
63
|
Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 2002; 277:33049-57. [PMID: 12087101 DOI: 10.1074/jbc.m204438200] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MCM2-7 complex is believed to function as the eukaryotic replicative DNA helicase. It is recruited to chromatin by the origin recognition complex (ORC), Cdc6, and Cdt1, and it is activated at the G(1)/S transition by Cdc45 and the protein kinases Cdc7 and Cdk2. Paradoxically, the number of chromatin-bound MCM complexes greatly exceeds the number of bound ORC complexes. To understand how the high MCM2-7:ORC ratio comes about, we examined the binding of these proteins to immobilized linear DNA fragments in Xenopus egg extracts. The minimum length of DNA required to recruit ORC and MCM2-7 was approximately 80 bp, and the MCM2-7:ORC ratio on this fragment was approximately 1:1. With longer DNA fragments, the MCM2-7:ORC ratio increased dramatically, indicating that MCM complexes normally become distributed over a large region of DNA surrounding ORC. Only a small subset of the chromatin-bound MCM2-7 complexes recruited Cdc45 at the onset of DNA replication, and unlike Cdc45, MCM2-7 was not limiting for DNA replication. However, all the chromatin-bound MCM complexes may be functional, because they were phosphorylated in a Cdc7-dependent fashion, and because they could be induced to support Cdk2-dependent Cdc45 loading. The data suggest that in Xenopus egg extracts, origins of replication contain multiple, distributed, initiation-competent MCM2-7 complexes.
Collapse
Affiliation(s)
- Melissa C Edwards
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
64
|
Borel F, Lacroix FB, Margolis RL. Prolonged arrest of mammalian cells at the G1/S boundary results in permanent S phase stasis. J Cell Sci 2002; 115:2829-38. [PMID: 12082144 DOI: 10.1242/jcs.115.14.2829] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian cells in culture normally enter a state of quiescence during G1 following suppression of cell cycle progression by senescence, contact inhibition or terminal differentiation signals. We find that mammalian fibroblasts enter cell cycle stasis at the onset of S phase upon release from prolonged arrest with the inhibitors of DNA replication, hydroxyurea or aphidicolin. During arrest typical S phase markers remain present, and G0/G1 inhibitory signals such as p21WAF1 and p27 are absent. Cell cycle stasis occurs in T-antigen transformed cells, indicating that p53 and pRB inhibitory circuits are not involved. While no DNA replication is evident in arrested cells, nuclei isolated from these cells retain measurable competence for in vitro replication. MCM proteins are required to license replication origins, and are put in place in nuclei in G1 and excluded from chromatin by the end of replication to prevent rereplication of the genome. Strikingly, MCM proteins are strongly depleted from chromatin during prolonged S phase arrest,and their loss may underlie the observed cell cycle arrest. S phase stasis may thus be a `trap' in which cells otherwise competent for S phase have lost a key component required for replication and thus can neither go forward nor retreat to G1 status.
Collapse
Affiliation(s)
- Franck Borel
- Institut de Biologie Structurale J-P Ebel (CEA-CNRS), 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | |
Collapse
|
65
|
Rialland M, Sola F, Santocanale C. Essential role of human CDT1 in DNA replication and chromatin licensing. J Cell Sci 2002; 115:1435-40. [PMID: 11896191 DOI: 10.1242/jcs.115.7.1435] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of pre-replicative complexes at origins is an early cell cycle event essential for DNA duplication. A large body of evidence supports the notion that Cdc6 protein, through its interaction with the origin recognition complex, is required for pre-replicative complex assembly by loading minichromosome maintenance proteins onto DNA. In fission yeast and Xenopus, this reaction known as the licensing of chromatin for DNA replication also requires the newly identified Cdt1 protein. We studied the role of hCdt1 protein in the duplication of the human genome by antibody microinjection experiments and analyzed its expression during the cell cycle in human non-transformed cells. We show that hCdt1 is essential for DNA replication in intact human cells, that it executes its function in a window of the cell cycle overlapping with pre-replicative complex formation and that it is necessary for the loading of minichromosome maintenance proteins onto chromatin. Intriguingly, we observed that hCdt1 protein, in contrast to other licensing factors, is already present in serum-deprived G0 arrested cells and its levels increase only marginally upon re-entry in the cell cycle.
Collapse
Affiliation(s)
- Mickael Rialland
- DRO-Oncology, Pharmacology Department, Pharmacia Corp., Via Pasteur 10, 20014 Nerviano, Italy
| | | | | |
Collapse
|
66
|
Pasion SG, Forsburg SL. Deconstructing a conserved protein family: the role of MCM proteins in eukaryotic DNA replication. GENETIC ENGINEERING 2002; 23:129-55. [PMID: 11570101 DOI: 10.1007/0-306-47572-3_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- S G Pasion
- Molecular Biology and Virology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | | |
Collapse
|
67
|
Schwed G, May N, Pechersky Y, Calvi BR. Drosophila minichromosome maintenance 6 is required for chorion gene amplification and genomic replication. Mol Biol Cell 2002; 13:607-20. [PMID: 11854416 PMCID: PMC65653 DOI: 10.1091/mbc.01-08-0400] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Duplication of the eukaryotic genome initiates from multiple origins of DNA replication whose activity is coordinated with the cell cycle. We have been studying the origins of DNA replication that control amplification of eggshell (chorion) genes during Drosophila oogenesis. Mutation of genes required for amplification results in a thin eggshell phenotype, allowing a genetic dissection of origin regulation. Herein, we show that one mutation corresponds to a subunit of the minichromosome maintenance (MCM) complex of proteins, MCM6. The binding of the MCM complex to origins in G1 as part of a prereplicative complex is critical for the cell cycle regulation of origin licensing. We find that MCM6 associates with other MCM subunits during amplification. These results suggest that chorion origins are bound by an amplification complex that contains MCM proteins and therefore resembles the prereplicative complex. Lethal alleles of MCM6 reveal it is essential for mitotic cycles and endocycles, and suggest that its function is mediated by ATP. We discuss the implications of these findings for the role of MCMs in the coordination of DNA replication during the cell cycle.
Collapse
Affiliation(s)
- Gina Schwed
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
68
|
Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, Hirst WJ. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6021-30. [PMID: 11698483 DOI: 10.4049/jimmunol.167.10.6021] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumors produce a variety of immunosuppressive factors which can prevent the proliferation and maturation of a number of normal hemopoietic cell types. We have investigated whether primary acute myeloid leukemia (AML) cells have an effect on normal T cell function and signaling. Tumor cell supernatant (TSN) from AML cells inhibited T cell activation and Th1 cytokine production and also prevented activated T cells from entering the cell cycle. These effects occurred in the absence of AML cell-T cell contact. We have demonstrated that AML TSN contained none of the immunosuppressors described to date, namely gangliosides, nitric oxide, TGF-beta, IL-10, vascular endothelial growth factor, or PGs. Furthermore, IL-2 did not overcome the block, despite normal IL-2R expression. However, the effect was overcome by preincubation with inhibitors of protein secretion and abolished by trypsinization, indicating that the active substance includes one or more proteins. To determine the mechanism of inhibition, we have studied many of the major pathways involved in T cell activation and proliferation. We show that nuclear translocation of NFATc and NF-kappaB are markedly reduced in T cells activated in the presence of primary AML cells. In contrast, calcium mobilization and activation of other signal transduction pathways, namely extracellular signal-regulated kinase1/2, p38, and STAT5 were unaffected, but activation of c-Jun N-terminal kinase 1/2 was delayed. Phosphorylation of pRb by cyclin-dependent kinase 6/4-cyclin D and of p130 did not occur and c-Myc, cyclin D3, and p107 were not induced, consistent with cell cycle inhibition early during the transition from G(0) to G(1). Our data indicate that TSN generated by AML cells induces T cell immunosuppression and provides a mechanism by which the leukemic clone could evade T cell-mediated killing.
Collapse
Affiliation(s)
- A G Buggins
- Department of Haematological Medicine, Leukaemia Sciences, Guy's, King's and St. Thomas' School of Medicine, Rayne Institute, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
69
|
Kappes F, Burger K, Baack M, Fackelmayer FO, Gruss C. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem 2001; 276:26317-23. [PMID: 11333257 DOI: 10.1074/jbc.m100162200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent data revealed that DEK associates with splicing complexes through interactions mediated by serine/arginine-repeat proteins. However, the DEK protein has also been shown to change the topology of DNA in chromatin in vitro. This could indicate that the DEK protein resides on cellular chromatin. To investigate the in vivo localization of DEK, we performed cell fractionation studies, immunolabeling, and micrococcal nuclease digestion analysis. Most of the DEK protein was found to be released by DNase treatment of nuclei, and only a small amount by treatment with RNase. Furthermore, micrococcal nuclease digestion of nuclei followed by glycerol gradient sedimentation revealed that DEK co-sedimentates with oligonucleosomes, clearly demonstrating that DEK is associated with chromatin in vivo. Additional chromatin fractionation studies, based on the different accessibilities to micrococcal nuclease, showed that DEK is associated both with extended, genetically active and more densely organized, inactive chromatin. We found no significant change in the amount and localization of DEK in cells that synchronously traversed the cell cycle. In summary these data demonstrate that the major portion of DEK is associated with chromatin in vivo and suggest that it might play a role in chromatin architecture.
Collapse
Affiliation(s)
- F Kappes
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
70
|
Birner P, Ritzi M, Musahl C, Knippers R, Gerdes J, Voigtländer T, Budka H, Hainfellner JA. Immunohistochemical detection of cell growth fraction in formalin-fixed and paraffin-embedded murine tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 158:1991-6. [PMID: 11395376 PMCID: PMC1891991 DOI: 10.1016/s0002-9440(10)64670-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody MIB-1 is a reliable tool for determining proliferating cells in human tissues, but does not react with the homologous mouse antigen and is therefore useless in experimental pathology using mice as model systems. Standard method for assessment of cellular proliferation in formalin-fixed, paraffin-embedded murine tissues is immunohistochemical detection of DNA synthesis using antibodies against exogenously injected 5-bromodeoxyuridine (BrdU), which is a tedious procedure and not useful for routine investigations. We tested monoclonal antibody MIB-5 and monoclonal and polyclonal anti-MCM3 antibodies as immunohistochemical proliferation markers for paraffin-embedded nonneoplastic and neoplastic tissues of wild-type and transgenic mice, compared to anti-BrdU immunostaining. Percentage of proliferating cells was determined with continuously decreasing antibody dilutions. Percentages of MIB-5 and anti-BrdU immunostained cells correlated strongly, as well as percentage of MIB-5-decorated cells and frequency of mitotic figures. Anti-MCM3 antibodies labeled significantly higher percentages of cells than anti-BrdU or MIB-5, and showed a linear decrease with increasing antibody dilutions. We conclude that MIB-5 detects reliably the cell growth fraction in formalin fixed, paraffin-embedded murine tissues, bypassing methodological drawbacks of BrdU. Anti-MCM3 antibodies are less useful for determination of proliferating cells although they might detect the fraction of cells remaining competent for proliferation.
Collapse
Affiliation(s)
- P Birner
- Institutes of Clinical Pathology and Neurology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Stoeber K, Tlsty TD, Happerfield L, Thomas GA, Romanov S, Bobrow L, Williams ED, Williams GH. DNA replication licensing and human cell proliferation. J Cell Sci 2001; 114:2027-41. [PMID: 11493639 DOI: 10.1242/jcs.114.11.2027] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The convergence point of growth regulatory pathways that control cell proliferation is the initiation of genome replication, the core of which is the assembly of pre-replicative complexes resulting in chromatin being ‘licensed’ for DNA replication in the subsequent S phase. We have analysed regulation of the pre-replicative complex proteins ORC, Cdc6, and MCM in cycling and non-proliferating quiescent, differentiated and replicative senescent human cells. Moreover, a human cell-free DNA replication system has been exploited to study the replicative capacity of nuclei and cytosolic extracts prepared from these cells. These studies demonstrate that downregulation of the Cdc6 and MCM constituents of the replication initiation pathway is a common downstream mechanism for loss of proliferative capacity in human cells. Furthermore, analysis of MCM protein expression in self-renewing, stable and permanent human tissues shows that the three classes of tissue have developed very different growth control strategies with respect to replication licensing. Notably, in breast tissue we found striking differences between the proportion of mammary acinar cells that express MCM proteins and those labelled with conventional proliferation markers, raising the intriguing possibility that progenitor cells of some tissues are held in a prolonged G1 phase or ‘in-cycle arrest’. We conclude that biomarkers for replication-licensed cells detect, in addition to actively proliferating cells, cells with growth potential, a concept that has major implications for developmental and cancer biology.
Collapse
Affiliation(s)
- K Stoeber
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Kreitz S, Ritzi M, Baack M, Knippers R. The human origin recognition complex protein 1 dissociates from chromatin during S phase in HeLa cells. J Biol Chem 2001; 276:6337-42. [PMID: 11102449 DOI: 10.1074/jbc.m009473200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the association of human origin recognition complex (ORC) proteins hOrc1p and hOrc2p with chromatin in HeLa cells. Independent procedures including limited nuclease digestion and differential salt extraction of isolated nuclei showed that a complex containing hOrc1p and hOrc2p occurs in a nuclease-resistant compartment of chromatin and can be eluted with moderate high salt concentrations. A second fraction of hOrc2p that dissociates in vitro at low salt conditions was found to occur in a chromatin compartment characterized by its high accessibility to micrococcal nuclease. Functional differences between these two sites become apparent in HeLa cells that synchronously enter the S phase after a release from a double-thymidine block. The hOrc1p/hOrc2p-containing complexes dissociate from their chromatin sites during S phase and reassociate at the end of mitosis. In contrast, the fraction of hOrc2p in nuclease-accessible, more open chromatin remains bound during all phases of the cell cycle. We propose that the hOrc1p/hOrc2p-containing complexes are components of the human origin recognition complex. Thus, the observed cell cycle-dependent release of the hOrc1p/hOrc2p-containing complexes is in line with previous studies with Xenopus and Drosophila systems, which indicated that a change in ORC stability occurs after prereplication complex formation. This could be a powerful mechanism that prevents the rereplication of already replicated chromatin in the metazoan cell cycle.
Collapse
Affiliation(s)
- S Kreitz
- Department of Biology, Universität Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
73
|
Abstract
The MCM2-7 complex is essential for both the initiation and elongation phases of eukaryotic chromosome replication. There is some evidence that MCM2-7 proteins may act as a DNA helicase; at the same time, a variety of other DNA helicases have also been implicated in the replication of eukaryotic chromosomes.
Collapse
Affiliation(s)
- K Labib
- Chromosome Replication Laboratory, ICRF Clare Hall Laboratories, Blanche Lane, South Mimms, EN6 3LD, Hertfordshire,
| | | |
Collapse
|
74
|
Kreitz S, Fackelmayer FO, Gerdes J, Knippers R. The proliferation-specific human Ki-67 protein is a constituent of compact chromatin. Exp Cell Res 2000; 261:284-92. [PMID: 11082298 DOI: 10.1006/excr.2000.5064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The human nuclear Ki-67 protein (Ki-67p) is expressed in proliferating, but not in quiescent, cells and is therefore widely used as a proliferation marker in histopathological research and practice. However, information regarding its intranuclear location is scarce and controversial. Here we describe the results of cell fractionation and nuclease digestion experiments using nuclei isolated from human HeLa cells in interphase. Ki-67p dissociates at 0.3-0.4 M NaCl from its nuclear binding sites, and gradient centrifugations indicate that the released Ki-67p is most likely a single molecular entity and not complexed to other proteins. In nuclei, prepared under physiological salt conditions, the binding sites are largely resistant against micrococcal nuclease. However, when prepared at very low ionic strengths, chromatin regions with associated Ki-67p become accessible to micococcal-nuclease-producing chromatin fragments that carry bound Ki-67p. We conclude that Ki-67p is a chromatin protein and resides at densely packed regions, probably heterochromatin. Our data provide a useful basis for further biochemical research on this human nuclear protein.
Collapse
Affiliation(s)
- S Kreitz
- Department of Biology, Universität Konstanz, Konstanz, D-78457, Germany.
| | | | | | | |
Collapse
|
75
|
Méndez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20:8602-12. [PMID: 11046155 PMCID: PMC102165 DOI: 10.1128/mcb.20.22.8602-8612.2000] [Citation(s) in RCA: 763] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence obtained from studies with yeast and Xenopus indicate that the initiation of DNA replication is a multistep process. The origin recognition complex (ORC), Cdc6p, and minichromosome maintenance (MCM) proteins are required for establishing prereplication complexes, upon which initiation is triggered by the activation of cyclin-dependent kinases and the Dbf4p-dependent kinase Cdc7p. The identification of human homologues of these replication proteins allows investigation of S-phase regulation in mammalian cells. Using centrifugal elutriation of several human cell lines, we demonstrate that whereas human Orc2 (hOrc2p) and hMcm proteins are present throughout the cell cycle, hCdc6p levels vary, being very low in early G(1) and accumulating until cells enter mitosis. hCdc6p can be polyubiquitinated in vivo, and it is stabilized by proteasome inhibitors. Similar to the case for hOrc2p, a significant fraction of hCdc6p is present on chromatin throughout the cell cycle, whereas hMcm proteins alternate between soluble and chromatin-bound forms. Loading of hMcm proteins onto chromatin occurs in late mitosis concomitant with the destruction of cyclin B, indicating that the mitotic kinase activity inhibits prereplication complex formation in human cells.
Collapse
Affiliation(s)
- J Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
76
|
Abstract
The MCM proteins are essential replication initiation factors originally identified as proteins required for minichromosome maintenance in Saccharomyces cerevisiae. The best known among them are a family of six structurally related proteins, MCM2-7, which are evolutionally conserved in all eukaryotes. The MCM2-7 proteins form a hexameric complex. This complex is a key component of the prereplication complex that assembles at replication origins during early G1 phase. New evidence suggests that the MCM2-7 proteins may be involved not only in the initiation but also in the elongation of DNA replication. Orchestration of the functional interactions between the MCM2-7 proteins and other components of the prereplication complex by cell cycle-dependent protein kinases results in initiation of DNA synthesis once every cell cycle.
Collapse
Affiliation(s)
- B K Tye
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853-2703, USA
| |
Collapse
|
77
|
Coverley D, Pelizon C, Trewick S, Laskey RA. Chromatin-bound Cdc6 persists in S and G2 phases in human cells, while soluble Cdc6 is destroyed in a cyclin A-cdk2 dependent process. J Cell Sci 2000; 113 ( Pt 11):1929-38. [PMID: 10806104 DOI: 10.1242/jcs.113.11.1929] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdc6 is essential for the initiation of DNA replication in all organisms in which it has been studied. In addition, recombinant Cdc6 can stimulate initiation in G(1) nuclei in vitro. We have analysed the behaviour of recombinant Cdc6 in mammalian cell extracts under in vitro replication conditions. We find that Cdc6 is imported into the nucleus in G(1)phase, where it binds to chromatin and remains relatively stable. In S phase, exogenous Cdc6 is destroyed in a process that requires import into the nucleus and phosphorylation by a chromatin-bound protein kinase. Recombinant cyclin A-cdk2 can completely substitute for the nucleus in promoting destruction of soluble Xenopus and human Cdc6. Despite this regulated destruction, endogenous Cdc6 persists in the nucleus after initiation, although the amount falls. Cdc6 levels remain constant in G(2) then fall again before mitosis. We propose that cyclin A-cdk2 phosphorylation results in destruction of any Cdc6 not assembled into replication complexes, but that assembled proteins remain, in the phosphorylated state, in the nucleus. This process could contribute to the prevention of reinitiation in human cells by making free Cdc6 unavailable for re-assembly into replication complexes after G(1) phase.
Collapse
Affiliation(s)
- D Coverley
- Wellcome/CRC Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR and Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | | | |
Collapse
|
78
|
Krude T. Initiation of human DNA replication in vitro using nuclei from cells arrested at an initiation-competent state. J Biol Chem 2000; 275:13699-707. [PMID: 10788489 DOI: 10.1074/jbc.275.18.13699] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of human DNA replication is investigated in vitro, using initiation-competent nuclei isolated from cells arrested in late G(1) phase by a 24-h treatment with 0.5 mm mimosine (Krude, T. (1999) Exp. Cell Res. 247, 148-159). Nuclei isolated from mimosine-arrested HeLa cells initiate semiconservative DNA replication upon incubation in cytosolic extracts from proliferating human cells. Initiation occurs in the absence and presence of a nuclear membrane. The cyclin-dependent kinase (Cdk) inhibitors roscovitine and olomoucine inhibit initiation of DNA replication, indicating a dependence of initiation on Cdk activity. Cell fractionation shows that cyclins A, E, and Cdk2 are bound to nuclei from mimosine-arrested cells. Exogenously added human cyclin A.Cdk2 and cyclin E.Cdk2 complexes, but not cyclin B1/Cdk1 or cyclin D2/Cdk6, can overcome inhibition of initiation by roscovitine in vitro. Depleting Cdk2 from cytosolic extract does not prevent initiation, demonstrating that cyclin.Cdk2 complexes are not required in the soluble extract, but are provided by the nuclei. Initiation depends further on an essential and soluble activity present in cytosolic extracts from proliferating cells, but not from mimosine-arrested cells, acting together with nuclear cyclin/Cdk2 activity.
Collapse
Affiliation(s)
- T Krude
- Wellcome/CRC Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom.
| |
Collapse
|
79
|
Madine MA, Swietlik M, Pelizon C, Romanowski P, Mills AD, Laskey RA. The roles of the MCM, ORC, and Cdc6 proteins in determining the replication competence of chromatin in quiescent cells. J Struct Biol 2000; 129:198-210. [PMID: 10806069 DOI: 10.1006/jsbi.2000.4218] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most eukaryotic cell types can withdraw from proliferative cell cycles and remain quiescent for extended periods. Intact nuclei isolated from quiescent murine NIH3T3 cells fail to replicate in vitro when incubated in Xenopus egg extracts, although intact nuclei from proliferating cells replicate well. Permeabilization of the nuclear envelope rescues the ability of quiescent nuclei to replicate in the extract. We show that origin replication complex (ORC), minichromosome maintenance (MCM), and Cdc6 proteins are all present in early quiescent cells. Immunodepletion of Cdc6 or the MCM complex from Xenopus egg extract inhibits replication of permeable, quiescent, but not proliferating, NIH3T3 nuclei. Immunoblotting results demonstrate that mouse homologues of Mcm2, Mcm5, and Cdc6 are displaced from chromatin in quiescent cells. However, this absence of chromatin-bound Cdc6 and MCM proteins from quiescent cells appears not to be due to the absence of ORC subunits as murine homologues of Orc1 and Orc2 remain chromatin-bound in quiescent cells. Surprisingly, intact quiescent nuclei fail to bind exogenously added XCdc6 or to replicate in Xenopus egg extracts immunodepleted of ORC, even though G1- or S-phase nuclei still replicate in these extracts. Our results identify Cdc6 and the MCM complex as essential replication components absent from quiescent chromatin due to nonfunctional chromatin-bound ORC proteins. These results can explain why quiescent mammalian nuclei are unable to replicate in vivo and in Xenopus egg extracts.
Collapse
Affiliation(s)
- M A Madine
- Department of Zoology, Wellcome/CRC Institute, Tennis Court Road, Cambridge, CB2 1QR, United Kingdom
| | | | | | | | | | | |
Collapse
|
80
|
Ritzi M, Knippers R. Initiation of genome replication: assembly and disassembly of replication-competent chromatin. Gene 2000; 245:13-20. [PMID: 10713440 DOI: 10.1016/s0378-1119(00)00020-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Considerable progress has been made in research on the initiation of eukaryotic genome replication. This has generated a number of recent review articles. Here, we briefly summarize the major conclusions described in these articles and also include the results of more recent primary articles. The consensus view that has emerged is that a pre-replication complex assembles during the G1 phase of the cell cycle, making chromatin competent for replication. The complex consists of Orc proteins, Cdc6p, and the family of Mcm proteins. Chromatin, thus 'licenced' for replication, is guided into the S phase by the activation of cell-cycle-regulated protein kinases. Upon entry into S phase, the pre-replication complex is partially dissolved, first by the dissociation of Cdc6p and then by the gradual release of Mcm proteins. This appears to be accompanied by a recruitment of chain elongation factors and the establishment of replication forks.
Collapse
Affiliation(s)
- M Ritzi
- Department of Biology Universität Konstanz D - 78457, Konstanz, Germany
| | | |
Collapse
|
81
|
Prokhorova TA, Blow JJ. Sequential MCM/P1 subcomplex assembly is required to form a heterohexamer with replication licensing activity. J Biol Chem 2000; 275:2491-8. [PMID: 10644704 PMCID: PMC3626232 DOI: 10.1074/jbc.275.4.2491] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Replication licensing factor (RLF) is a multiprotein complex involved in ensuring that chromosomal DNA replicates only once in a single cell cycle. It comprises two components, termed RLF-M and RLF-B. Purified RLF-M consists of a mixture of complexes containing all six members of the MCM/P1 family of minichromosome maintenance proteins. The precise composition of these different complexes and their contribution to RLF-M activity has been unclear. Here we show that in Xenopus extracts, MCM/P1 proteins mainly form heterohexamers containing each of the six proteins. This heterohexamer is readily split into subcomplexes, whose interactions and subunit composition we characterize in detail. We show for the first time an ordered multistep assembly pathway by which the heterohexamer can be reformed from the subcomplexes. Importantly, this novel pathway is essential for DNA replication, since only the full heterohexamer can bind productively to chromatin and provide RLF-M activity.
Collapse
Affiliation(s)
| | - J. Julian Blow
- Author for correspondence: , Phone: (+44) 01382 - 345797, Fax: (+44) 01382 - 348072
| |
Collapse
|
82
|
Ogawa Y, Takahashi T, Masukata H. Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins. Mol Cell Biol 1999; 19:7228-36. [PMID: 10490657 PMCID: PMC84715 DOI: 10.1128/mcb.19.10.7228] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.
Collapse
Affiliation(s)
- Y Ogawa
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | | | | |
Collapse
|
83
|
Abstract
In eukaryote, nuclear structure is a key component for the functions of eukaryotic cells. More and more evidences show that the nuclear structure plays important role in regulating DNA replication. The nuclear structure provides a physical barrier for the replication licensing, participates in the decision where DNA replication initiates, and organizes replication proteins as replication factory for DNA replication. Through these works, new concepts on the regulation of DNA replication have emerged, which will be discussed in this minireview.
Collapse
Affiliation(s)
- W J Rui
- Shanghai Institute of Biochemistry, Chinese Academy of Sciences, USA.
| |
Collapse
|
84
|
Dimitrova DS, Todorov IT, Melendy T, Gilbert DM. Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J Cell Biol 1999; 146:709-22. [PMID: 10459007 PMCID: PMC2156148 DOI: 10.1083/jcb.146.4.709] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 07/23/1999] [Indexed: 11/22/2022] Open
Abstract
Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase.
Collapse
Affiliation(s)
- Daniela S. Dimitrova
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Health Science Center, Syracuse, New York 13210
| | | | - Thomas Melendy
- Department of Microbiology, S.U.N.Y. at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | - David M. Gilbert
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Health Science Center, Syracuse, New York 13210
| |
Collapse
|
85
|
Snaith HA, Forsburg SL. Rereplication phenomenon in fission yeast requires MCM proteins and other S phase genes. Genetics 1999; 152:839-51. [PMID: 10388806 PMCID: PMC1460649 DOI: 10.1093/genetics/152.3.839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe can be induced to perform multiple rounds of DNA replication without intervening mitoses by manipulating the activity of the cyclin-dependent kinase p34(cdc2). We have examined the role in this abnormal rereplication of a large panel of genes known to be involved in normal S phase. The genes analyzed can be grouped into four classes: (1) those that have no effect on rereplication, (2) others that delay DNA accumulation, (3) several that allow a gradual increase in DNA content but not in genome equivalents, and finally, (4) mutations that completely block rereplication. The rereplication induced by overexpression of the CDK inhibitor Rum1p or depletion of the Cdc13p cyclin is essentially the same and requires the activity of two minor B-type cyclins, cig1(+) and cig2(+). In particular, the level, composition, and localization of the MCM protein complex does not alter during rereplication. Thus rereplication in fission yeast mimics the DNA synthesis of normal S phase, and the inability to rereplicate provides an excellent assay for novel S-phase mutants.
Collapse
Affiliation(s)
- H A Snaith
- The Salk Institute for Biological Studies, La Jolla, California 92037-1099, USA
| | | |
Collapse
|
86
|
Gonzales M, Haan K, Baker SE, Fitchmun M, Todorov I, Weitzman S, Jones JC. A cell signal pathway involving laminin-5, alpha3beta1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol Biol Cell 1999; 10:259-70. [PMID: 9950675 PMCID: PMC25167 DOI: 10.1091/mbc.10.2.259] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/1998] [Accepted: 11/25/1998] [Indexed: 11/11/2022] Open
Abstract
Laminin-5 (LN5) is a matrix component of epithelial tissue basement membranes and plays an important role in the initiation and maintenance of epithelial cell anchorage to the underlying connective tissue. Here we show that two distinct LN5 function-inhibitory antibodies, both of which bind the globular domain of the alpha3 subunit, inhibit proliferation of epithelial cells. These same antibodies also induce a decrease in mitogen-activated protein kinase activity. Inhibition of proliferation by the function-perturbing LN5 antibodies is reversed upon removal of the antibodies and can be overcome by providing the antibody-treated cells with exogenous LN5 and rat tail collagen. Because epithelial cells use the integrin receptor alpha3beta1 to interact with both LN5 and rat tail collagen, we next investigated the possibility that integrin alpha3beta1 is involved in mediating the proliferative impact of LN5. Proliferation of human epithelial cells is significantly inhibited by a function-perturbing alpha3 integrin antibody. In addition, antibody activation of beta1 integrin restores the proliferation of epithelial cells treated with LN5 function-perturbing antibodies. These data indicate that a complex comprising LN5 and alpha3beta1 integrin is multifunctional and contributes not only to epithelial cell adhesion but also to the regulation of cell growth via a signaling pathway involving mitogen-activated protein kinase. We discuss our study in light of recent evidence that LN5 expression is up-regulated at the leading tips of tumors, where it may play a role in tumor cell proliferation.
Collapse
Affiliation(s)
- M Gonzales
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Coué M, Amariglio F, Maiorano D, Bocquet S, Méchali M. Evidence for different MCM subcomplexes with differential binding to chromatin in Xenopus. Exp Cell Res 1998; 245:282-9. [PMID: 9851868 DOI: 10.1006/excr.1998.4271] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MCM proteins are molecular components of the DNA replication licensing system in Xenopus. These proteins comprise a conserved family made up of six distinct members which have been found to associate in large protein complexes. We have used a combination of biochemical and cytological methods to study the association of soluble and chromatin-bound Xenopus MCM proteins during the cell cycle. In interphase, soluble MCM proteins are found organized in a core salt-resistant subcomplex that includes MCM subunits which are known to have high affinity for histones. The interphasic complex is modified at mitosis and the subunit composition of the resulting mitotic subcomplexes is distinct, indicating that the stability of the MCM complex is under cell cycle control. Moreover, we provide evidence that the binding of MCM proteins to chromatin may occur in sequential steps involving the loading of distinct MCM subunits. Comparative analysis of the chromatin distribution of MCM2, 3, and 4 shows that the binding of MCM4 is distinct from that of MCM2 and 3. Altogether, these data suggest that licensing of chromatin by MCMs occurs in an ordered fashion involving discrete subcomplexes.
Collapse
Affiliation(s)
- M Coué
- Institut Jacques Monod, CNRS, Université Paris 7, 2 place Jussieu, Paris Cedex 05, 75251, France
| | | | | | | | | |
Collapse
|
88
|
Zhang JJ, Zhao Y, Chait BT, Lathem WW, Ritzi M, Knippers R, Darnell JE. Ser727-dependent recruitment of MCM5 by Stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J 1998; 17:6963-71. [PMID: 9843502 PMCID: PMC1171044 DOI: 10.1093/emboj/17.23.6963] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stat1alpha is a latent cytoplasmic transcription factor activated in response to interferon-gamma (IFN-gamma). The C-terminal 38 amino acids of Stat1alpha are required to trigger transcription and therefore may possibly serve as a transcription activation domain (TAD). Here we show that the C-terminus of Stat1alpha is an independent TAD which can interact with a specific group of nuclear proteins. Mutation of the Stat1 Ser727 and Leu724 decreases its transcriptional activity and affinity for the nuclear proteins. One of the interacting proteins was identified as MCM5, a member of the mini-chromosome maintenance (MCM) family involved in DNA replication. Both in vitro and in vivo interaction of Stat1alpha and MCM5 were demonstrated. Furthermore, the in vitro interaction required Ser727 and was enhanced by its phosphorylation. Transient over-expression of MCM5 enhanced transcriptional activation by Stat1alpha in a Ser727-dependent manner. Finally, changes in the level of nuclear localized MCM5 during the cell cycle correlated with the changes in transcriptional response to IFN-gamma acting through Stat1alpha. These results strongly suggest that MCM5 is recruited through interaction with Stat1alpha in a Ser727- and Leu724-dependent manner to play a role in optimal transcriptional activation.
Collapse
Affiliation(s)
- J J Zhang
- Laboratory of Molecular Cell Biology, Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Ritzi M, Baack M, Musahl C, Romanowski P, Laskey RA, Knippers R. Human minichromosome maintenance proteins and human origin recognition complex 2 protein on chromatin. J Biol Chem 1998; 273:24543-9. [PMID: 9733749 DOI: 10.1074/jbc.273.38.24543] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minichromosome maintenance (Mcm) proteins and the constituents of the origin recognition complex (Orc) are essential components of the eukaryotic replication initiation apparatus. Published evidence strongly suggests that the binding of Mcm proteins to chromatin is contingent upon the prior binding of Orc proteins. Here we use two different approaches to investigate the presence of the human ORC2 protein and of Mcm proteins on chromatin of HeLa cells in various cell cycle phases. First, we mobilized chromatin-bound proteins by micrococcal nuclease and analyzed the resulting digestion products by sucrose gradient centrifugations. Under digestion conditions when Mcm proteins were almost entirely released from chromatin, ORC2 protein was found to be associated with chromatin fragments containing several hundred base pairs of DNA. Second, we used an in vivo cross-linking procedure to covalently link Mcm proteins and ORC2 to DNA by short exposure of intact HeLa cells to formaldehyde. Specific immunoprecipitations revealed that cross-linked nucleoprotein fragments carried either Mcm proteins or ORC2 protein, but not both. Based on the lengths of the DNA fragments in immunoprecipitates, we estimate that the distance between chromatin-bound ORC2 protein and chromatin-bound Mcm proteins must be at least 500-1000 base pairs in HeLa cells.
Collapse
Affiliation(s)
- M Ritzi
- Department, Universität Konstanz, D-78457 Konstanz, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
90
|
Kukimoto I, Aihara S, Yoshiike K, Kanda T. Human papillomavirus oncoprotein E6 binds to the C-terminal region of human minichromosome maintenance 7 protein. Biochem Biophys Res Commun 1998; 249:258-62. [PMID: 9705868 DOI: 10.1006/bbrc.1998.9066] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oncoprotein E6 of the human papillomavirus (HPV) associated with cervical cancer (HPV-16 and -18) degrades tumor suppressor protein p53, but seems to have p53-independent transforming functions. We searched for other cellular targets for the N-terminal region of HPV-16 E6 using a yeast two-hybrid system. The E6 was found to bind to the C-terminal region of a human minichromosome maintenance 7 (hMCM7) protein, which is a component of replication licensing factors. The full-length hMCM7 translated in vitro was capable of binding to bacterially expressed E6. In yeast cells the E6s of the cancer-associated HPVs (HPV-16, -18, and -58) bound to hMCM7 more strongly than those of the HPVs associated with a benign tumor (HPV-6 and -11). Binding of E6 with hMCM7 may cause chromosomal abnormalities found in the human cells expressing E6s of oncogenic HPVs.
Collapse
Affiliation(s)
- I Kukimoto
- Division of Molecular Genetics, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | |
Collapse
|
91
|
Richter A, Baack M, Holthoff HP, Ritzi M, Knippers R. Mobilization of chromatin-bound Mcm proteins by micrococcal nuclease. Biol Chem 1998; 379:1181-7. [PMID: 9792452 DOI: 10.1515/bchm.1998.379.8-9.1181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mcm (minichromosome maintenance) proteins are important components of the eukaryotic replication initiation apparatus. We investigate the binding of human Mcm proteins to HeLa cell chromatin using micrococcal nuclease as a tool. In previous work we prepared chromatin under low ionic strength conditions. The use of a low salt buffer was necessary to prevent the dissociation of Mcm proteins. Here we use chromatin prepared at more physiological salt concentrations (100 mM NaCl) following the procedure of Fujita et al. (J. Biol. Chem. 272, 10928-10935; 1997) who had shown that ATP stabilizes the interaction of Mcm proteins with chromatin. We show here that micrococcal nuclease released Mcm proteins early during the digestion process suggesting that Mcm proteins reside on chromatin sites which are more open to nuclease attack than bulk chromatin. Released Mcm proteins sedimented through glycerol gradients as a multiprotein complex comprising several of the six known human Mcm proteins.
Collapse
Affiliation(s)
- A Richter
- Department of Biology, Universität Konstanz, Germany
| | | | | | | | | |
Collapse
|
92
|
Fujita M, Yamada C, Tsurumi T, Hanaoka F, Matsuzawa K, Inagaki M. Cell cycle- and chromatin binding state-dependent phosphorylation of human MCM heterohexameric complexes. A role for cdc2 kinase. J Biol Chem 1998; 273:17095-101. [PMID: 9642275 DOI: 10.1074/jbc.273.27.17095] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mammalian MCM protein family, presently with six members, exists in the nuclei in two forms, chromatin-bound and unbound. The former dissociates from chromatin with progression through the S phase. Recently, we have established a procedure to isolate chromatin-bound and unbound complexes containing all six human MCM (hMCM) proteins by immunoprecipitation. In the present study, we applied this procedure to HeLa cells synchronized in each of the G1, S, and G2/M phases and could detect hMCM heterohexameric complexes in all three. In addition, depending on the cell cycle and the state of chromatin association, hMCM2 and 4 in the complexes were found to variously change their phosphorylation states. Concentrating attention on G2/M phase hyperphosphorylation, we found hMCM2 and 4 in the complexes to be good substrates for cdc2/cyclin B in vitro. Furthermore, when cdc2 kinase was inactivated in temperature-sensitive mutant murine FT210 cells, the G2/M hyperphosphorylation of the murine MCM2 and MCM4 and release of the MCMs from chromatin in the G2 phase were severely impaired. Taken together, the data suggest that the six mammalian MCM proteins function and undergo cell cycle-dependent regulation as heterohexameric complexes and that phosphorylation of the complexes by cdc2 kinase may be one of mechanisms negatively regulating the MCM complex-chromatin association.
Collapse
Affiliation(s)
- M Fujita
- Laboratories of Viral Oncology, Research Institute, Aichi Cancer Center, Chikusa-ku, Nagoya, 464, Japan.
| | | | | | | | | | | |
Collapse
|
93
|
Kearsey SE, Labib K. MCM proteins: evolution, properties, and role in DNA replication. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1398:113-36. [PMID: 9689912 DOI: 10.1016/s0167-4781(98)00033-5] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
94
|
Marheineke K, Krude T. Nucleosome assembly activity and intracellular localization of human CAF-1 changes during the cell division cycle. J Biol Chem 1998; 273:15279-86. [PMID: 9614144 DOI: 10.1074/jbc.273.24.15279] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We characterized changes of nucleosome assembly activity, intracellular localization, and reversible phosphorylation of the human chromatin assembly factor CAF-1 during the somatic cell division cycle. HeLa cells were synchronized in the G1, S, G2, and M phases of the cell cycle. All three subunits of human CAF-1 (p150, p60, and p48) are present during the entire cell cycle. In interphase, p150 and p60 are bound to the nucleus, but they predominantly dissociate from chromatin during mitosis. During S phase, p150 and p60 are concentrated at sites of intranuclear DNA replication. Only a fraction of total p48 is associated with p150 and p60, and the majority is present in other high molecular weight complexes. The other nucleosome assembly protein, NAP-1, is predominantly cytosolic throughout the cell cycle. Human CAF-1 efficiently mediates nucleosome assembly during complementary DNA strand synthesis in G1, S, and G2 phase cytosolic extracts. Active CAF-1 can be isolated as a 6.5 S complex from G1, S, and G2 phase nuclei. In contrast, CAF-1 isolated from mitotic cytosol does not support nucleosome assembly during DNA synthesis. In mitosis, the p60 subunit of inactive CAF-1 is hyperphosphorylated, whereas active CAF-1 in interphase contains hypophosphorylated and/or phosphorylated forms of p60.
Collapse
Affiliation(s)
- K Marheineke
- Wellcome/Cancer Research Campaign Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom and the Department of Zoology, University of Cambridge, United Kingdom
| | | |
Collapse
|
95
|
Ishimi Y, Komamura Y, You Z, Kimura H. Biochemical function of mouse minichromosome maintenance 2 protein. J Biol Chem 1998; 273:8369-75. [PMID: 9525946 DOI: 10.1074/jbc.273.14.8369] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins play an essential role in eukaryotic DNA replication and bind to chromatin before the initiation of DNA replication. We reported that MCM protein complexes consisting of MCM2, -4, -6, and -7 bind strongly to a histone-Sepharose column (Ishimi, Y., Ichinose, S., Omori, A., Sato, K., and Kimura, H. (1996) J. Biol. Chem. 271, 24115-24122). Here, we have analyzed this interaction at the molecular level. We found that among six mouse MCM proteins, only MCM2 binds to histone; amino acid residues 63-153 are responsible for this binding. The region required for nuclear localization of MCM2 was mapped near this histone-binding domain. Far-Western blotting analysis of truncated forms of H3 histone indicated that amino acid residues 26-67 of H3 histone are required for binding to MCM2. We have also shown that mouse MCM2 can inhibit the DNA helicase activity of the human MCM4, -6, and -7 protein complex. These results suggest that MCM2 plays a different role in the initiation of DNA replication than the other MCM proteins.
Collapse
Affiliation(s)
- Y Ishimi
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194, Japan.
| | | | | | | |
Collapse
|
96
|
Holthoff HP, Baack M, Richter A, Ritzi M, Knippers R. Human protein MCM6 on HeLa cell chromatin. J Biol Chem 1998; 273:7320-5. [PMID: 9516426 DOI: 10.1074/jbc.273.13.7320] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minichromosome maintenance (Mcm) proteins perform essential functions regulating the replication of chromatin. Human cells, like other eukaryotic cells, express at least six Mcm proteins conserved in the central region. We have earlier described the primary structures of five human Mcm proteins, but the primary structure of the sixth human Mcm protein, MCM6, was identified only recently. We now use antibodies, specific for the MCM6 protein, to assess its intranuclear distribution. We find that a fraction of MCM6 protein occurs in the nucleosol, forming multiprotein complexes with other Mcm proteins. More importantly, we use for the first time micrococcal nuclease as a tool to investigate the association of MCM6 protein with chromatin. After short digestion times, a considerable fraction of the MCM6 protein is released from chromatin as a multiprotein complex that includes other Mcm proteins as well. In addition, fractions of MCM3 and MCM6 proteins are released by nuclease digestion as monomeric proteins indicating that at least these two Mcm proteins may also occur as single molecules on chromatin. The data also suggest that the chromatin regions with bound Mcm proteins are more vulnerable to nuclease attack than bulk chromatin and may therefore differ in the arrangement of nucleosomes.
Collapse
Affiliation(s)
- H P Holthoff
- Department of Biology, Universität Konstanz, D-78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
97
|
Su TT, O'Farrell PH. Chromosome association of minichromosome maintenance proteins in Drosophila endoreplication cycles. J Cell Biol 1998; 140:451-60. [PMID: 9456309 PMCID: PMC2140170 DOI: 10.1083/jcb.140.3.451] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Minichromosome maintenance (MCM) proteins are essential eukaryotic DNA replication factors. The binding of MCMs to chromatin oscillates in conjunction with progress through the mitotic cell cycle. This oscillation is thought to play an important role in coupling DNA replication to mitosis and limiting chromosome duplication to once per cell cycle. The coupling of DNA replication to mitosis is absent in Drosophila endoreplication cycles (endocycles), during which discrete rounds of chromosome duplication occur without intervening mitoses. We examined the behavior of MCM proteins in endoreplicating larval salivary glands, to determine whether oscillation of MCM-chromosome localization occurs in conjunction with passage through an endocycle S phase. We found that MCMs in polytene nuclei exist in two states: associated with or dissociated from chromosomes. We demonstrate that cyclin E can drive chromosome association of DmMCM2 and that DNA synthesis erases this association. We conclude that mitosis is not required for oscillations in chromosome binding of MCMs and propose that cycles of MCM-chromosome association normally occur in endocycles. These results are discussed in a model in which the cycle of MCM-chromosome associations is uncoupled from mitosis because of the distinctive program of cyclin expression in endocycles.
Collapse
Affiliation(s)
- T T Su
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94143-0448, USA
| | | |
Collapse
|
98
|
Coverley D, Wilkinson HR, Madine MA, Mills AD, Laskey RA. Protein kinase inhibition in G2 causes mammalian Mcm proteins to reassociate with chromatin and restores ability to replicate. Exp Cell Res 1998; 238:63-9. [PMID: 9457057 DOI: 10.1006/excr.1997.3829] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intact nuclei from G2-phase mammalian cells will replicate their DNA in Xenopus egg extract if they are preexposed to the protein kinase inhibitor 6-dimethylaminopurine in vivo (Coverley et al., Exp. Cell Res. 225, 294-300, 1996). Here, we demonstrate that this competence to rereplicate is accompanied by alterations in the subcellular distribution of the Mcm family of proteins, which are implicated in replication licensing (Hennessy et al., Genes Dev. 4, 2252-2263, 1990; Kubota et al., Cell 81, 601-609, 1995; and Chong et al., Nature 375, 418-421, 1995). All family members reassociate with chromatin in G2 cells and this correlates closely with regeneration of replication competence. Moreover, newly bound Mcm proteins are functional for replication because, unlike untreated G2 nuclei, replication of treated G2 nuclei in vitro occurs independent of the Xenopus Mcm protein complex. These observations show that the postreplicative state is actively maintained in G2 cells by a protein kinase(s) which regulates the behavior of Mcm family proteins.
Collapse
Affiliation(s)
- D Coverley
- Department of Zoology, University of Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
99
|
Connelly MA, Zhang H, Kieleczawa J, Anderson CW. The promoters for human DNA-PKcs (PRKDC) and MCM4: divergently transcribed genes located at chromosome 8 band q11. Genomics 1998; 47:71-83. [PMID: 9465298 DOI: 10.1006/geno.1997.5076] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 30-kb genomic segment containing the promoter and first 9 exons of PRKDC, the gene encoding the catalytic subunit (DNA-PKcs) of the human DNA-activated protein kinase, DNA-PK, was isolated and partially sequenced. Sequence comparison with the NCBI nonredundant database revealed the locations of the first 13 exons of the upstream gene, MCM4. MCM4 is an essential component of a protein complex that prevents DNA from being replicated more than once per cell cycle. The MCM4 and DNA-PKcs promoters are in CpG islands separated by approximately 700 bp, and transcription from each initiates at multiple, closely spaced sites. Both promoters lack TATA boxes, and the MCM4 promoter also lacks an initiator (Inr) element but has an inverted CCAAT box. The DNA-PKcs promoter has an Inr-like sequence as well as a downstream MED-1 element. The two promoters appear to function independently, as sequences required for core promoter activity do not overlap, and sequences extending into the 5' region of each gene had little or no effect on transcription of the other gene, as shown in transient transfection assays. The arrangement of the PRKDC/MCM4 gene pair is similar to that of the ATM/E14(NPAT) gene pair. ATM, the product of the gene mutated in ataxia telangiectasia, and DNA-PKcs function in pathways that detect or repair DNA damage and are members of a family of large, serine/threonine kinases that are closely related to phosphatidylinositol 3 kinases.
Collapse
Affiliation(s)
- M A Connelly
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | |
Collapse
|
100
|
Ye XS, Fincher RR, Tang A, McNeal KK, Gygax SE, Wexler AN, Ryan KB, James SW, Osmani SA. Proteolysis and tyrosine phosphorylation of p34cdc2/cyclin B. The role of MCM2 and initiation of DNA replication to allow tyrosine phosphorylation of p34cdc2. J Biol Chem 1997; 272:33384-93. [PMID: 9407133 DOI: 10.1074/jbc.272.52.33384] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously, it has been shown that Aspergillus cells lacking the function of nimQ and the anaphase-promoting complex (APC) component bimEAPC1 enter mitosis without replicating DNA. Here nimQ is shown to encode an MCM2 homologue. Although mutation of nimQMCM2 inhibits initiation of DNA replication, a few cells do enter mitosis. Cells arrested at G1/S by lack of nimQMCM2 contain p34(cdc2)/cyclin B, but p34(cdc2) remains tyrosine dephosphorylated, even after DNA damage. However, arrest of DNA replication using hydroxyurea followed by inactivation of nimQMCM2 and bimEAPC1 does not abrogate the S phase arrest checkpoint over mitosis. nimQMCM2, likely via initiation of DNA replication, is therefore required to trigger tyrosine phosphorylation of p34(cdc2) during the G1 to S transition, which may occur by inactivation of nimTcdc25. Cells lacking both nimQMCM2 and bimEAPC1 are deficient in the S phase arrest checkpoint over mitosis because they lack both tyrosine phosphorylation of p34(cdc2) and the function of bimEAPC1. Initiation of DNA replication, which requires nimQMCM2, is apparently critical to switch mitotic regulation from the APC to include tyrosine phosphorylation of p34(cdc2) at G1/S. We also show that cells arrested at G1/S due to lack of nimQMCM2 continue to replicate spindle pole bodies in the absence of DNA replication and can undergo anaphase in the absence of APC function.
Collapse
Affiliation(s)
- X S Ye
- Henry Hood Research Program, Weis Center for Research, Pennsylvania State University College of Medicine, Danville, Pennsylvania 17822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|