51
|
Lee SL, Lee HK, Chin TY, Tu SC, Kuo MH, Kao MC, Wu YC. Inhibitory Effects of Purple Sweet Potato Leaf Extract on the Proliferation and Lipogenesis of the 3T3-L1 Preadipocytes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015. [DOI: 10.1142/s0192415x15500536] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Purple sweet potato leaves (PSPLs) are healthy vegetable that is rich in anti-oxidants. A solution of boiling water extract of PSPL (PSPLE) is believed to be able to prevent obesity and metabolic syndrome in the countryside of Taiwan, but its efficacy has not yet been verified. The purpose of this study was to investigate the possible anti-adipogenesis effect of PSPLE in vitro. PSPLE was used to treat the 3T3-L1 cells, and the effects on cell proliferation and adipogenesis were investigated. The results showed that PSPLE caused a dose-dependent decrease in the cell proliferation of 3T3-L1 preadipocytes, but did not alter the cell viability. In addition, PSPLE induced ERK inactivation in the 3T3-L1 preadipocytes. Furthermore, pre-treatment of confluent 3T3-L1 cells with PSPLE led to reduced lipid accumulation in differentiated 3T3-L1 cells. The inhibition of lipogenesis could result from the PSPLE-induced down-regulation of the expression of the C/EBPα and SREBP-1 transcription factors during 3T3-L1 adipocyte differentiation. These results suggest that PSPLE not only inhibits cell proliferation at an early stage but also inhibits adipogenesis at a later stage of the differentiation program.
Collapse
Affiliation(s)
- Shou-Lun Lee
- Department of Biological Science and Technology, Taiwan
| | - Hsien-Kuang Lee
- Department of Anesthesiology, Chang Bing Show Chwan Memorial Hospital, Changhua County 50544, Taiwan
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli, Taoyuan 32023, Taiwan
| | - Ssu-Chieh Tu
- Department of Biological Science and Technology, Taiwan
| | - Ming-Hsun Kuo
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli, Taoyuan 32023, Taiwan
| | | | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
- Chinese Medicine Research and Development Center, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
52
|
Unser AM, Tian Y, Xie Y. Opportunities and challenges in three-dimensional brown adipogenesis of stem cells. Biotechnol Adv 2015; 33:962-79. [PMID: 26231586 DOI: 10.1016/j.biotechadv.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
Abstract
The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics.
Collapse
Affiliation(s)
- Andrea M Unser
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yangzi Tian
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA
| | - Yubing Xie
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, 257 Fuller Road Albany, NY 12203, USA.
| |
Collapse
|
53
|
Singh S, Rajput YS, Barui AK, Sharma R, Grover S. Expression of developmental genes in brown fat cells grown in vitro is linked with lipid accumulation. In Vitro Cell Dev Biol Anim 2015; 51:1003-11. [DOI: 10.1007/s11626-015-9930-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 06/08/2015] [Indexed: 01/19/2023]
|
54
|
Purple Sweet Potato Leaf Extract Induces Apoptosis and Reduces Inflammatory Adipokine Expression in 3T3-L1 Differentiated Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:126302. [PMID: 26170870 PMCID: PMC4480248 DOI: 10.1155/2015/126302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 11/17/2022]
Abstract
Background. Purple sweet potato leaves (PSPL) are widely grown and are considered a healthy vegetable in Taiwan. PSPL contain a high content of flavonoids, and the boiling water-extracted PSPL (PSPLE) is believed to prevent metabolic syndrome. However, its efficacy has not yet been verified. Therefore, we investigated the effect of PSPLE on adipocytes. Methods. The differentiated 3T3-L1 cells used in this study were derived from preadipocytes that were differentiated into adipocytes using an adipogenic agent (insulin, dexamethasone, and 3-isobutyl-1-methylxanthine); approximately 90% of the cells were differentiated using this method. Results. Treating the differentiated 3T3-L1 cells with PSPLE caused a dose-dependent decrease in the number of adipocytes rather than preadipocytes. In addition, treatment with PSPLE resulted in apoptosis of the differentiated 3T3-L1 cells as determined by DAPI analysis and flow cytometry. PSPLE also increased the expression of cleaved caspase-3 and poly ADP-ribose polymerase (PARP). Furthermore, PSPLE induced downregulation of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) gene expression in the differentiated 3T3-L1 cells. Conclusions. These results suggest that PSPLE not only induced apoptosis but also downregulated inflammation-associated genes in the differentiated 3T3-L1 cells.
Collapse
|
55
|
Kim YM, Kim IH, Choi JW, Lee MK, Nam TJ. The anti-obesity effects of a tuna peptide on 3T3-L1 adipocytes are mediated by the inhibition of the expression of lipogenic and adipogenic genes and by the activation of the Wnt/β-catenin signaling pathway. Int J Mol Med 2015; 36:327-34. [PMID: 26046125 PMCID: PMC4501660 DOI: 10.3892/ijmm.2015.2231] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/28/2015] [Indexed: 01/25/2023] Open
Abstract
The differentiation of 3T3-L1 cells into adipocytes involves the activation of an organized system of obesity-related genes, of which those encoding CCAAT/enhancer-binding proteins (C/EBPs) and the Wnt-10b protein may play integral roles. In a previous study of ours, we found that a specific peptide found in tuna (sequence D-I-V-D-K-I-E-I; termed TP-D) inhibited 3T3-L1 cell differentiation. In the present study, we observed that the expression of expression of C/EBPs and Wnt-10b was associated with obesity. The initial step of 3T3-L1 cell differentiation involved the upregulation of C/EBP-α expression, which in turn activated various subfactors. An upstream effector of glycogen synthase kinase-3β (GSK-3β) inhibited Wnt-10b expression in 3T3-L1 adipocytes. In a previous study of ours, we sequenced the tuna peptide via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quadrupole time-of-flight mass spectrometry (Q-TOF MS/MS) and confirmed the anti-obesity effects thereof in 3T3-L1 adipocytes. In the present study, we demonstrate that TP-D inhibits C/EBP and promotes Wnt-10b mRNA expression, thus activating the Wnt pathway. The inhibition of lipid accumulation was measured using a glucose and triglyceride (TG) assay. Our results confirmed that TP-D altered the expression levels of C/EBP-related genes in a dose-dependent manner and activated the Wnt signaling pathway. In addition, we confirmed that total adiponectin and high-molecular weight (HMW) adiponectin levels were reduced by treatment with TP-D. These data indicate that TP-D inhibits adipocyte differentiation through the inhibition of C/EBP genes and the subsequent activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - In-Hye Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Jeong-Wook Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Min-Kyeong Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| | - Taek-Jeong Nam
- Department of Food Science and Nutrition, Pukyong National University, Busan 608‑737, Republic of Korea
| |
Collapse
|
56
|
Paul C, Sardet C, Fabbrizio E. The Wnt-target gene Dlk-1 is regulated by the Prmt5-associated factor Copr5 during adipogenic conversion. Biol Open 2015; 4:312-6. [PMID: 25681392 PMCID: PMC4359737 DOI: 10.1242/bio.201411247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein arginine methyl transferase 5 (Prmt5) regulates various differentiation processes, including adipogenesis. Here, we investigated adipogenic conversion in cells and mice in which Copr5, a Prmt5- and histone-binding protein, was genetically invalidated. Compared to control littermates, the retroperitoneal white adipose tissue (WAT) of Copr5 KO mice was slightly but significantly reduced between 8 and 16 week/old and contained fewer and larger adipocytes. Moreover, the adipogenic conversion of Copr5 KO embryoid bodies (EB) and of primary embryo fibroblasts (Mefs) was markedly delayed. Differential transcriptomic analysis identified Copr5 as a negative regulator of the Dlk-1 gene, a Wnt target gene involved in the control of adipocyte progenitors cell fate. Dlk-1 expression was upregulated in Copr5 KO Mefs and the Vascular Stromal Fraction (VSF) of Copr5 KO WAT. Chromatin immunoprecipitation (ChIP) show that the ablation of Copr5 has impaired both the recruitment of Prmt5 and β-catenin at the Dlk-1 promoter. Overall, our data suggest that Copr5 is involved in the transcriptional control exerted by the Wnt pathway on early steps of adipogenesis.
Collapse
Affiliation(s)
- Conception Paul
- Equipe labellisée Ligue Contre le Cancer, Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 34293 Montpellier, France Université Montpellier I and II, 34000 Montpellier, France
| | - Claude Sardet
- Equipe labellisée Ligue Contre le Cancer, Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 34293 Montpellier, France Université Montpellier I and II, 34000 Montpellier, France Institut de Recherche en Cancérologie de Montpellier, Inserm, U1194, 34298 Montpellier, France
| | - Eric Fabbrizio
- Equipe labellisée Ligue Contre le Cancer, Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 34293 Montpellier, France Université Montpellier I and II, 34000 Montpellier, France Institut de Recherche en Cancérologie de Montpellier, Inserm, U1194, 34298 Montpellier, France
| |
Collapse
|
57
|
Ozeki N, Kawai R, Hase N, Hiyama T, Yamaguchi H, Kondo A, Nakata K, Mogi M. RETRACTED: α2 Integrin, extracellular matrix metalloproteinase inducer, and matrix metalloproteinase-3 act sequentially to induce differentiation of mouse embryonic stem cells into odontoblast-like cells. Exp Cell Res 2015; 331:21-37. [DOI: 10.1016/j.yexcr.2014.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 11/26/2022]
|
58
|
Alvarado-Velez M, Pai SB, Bellamkonda RV. Hydrogels as carriers for stem cell transplantation. IEEE Trans Biomed Eng 2015; 61:1474-81. [PMID: 24759280 DOI: 10.1109/tbme.2014.2305753] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stem cells are a promising source for cell replacement therapy for several degenerative conditions. However, a number of limitations such as low cell survival, uncontrolled and/or low differentiation, induction of host immune response, and the risk of teratoma formation remain as challenges. In this review, we explore the utility of hydrogels as carriers for stem cell delivery and their potential to overcome some of the current limitations in stem cell therapy. We focus on in situ gelling hydrogels, and also discuss other strategies to modulate the immune response to promote controlled stem cell differentiation. Immunomodulatory hydrogels and gels designed to promote cell survival and integration into the host site will likely have a significant effect on enhancing the efficacy of stem cell transplantation as a therapy for debilitating degenerative diseases.
Collapse
|
59
|
Mohsen-Kanson T, Hafner AL, Wdziekonski B, Takashima Y, Villageois P, Carrière A, Svensson M, Bagnis C, Chignon-Sicard B, Svensson PA, Casteilla L, Smith A, Dani C. Differentiation of human induced pluripotent stem cells into brown and white adipocytes: role of Pax3. Stem Cells 2015; 32:1459-67. [PMID: 24302443 DOI: 10.1002/stem.1607] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/03/2013] [Indexed: 12/11/2022]
Abstract
Identification of molecular mechanisms involved in generation of different types of adipocytes is progressing substantially in mice. However, much less is known regarding characterization of brown (BAP) and white adipocyte progenitors (WAPs) in humans, highlighting the need for an in vitro model of human adipocyte development. Here, we report a procedure to selectively derive BAP and WAPs from human-induced pluripotent stem cells. Molecular characterization of APs of both phenotypes revealed that BMP4, Hox8, Hoxc9, and HoxA5 genes were specifically expressed in WAPs, whereas expression of PRDM16, Dio2, and Pax3 marked BAPs. We focused on Pax3 and we showed that expression of this transcription factor was enriched in human perirenal white adipose tissue samples expressing UCP1 and in human classical brown fat. Finally, functional experiments indicated that Pax3 was a critical player of human AP fate as its ectopic expression led to convert WAPs into brown-like APs. Together, these data support a model in which Pax3 is a new marker of human BAPs and a molecular mediator of their fate. The findings of this study could lead to new anti-obesity therapies based on the recruitment of APs and constitute a platform for investigating in vitro the developmental origins of human white and brown adipocytes.
Collapse
Affiliation(s)
- Tala Mohsen-Kanson
- Université Nice Sophia Antipolis, iBV, UMR CNRS/INSERM, Faculté de Médecine, Nice Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Parekh VI, Modali SD, Desai SS, Agarwal SK. Consequence of Menin Deficiency in Mouse Adipocytes Derived by In Vitro Differentiation. Int J Endocrinol 2015; 2015:149826. [PMID: 26229531 PMCID: PMC4503551 DOI: 10.1155/2015/149826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022] Open
Abstract
Lipoma in patients with the multiple endocrine neoplasia type 1 (MEN1) syndrome is a type of benign fat-cell tumor that has biallelic inactivation of MEN1 that encodes menin and could serve as a model to investigate normal and pathologic fat-cell (adipocyte) proliferation and function. The role of menin and its target genes in adipocytes is not known. We used in vitro differentiation to derive matched normal and menin-deficient adipocytes from wild type (WT) and menin-null (Men1-KO) mouse embryonic stem cells (mESCs), respectively, or 3T3-L1 cells without or with menin knockdown to investigate cell size, lipid content, and gene expression changes. Adipocytes derived from Men1-KO mESCs or after menin knockdown in 3T3-L1 cells showed a 1.5-1.7-fold increase in fat-cell size. Global gene expression analysis of mESC-derived adipocytes showed that lack of menin downregulated the expression of many differentially methylated genes including the tumor suppressor long noncoding RNA Meg3 but upregulated gene expression from the prolactin gene family locus. Our results show that menin deficiency leads to fat-cell hypertrophy and provide model systems that could be used to study the regulation of fat-cell size.
Collapse
Affiliation(s)
- Vaishali I. Parekh
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sita D. Modali
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shruti S. Desai
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sunita K. Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- *Sunita K. Agarwal:
| |
Collapse
|
61
|
Chen W, Shao Y, Li X, Zhao G, Fu J. Nanotopographical Surfaces for Stem Cell Fate Control: Engineering Mechanobiology from the Bottom. NANO TODAY 2014; 9:759-784. [PMID: 25883674 PMCID: PMC4394389 DOI: 10.1016/j.nantod.2014.12.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
During embryogenesis and tissue maintenance and repair in an adult organism, a myriad of stem cells are regulated by their surrounding extracellular matrix (ECM) enriched with tissue/organ-specific nanoscale topographical cues to adopt different fates and functions. Attributed to their capability of self-renewal and differentiation into most types of somatic cells, stem cells also hold tremendous promise for regenerative medicine and drug screening. However, a major challenge remains as to achieve fate control of stem cells in vitro with high specificity and yield. Recent exciting advances in nanotechnology and materials science have enabled versatile, robust, and large-scale stem cell engineering in vitro through developments of synthetic nanotopographical surfaces mimicking topological features of stem cell niches. In addition to generating new insights for stem cell biology and embryonic development, this effort opens up unlimited opportunities for innovations in stem cell-based applications. This review is therefore to provide a summary of recent progress along this research direction, with perspectives focusing on emerging methods for generating nanotopographical surfaces and their applications in stem cell research. Furthermore, we provide a review of classical as well as emerging cellular mechano-sensing and -transduction mechanisms underlying stem cell nanotopography sensitivity and also give some hypotheses in regard to how a multitude of signaling events in cellular mechanotransduction may converge and be integrated into core pathways controlling stem cell fate in response to extracellular nanotopography.
Collapse
Affiliation(s)
- Weiqiang Chen
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Li
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, P. R. China
| | - Jianping Fu
- Integrated Biosystems and Biomechanics Laboratory, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
62
|
Jiang Y, Berry DC, Tang W, Graff JM. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep 2014; 9:1007-22. [PMID: 25437556 PMCID: PMC4250841 DOI: 10.1016/j.celrep.2014.09.049] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/26/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022] Open
Abstract
Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Daniel C Berry
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Wei Tang
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Jonathan M Graff
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9133, USA.
| |
Collapse
|
63
|
Khanmohammadi M, Khanjani S, Edalatkhah H, Zarnani AH, Heidari-Vala H, Soleimani M, Alimoghaddam K, Kazemnejad S. Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage. Cell Prolif 2014; 47:615-23. [PMID: 25252214 DOI: 10.1111/cpr.12133] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/27/2014] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To characterize potency of menstrual blood-derived stem cells (MenSCs) for future cell therapies, we examined differentiation potential of MenSCs into adipocytes. MATERIALS AND METHODS Differentiation potential of MenSCs in comparison to bone marrow stem cells (BMSCs) was assessed in conventional culture medium. Differentiation potential of MenSCs into adipocytes was improved using different combinations of growth factors and hormones. RESULTS First, we demonstrated that MenSCs preserve their appearance and karyotypic stability during passages. Although these cells express mesenchymal stem cells markers, they cannot simply be classified as mesenchymal stem cells due to expression of embryonic stem cells marker, OCT-4. Oil red O staining showed that differentiated MenSCs in conventional medium with/without retinoic acid (protocols 1 and 2) did not attain adipocyte characteristics, whereas differentiated BMSCs in conventional medium accumulated oil vacuoles typically. Nevertheless, real-time RT-PCR results showed that LPL gene expression was up-regulated in both protocols 1 and 2, whereas LEPR was up-regulated only in protocol 2 (fortified with retinoic acid). Surprisingly, protocol 3 (including rosiglitazone) had odd influence on mRNA expression of all genes (LEPR, LPL and PPAR-γ). Oil red O staining confirmed fat-producing ability of MenSCs under protocol 3. CONCLUSIONS Presented data suggest an efficient differentiation protocol for in vitro production of MenSC-derived adipocytes. These cells are suggested to be an apt alternative to BMSCs for future stem cell therapy of soft tissue injuries.
Collapse
Affiliation(s)
- M Khanmohammadi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 19615-1177, Iran
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Forzati F, Federico A, Pallante P, Colamaio M, Esposito F, Sepe R, Gargiulo S, Luciano A, Arra C, Palma G, Bon G, Bucher S, Falcioni R, Brunetti A, Battista S, Fedele M, Fusco A. CBX7 gene expression plays a negative role in adipocyte cell growth and differentiation. Biol Open 2014; 3:871-9. [PMID: 25190058 PMCID: PMC4163664 DOI: 10.1242/bio.20147872] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently generated knockout mice for the Cbx7 gene, coding for a polycomb group protein that is downregulated in human malignant neoplasias. These mice develop liver and lung adenomas and carcinomas, which confirms a tumour suppressor role for CBX7. The CBX7 ability to downregulate CCNE1 expression likely accounts for the phenotype of the Cbx7-null mice. Unexpectedly, Cbx7-knockout mice had a higher fat tissue mass than wild-type, suggesting a role of CBX7 in adipogenesis. Consistently, we demonstrate that Cbx7-null mouse embryonic fibroblasts go towards adipocyte differentiation more efficiently than their wild-type counterparts, and this effect is Cbx7 dose-dependent. Similar results were obtained when Cbx7-null embryonic stem cells were induced to differentiate into adipocytes. Conversely, mouse embryonic fibroblasts and human adipose-derived stem cells overexpressing CBX7 show an opposite behaviour. These findings support a negative role of CBX7 in the control of adipocyte cell growth and differentiation.
Collapse
Affiliation(s)
- Floriana Forzati
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Antonella Federico
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Pierlorenzo Pallante
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Marianna Colamaio
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Romina Sepe
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Sara Gargiulo
- Dipartimento di Scienze Biomorfologiche e Funzionali, Universita' degli Studi di Napoli "Federico II", 80131 Naples, Italy Istituto di Biostrutture e di Bioimmagini del CNR, 80145 Naples, Italy
| | - Antonio Luciano
- Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Claudio Arra
- Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Giuseppe Palma
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy Istituto Nazionale dei Tumori, Fondazione Pascale, 80131 Naples, Italy
| | - Giulia Bon
- Istituto Nazionale Tumori Regina Elena, Dipartimento di Oncologia Sperimentale, Laboratorio di Oncogenesi Molecolare, 00158 Rome, Italy
| | - Stefania Bucher
- Divisione di Chirurgia Plastica e Ricostruttiva, Istituto San Gallicano, 00144 Rome, Italy
| | - Rita Falcioni
- Istituto Nazionale Tumori Regina Elena, Dipartimento di Oncologia Sperimentale, Laboratorio di Oncogenesi Molecolare, 00158 Rome, Italy
| | - Arturo Brunetti
- Dipartimento di Scienze Biomorfologiche e Funzionali, Universita' degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Sabrina Battista
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Monica Fedele
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR e/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| |
Collapse
|
65
|
Quan Y, Wang D. Clinical potentials of human pluripotent stem cells in lung diseases. Clin Transl Med 2014; 3:15. [PMID: 24995122 PMCID: PMC4072658 DOI: 10.1186/2001-1326-3-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future.
Collapse
Affiliation(s)
- Yuan Quan
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, 1825 Pressler Street/IMM 437D, Houston, TX 77030, USA
| | - Dachun Wang
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, 1825 Pressler Street/IMM 437D, Houston, TX 77030, USA
| |
Collapse
|
66
|
Cuaranta-Monroy I, Simandi Z, Kolostyak Z, Doan-Xuan QM, Poliska S, Horvath A, Nagy G, Bacso Z, Nagy L. Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid. Stem Cell Res 2014; 13:88-97. [PMID: 24858493 DOI: 10.1016/j.scr.2014.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022] Open
Abstract
Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocytes mimic the gene-expression profile of subcutaneous isolated adipocytes in vivo remarkably well, much closer than 3T3-L1 derived ones. Moreover, the differentiated cells are in a monolayer, allowing a broad range of genome-wide studies in early and late stages of adipocyte differentiation to be performed.
Collapse
Affiliation(s)
- Ixchelt Cuaranta-Monroy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Zoltan Simandi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Zsuzsanna Kolostyak
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Quang-Minh Doan-Xuan
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Szilard Poliska
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Gergely Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Egyetem tér 1, Debrecen H-4012, Hungary
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen H-4012, Hungary; MTA-DE "Lendulet" Immunogenomics Research Group, Hungary.
| |
Collapse
|
67
|
Kawai R, Ozeki N, Yamaguchi H, Tanaka T, Nakata K, Mogi M, Nakamura H. Mouse ES cells have a potential to differentiate into odontoblast-like cells using hanging drop method. Oral Dis 2014; 20:395-403. [PMID: 23731055 DOI: 10.1111/odi.12134] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We examined whether mouse embryonic stem (ES) cells can differentiate into odontoblast-like cells without epithelial-mesenchymal interaction. MATERIALS AND METHODS Cells were cultured by the 'hanging drop' method using a collagen type-I scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4). Expression of odontoblast-related mRNA and protein, and cell proliferation were performed by reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence staining and WST-1 assay, respectively. RESULTS Cells potently expressed odontoblast-related cell marker mRNAs following induction of odontoblastic differentiation. Dentin sialophosphoprotein, a marker of mature odontoblasts, was strongly expressed in differentiated ES cells. The cells also acquired an odontoblast-like functional phenotype, as evidenced by the appearance of alkaline phosphatase activity and calcification. The cell-surface expression of α2, α6, αV and αVβ3 integrin proteins was rapidly upregulated in differentiated cells. Finally, anti-α2 integrin antibody suppressed the expression of odontoblastic markers in cells grown using this culture system, suggesting that α2 integrin expression in ES cells triggers their differentiation into odontoblast-like cells. CONCLUSIONS Mouse ES cells cultured by the 'hanging drop' method are able to differentiate into cells with odontoblast-specific physiological functions and cell-surface integrin protein expression.
Collapse
Affiliation(s)
- R Kawai
- Department of Endodontics, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
68
|
Suzuki D, Leu NA, Brice AK, Senoo M. Expression analysis of Dact1 in mice using a LacZ reporter. Gene Expr Patterns 2014; 15:21-30. [PMID: 24681206 DOI: 10.1016/j.gep.2014.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 12/21/2022]
Abstract
The Wnt signaling pathway is essential for cell fate decisions during embryonic development as well as for homeostasis after birth. Dapper antagonist of catenin-1 (Dact1) plays an important role during embryogenesis by regulating Wnt signaling pathways. Consequently, targeted disruption of the Dact1 gene in mice leads to perinatal lethality due to severe developmental defects involving the central nervous system, genitourinary system and distal digestive tract. However, the expression and potential function of Dact1 in other tissues during development and postnatal life have not been well studied. Here, we have generated reporter mice in which LacZ expression is driven by the Dact1 gene promoter and characterized Dact1-LacZ expression in embryos and adult tissues. Our data show that while Dact1-LacZ is expressed in multiple mesoderm- and neuroectoderm-derived tissues during development, high expression of Dact1-LacZ is restricted to a small subset of adult tissues, including the brain, eye, heart, and some reproductive organs. These results will serve as a basis for future investigation of Dact1 function in Wnt-mediated organogenesis and tissue homeostasis.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Angela K Brice
- University Laboratory Animal Resources, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Makoto Senoo
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
69
|
Alharbi S, Elsafadi M, Mobarak M, Alrwili A, Vishnubalaji R, Manikandan M, Al-Qudsi F, Karim S, Al-Nabaheen M, Aldahmash A, Mahmood A. Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study. Cell Reprogram 2014; 16:151-65. [PMID: 24606239 DOI: 10.1089/cell.2013.0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.
Collapse
Affiliation(s)
- Suzan Alharbi
- 1 Biology Department, College of Science, King Abdulaziz University , Jeddah, Kingdom of Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Kwon YW, Chung YJ, Kim J, Lee HJ, Park J, Roh TY, Cho HJ, Yoon CH, Koo BK, Kim HS. Comparative study of efficacy of dopaminergic neuron differentiation between embryonic stem cell and protein-based induced pluripotent stem cell. PLoS One 2014; 9:e85736. [PMID: 24465672 PMCID: PMC3899054 DOI: 10.1371/journal.pone.0085736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/01/2013] [Indexed: 11/29/2022] Open
Abstract
In patients with Parkinson's disease (PD), stem cells can serve as therapeutic agents to restore or regenerate injured nervous system. Here, we differentiated two types of stem cells; mouse embryonic stem cells (mESCs) and protein-based iPS cells (P-iPSCs) generated by non-viral methods, into midbrain dopaminergic (mDA) neurons, and then compared the efficiency of DA neuron differentiation from these two cell types. In the undifferentiated stage, P-iPSCs expressed pluripotency markers as ES cells did, indicating that protein-based reprogramming was stable and authentic. While both stem cell types were differentiated to the terminally-matured mDA neurons, P-iPSCs showed higher DA neuron-specific markers' expression than ES cells. To investigate the mechanism of the superior induction capacity of DA neurons observed in P-iPSCs compared to ES cells, we analyzed histone modifications by genome-wide ChIP sequencing analysis and their corresponding microarray results between two cell types. We found that Wnt signaling was up-regulated, while SFRP1, a counter-acting molecule of Wnt, was more suppressed in P-iPSCs than in mESCs. In PD rat model, transplantation of neural precursor cells derived from both cell types showed improved function. The present study demonstrates that P-iPSCs could be a suitable cell source to provide patient-specific therapy for PD without ethical problems or rejection issues.
Collapse
Affiliation(s)
- Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Yeon-Ju Chung
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Ho-Jae Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Jihwan Park
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Tae-Young Roh
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Hyun-Jai Cho
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Chang-Hwan Yoon
- Cardiovascular center, Seoul National University Bundang Hospital, Seoul National University, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
71
|
Sun H, Quan Y, Yan Q, Peng X, Mao Z, Wetsel RA, Wang D. Isolation and characterization of alveolar epithelial type II cells derived from mouse embryonic stem cells. Tissue Eng Part C Methods 2013; 20:464-72. [PMID: 24102479 DOI: 10.1089/ten.tec.2013.0415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The use of embryonic stem cells (ESCs) to regenerate distal lung epithelia damaged by injuries or diseases requires development of safe and efficient methodologies that direct ESC differentiation into transplantable distal lung epithelial progenitors. Time-consuming culture procedure and low differentiation efficiency are major problems that are associated with conventional differentiation approaches via embryoid body formation. The use of a growth factor cocktail or a lung-specific cell-conditioned medium to enrich definitive endoderm for efficient differentiation of mouse ESCs (mESC) into alveolar epithelial progenitor type II cells (ATIICs) has been reported, but not yet successful for generating a homogenous population of ATIICs for tissue regeneration purpose, and it remains unclear whether or not those mESC-derived ATIICs possess normal biological functions. Here, we report a novel method using a genetically modified mESC line harboring an ATIIC-specific neomycin(R) transgene in Rosa 26 locus. We showed that ATIICs can be efficiently differentiated from mESCs as early as day 7 by culturing them directly on Matrigel-coated plates in DMEM containing 15% knockout serum replacement. With this culture condition, the genetically modified mESCs can be selectively differentiated into a homogenous population (>99%) of ATIICs. Importantly, the mESC-derived ATIICs (mESC-ATIICs) exhibited typical lamellar bodies and expressed surfactant protein A, B, and C as normal control ATIICs. When cultured with an air-liquid-interface culture system in Small Airway Epithelial Cell Growth Medium, the mESC-ATIICs can be induced to secrete surfactant proteins after being treated with dibutyryl cAMP+dexamethasone. These mESC-ATIICs can synthesize and secrete surfactant lipid in response to secretagogue, demonstrating active surfactant metabolism in mESC-ATIICs as that seen in normal control ATIICs. In addition, we demonstrated that the selected mESC-ATIICs can be maintained on Matrigel-coated plates for at least 4 days with robust proliferative capacity. When cultured in DMEM medium containing 10% FBS, mESC-ATIICs spontaneously differentiated into alveolar epithelial type I cells. Collectively, these data demonstrate that the genetically modified mESCs can be selectively differentiated into a homogenous population of functional ATIICs, providing a reliable cell source to explore their therapeutic potential in lung tissue regeneration.
Collapse
Affiliation(s)
- Huanhuan Sun
- 1 Research Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Medical School at Houston , Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
72
|
Mouse-induced pluripotent stem cells differentiate into odontoblast-like cells with induction of altered adhesive and migratory phenotype of integrin. PLoS One 2013; 8:e80026. [PMID: 24244598 PMCID: PMC3823835 DOI: 10.1371/journal.pone.0080026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/27/2013] [Indexed: 11/19/2022] Open
Abstract
Methods for differentiating induced pluripotent stem (iPS) cells into odontoblasts generally require epithelial-mesenchymal interactions. Here, we sought to characterize the cells produced by a 'hanging drop' technique for differentiating mouse iPS cells into odontoblast-like cells that requires no such interaction. Cells were cultured by the hanging drop method on a collagen type-I (Col-I) scaffold (CS) combined with bone morphogenetic protein (BMP)-4 (CS/BMP-4) without an epithelial-mesenchymal interaction. We evaluated the expression of odontoblast-related mRNA and protein, and the proliferation rate of these cells using reverse-transcription polymerase chain reaction, immunofluorescence staining, and BrdU cell proliferation enzyme-linked immunosorbent assay, respectively. The differentiated cells strongly expressed the mRNA for dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (Dmp-1), which are markers of mature odontoblasts. Osteopontin and osteocalcin were not expressed in the differentiated cells, demonstrating that the differentiated iPS cells bore little resemblance to osteoblasts. Instead, they acquired odontoblast-specific properties, including the adoption of an odontoblastic phenotype, typified by high alkaline phosphatase (ALP) activity and calcification capacity. The cell-surface expression of proteins such as integrins α2, α6, αV and αVβ3 was rapidly up-regulated. Interestingly, antibodies and siRNAs against integrin α2 suppressed the expression of DSPP and Dmp-1, reduced the activity of ALP and blocked calcification, suggesting that integrin α2 in iPS cells mediates their differentiation into odontoblast-like cells. The adhesion of these cells to fibronectin and Col-I, and their migration on these substrata, was significantly increased following differentiation into odontoblast-like cells. Thus, we have demonstrated that integrin α2 is involved in the differentiation of mouse iPS cells into odontoblast-like cells using the hanging drop culture method, and that these cells have the appropriate physiological and functional characteristics to act as odontoblasts in tissue engineering and regenerative therapies for the treatment of dentin and/or dental pulp damage.
Collapse
|
73
|
Ali F, Ranneh Y, Ismail A, Vaes B. Impaired of a non-DNA dependent methylation status decides the fat decision of bone marrow-derived C3H10T1/2 stem cell. SPRINGERPLUS 2013; 2:590. [PMID: 24294542 PMCID: PMC3833906 DOI: 10.1186/2193-1801-2-590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/17/2013] [Indexed: 01/07/2023]
Abstract
A decrease in the lineage commitment of multipotent Mesenchymal stem cells (MSC) to the bone forming osteoblast lineage and an increase in the commitment to the fat forming adipocyte lineage is more common in bone marrow of elderly persons. A link between methylation status and MSC differentiation remains unclear. Therefore, we hypothesize that hypomethylation may decide the fate decisions of MSC. In the current study, murine bone marrow derived-C3H10T1/2 stem cell was used to examine the role of methylation mechanism on the differentiation potential of stem cells into osteoblasts or adipocytes. C3H10T1/2 cells were treated with Periodate oxidized adenosine (Adox), an inhibitor of S-adenosylhomocysteine-dependent hydrolase (SAHH), which in turn block the non-DNA methylation pathway. The effect of hypomethylation on C3H10T1/2 stem cell differentiation was determined by measuring the alkaline phosphates activity and the degree of mineralization as well as Oil-red O staining and lipid content. The ratio of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) was determined as a metabolic indicator of cellular methylation potential. It was clearly observed that hypomethylation significantly (P < 0.05) reduces SAM: SAH ratio, alkaline phosphates activity, calcification and thereby, osteoblast differentiation. Conversely, adipocyte differentiation was stimulated by hypomethylation. Altogether, our data suggest that non-DNA hypomethylation changes the differentiation potential of C3H10T1/2 stem cells for less osteogenic and more adipogenic.
Collapse
Affiliation(s)
- Faisal Ali
- />Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Nutrigenomics Programme, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- />Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Yazan Ranneh
- />Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Nutrigenomics Programme, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amin Ismail
- />Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Nutrigenomics Programme, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Bart Vaes
- />Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
74
|
Retinol-binding protein 4 and its membrane receptor STRA6 control adipogenesis by regulating cellular retinoid homeostasis and retinoic acid receptor α activity. Mol Cell Biol 2013; 33:4068-82. [PMID: 23959802 DOI: 10.1128/mcb.00221-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retinoids are vitamin A (retinol) derivatives and complex regulators of adipogenesis by activating specific nuclear receptors, including the retinoic acid receptor (RAR) and retinoid X receptor (RXR). Circulating retinol-binding protein 4 (RBP4) and its membrane receptor STRA6 coordinate cellular retinol uptake. It is unknown whether retinol levels and the activity of RAR and RXR in adipocyte precursors are linked via RBP4/STRA6. Here, we show that STRA6 is expressed in precursor cells and, dictated by the apo- and holo-RBP4 isoforms, mediates bidirectional retinol transport that controls RARα activity and subsequent adipocyte differentiation. Mobilization of retinoid stores in mice by inducing RBP4 secretion from the liver activated RARα signaling in the precursor cell containing the stromal-vascular fraction of adipose tissue. Retinol-loaded holo-RBP4 blocked adipocyte differentiation of cultured precursors by activating RARα. Remarkably, retinol-free apo-RBP4 triggered retinol efflux that reduced cellular retinoids, RARα activity, and target gene expression and enhanced adipogenesis synergistically with ectopic STRA6. Thus, STRA6 in adipocyte precursor cells links nuclear RARα activity to the circulating RBP4 isoforms, whose ratio in obese mice was shifted toward limiting the adipogenic potential of their precursors. This novel cross talk identifies a retinol-dependent metabolic function of RBP4 that may have important implications for the treatment of obesity.
Collapse
|
75
|
Ling H, Li X, Yao CH, Hu B, Liao D, Feng S, Wen G, Zhang L. The physiological and pathophysiological roles of adipocyte miRNAs. Biochem Cell Biol 2013; 91:195-202. [PMID: 23859012 DOI: 10.1139/bcb-2012-0053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
MicroRNAs (miRNAs) are highly conserved, small, noncoding RNAs that regulate gene expression at the posttranscriptional level. Their actions affect numerous important biological processes, including adipocyte differentiation and function, sugar and lipid metabolism, and insulin production and secretion. Recent reports suggest miRNAs may also be involved in the pathogenic processes of obesity, diabetes, and insulin resistance. In this review, we summarize research progresses on adipocyte miRNAs and their physiological and pathological implications.
Collapse
Affiliation(s)
- Hongyan Ling
- Department of Physiology, School of Medicine, University of South China, Hengyang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Hadjal Y, Hadadeh O, Yazidi CE, Barruet E, Binétruy B. A p38MAPK-p53 cascade regulates mesodermal differentiation and neurogenesis of embryonic stem cells. Cell Death Dis 2013; 4:e737. [PMID: 23887628 PMCID: PMC3730419 DOI: 10.1038/cddis.2013.246] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) differentiate in vivo and in vitro into all cell lineages, and they have been proposed as cellular therapy for human diseases. However, the molecular mechanisms controlling ESC commitment toward specific lineages need to be specified. We previously found that the p38 mitogen-activated protein kinase (p38MAPK) pathway inhibits neurogenesis and is necessary to mesodermal formation during the critical first 5 days of mouse ESC commitment. This period corresponds to the expression of specific master genes that direct ESC into each of the three embryonic layers. By both chemical and genetic approaches, we found now that, during this phase, the p38MAPK pathway stabilizes the p53 protein level and that interfering directly with p53 mimics the effects of p38MAPK inhibition on ESC differentiation. Anti-p53 siRNA transient transfections stimulate Bcl2 and Pax6 gene expressions, leading to increased ESC neurogenesis compared with control transfections. Conversely, p53 downregulation leads to a strong inhibition of the mesodermal master genes Brachyury and Mesp1 affecting cardiomyogenesis and skeletal myogenesis of ESCs. Similar results were found with p53(-/-) ESCs compared with their wild-type counterparts. In addition, knockout p53 ESCs show impaired smooth muscle cell and adipocyte formation. Use of anti-Nanog siRNAs demonstrates that certain of these regulations result partially to p53-dependent repression of Nanog gene expression. In addition to its well-known role in DNA-damage response, apoptosis, cell cycle control and tumor suppression, p53 has also been involved in vivo in embryonic development; our results show now that p53 mediates, at least for a large part, the p38MAPK control of the early commitment of ESCs toward mesodermal and neural lineages.
Collapse
Affiliation(s)
- Y Hadjal
- INSERM U910, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
- Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
| | - O Hadadeh
- INSERM U910, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
- Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
| | - CEl Yazidi
- INSERM U910, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
- Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
| | - E Barruet
- INSERM U910, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
- Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
| | - B Binétruy
- INSERM U910, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
- Faculté de Médecine, Aix-Marseille Université, 27 Boulevard Jean Moulin, Marseille Cedex 5, France
| |
Collapse
|
77
|
Noy N. The one-two punch: Retinoic acid suppresses obesity both by promoting energy expenditure and by inhibiting adipogenesis. Adipocyte 2013; 2:184-7. [PMID: 23991366 PMCID: PMC3756108 DOI: 10.4161/adip.23489] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 02/08/2023] Open
Abstract
The vitamin A metabolite retinoic acid (RA) regulates gene transcription by activating the nuclear receptors RAR and PPARβ/δ and their cognate lipid binding proteins CRABP-II, which delivers RA to RAR, and FABP5, which shuttles the hormone to PPARβ/δ. In preadipocytes, RA signals predominantly through CRABP-II and the RAR isotype RARγ to induce the expression of hallmark markers of preadipocytes Pref-1, Sox9, and KLF2. RA thus maintains the preadipocyte phenotype and inhibits adipogenesis. In mature adipocytes, RA activates both of its receptors to upregulate expression of genes that enhance lipid oxidation, energy dissipation, and insulin responses. Consequently, RA potently protects mice from diet-induced obesity and insulin resistance by two distinct mechanisms: by counteracting adipogenesis, thereby moderating the formation of new fat cells, and by promoting energy expenditure, thereby preventing adipocyte hypertrophy.
Collapse
|
78
|
Bouchard F, Paquin J. Differential effects of retinoids and inhibitors of ERK and p38 signaling on adipogenic and myogenic differentiation of P19 stem cells. Stem Cells Dev 2013; 22:2003-16. [PMID: 23441952 DOI: 10.1089/scd.2012.0209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
All-trans-retinoic acid (atRA) is an essential signaling molecule in embryonic development. It regulates cell differentiation by activating nuclear retinoic acid receptors (RAR) and retinoid-X receptors (RXR), which both control gene expression. In addition, atRA could act in the cytoplasm by modulating the activity of mitogen-activated protein kinases (MAPK) ERK and p38, which also have a role in cell differentiation. AtRA can induce the differentiation of P19 embryonic carcinoma stem cells into adipocytes, cardiomyocytes, and skeletal muscle cells, concurrently, in the same culture. We postulated that combinations of atRA, atRA analogs exhibiting selectivity for RAR or RXR, and inhibitors of ERK and p38 signaling (ERKi and p38i) could be used to favor one mesodermal fate over the others in the P19 model. In a first series of experiments, we replaced atRA by an agonist of RXR (LG100268) or RAR (TTNPB) to preferentially stimulate one group of receptors over the other. LG100268 was as adipogenic and myogenic as atRA, whereas TTNPB strongly induced adipogenesis, but not myogenesis. ERKi enhanced the myogenic action of atRA, and p38i increased both adipogenesis and myogenesis. In a second series of experiments, we combined atRA with an RAR or RXR antagonist (RARatg or RXRatg) to preferentially deactivate each receptor group in turn. The combinations atRA+RXRatg and atRA+RARatg, including or not ERKi, had similar mesodermal actions as atRA. In contrast, there was no myogenesis with atRA+RXRatg+p38i treatment, and there were no myogenesis and no adipogenesis with the atRA+RARatg+p38i combination. Overall, the results indicate that p38 has a role in mesodermal differentiation that depends on the retinoid context. Indeed, p38 in conjunction with RXR is important in myogenesis, and p38 and RAR in adipogenesis. Under the conditions tested, it was possible to stimulate adipogenesis with a block on myogenesis, whereas increased myogenesis was accompanied by adipogenesis.
Collapse
Affiliation(s)
- Frédéric Bouchard
- Département de chimie-biochimie and Centre BioMed, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
79
|
Song X, Li Y, Chen X, Yin G, Huang Q, Chen Y, Xu G, Wang L. bFGF promotes adipocyte differentiation in human mesenchymal stem cells derived from embryonic stem cells. Genet Mol Biol 2013; 37:127-34. [PMID: 24688300 PMCID: PMC3958319 DOI: 10.1590/s1415-47572014000100019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/14/2013] [Indexed: 01/22/2023] Open
Abstract
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.
Collapse
Affiliation(s)
- Xinghui Song
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanwei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Chen
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoli Yin
- Department of Basic Medicine, Zhejiang Medical College, Hangzhou, China
| | - Qiong Huang
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Chen
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guowei Xu
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
80
|
Yao Y, Suraokar M, Darnay BG, Hollier BG, Shaiken TE, Asano T, Chen CH, Chang BHJ, Lu Y, Mills GB, Sarbassov D, Mani SA, Abbruzzese JL, Reddy SAG. BSTA promotes mTORC2-mediated phosphorylation of Akt1 to suppress expression of FoxC2 and stimulate adipocyte differentiation. Sci Signal 2013; 6:ra2. [PMID: 23300339 DOI: 10.1126/scisignal.2003295] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorylation and activation of Akt1 is a crucial signaling event that promotes adipogenesis. However, neither the complex multistep process that leads to activation of Akt1 through phosphorylation at Thr³⁰⁸ and Ser⁴⁷³ nor the mechanism by which Akt1 stimulates adipogenesis is fully understood. We found that the BSD domain-containing signal transducer and Akt interactor (BSTA) promoted phosphorylation of Akt1 at Ser⁴⁷³ in various human and murine cells, and we uncovered a function for the BSD domain in BSTA-Akt1 complex formation. The mammalian target of rapamycin complex 2 (mTORC2) facilitated the phosphorylation of BSTA and its association with Akt1, and the BSTA-Akt1 interaction promoted the association of mTORC2 with Akt1 and phosphorylation of Akt1 at Ser⁴⁷³ in response to growth factor stimulation. Furthermore, analyses of bsta gene-trap murine embryonic stem cells revealed an essential function for BSTA and phosphorylation of Akt1 at Ser⁴⁷³ in promoting adipocyte differentiation, which required suppression of the expression of the gene encoding the transcription factor FoxC2. These findings indicate that BSTA is a molecular switch that promotes phosphorylation of Akt1 at Ser⁴⁷³ and reveal an mTORC2-BSTA-Akt1-FoxC2-mediated signaling mechanism that is critical for adipocyte differentiation.
Collapse
Affiliation(s)
- Yixin Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Toxicological hazard assessment currently finds itself at a crossroads where the existing classical test paradigm is challenged by a host of innovative approaches. Animal study protocols are being enhanced for additional parameters and improved for more efficient effect assessment with reduced animal numbers. Whilst existing testing paradigms have generally proven conservative for chemical safety assessment, novel alternative in silico and in vitro approaches and assays are being introduced that begin to elucidate molecular mechanisms of toxicity. Issues such as animal welfare, alternative assay validation, endocrine disruption, and the US-NAS report on toxicity testing in the twenty-first century have provided directionality to these developments. The reductionistic nature of individual alternative assays requires that they be combined in a testing strategy in order to provide a complete picture of the toxicological profile of a compound. One of the challenges of this innovative approach is the combined interpretation of assay results in terms of toxicologically relevant effects. Computational toxicology aims at providing that integration. In order to progress, we need to follow three steps: (1) Learn from past experience in animal studies and human diseases about critical end points and pathways of toxicity. (2) Design alternative assays for essential mechanisms of toxicity. (3) Build an integrative testing strategy tailored to human hazard assessment using a battery of available alternative tests for critical end points that provides optimal in silico and in vitro filters to upgrade toxicological hazard assessment to the mechanistic level.
Collapse
Affiliation(s)
- Aldert H Piersma
- Laboratory for Health Protection Research-National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
82
|
Komada Y, Yamane T, Kadota D, Isono K, Takakura N, Hayashi SI, Yamazaki H. Origins and properties of dental, thymic, and bone marrow mesenchymal cells and their stem cells. PLoS One 2012. [PMID: 23185234 PMCID: PMC3504117 DOI: 10.1371/journal.pone.0046436] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal cells arise from the neural crest (NC) or mesoderm. However, it is difficult to distinguish NC-derived cells from mesoderm-derived cells. Using double-transgenic mouse systems encoding P0-Cre, Wnt1-Cre, Mesp1-Cre, and Rosa26EYFP, which enabled us to trace NC-derived or mesoderm-derived cells as YFP-expressing cells, we demonstrated for the first time that both NC-derived (P0- or Wnt1-labeled) and mesoderm-derived (Mesp1-labeled) cells contribute to the development of dental, thymic, and bone marrow (BM) mesenchyme from the fetal stage to the adult stage. Irrespective of the tissues involved, NC-derived and mesoderm-derived cells contributed mainly to perivascular cells and endothelial cells, respectively. Dental and thymic mesenchyme were composed of either NC-derived or mesoderm-derived cells, whereas half of the BM mesenchyme was composed of cells that were not derived from the NC or mesoderm. However, a colony-forming unit-fibroblast (CFU-F) assay indicated that CFU-Fs in the dental pulp, thymus, and BM were composed of NC-derived and mesoderm-derived cells. Secondary CFU-F assays were used to estimate the self-renewal potential, which showed that CFU-Fs in the teeth, thymus, and BM were entirely NC-derived cells, entirely mesoderm-derived cells, and mostly NC-derived cells, respectively. Colony formation was inhibited drastically by the addition of anti-platelet-derived growth factor receptor-β antibody, regardless of the tissue and its origin. Furthermore, dental mesenchyme expressed genes encoding critical hematopoietic factors, such as interleukin-7, stem cell factor, and cysteine-X-cysteine (CXC) chemokine ligand 12, which supports the differentiation of B lymphocytes and osteoclasts. Therefore, the mesenchymal stem cells found in these tissues had different origins, but similar properties in each organ.
Collapse
Affiliation(s)
- Yukiya Komada
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshiyuki Yamane
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Daiji Kadota
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kana Isono
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Japan
| | - Shin-Ichi Hayashi
- Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hidetoshi Yamazaki
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
- * E-mail:
| |
Collapse
|
83
|
Hadadeh O, Barruet E, Peiretti F, Verdier M, Bernot D, Hadjal Y, Yazidi CE, Robaglia-Schlupp A, De Paula AM, Nègre D, Iacovino M, Kyba M, Alessi MC, Binétruy B. The plasminogen activation system modulates differently adipogenesis and myogenesis of embryonic stem cells. PLoS One 2012; 7:e49065. [PMID: 23145071 PMCID: PMC3493518 DOI: 10.1371/journal.pone.0049065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 10/08/2012] [Indexed: 11/19/2022] Open
Abstract
Regulation of the extracellular matrix (ECM) plays an important functional role either in physiological or pathological conditions. The plasminogen activation (PA) system, comprising the uPA and tPA proteases and their inhibitor PAI-1, is one of the main suppliers of extracellular proteolytic activity contributing to tissue remodeling. Although its function in development is well documented, its precise role in mouse embryonic stem cell (ESC) differentiation in vitro is unknown. We found that the PA system components are expressed at very low levels in undifferentiated ESCs and that upon differentiation uPA activity is detected mainly transiently, whereas tPA activity and PAI-1 protein are maximum in well differentiated cells. Adipocyte formation by ESCs is inhibited by amiloride treatment, a specific uPA inhibitor. Likewise, ESCs expressing ectopic PAI-1 under the control of an inducible expression system display reduced adipogenic capacities after induction of the gene. Furthermore, the adipogenic differentiation capacities of PAI-1(-/-) induced pluripotent stem cells (iPSCs) are augmented as compared to wt iPSCs. Our results demonstrate that the control of ESC adipogenesis by the PA system correspond to different successive steps from undifferentiated to well differentiated ESCs. Similarly, skeletal myogenesis is decreased by uPA inhibition or PAI-1 overexpression during the terminal step of differentiation. However, interfering with uPA during days 0 to 3 of the differentiation process augments ESC myotube formation. Neither neurogenesis, cardiomyogenesis, endothelial cell nor smooth muscle formation are affected by amiloride or PAI-1 induction. Our results show that the PA system is capable to specifically modulate adipogenesis and skeletal myogenesis of ESCs by successive different molecular mechanisms.
Collapse
Affiliation(s)
- Ola Hadadeh
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Emilie Barruet
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Franck Peiretti
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Monique Verdier
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Denis Bernot
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Yasmine Hadjal
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Claire El Yazidi
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Andrée Robaglia-Schlupp
- Inserm U910, Faculté de Médecine, Marseille, France
- Laboratoire de Biologie Cellulaire, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique – Hôpitaux de Marseille), Marseille, France
| | - Andre Maues De Paula
- Inserm U910, Faculté de Médecine, Marseille, France
- Service d’Anatomie Pathologique et Neuropathologie, CHU (Centre Hospitalier Universitaire) La Timone AP-HM (Assistance Publique – Hôpitaux de Marseille), Marseille, France
| | - Didier Nègre
- INSERM, U758, Ecole Normale Supérieure de Lyon, Lyon, France
- Université de Lyon, UCB-Lyon1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Michelina Iacovino
- Department of Pediatrics and Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael Kyba
- Department of Pediatrics and Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marie-Christine Alessi
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| | - Bernard Binétruy
- Inserm U626, Faculté de Médecine, Marseille, France
- Aix-Marseille Université, Faculté de Médecine, Marseille, France
| |
Collapse
|
84
|
Petrighi Polidori G, Lomax MA, Docherty K. Palmitate enhances the differentiation of mouse embryonic stem cells towards white adipocyte lineages. Mol Cell Endocrinol 2012; 361:40-50. [PMID: 22484460 DOI: 10.1016/j.mce.2012.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/02/2012] [Accepted: 03/16/2012] [Indexed: 11/23/2022]
Abstract
The number of adipocyte progenitors is determined early in foetal and neonatal development in a process which may be altered by gender and excess nutrient intake, and which in turn determines fat mass in adulthood and the risk of developing obesity. Here we investigate the hypothesis that excess nutrients, in this case the long chain fatty acid palmitate, can program differentiating stem cells towards white fat lineages. The experiments were performed on mouse embryonic stem cells in chemically defined media (CDM) supplemented with bone morphogenetic protein 4 (BMP4) and all trans-retinoic acid (RA). Subsequent treatment for 21 days with palmitate not only promoted the expression of adipocyte markers and monolocular lipid deposition as observed by RT/QPCR and immunocytochemistry, but also stimulated a considerable enrichment in adipocytes as measured by flow cytometry and a lipolytic response to catecholamines. Palmitate increased protein levels of adiponectin that is preferentially expressed in subcutaneous fat, while inhibiting IGFBP2 and IGFBP3 that are associated with visceral fat. In keeping with this finding, palmitate also increased expression of the subcutaneous markers Shox2 and Twist1 and oestrogenising enzymes. Collectively, these results suggest that palmitate induces differentiation towards subcutaneous fat and that this could occur through its oestrogenising effects on the preadipocyte, suggesting a role for palmitate in programming fat development towards a metabolically favourable profile.
Collapse
Affiliation(s)
- Gioia Petrighi Polidori
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | |
Collapse
|
85
|
Zhang Y, Li R, Li Y, Chen W, Zhao S, Chen G. Vitamin A status affects obesity development and hepatic expression of key genes for fuel metabolism in Zucker fatty rats. Biochem Cell Biol 2012; 90:548-557. [PMID: 22554462 DOI: 10.1139/o2012-012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We hypothesized that vitamin A (VA) status may affect obesity development. Male Zucker lean (ZL) and fatty (ZF) rats after weaning were fed a synthetic VA deficient (VAD) or VA sufficient (VAS) diet for 8 weeks before their plasma parameters and hepatic genes' expression were analyzed. The body mass (BM) of ZL or ZF rats fed the VAD diet was lower than that of their corresponding controls fed the VAS diet at 5 or 2 weeks, respectively. The VAD ZL and ZF rats had less food intake than the VAS rats after 5 weeks. The VAD ZL and ZF rats had lower plasma glucose, triglyceride, insulin, and leptin levels, as well as lower liver glycogen content, net mass of epididymal fat, and liver/BM and epididymal fat/BM ratios (ZL only) than their respective VAS controls. VAD rats had lower hepatic Cyp26a1, Srebp-1c, Fas, Scd1, Me1, Gck, and Pklr (ZL and ZF); and higher Igfbp1 (ZL and ZF), Pck1(ZF only), and G6pc (ZF only) mRNA levels than their respective VAS controls. We conclude that ZL and ZF rats responded differently to dietary VA deficiency. VA status affected obesity development and altered the expression of hepatic genes for fuel metabolism in ZF rats. The mechanisms will help us to combat metabolic diseases.
Collapse
Affiliation(s)
- Yan Zhang
- The Diabetes Center at Wuhan Central Hospital, No. 26 Shengli Road, Jiangan District, Wuhan, Hubei 430014, China
| | | | | | | | | | | |
Collapse
|
86
|
Glaab E, Bacardit J, Garibaldi JM, Krasnogor N. Using rule-based machine learning for candidate disease gene prioritization and sample classification of cancer gene expression data. PLoS One 2012; 7:e39932. [PMID: 22808075 PMCID: PMC3394775 DOI: 10.1371/journal.pone.0039932] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 05/29/2012] [Indexed: 12/19/2022] Open
Abstract
Microarray data analysis has been shown to provide an effective tool for studying cancer and genetic diseases. Although classical machine learning techniques have successfully been applied to find informative genes and to predict class labels for new samples, common restrictions of microarray analysis such as small sample sizes, a large attribute space and high noise levels still limit its scientific and clinical applications. Increasing the interpretability of prediction models while retaining a high accuracy would help to exploit the information content in microarray data more effectively. For this purpose, we evaluate our rule-based evolutionary machine learning systems, BioHEL and GAssist, on three public microarray cancer datasets, obtaining simple rule-based models for sample classification. A comparison with other benchmark microarray sample classifiers based on three diverse feature selection algorithms suggests that these evolutionary learning techniques can compete with state-of-the-art methods like support vector machines. The obtained models reach accuracies above 90% in two-level external cross-validation, with the added value of facilitating interpretation by using only combinations of simple if-then-else rules. As a further benefit, a literature mining analysis reveals that prioritizations of informative genes extracted from BioHEL's classification rule sets can outperform gene rankings obtained from a conventional ensemble feature selection in terms of the pointwise mutual information between relevant disease terms and the standardized names of top-ranked genes.
Collapse
Affiliation(s)
- Enrico Glaab
- Interdisciplinary Computing and Complex Systems (ICOS) Research Group, University of Nottingham, Nottingham, United Kingdom
| | - Jaume Bacardit
- Interdisciplinary Computing and Complex Systems (ICOS) Research Group, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan M. Garibaldi
- Intelligent Modeling and Analysis (IMA) Research Group, University of Nottingham, Nottingham, United Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Systems (ICOS) Research Group, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
87
|
Cho HJ, Lee HJ, Youn SW, Koh SJ, Won JY, Chung YJ, Cho HJ, Yoon CH, Lee SW, Lee EJ, Kwon YW, Lee HY, Lee SH, Ho WK, Park YB, Kim HS. Secondary sphere formation enhances the functionality of cardiac progenitor cells. Mol Ther 2012; 20:1750-66. [PMID: 22713697 DOI: 10.1038/mt.2012.109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loss of cardiomyocytes impairs cardiac function after myocardial infarction (MI). Recent studies suggest that cardiac stem/progenitor cells could repair the damaged heart. However, cardiac progenitor cells are difficult to maintain in terms of purity and multipotency when propagated in two-dimensional culture systems. Here, we investigated a new strategy that enhances potency and enriches progenitor cells. We applied the repeated sphere formation strategy (cardiac explant → primary cardiosphere (CS) formation → sphere-derived cells (SDCs) in adherent culture condition → secondary CS formation by three-dimensional culture). Cells in secondary CS showed higher differentiation potentials than SDCs. When transplanted into the infarcted myocardium, secondary CSs engrafted robustly, improved left ventricular (LV) dysfunction, and reduced infarct sizes more than SDCs did. In addition to the cardiovascular differentiation of transplanted secondary CSs, robust vascular endothelial growth factor (VEGF) synthesis and secretion enhanced neovascularization in the infarcted myocardium. Microarray pathway analysis and blocking experiments using E-selectin knock-out hearts, specific chemicals, and small interfering RNAs (siRNAs) for each pathway revealed that E-selectin was indispensable to sphere initiation and ERK/Sp1/VEGF autoparacrine loop was responsible for sphere maturation. These results provide a simple strategy for enhancing cellular potency for cardiac repair. Furthermore, this strategy may be implemented to other types of stem/progenitor cell-based therapy.
Collapse
Affiliation(s)
- Hyun-Jai Cho
- Cardiovascular Center & Department of Internal Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Billon N, Dani C. Developmental origins of the adipocyte lineage: new insights from genetics and genomics studies. Stem Cell Rev Rep 2012; 8:55-66. [PMID: 21365256 DOI: 10.1007/s12015-011-9242-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current epidemic of obesity and overweight has caused a surge of interest in the study of adipose tissue formation. Much progress has been made in defining the transcriptional networks controlling the terminal differentiation of adipocyte progenitors into mature adipocytes. However, the early steps of adipocyte development and the embryonic origin of this lineage have been largely disregarded until recently. In mammals, two functionally different types of adipose tissues coexist, which are both involved in energy balance but assume opposite functions. White adipose tissue (WAT) stores energy, while brown adipose tissue (BAT) is specialized in energy expenditure. WAT and BAT can be found as several depots located in various sites of the body. Individual fat depots exhibit different timing of appearance during development, as well as distinct functional properties, suggesting possible differences in their developmental origin. This hypothesis has recently been revisited through large-scale genomics studies and in vivo lineage tracing approaches, which are reviewed in this report. These studies have provided novel fundamental insights into adipocyte biology, pointing out distinct developmental origins for WAT and BAT, as well as for individual WAT depots. They suggest that the adipose tissue is composed of distinct mini-organs, exhibiting developmental and functional differences, as well as variable contribution to obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Nathalie Billon
- Institut Biologie du Développement et Cancer, CNRS UMR 6543, Faculté de Médecine Pasteur, Université de Nice Sophia-Antipolis, 28 avenue de Valombrose, 06108, Nice Cedex 2, France.
| | | |
Collapse
|
89
|
Agarwal SK, Jothi R. Genome-wide characterization of menin-dependent H3K4me3 reveals a specific role for menin in the regulation of genes implicated in MEN1-like tumors. PLoS One 2012; 7:e37952. [PMID: 22666422 PMCID: PMC3364203 DOI: 10.1371/journal.pone.0037952] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/30/2012] [Indexed: 01/07/2023] Open
Abstract
Inactivating mutations in the MEN1 gene predisposing to the multiple endocrine neoplasia type 1 (MEN1) syndrome can also cause sporadic pancreatic endocrine tumors. MEN1 encodes menin, a subunit of MLL1/MLL2-containing histone methyltransferase complexes that trimethylate histone H3 at lysine 4 (H3K4me3). The importance of menin-dependent H3K4me3 in normal and transformed pancreatic endocrine cells is unclear. To study the role of menin-dependent H3K4me3, we performed in vitro differentiation of wild-type as well as menin-null mouse embryonic stem cells (mESCs) into pancreatic islet-like endocrine cells (PILECs). Gene expression analysis and genome-wide H3K4me3 ChIP-Seq profiling in wild-type and menin-null mESCs and PILECs revealed menin-dependent H3K4me3 at the imprinted Dlk1-Meg3 locus in mESCs, and all four Hox loci in differentiated PILECs. Specific and significant loss of H3K4me3 and gene expression was observed for genes within the imprinted Dlk1-Meg3 locus in menin-null mESCs and the Hox loci in menin-null PILECs. Given that the reduced expression of genes within the DLK1-MEG3 locus and the HOX loci is associated with MEN1-like sporadic tumors, our data suggests a possible role for menin-dependent H3K4me3 at these genes in the initiation and progression of sporadic pancreatic endocrine tumors. Furthermore, our investigation also demonstrates that menin-null mESCs can be differentiated in vitro into islet-like endocrine cells, underscoring the utility of menin-null mESC-derived specialized cell types for genome-wide high-throughput studies.
Collapse
Affiliation(s)
- Sunita K. Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SKA); (RJ)
| | - Raja Jothi
- Systems Biology Section, Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail: (SKA); (RJ)
| |
Collapse
|
90
|
Monteiro MC, Sanyal M, Cleary ML, Sengenès C, Bouloumié A, Bouloumé A, Dani C, Billon N. PBX1: a novel stage-specific regulator of adipocyte development. Stem Cells 2012; 29:1837-48. [PMID: 21922607 DOI: 10.1002/stem.737] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although adipocyte terminal differentiation has been extensively studied, the early steps of adipocyte development and the embryonic origin of this lineage remain largely unknown. Here we describe a novel role for the pre-B-cell leukemia transcription factor one (PBX1) in adipocyte development using both mouse embryonic stem cells (mESCs) and human multipotent adipose-derived stem (hMADS) cells. We show that Pbx1(-/-) mESCs are unable to generate adipocytes, despite normal expression of neuroectoderm and neural crest (NC) markers. Early adipocyte lineage markers are not induced in Pbx1(-/-) mESCs, suggesting that Pbx1 controls the generation and/or the maintenance of adipocyte progenitors (APs) from the NC. We further characterize the function of PBX1 in postnatal adipogenesis and show that silencing of PBX1 expression in hMADS cells reduces their proliferation by preventing their entry in the S phase of the cell cycle. Furthermore, it promotes differentiation of hMADS cells into adipocytes and partially substitutes for glucocorticoids and rosiglitazone, two key proadipogenic agents. These effects involve direct modulation of PPARγ activity, most likely through regulation of the biosynthesis of PPARγ natural endogenous ligand(s). Together, our data suggest that PBX1 regulates adipocyte development at multiple levels, promoting the generation of NC-derived APs during embryogenesis, while favoring APs proliferation and preventing their commitment to the adipocyte lineage in postnatal life.
Collapse
|
91
|
Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 2012; 7:e36474. [PMID: 22623957 PMCID: PMC3356305 DOI: 10.1371/journal.pone.0036474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 04/04/2012] [Indexed: 12/22/2022] Open
Abstract
Background Obesity is a complex, multifactorial disorder influenced by the interaction of genetic, epigenetic, and environmental factors. Obesity increases the risk of contracting many chronic diseases or metabolic syndrome. Researchers have established several mammalian models of obesity to study its underlying mechanism. However, a lower vertebrate model for conveniently performing drug screening against obesity remains elusive. The specific aim of this study was to create a zebrafish obesity model by over expressing the insulin signaling hub of the Akt1 gene. Methodology/Principal Findings Skin oncogenic transformation screening shows that a stable zebrafish transgenic of Tg(krt4Hsa.myrAkt1)cy18 displays severely obese phenotypes at the adult stage. In Tg(krt4:Hsa.myrAkt1)cy18, the expression of exogenous human constitutively active Akt1 (myrAkt1) can activate endogenous downstream targets of mTOR, GSK-3α/β, and 70S6K. During the embryonic to larval transitory phase, the specific over expression of myrAkt1 in skin can promote hypertrophic and hyperplastic growth. From 21 hour post-fertilization (hpf) onwards, myrAkt1 transgene was ectopically expressed in several mesenchymal derived tissues. This may be the result of the integration position effect. Tg(krt4:Hsa.myrAkt1)cy18 caused a rapid increase of body weight, hyperplastic growth of adipocytes, abnormal accumulation of fat tissues, and blood glucose intolerance at the adult stage. Real-time RT-PCR analysis showed the majority of key genes on regulating adipogenesis, adipocytokine, and inflammation are highly upregulated in Tg(krt4:Hsa.myrAkt1)cy18. In contrast, the myogenesis- and skeletogenesis-related gene transcripts are significantly downregulated in Tg(krt4:Hsa.myrAkt1)cy18, suggesting that excess adipocyte differentiation occurs at the expense of other mesenchymal derived tissues. Conclusion/Significance Collectively, the findings of this study provide direct evidence that Akt1 signaling plays an important role in balancing normal levels of fat tissue in vivo. The obese zebrafish examined in this study could be a new powerful model to screen novel drugs for the treatment of human obesity.
Collapse
|
92
|
Han R, Kitlinska JB, Munday WR, Gallicano GI, Zukowska Z. Stress hormone epinephrine enhances adipogenesis in murine embryonic stem cells by up-regulating the neuropeptide Y system. PLoS One 2012; 7:e36609. [PMID: 22570731 PMCID: PMC3343033 DOI: 10.1371/journal.pone.0036609] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal stress, psychologically and metabolically, increases the risk of obesity and diabetes in the progeny. However, the mechanisms of the pathogenesis remain unknown. In adult mice, stress activates NPY and its Y2R in a glucocorticoid-dependent manner in the abdominal fat. This increased adipogenesis and angiogenesis, leading to abdominal obesity and metabolic syndrome which were inhibited by intra-fat Y2R inactivation. To determine whether stress elevates NPY system and accelerates adipogenic potential of embryo, here we "stressed" murine embryonic stem cells (mESCs) in vitro with epinephrine (EPI) during their adipogenic differentiation. EPI was added during the commitment stage together with insulin, and followed by dexamethasone in the standard adipogenic differentiation medium. Undifferentiated embryonic bodies (EBs) showed no detectable expression of NPY. EPI markedly up-regulated the expression NPY and the Y1R at the commitment stage, followed by increased Y2R mRNA at the late of the commitment stage and the differentiation stage. EPI significantly increased EB cells proliferation and expression of the preadipocyte marker Pref-1 at the commitment stage. EPI also accelerated and amplified adipogenic differentiation detected by increasing the adipocyte markers FABP4 and PPARγ mRNAs and Oil-red O-staining at the end of the differentiation stage. EPI-induced adipogenesis was completely prevented by antagonists of the NPY receptors (Y1R+Y2R+Y5R), indicating that it was mediated by the NPY system in mESC's. Taken together, these data suggest that stress may play an important role in programming ESCs for accelerated adipogenesis by altering the stress induced hormonal regulation of the NPY system.
Collapse
Affiliation(s)
- Ruijun Han
- Department of Integrative Biology and Physiology, Stress Physiology Center, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | |
Collapse
|
93
|
Zhao S, Li R, Li Y, Chen W, Zhang Y, Chen G. Roles of vitamin A status and retinoids in glucose and fatty acid metabolism. Biochem Cell Biol 2012; 90:142-152. [PMID: 22292422 DOI: 10.1139/o11-079] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The rising prevalence of metabolic diseases, such as obesity and diabetes, has become a public health concern. Vitamin A (VA, retinol) is an essential micronutrient for a variety of physiological processes, such as tissue differentiation, immunity, and vision. However, its role in glucose and lipid metabolism has not been clearly defined. VA activities are mediated by the metabolite of retinol catabolism, retinoic acid, which activates the retinoic acid receptor and retinoid X receptor (RXR). Since RXR is an obligate heterodimeric partner for many nuclear receptors involved in metabolism, it is reasonable to assume that VA status and retinoids contribute to glucose and lipid homeostasis. To date, the impacts of VA and retinoids on energy metabolism in animals and humans have been demonstrated in some basic and clinical investigations. This review summarizes the effects of VA status and retinoid treatments on metabolism of the liver, adipocytes, pancreatic β-cells, and skeletal muscle. It proposes a mechanism by which the dietary and hormonal signals converge on the promoter of sterol regulatory element-binding protein 1c gene to induce its expression, and in turn, the expression of lipogenic genes in hepatocytes. Future research projects relevant to the VA's roles in metabolic diseases are also discussed.
Collapse
Affiliation(s)
- Shi Zhao
- The Diabetes Center, Wuhan Central Hospital, Wuhan, Hubei 430014, China
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Bone morphogenetic protein (BMP) signaling in diseases is the subject of an overwhelming array of studies. BMPs are excellent targets for treatment of various clinical disorders. Several BMPs have already been shown to be clinically beneficial in the treatment of a variety of conditions, including BMP-2 and BMP-7 that have been approved for clinical application in nonunion bone fractures and spinal fusions. With the use of BMPs increasingly accepted in spinal fusion surgeries, other therapeutic approaches targeting BMP signaling are emerging beyond applications to skeletal disorders. These approaches can further utilize next-generation therapeutic tools such as engineered BMPs and ex vivo- conditioned cell therapies. In this review, we focused to provide insights into such clinical potentials of BMPs in metabolic and vascular diseases, and in cancer. [BMB reports 2011; 44(10): 619-634].
Collapse
Affiliation(s)
- Meejung Kim
- Joint Center for Biosciences at Lee Gil Ya Cancer and Diabetes Research Institute, Gachon University of Medicine and Science, IncheonKorea
| | | |
Collapse
|
95
|
Le Menuet D, Munier M, Campostrini G, Lombès M. Mineralocorticoid receptor and embryonic stem cell models: molecular insights and pathophysiological relevance. Mol Cell Endocrinol 2012; 350:216-22. [PMID: 21767600 DOI: 10.1016/j.mce.2011.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/24/2011] [Accepted: 06/28/2011] [Indexed: 12/20/2022]
Abstract
Mineralocorticoid receptor (MR) signaling is pivotal for numerous physiological processes and implicated in various pathological conditions concerning among others, tight epithelia, central nervous and cardiovascular systems. For decades, the pleiotropic actions of MR have been investigated using animal and cellular models as well as by clinical studies. Here is reviewed and contextualized the utilization of a strategy that recently emerged to analyze the complexity of MR signaling: the derivation and differentiation of mouse embryonic stem (ES) cell models. ES cells were derived from wild-type or transgenic MR overexpressing animals. Undifferentiated ES cells were differentiated into cardiomyocytes, neurons and adipocytes, these cell types being important pathophysiological targets of MR. These approaches have already brought new insights concerning MR effect on cardiomyocyte contractility and ionic channel remodeling, in the regulation of neuronal MR expression and its positive role on neuron survival. Differentiated ES cell models thus constitute powerful and promising tools to further decipher the molecular mechanisms of cell-specific MR actions.
Collapse
Affiliation(s)
- Damien Le Menuet
- INSERM U693, Faculté de Médecine Paris-Sud 11, 63 rue Gabriel Péri, Le Kremlin-Bicêtre Cedex, France.
| | | | | | | |
Collapse
|
96
|
|
97
|
Biemann R, Navarrete Santos A, Navarrete Santos A, Riemann D, Knelangen J, Blüher M, Koch H, Fischer B. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows. Biochem Biophys Res Commun 2012; 417:747-52. [DOI: 10.1016/j.bbrc.2011.12.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/08/2011] [Indexed: 11/16/2022]
|
98
|
Bilousova G, Jun DH, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 2011; 29:206-16. [PMID: 21732479 DOI: 10.1002/stem.566] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reprogramming somatic cells into an ESC-like state, or induced pluripotent stem (iPS) cells, has emerged as a promising new venue for customized cell therapies. In this study, we performed directed differentiation to assess the ability of murine iPS cells to differentiate into bone, cartilage, and fat in vitro and to maintain an osteoblast phenotype on a scaffold in vitro and in vivo. Embryoid bodies derived from murine iPS cells were cultured in differentiation medium for 8–12 weeks. Differentiation was assessed by lineage-specific morphology, gene expression, histological stain, and immunostaining to detect matrix deposition. After 12 weeks of expansion, iPS-derived osteoblasts were seeded in a gelfoam matrix followed by subcutaneous implantation in syngenic imprinting control region (ICR) mice. Implants were harvested at 12 weeks, histological analyses of cell and mineral and matrix content were performed. Differentiation of iPS cells into mesenchymal lineages of bone, cartilage, and fat was confirmed by morphology and expression of lineage-specific genes. Isolated implants of iPS cell-derived osteoblasts expressed matrices characteristic of bone, including osteocalcin and bone sialoprotein. Implants were also stained with alizarin red and von Kossa, demonstrating mineralization and persistence of an osteoblast phenotype. Recruitment of vasculature and microvascularization of the implant was also detected. Taken together, these data demonstrate functional osteoblast differentiation from iPS cells both in vitro and in vivo and reveal a source of cells, which merit evaluation for their potential uses in orthopedic medicine and understanding of molecular mechanisms of orthopedic disease.
Collapse
Affiliation(s)
- Ganna Bilousova
- Charles C. Gates Regenerative Medicine and Stem Cell Biology Program, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
100
|
Liu JF, Chen YM, Yang JJ, Kurokawa T, Kakugo A, Yamamoto K, Gong JP. Dynamic Behavior and Spontaneous Differentiation of Mouse Embryoid Bodies on Hydrogel Substrates of Different Surface Charge and Chemical Structures. Tissue Eng Part A 2011; 17:2343-57. [DOI: 10.1089/ten.tea.2011.0034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jian Fang Liu
- Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
| | - Yong Mei Chen
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Jing Jing Yang
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takayuki Kurokawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
- Creative Research Institution Sosei, Hokkaido University, Sapporo, Japan
| | - Akira Kakugo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kimiko Yamamoto
- Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|