51
|
Lindenboim L, Borner C, Stein R. Nuclear proteins acting on mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:584-96. [PMID: 21130123 DOI: 10.1016/j.bbamcr.2010.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 11/08/2010] [Accepted: 11/23/2010] [Indexed: 12/23/2022]
Abstract
An important mechanism in apoptotic regulation is changes in the subcellular distribution of pro- and anti-apoptotic proteins. Among the proteins that change in their localization and may promote apoptosis are nuclear proteins. Several of these nuclear proteins such as p53, Nur77, histone H1.2, and nucleophosmin were reported to accumulate in the cytosol and/or mitochondria and to promote the mitochondrial apoptotic pathway in response to apoptotic stressors. In this review, we will discuss the functions of these and other nuclear proteins in promoting the mitochondrial apoptotic pathway, the mechanisms that regulate their accumulation in the cytosol and/or mitochondria and the potential role of Bax and Bak in this process. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Liora Lindenboim
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | | | | |
Collapse
|
52
|
Kramer A, Liashkovich I, Oberleithner H, Shahin V. Caspase-9-dependent decrease of nuclear pore channel hydrophobicity is accompanied by nuclear envelope leakiness. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 6:605-11. [DOI: 10.1016/j.nano.2010.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/15/2010] [Accepted: 04/27/2010] [Indexed: 12/24/2022]
|
53
|
Nuclear contour irregularity and abnormal transporter protein distribution in anterior horn cells in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2009; 68:1184-92. [PMID: 19816199 DOI: 10.1097/nen.0b013e3181bc3bec] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nucleocytoplasmic transport system is essential for maintaining cell viability; transport of proteins and nucleic acids between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). In this study, we examined the immunohistochemical distribution of the major protein components of NPCs, Nup62, Nup88, and Nup153, in spinal cords from controls and patients with sporadic or familial amyotrophic lateral sclerosis (SALS or FALS) and its mouse model. In control subjects, immunolabeling on the nuclear envelopes of anterior horn cells (AHCs) was invariably smooth and continuous, whereas in SALS and FALS patients, the AHCs predominantly showed irregular nuclear contours. Double immunofluorescence staining demonstrated that in SALS patients, importin-beta immunoreactivity was absent in the nuclei in a subset of AHCs; in these cells, Nup62 immunolabeling of nuclear membrane was invariably irregular, suggesting that there was dysfunctional nucleocytoplasmic transport in those AHCs. In the mouse model, Nup62-immunolabeled AHCs with irregular nuclear contours were predominant as early as the presymptomatic stage and the contours became progressively discontinuous along with disease development. Together, these observations suggest that dysfunctional nucleocytoplasmic transport may underlie the pathogenesis of ALS.
Collapse
|
54
|
Castelló A, Izquierdo JM, Welnowska E, Carrasco L. RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J Cell Sci 2009; 122:3799-809. [PMID: 19789179 DOI: 10.1242/jcs.055988] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cytopathic viruses have developed successful strategies to block or, at least, to attenuate host interference with their replication. Here, we have analyzed the effects of poliovirus 2A protease on RNA nuclear export. 2A protease interferes with trafficking of mRNAs, rRNAs and U snRNAs from the nucleus to the cytoplasm, without any apparent effect on tRNA transport. Traffic of newly produced mRNAs is more strongly affected than traffic of other mRNAs over-represented in the cytoplasm, such as mRNA encoding beta-actin. Inhibition of RNA nuclear export in HeLa cells expressing 2A protease is concomitant with the cleavage of Nup98, Nup153, Nup62 and their subsequent subcellular redistribution. The expression of an inactive 2A protease failed to interfere with RNA nuclear export. In addition, other related proteases, such as poliovirus 3C or foot and mouth disease virus L(pro) did not affect mRNA distribution or Nup98 integrity. Treatment of HeLa cells with interferon (IFN)-gamma increased the relative amount of Nup98. Under such conditions, the cleavage of Nup98 induced by 2A protease is partial, and thus IFN-gamma prevents the inhibition of RNA nuclear export. Taken together, these results are consistent with a specific proteolysis of Nup98 by 2A protease to prevent de novo mRNA traffic in poliovirus-infected cells.
Collapse
Affiliation(s)
- Alfredo Castelló
- Centro de Biología Molecular, Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera, 1 Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
55
|
Moss DK, Wilde A, Lane JD. Dynamic release of nuclear RanGTP triggers TPX2-dependent microtubule assembly during the apoptotic execution phase. J Cell Sci 2009; 122:644-55. [PMID: 19208764 DOI: 10.1242/jcs.037259] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During apoptosis, the interphase microtubule network is dismantled then later replaced by a novel, non-centrosomal microtubule array. These microtubules assist in the peripheral redistribution of nuclear fragments in the apoptotic cell; however, the regulation of apoptotic microtubule assembly is not understood. Here, we demonstrate that microtubule assembly depends upon the release of nuclear RanGTP into the apoptotic cytoplasm because this process is blocked in apoptotic cells overexpressing dominant-negative GDP-locked Ran (T24N). Actin-myosin-II contractility provides the impetus for Ran release and, consequently, microtubule assembly is blocked in blebbistatin- and Y27632-treated apoptotic cells. Importantly, the spindle-assembly factor TPX2 (targeting protein for Xklp2), colocalises with apoptotic microtubules, and siRNA silencing of TPX2, but not of the microtubule motors Mklp1 and Kid, abrogates apoptotic microtubule assembly. These data provide a molecular explanation for the assembly of the apoptotic microtubule network, and suggest important similarities with the process of RanGTP- and TPX2-mediated mitotic spindle formation.
Collapse
Affiliation(s)
- David K Moss
- Cell Biology Laboratories, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
56
|
Arnault E, Tosca L, Courtot AM, Doussau M, Pesty A, Finaz C, Allemand I, Lefèvre B. Caspase-2(L), caspase-9, and caspase-3 during in vitro maturation and fragmentation of the mouse oocyte. Dev Dyn 2009; 237:3892-903. [PMID: 19035350 DOI: 10.1002/dvdy.21793] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have shown that apoptotic pathways control fragmentation of unfertilized ovulated oocyte, induced by doxorubicin. But very few have investigated the basis of this process, from prophase I to later stages. Our results revealed the presence of caspase-2(L), caspase-9, and caspase-3 in their zymogen and cleaved forms in the oocyte before meiosis resumption. Caspase-2(L) and caspase-9 were detected in the nucleus of GV-oocytes in a distribution related to chromatin configuration. The inhibition of caspase activity by Z-VAD-fmk accelerated the transition from metaphase I to metaphase II, and caspase-9 and caspase-3 were detected along the meiotic spindle. Surprisingly, Western blot analysis revealed that the three cleaved caspases were present in similar amounts in healthy and fragmented oocytes and caspase inhibition did not prevent doxorubicin-induced apoptosis. Our results suggest that, if cleaved, caspases may be dispensable for final oocyte death and they could be involved in regulating the maturation process.
Collapse
Affiliation(s)
- Emilie Arnault
- UMR-S 566, CEA, DSV/iRCM/SCSR/LGAG, INSERM, Université Denis Diderot-Paris 7, Université Paris-Sud, Fontenay aux Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Kramer A, Liashkovich I, Oberleithner H, Ludwig S, Mazur I, Shahin V. Apoptosis leads to a degradation of vital components of active nuclear transport and a dissociation of the nuclear lamina. Proc Natl Acad Sci U S A 2008; 105:11236-41. [PMID: 18678902 PMCID: PMC2516273 DOI: 10.1073/pnas.0801967105] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Indexed: 02/05/2023] Open
Abstract
Apoptosis, a physiologically critical process, is characterized by a destruction of the cell after sequential degradation of key cellular components. Here, we set out to explore the fate of the physiologically indispensable nuclear envelope (NE) in this process. The NE mediates the critical nucleocytoplasmic transport through nuclear pore complexes (NPCs). In addition, the NE is involved in gene expression and contributes significantly to the overall structure and mechanical stability of the cell nucleus through the nuclear lamina, which underlies the entire nucleoplasmic face of the NE and thereby interconnects the NPCs, the NE, and the genomic material. Using the nano-imaging and mechanical probing approach atomic force microscopy (AFM) and biochemical methods, we unveiled the fate of the NE during apoptosis. The doomed NE sustains a degradation of both the mediators of the critical selective nucleocytoplasmic transport, namely NPC cytoplasmic filaments and basket, and the nuclear lamina. These observations are paralleled by marked softening and destabilization of the NE and the detection of vesicle-like nuclear fragments. We conclude that destruction of the cell nucleus during apoptosis proceeds in a strategic fashion. Degradation of NPC cytoplasmic filaments and basket shuts down the critical selective nucleocytoplasmic cross-talk. Degradation of the nuclear lamina disrupts the pivotal connection between the NE and the chromatin, breaks up the overall nuclear architecture, and softens the NE, thereby enabling the formation of nuclear fragments at later stages of apoptosis.
Collapse
Affiliation(s)
- A. Kramer
- *Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany; and
| | - I. Liashkovich
- *Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany; and
| | - H. Oberleithner
- *Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany; and
| | - S. Ludwig
- Molecular Virology, Zentrums für Molekularbiologie der Entzündung, Westfälische Wilhelms-Universität Münster, Von-Esmach-Strasse 56, 48149 Münster, Germany
| | - I. Mazur
- Molecular Virology, Zentrums für Molekularbiologie der Entzündung, Westfälische Wilhelms-Universität Münster, Von-Esmach-Strasse 56, 48149 Münster, Germany
| | - V. Shahin
- *Institute of Physiology II, Westfälische Wilhelms-Universität Münster, Robert-Koch-Strasse 27b, 48149 Münster, Germany; and
| |
Collapse
|
58
|
Izquierdo JM. Fas splicing regulation during early apoptosis is linked to caspase-mediated cleavage of U2AF65. Mol Biol Cell 2008; 19:3299-307. [PMID: 18508922 DOI: 10.1091/mbc.e07-11-1125] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 kDa (U2AF65) is an essential splicing factor in the recognition of the pre-mRNA 3' splice sites during the assembly of the splicing commitment complex. We report here that U2AF65 is proteolyzed during apoptosis. This cleavage is group I or III caspase dependent in a noncanonical single site localized around the aspartic acid(128) residue and leads to the separation of the N- and C-terminal parts of U2AF65. The U2AF65 N-terminal fragment mainly accumulates in the nucleus within nuclear bodies (nucleoli-like pattern) and to a much lesser extent in the cytoplasm, whereas the C-terminal fragment is found in the cytoplasm, even in localization studies on apoptosis induction. From a functional viewpoint, the N-terminal fragment promotes Fas exon 6 skipping from a reporter minigene, by acting as a dominant-negative version of U2AF65, whereas the C-terminal fragment has no significant effect. The dominant-negative behavior of the U2AF65 N-terminal fragment can be reverted by U2AF35 overexpression. Interestingly, U2AF65 proteolysis in Jurkat cells on induction of early apoptosis correlates with the down-regulation of endogenous Fas exon 6 inclusion. Thus, these results support a functional link among apoptosis induction, U2AF65 cleavage, and the regulation of Fas alternative splicing.
Collapse
Affiliation(s)
- José M Izquierdo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, DP 28049, Madrid, Spain.
| |
Collapse
|
59
|
Klaiman G, Petzke TL, Hammond J, Leblanc AC. Targets of caspase-6 activity in human neurons and Alzheimer disease. Mol Cell Proteomics 2008; 7:1541-55. [PMID: 18487604 DOI: 10.1074/mcp.m800007-mcp200] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-6 activation occurs early in Alzheimer disease and sometimes precedes the clinical manifestation of the disease in aged individuals. The active Caspase-6 is localized in neuritic plaques, in neuropil threads, and in neurofibrillary tangles containing neurons that are not morphologically apoptotic in nature. To investigate the potential consequences of the activation of Caspase-6 in neurons, we conducted a proteomics analysis of Caspase-6-mediated cleavage of human neuronal proteins. Proteins from the cytosolic and membrane subcellular compartments were treated with recombinant active Caspase-6 and compared with undigested proteins by two-dimensional gel electrophoresis. LC/MS/MS analyses of the proteins that were cleaved identified 24 different potential protein substrates. Of these, 40% were cytoskeleton or cytoskeleton-associated proteins. We focused on the cytoskeleton proteins because these are critical for neuronal structure and function. Caspase-6 cleavage of alpha-Tubulin, alpha-Actinin-4, Spinophilin, and Drebrin was confirmed. At least one Caspase-6 cleavage site was identified for Drebrin, Spinophilin, and alpha-Tubulin. A neoepitope antiserum to alpha-Tubulin cleaved by Caspase-6 immunostained neurons, neurofibrillary tangles, neuropil threads, and neuritic plaques in Alzheimer disease and co-localized with active Caspase-6. These results imply that the early and neuritic activation of Caspase-6 in Alzheimer disease could disrupt the cytoskeleton network of neurons, resulting in impaired neuronal structure and function in the absence of cell death. This study provides novel insights into the pathophysiology of Alzheimer disease.
Collapse
Affiliation(s)
- Guy Klaiman
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Ch. Cote Ste-Catherine, Montreal, Quebec H3T 1E2, Canada
| | | | | | | |
Collapse
|
60
|
Decordier I, Cundari E, Kirsch-Volders M. Survival of aneuploid, micronucleated and/or polyploid cells: crosstalk between ploidy control and apoptosis. Mutat Res 2008; 651:30-39. [PMID: 18242119 DOI: 10.1016/j.mrgentox.2007.10.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/28/2007] [Indexed: 05/25/2023]
Abstract
Microtubule inhibitors are known to block the cell cycle at M-phase, by damaging the mitotic spindle. However, under certain circumstances, cells can escape these effects and become aneuploid, polyploid and/or micronucleated. It is well known that aneuploidy can have adverse effects on human health such as pregnancy wastage, birth defects and the development of human tumours. The present paper aims at reviewing the data our laboratory has accumulated during the last years about the relation between aneuploidy/polyploidy/presence of micronuclei and the induction of apoptosis in human cells after in vitro exposure to the microtubule inhibitor nocodazole. Exposure to high doses of nocodazole results in polyploidy due to mitotic slippage in the absence of a functional spindle. Depending on their p53-status polyploid cells may eventually arrest, die or continue cycling. In these experimental conditions, our data showed that polyploidy does not constitute a strong apoptotic signal. In case of exposure to low concentrations of nocodazole, microtubule depolymerization is disturbed resulting in a spindle with damaged microtubules. This can give rise to chromosome loss and non-disjunction. Our data showed that in particular micronucleated cells, originating from chromosome loss can be eliminated by apoptosis. In addition, nocodazole-induced apoptosis involves the apical caspase-8 and -9 and the effector caspase-3. We show evidence that caspase-3, in addition to its function in apoptosis, plays a role in the formation of micronuclei.
Collapse
Affiliation(s)
- Ilse Decordier
- Vrije Universiteit Brussel, Laboratorium voor Cellulaire Genetica, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | |
Collapse
|
61
|
Favreau C, Delbarre E, Courvalin JC, Buendia B. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway. Exp Cell Res 2008; 314:1392-405. [PMID: 18294630 DOI: 10.1016/j.yexcr.2008.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/15/2008] [Accepted: 01/25/2008] [Indexed: 12/29/2022]
Abstract
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.
Collapse
Affiliation(s)
- Catherine Favreau
- Institut Jacques Monod, UMR7592, CNRS et Universités Paris 6 et 7, Paris Cedex 05, France
| | | | | | | |
Collapse
|
62
|
Park N, Katikaneni P, Skern T, Gustin KE. Differential targeting of nuclear pore complex proteins in poliovirus-infected cells. J Virol 2008; 82:1647-55. [PMID: 18045934 PMCID: PMC2258732 DOI: 10.1128/jvi.01670-07] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 11/13/2007] [Indexed: 11/20/2022] Open
Abstract
Poliovirus disrupts nucleocytoplasmic trafficking and results in the cleavage of two nuclear pore complex (NPC) proteins, Nup153 and Nup62. The NPC is a 125-MDa complex composed of multiple copies of 30 different proteins. Here we have extended the analysis of the NPC in infected cells by examining the status of Nup98, an interferon-induced NPC protein with a major role in mRNA export. Our results indicate that Nup98 is targeted for cleavage after infection but that this occurs much more rapidly than it does for Nup153 and Nup62. In addition, we find that cleavage of these NPC proteins displays differential sensitivity to the viral RNA synthesis inhibitor guanidine hydrochloride. Inhibition of nuclear import and relocalization of host nuclear proteins to the cytoplasm were only apparent at later times after infection when all three nucleoporins (Nups) were cleaved. Surprisingly, analysis of the distribution of mRNA in infected cells revealed that proteolysis of Nup98 did not result in an inhibition of mRNA export. Cleavage of Nup98 could be reconstituted by the addition of purified rhinovirus type 2 2A(pro) to whole-cell lysates prepared from uninfected cells, suggesting that the 2A protease has a role in this process in vivo. These results indicate that poliovirus differentially targets subsets of NPC proteins at early and late times postinfection. In addition, targeting of interferon-inducible NPC proteins, such as Nup98, may be an additional weapon in the arsenal of poliovirus and perhaps other picornaviruses to overcome host defense mechanisms.
Collapse
Affiliation(s)
- Nogi Park
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052, USA
| | | | | | | |
Collapse
|
63
|
Furukawa K, Aida T, Nonaka Y, Osoda S, Juarez C, Horigome T, Sugiyama S. BAF as a caspase-dependent mediator of nuclear apoptosis in Drosophila. J Struct Biol 2007; 160:125-34. [PMID: 17904382 DOI: 10.1016/j.jsb.2007.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/18/2007] [Accepted: 07/03/2007] [Indexed: 01/27/2023]
Abstract
BAF is a double-stranded DNA binding protein required for proper nuclear morphology and function in Drosophila development. Imaginal discs of Drosophila baf-null mutants were found to exist only in younger larvae as small degenerative tissues. Immunohistochemical analyses showed diffuse lamin distribution, DNA fragmentation, and activation of caspase drICE in these tissues, suggesting that apoptotic events can be induced by the loss of baf. We therefore investigated the fate of BAF after induction of the pro-apoptotic hid transgene, and found that the loss of DNA binding forms of BAF preceded that of non-DNA binding forms of BAF. Furthermore, the DNA binding forms of BAF disappeared from nuclei before DNA fragmentation and NPC clustering were detected, showing that the loss of BAF occurs at the initial stages of nuclear apoptosis. This BAF loss was not detected before drICE activation and was inhibited by Ac-DEVD-CHO caspase inhibitors. In summary, BAF disappears at an early stage due to caspase activity when apoptosis is induced by hid, and its depletion in mutants is sufficient in itself to induce cell death, suggesting it is an apoptotic mediator.
Collapse
Affiliation(s)
- Kazuhiro Furukawa
- Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan.
| | | | | | | | | | | | | |
Collapse
|
64
|
Yamazaki T, Sasaki N, Nishi M, Yamazaki D, Ikeda A, Okuno Y, Komazaki S, Takeshima H. Augmentation of drug-induced cell death by ER protein BRI3BP. Biochem Biophys Res Commun 2007; 362:971-5. [PMID: 17765869 DOI: 10.1016/j.bbrc.2007.08.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 11/29/2022]
Abstract
To determine the contribution of the endoplasmic reticulum (ER) to cell fate decision, we focused on BRI3-binding protein (BRI3BP) residing in this organelle. BRI3BP, when overexpressed, augmented the apoptosis of human embryonic kidney 293T cells challenged with drugs including the anti-cancer agent etoposide. In contrast, the knockdown of BRI3BP reduced the drug-triggered apoptosis. BRI3BP overexpression enhanced both mitochondrial cytochrome c release and caspase-3 activity in etoposide-treated cells. In response to etoposide, the ER reorganized into irregularly shaped lamellae in mock-transfected cells, whereas in BRI3BP-overexpressing cells, such reorganization was not observed. These observations suggest that BRI3BP is involved in the structural dynamics of the ER and affects mitochondrial viability. Taken together, BRI3BP, widely expressed in animal cell types, seems to possess a pro-apoptotic property and can potentiate drug-induced apoptosis.
Collapse
Affiliation(s)
- Tetsuo Yamazaki
- The 21st Century Center of Excellence Program, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Banfalvi G, Klaisz M, Ujvarosi K, Trencsenyi G, Rozsa D, Nagy G. Gamma irradiation induced apoptotic changes in the chromatin structure of human erythroleukemia K562 cells. Apoptosis 2007; 12:2271-83. [DOI: 10.1007/s10495-007-0146-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
66
|
Marceau N, Schutte B, Gilbert S, Loranger A, Henfling MER, Broers JLV, Mathew J, Ramaekers FCS. Dual roles of intermediate filaments in apoptosis. Exp Cell Res 2007; 313:2265-81. [PMID: 17498695 DOI: 10.1016/j.yexcr.2007.03.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/05/2007] [Accepted: 03/12/2007] [Indexed: 02/06/2023]
Abstract
New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress. In the same way, we examine IF involvement, along with cytolinker participation, in sequential caspase-mediated protein cleavages that are part of the overall cell death execution, particularly those that generate new functional IF protein fragments and uncover neoantigen markers. Finally, we report on the usefulness of these markers as diagnostic tools for disease-related aspects of apoptosis in humans. Clearly, the data accumulated in recent years provide new and significant insights into the multiple functions of IFs, particularly their dual roles in cell response to apoptotic insults.
Collapse
Affiliation(s)
- Normand Marceau
- Centre de recherche en cancérologie de l'Université Laval and L'Hôtel-Dieu de Québec (CHUQ), Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Grote P, Schaeuble K, Ferrando-May E. Commuting (to) suicide: an update on nucleocytoplasmic transport in apoptosis. Arch Biochem Biophys 2007; 462:156-61. [PMID: 17395148 DOI: 10.1016/j.abb.2007.02.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/06/2007] [Accepted: 02/09/2007] [Indexed: 12/12/2022]
Abstract
Commuting is the process of travelling between a place of residence and a place of work. In the context of biology, this expression evokes the continuous movement of macromolecules between different compartments of a eukaryotic cell. Transport in and out of the nucleus is a major example of intracellular commuting. This article discusses recent findings that substantiate the emerging link between nucleocytoplasmic transport and the signalling and execution of cell death.
Collapse
Affiliation(s)
- Patricia Grote
- University of Konstanz, Department of Biology, Molecular Toxicology, P.O. Box X911, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
68
|
Ghukasyan V, Hsu YY, Kung SH, Kao FJ. Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:024016. [PMID: 17477731 DOI: 10.1117/1.2718582] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Timely and effective virus infection detection is critical for the clinical management and prevention of the disease spread in communities during an outbreak. A range of methods have been developed for this purpose, of which classical serological and viral nucleic acids detection are the most popular. We describe an alternative, imaging-based approach that utilizes fluorescence resonance energy transfer (FRET) resolved by fluorescence lifetime imaging microscopy (FLIM) and demonstrate it on the example of enterovirus 71 (EV71) infection detection. A plasmid construct is developed with the sequence for GFP2 and DsRed2 fluorescent proteins, linked by a 12-amino-acid-long cleavage recognition site for the 2A protease (2A(pro)), encoded by the EV71 genome and specific for the members of Picornaviridae family. In the construct expressed in HeLa cells, the linker binds the fluorophores within the Forster distance and creates a condition for FRET to occur, thus resulting in shortening of the GFP2 fluorescence lifetime. On cells infection with EV71, viral 2A(pro) released to the cytoplasm cleaves the recognition site, causing disruption of FRET through separation of the fluorophores. Thus, increased GFP2 lifetime to the native values, manifested by the time-correlated single-photon counting, serves as an efficient and specific indicator of the EV71 virus infection.
Collapse
Affiliation(s)
- Vladimir Ghukasyan
- National Yang-Ming University, Institute of Biophotonics Engineering, 155, Li-Nong St., Sec. 2, Taipei 112, Taiwan
| | | | | | | |
Collapse
|
69
|
Park R, Baines JD. Herpes simplex virus type 1 infection induces activation and recruitment of protein kinase C to the nuclear membrane and increased phosphorylation of lamin B. J Virol 2007; 80:494-504. [PMID: 16352573 PMCID: PMC1317514 DOI: 10.1128/jvi.80.1.494-504.2006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report that herpes simplex virus type 1 (HSV-1) infection leads to the recruitment of protein kinase C (PKC) to the nuclear rim. In HEp-2 cells, PKC recruitment to the nuclear rim was initiated between 8 h and 12 h postinfection. PKCdelta, a proapoptotic kinase, was completely recruited to the nuclear rim upon infection with HSV-1. PKCalpha was less dramatically relocalized mostly at the nuclear rim upon infection, although some PKCalpha remained in the cytoplasm. PKCzeta-specific immunofluorescence was not significantly relocated to the nuclear rim. The UL34 and UL31 proteins, as well as their association, were each required for PKC recruitment to the nuclear rim. The HSV-1 US3 protein product, a kinase which regulates the phosphorylation state and localization of UL34, was not required for PKC recruitment to the nuclear rim; however, it was required for proper localization along the nuclear rim, as PKC appeared unevenly distributed along the nuclear rim of cells infected with US3 null and kinase-dead mutants. HSV-1 infection induced the phosphorylation of both lamin B and PKC. Elevated lamin B phosphorylation in HSV-1-infected cells was partially reduced by inhibitors of PKC. The data suggest a model in which kinases that normally disassemble the nuclear lamina during apoptosis are recruited to the nuclear membrane through functions requiring UL31 and UL34. We hypothesize that the recruitment of PKC functions to phosphorylate lamin B to help modify the nuclear lamina and promote budding of nucleocapsids at the inner nuclear membrane.
Collapse
Affiliation(s)
- Richard Park
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
70
|
Abstract
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm of interphase eukaryotic cells, and it mediates all trafficking between these 2 cellular compartments. As such, the NPC and nuclear transport play central roles in translocating death signals from the cell membrane to the nucleus where they initiate biochemical and morphological changes occurring during apoptosis. Recent findings suggest that the correlation between the NPC, nuclear transport, and apoptosis goes beyond the simple fact that NPCs mediate nuclear transport of key players involved in the cell death program. In this context, the accessibility of key regulators of apoptosis appears to be highly modulated by nuclear transport (e.g., impaired nuclear import might be an apoptotic trigger). In this review, recent findings concerning the unexpected tight link between NPCs, nuclear transport, and apoptosis will be presented and critically discussed.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- ME Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland.
| |
Collapse
|
71
|
Prokocimer M, Margalit A, Gruenbaum Y. The nuclear lamina and its proposed roles in tumorigenesis: Projection on the hematologic malignancies and future targeted therapy. J Struct Biol 2006; 155:351-60. [PMID: 16697219 DOI: 10.1016/j.jsb.2006.02.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 02/13/2006] [Indexed: 01/10/2023]
Abstract
The nuclear lamina, a network of lamin filaments and lamin-associated proteins, is located between the inner nuclear membrane and the peripheral chromatin. The nuclear lamina is involved in numerous nuclear functions including maintaining nuclear shape, determining nuclear positioning, organizing chromatin and regulating the cell cycle, DNA replication, transcription, cell differentiation, apoptosis, and aging. Alterations in the composition of nuclear lamins and their associated proteins are currently emerging as an additional event involved in malignant transformation, tumor propagation and progression, thus identifying potential novel targets for future anti-cancer therapy. Here, we review the current knowledge on lamin expression patterns in cells of hematologic malignancies and give an overview on the roles of the nuclear lamina proteins in heterochromatin organization, apoptosis, and aging with special emphasis on the relevance in cancer development.
Collapse
Affiliation(s)
- Miron Prokocimer
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
72
|
Broers JLV, Ramaekers FCS, Bonne G, Yaou RB, Hutchison CJ. Nuclear Lamins: Laminopathies and Their Role in Premature Ageing. Physiol Rev 2006; 86:967-1008. [PMID: 16816143 DOI: 10.1152/physrev.00047.2005] [Citation(s) in RCA: 432] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that nuclear lamins are important proteins in maintaining cellular as well as nuclear integrity, and in maintaining chromatin organization in the nucleus. Moreover, there is growing evidence that lamins play a prominent role in transcriptional control. The family of laminopathies is a fast-growing group of diseases caused by abnormalities in the structure or processing of the lamin A/C ( LMNA) gene. Mutations or incorrect processing cause more than a dozen different inherited diseases, ranging from striated muscular diseases, via fat- and peripheral nerve cell diseases, to progeria. This broad spectrum of diseases can only be explained if the responsible A-type lamin proteins perform multiple functions in normal cells. This review gives an overview of current knowledge on lamin structure and function and all known diseases associated with LMNA abnormalities. Based on the knowledge of the different functions of A-type lamins and associated proteins, explanations for the observed phenotypes are postulated. It is concluded that lamins seem to be key players in, among others, controlling the process of cellular ageing, since disturbance in lamin protein structure gives rise to several forms of premature ageing.
Collapse
Affiliation(s)
- J L V Broers
- Department of Molecular Cell Biology, University of Maastricht, Research Institutes CARIM, GROW, and EURON, The Netherlands
| | | | | | | | | |
Collapse
|
73
|
Neumeyer J, Hallas C, Merkel O, Winoto-Morbach S, Jakob M, Thon L, Adam D, Schneider-Brachert W, Schütze S. TNF-receptor I defective in internalization allows for cell death through activation of neutral sphingomyelinase. Exp Cell Res 2006; 312:2142-53. [PMID: 16631736 DOI: 10.1016/j.yexcr.2006.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 03/13/2006] [Accepted: 03/15/2006] [Indexed: 11/28/2022]
Abstract
The cytoplasmic tail of the tumor necrosis factor receptor I (TNF-RI) contains several functionally distinct domains involved in apoptotic signaling. Mutants of TNF-RI carrying deletions of the death domain (DD), internalization domain (TRID), and neutral sphingomyelinase domain (NSD), respectively, retransfected in cells devoid of TNF-RI and TNF-RII, constituted distinct tools to evaluate the specific role of each domain in downstream apoptotic signaling events. Deletion of DD abolishes activation of caspase-3 and -9 and apoptosis following treatment with TNF because of blocked assembly of the DISC. Nevertheless, TNF-RI DeltaTRID, though lacking a DISC, still allows for residual activation of caspase-3 followed by cell death, although caspase-9 activation was not detected. This activity of caspase-3 is probably due to activation of neutral sphingomyelinase (N-SMase). Increased activity of this enzyme was detected in cells expressing TNF-RI DeltaTRID following treatment with TNF, but not in any other cell line investigated. N-SMase is activated by factor associated with N-SMase (FAN). Because TNF-RI DeltaTRID is retained at the cell surface, FAN may interact with the mutated receptor for a prolonged amount of time, thereby overactivating N-SMase. Double deletion of TRID and NSD abolished caspase-3 activation and apoptosis, confirming this hypothesis.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Caspase 3
- Caspase 9
- Caspases/drug effects
- Caspases/metabolism
- Cell Death/genetics
- Cells, Cultured
- Ceramides/metabolism
- Ceramides/pharmacology
- DNA-Binding Proteins/genetics
- Death Domain Receptor Signaling Adaptor Proteins
- Enzyme Activation
- Fibroblasts
- Gene Deletion
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Knockout
- Models, Biological
- Protein Structure, Tertiary/genetics
- Protein Transport/physiology
- RNA, Small Interfering/pharmacology
- Receptors, Tumor Necrosis Factor, Type I/chemistry
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/physiology
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Sphingomyelin Phosphodiesterase/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Jens Neumeyer
- Institute of Immunology, University Hospital of Schleswig-Holstein Campus Kiel, Michaelisstr. 5, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Lidsky PV, Hato S, Bardina MV, Aminev AG, Palmenberg AC, Sheval EV, Polyakov VY, van Kuppeveld FJM, Agol VI. Nucleocytoplasmic traffic disorder induced by cardioviruses. J Virol 2006; 80:2705-17. [PMID: 16501080 PMCID: PMC1395435 DOI: 10.1128/jvi.80.6.2705-2717.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Some picornaviruses, for example, poliovirus, increase bidirectional permeability of the nuclear envelope and suppress active nucleocytoplasmic transport. These activities require the viral protease 2A(pro). Here, we studied nucleocytoplasmic traffic in cells infected with encephalomyocarditis virus (EMCV; a cardiovirus), which lacks the poliovirus 2A(pro)-related protein. EMCV similarly enhanced bidirectional nucleocytoplasmic traffic. By using the fluorescent "Timer" protein, which contains a nuclear localization signal, we showed that the cytoplasmic accumulation of nuclear proteins in infected cells was largely due to the nuclear efflux of "old" proteins rather than impaired active nuclear import of newly synthesized molecules. The nuclear envelope of digitonin-treated EMCV-infected cells permitted rapid efflux of a nuclear marker protein. Inhibitors of poliovirus 2A(pro) did not prevent the EMCV-induced efflux. Extracts from EMCV-infected cells and products of in vitro translation of viral RNAs contained an activity increasing permeability of the nuclear envelope of uninfected cells. This activity depended on the expression of the viral leader protein. Mutations disrupting the zinc finger motif of this protein abolished its efflux-inducing ability. Inactivation of the L protein phosphorylation site (Thr47-->Ala) resulted in a delayed efflux, while a phosphorylation-mimicking (Thr47-->Asp) replacement did not significantly impair the efflux-inducing ability. Such activity of extracts from EMCV-infected cells was suppressed by the protein kinase inhibitor staurosporine. As evidenced by electron microscopy, cardiovirus infection resulted in alteration of the nuclear pores, but it did not trigger degradation of the nucleoporins known to be degraded in the poliovirus-infected cells. Thus, two groups of picornaviruses, enteroviruses and cardioviruses, similarly alter the nucleocytoplasmic traffic but achieve this by strikingly different mechanisms.
Collapse
Affiliation(s)
- Peter V Lidsky
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Sheffield LG, Miskiewicz HB, Tannenbaum LB, Mirra SS. Nuclear pore complex proteins in Alzheimer disease. J Neuropathol Exp Neurol 2006; 65:45-54. [PMID: 16410748 DOI: 10.1097/01.jnen.0000195939.40410.08] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ultrastructural studies of neurofibrillary tangles in Alzheimer disease (AD) have demonstrated a close relationship between nuclear pores and the cytoplasmic paired helical filaments comprising the tangles, as well as nuclear irregularity in many tangle-bearing neurons; nuclear pore aggregation has been observed in nearby neurons. These observations prompted examination of the nuclear pore complex (NPC) and proteins critical to nucleocytoplasmic transport in neurons with and without tangles in AD and control cases. Light microscopic study of hippocampus and neocortex in AD and controls revealed that all nuclei were labeled by antibodies to NPC proteins, including the central transporter nucleoporin Nup62. Nucleoporin and tau label revealed significantly more nuclear irregularity in AD, often associated with neurofibrillary tangles. Double label of Nup62 with apoptotic markers (TUNEL and active caspase-3) and a cell-cycle protein (cyclin B1) revealed no clear relationship of nuclear irregularity to apoptosis or cell-cycle protein expression. However, cytoplasmic accumulation of nuclear transport factor 2 (NTF2), a protein that transports cargo from the cytoplasm into the nucleus, was observed in a subset of hippocampal neurons with and without tangles in AD but not control cases. Further investigation of the NPC and nucleocytoplasmic transport in AD is warranted.
Collapse
Affiliation(s)
- Lynette G Sheffield
- Department of Pathology, SUNY Downstate Medical Center, Brooklyn, New York, NY 11203, USA
| | | | | | | |
Collapse
|
76
|
Zuzarte-Luis V, Berciano MT, Lafarga M, Hurlé JM. Caspase redundancy and release of mitochondrial apoptotic factors characterize interdigital apoptosis. Apoptosis 2006; 11:701-15. [PMID: 16532376 DOI: 10.1007/s10495-006-5481-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we show a detailed analysis of cellular and molecular events during in vivo apoptotic cell death in the INZs (interdigital necrotic zones) of the embryonic limb. As the apoptotic mechanisms proceed, the transcriptionally active chromatin and nuclear traffic of RNAs are disrupted, cytoskeletal components are disorganized and the adhesive properties of cells are compromised as Paxillin, a clue member of the focal adhesion complex, decreases in early apoptotic cells. Activation of effector caspases 3 and 7 follow nuclear degradation. In addition, active caspase2 is localized in the nuclei and cytoplasm of early apoptotic cells suggesting a major role in physiological conditions supported by its down-regulation in tissue survival experiments. However in caspase 2 siRNA assays we observed translocation of caspase 3 to the nuclei suggesting functional redundancy. We also observed release of cytochrome c and AIF from the mitochondria, and interestingly AIF becomes intranuclear in a caspase independent manner.
Collapse
Affiliation(s)
- V Zuzarte-Luis
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander 39011, Spain
| | | | | | | |
Collapse
|
77
|
Moisan E, Girard D. Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J Leukoc Biol 2006; 79:489-98. [PMID: 16365157 DOI: 10.1189/jlb.0405190] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Neutrophils represent an important source of autoantigens for antineutrophil cytoplasmic antibody associated with vasculitis. To date, two cytoskeletal proteins, vinculin and vimentin, have been reported to be expressed on the cell surfaces of activated macrophages, platelets, and apoptotic T lymphocytes. However, such cell surface expression has never been studied in human neutrophils. As we recently demonstrated that different cytoskeletal proteins were cleaved in apoptotic neutrophils, we hypothesized that some of these were expressed on the cell surface of apoptotic neutrophils. Herein, we found that among vinculin, paxillin, gelsolin, vimentin, lamin B1, alpha-tubulin, and beta-tubulin, only the two intermediate filament (INFIL) proteins, vimentin and lamin B1, are expressed on the cell surface of 24-h aged neutrophils [spontaneous apoptosis (SA)]. By monitoring intracellular expression of vimentin and lamin B1 during SA, we found that these two proteins were cleaved and that such cleavage was reversed by the pan caspase inhibitor N-benzyloxy-carbonyl-V-A-D-O-methylfluoromethyl ketone (z-VAD-fmk). When neutrophil apoptosis was delayed or suppressed by lipopolysaccharide or the cytokines granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, or interleukin-4, the loss of intracellular expression of vimentin and lamin B1 was prevented. The INFIL proteins were absent from the cell surface when neutrophil apoptosis was delayed. Addition of z-VAD-fmk significantly decreased the cell surface expression of vimentin and lamin B1 during SA. This study provides the first evidence that apoptotic neutrophils express cytoskeletal proteins on their surface, opening the possibility that these cells may participate in the development of autoantibodies directed against cytoskeletal proteins, a condition frequently reported in several inflammatory diseases.
Collapse
Affiliation(s)
- Eliane Moisan
- INRS-Institut Armand-Frappier, Université du Québec, Canada
| | | |
Collapse
|
78
|
Newton HB. Molecular neuro-oncology and the development of targeted therapeutic strategies for brain tumors. Part 5: apoptosis and cell cycle. Expert Rev Anticancer Ther 2006; 5:355-78. [PMID: 15877531 DOI: 10.1586/14737140.5.2.355] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Brain tumors are a diverse group of malignancies that remain refractory to conventional treatment approaches. Molecular neuro-oncology has now begun to clarify the transformed phenotype of brain tumors and identify oncogenic pathways that might be amenable to targeted therapy. Abnormalities of the apoptotic and cell cycle signaling pathways are key molecular features of many brain tumors and are currently under evaluation for potential therapeutic intervention. The apoptosis pathway has numerous targets for molecular therapeutic development, including p53, Bax, Bcl-2, cFLIP, effector caspases, growth factor receptors, phosphatidylinositol-3-kinase, Akt and apoptosis inhibitors. Current molecular treatment approaches include antisense techniques, gene therapy and small-molecule modulators and inhibitors. Potential targets of the cell cycle pathway include the cyclins, cyclin-dependent kinases, p53, retinoblastoma, E2F and the cyclin-dependent kinase inhibitors. Developmental molecular therapeutics for this pathway include adenoviral and gene therapy, small-peptide cyclin-dependent kinase modulators, proteasomal inhibitors and small-molecule cyclin-dependent kinase inhibitors. Several of these recently identified agents have begun evaluation in clinical trials. Further development of targeted therapies designed to modulate apoptosis and the cell cycle, and evaluation of these new agents in clinical trials, will be needed to improve survival and quality of life for patients with brain tumors.
Collapse
Affiliation(s)
- Herbert B Newton
- Dardinger Neuro-Oncology Center, Department of Neurology, The Ohio State University Hospitals, 465 Means Hall, 1654 Upham Drive, Columbus, OH 43210, USA.
| |
Collapse
|
79
|
Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 2006; 9:769-79. [PMID: 16326389 DOI: 10.1016/j.devcel.2005.10.007] [Citation(s) in RCA: 426] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 07/21/2005] [Accepted: 10/13/2005] [Indexed: 12/19/2022]
Abstract
Covalent modification by SUMO regulates a wide range of cellular processes, including transcription, cell cycle, and chromatin dynamics. To address the biological function of the SUMO pathway in mammals, we generated mice deficient for the SUMO E2-conjugating enzyme Ubc9. Ubc9-deficient embryos die at the early postimplantation stage. In culture, Ubc9 mutant blastocysts are viable, but fail to expand after 2 days and show apoptosis of the inner cell mass. Loss of Ubc9 leads to major chromosome condensation and segregation defects. Ubc9-deficient cells also show severe defects in nuclear organization, including nuclear envelope dysmorphy and disruption of nucleoli and PML nuclear bodies. Moreover, RanGAP1 fails to accumulate at the nuclear pore complex in mutant cells that show a collapse in Ran distribution. Together, these findings reveal a major role for Ubc9, and, by implication, for the SUMO pathway, in nuclear architecture and function, chromosome segregation, and embryonic viability in mammals.
Collapse
Affiliation(s)
- Karim Nacerddine
- Unité d'Organisation Nucléaire et Oncogénèse, INSERM U 579, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Patre M, Tabbert A, Hermann D, Walczak H, Rackwitz HR, Cordes VC, Ferrando-May E. Caspases target only two architectural components within the core structure of the nuclear pore complex. J Biol Chem 2005; 281:1296-304. [PMID: 16286466 DOI: 10.1074/jbc.m511717200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases were recently implicated in the functional impairment of the nuclear pore complex during apoptosis, affecting its dual activity as nucleocytoplasmic transport channel and permeability barrier. Concurrently, electron microscopic data indicated that nuclear pore morphology is not overtly altered in apoptotic cells, raising the question of how caspases may deactivate nuclear pore function while leaving its overall structure largely intact. To clarify this issue we have analyzed the fate of all known nuclear pore proteins during apoptotic cell death. Our results show that only two of more than 20 nuclear pore core structure components, namely Nup93 and Nup96, are caspase targets. Both proteins are cleaved near their N terminus, disrupting the domains required for interaction with other nucleoporins actively involved in transport and providing the permeability barrier but dispensable for maintaining the nuclear pore scaffold. Caspase-mediated proteolysis of only few nuclear pore complex components may exemplify a general strategy of apoptotic cells to efficiently disable huge macromolecular machines.
Collapse
Affiliation(s)
- Monika Patre
- Molecular Toxicology Group, Faculty of Biology, University of Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
81
|
Ball JR, Ullman KS. Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 2005; 114:319-30. [PMID: 16133350 DOI: 10.1007/s00412-005-0019-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/08/2005] [Accepted: 07/10/2005] [Indexed: 10/25/2022]
Abstract
The vertebrate pore protein Nup153 plays pivotal roles in nuclear pore function. In addition to being important to pore architecture, Nup153 is a key participant in both import and export. The scope of Nup153 function also extends beyond the canonical view of the pore as a trafficking gateway. During the transition into mitosis, Nup153 directs proteins involved in membrane remodeling to the nuclear envelope. As cells exit mitosis, Nup153 is recruited to the chromosomal surface, where nuclear pores are formed anew in a complicated process still under much experimental scrutiny. In addition, Nup153 is targeted for protease cleavage during apoptosis and in response to certain viral infections, providing molecular insight into pore reconfiguration during cell response. Overall, the versatile nature of Nup153 underscores an emerging view of the nuclear pore at the nexus of many key cellular processes.
Collapse
Affiliation(s)
- Jennifer R Ball
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
82
|
Mason DA, Shulga N, Undavai S, Ferrando-May E, Rexach MF, Goldfarb DS. Increased nuclear envelope permeability and Pep4p-dependent degradation of nucleoporins during hydrogen peroxide-induced cell death. FEMS Yeast Res 2005; 5:1237-51. [PMID: 16183335 DOI: 10.1016/j.femsyr.2005.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 07/15/2005] [Accepted: 07/25/2005] [Indexed: 10/25/2022] Open
Abstract
The death of yeast treated with hydrogen peroxide (H(2)O(2)) shares a number of morphological and biochemical features with mammalian apoptosis. In this study, we report that the permeability of yeast nuclear envelopes (NE) increased during H(2)O(2)-induced cell death. Similar phenomena have been observed during apoptosis in mammalian tissue culture cells. Increased NE permeability in yeast was temporally correlated with an increase in the production of reactive-oxygen species (ROS). Later, after ROS levels began to decline and viability was lost, specific nuclear pore complex (NPC) proteins (nucleoporins) were degraded. Although caspases are responsible for the degradation of mammalian nucleoporins during apoptosis, the deletion of the metacaspase gene YCA1 had no effect on the stability of yeast nucleoporins. Instead, Pep4p, a vacuolar cathepsin D homolog, was responsible for the proteolysis of nucleoporins. Coincident with nucleoporin degradation, a Pep4p-EGFP reporter migrated out of the vacuole in H(2)O(2)-treated cells. We conclude that increases in ROS and NPC permeability occur relatively early during H(2)O(2)-induced cell death. Later, Pep4p migrates out of vacuoles and degrades nucleoporins after the cells are effectively dead.
Collapse
Affiliation(s)
- D Adam Mason
- Department of Biology, University of Rochester, NY 14627, USA
| | | | | | | | | | | |
Collapse
|
83
|
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73:1907-16. [PMID: 15784530 PMCID: PMC1087413 DOI: 10.1128/iai.73.4.1907-1916.2005] [Citation(s) in RCA: 1525] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Susan L Fink
- Department of Laboratory Medicine, University of Washington, Box 357110, Seattle, WA 98195-7110, USA
| | | |
Collapse
|
84
|
Kodiha M, Chu A, Matusiewicz N, Stochaj U. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ 2005; 11:862-74. [PMID: 15088071 DOI: 10.1038/sj.cdd.4401432] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In growing HeLa cells, severe stress elicited by the oxidant hydrogen peroxide inhibits classical nuclear import. Oxidant treatment collapses the nucleocytoplasmic Ran concentration gradient, thereby elevating cytoplasmic GTPase levels. The Ran gradient dissipates in response to a stress-induced depletion of RanGTP and a decreased efficiency of Ran nuclear import. In addition, oxidative stress induces a relocation of the nucleoporin Nup153 as well as the nuclear carrier importin-beta, and docking of the importin-alpha/beta/cargo complex at the nuclear envelope is reduced. Moreover, Ran, importin-beta and Nup153 undergo proteolysis upon oxidative stress. Caspases and the proteasome degrade Ran and importin-beta; however, ubiquitination of these transport factors is not observed. Inhibition of caspases in stressed cells alleviates the mislocalization of importin-beta, but does not restore the Ran concentration gradient or classical import. In summary, inhibition of classical nuclear import by hydrogen peroxide is caused by a combination of multiple mechanisms that target different components of the transport apparatus.
Collapse
Affiliation(s)
- M Kodiha
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, PQ, H3G 1Y6, Canada
| | | | | | | |
Collapse
|
85
|
Hsieh MH, Nguyen HT. Molecular Mechanism of Apoptosis Induced by Mechanical Forces. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:45-90. [PMID: 16125545 DOI: 10.1016/s0074-7696(05)45003-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In all biological systems, a balance between cell proliferation/growth and death is required for normal development as well as for adaptation to a changing environment. To affect their fate, it is essential for cells to integrate signals from the environment. Recently, it has been recognized that physical forces such as stretch, strain, and tension play a critical role in regulating this process. Despite intensive investigation, the pathways by which mechanical signals are converted to biochemical responses is yet to be completely understood. In this review, we will examine our current understanding of how mechanical forces induce apoptosis in a variety of biological systems. Rather than being a degenerative event, physical forces act through specific receptor-like molecules such as integrins, focal adhesion proteins, and the cytoskeleton. These molecules in turn activate a limited number of protein kinase pathways (p38 MAPK and JNK/SAPK), which amplify the signal and activate enzymes (caspases) that promote apoptosis. Physical forces concurrently activate other signaling pathways such as PIK-3 and Erk 1/2 MAPK, which modulate the apoptotic response. The cell phenotype and the character of the physical stimuli determine which pathways are activated and, consequently, allow for variability in response to a specific stimulus in different cell types.
Collapse
Affiliation(s)
- Michael H Hsieh
- Department of Urology, University of California San Francisco, San Francisco, California 94143, USA
| | | |
Collapse
|
86
|
Veluthakal R, Amin R, Kowluru A. Interleukin-1β induces posttranslational carboxymethylation and alterations in subnuclear distribution of lamin B in insulin-secreting RINm5F cells. Am J Physiol Cell Physiol 2004; 287:C1152-62. [PMID: 15201138 DOI: 10.1152/ajpcell.00083.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We examined the effects of interleukin-1β (IL-1β) treatment on the distribution and degradation of lamin B in the nuclear fraction from insulin-secreting RINm5F cells. Western blot analysis indicated that IL-1β treatment caused significant alterations in the redistribution of lamin B, specifically between the Triton X-100-soluble (membrane) and -insoluble (matrix) fractions of the nucleus. IL-1β treatment also increased the lamin carboxymethyltransferase activity and the relative abundance of the carboxymethylated lamin in the nuclear fraction. A significant increase in the relative abundance of lamin B degradation products was also observed in the nuclear fraction from the IL-1β-treated cells. These findings are compatible with a measurable increase in the lamin-degrading caspase-6 activity in IL-1β-treated cells. Confocal microscopic observation of IL-1β-treated cells suggested a significant dissociation of lamin B from the nuclear lamina and its subsequent association with the DNA-rich elements within the nucleus. NG-monomethyl-l-arginine, a known inhibitor of inducible nitric oxide synthetase (iNOS), markedly inhibited IL-1β-induced iNOS gene expression, NO release, caspase-3 and caspase-6 activation, lamin B degradation, and loss of metabolic cell viability, indicating that the observed IL-1β-induced effects on nuclear lamin B involve the intermediacy of NO. Together, our data support the hypothesis that IL-1β treatment results in significant increase in the carboxymethylation of lamin B, which would place lamin B in a strategic location for its degradation mediated by caspases. This could possibly lead to dissolution of the nuclear envelope, culminating in the demise of the effete β-cell.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | | | | |
Collapse
|
87
|
Belov GA, Lidsky PV, Mikitas OV, Egger D, Lukyanov KA, Bienz K, Agol VI. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores. J Virol 2004; 78:10166-77. [PMID: 15331749 PMCID: PMC514989 DOI: 10.1128/jvi.78.18.10166-10177.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poliovirus and some other picornaviruses trigger relocation of certain nuclear proteins into the cytoplasm. Here, by using a protein changing its fluorescence color with time and containing a nuclear localization signal (NLS), we demonstrate that the poliovirus-triggered relocation is largely due to the exit of presynthesized nuclear protein into the cytoplasm. The leakiness of the nuclear envelope was also documented by the inability of nuclei from digitonin-permeabilized, virus-infected (but not mock-infected) cells to retain an NLS-containing derivative of green fluorescent protein (GFP). The cytoplasm-to-nucleus traffic was also facilitated during infection, as evidenced by experiments with GAPDH (glyceraldehyde-3-phosphate dehydrogenase), cyclin B1, and an NLS-lacking derivative of GFP, which are predominantly cytoplasmic in uninfected cells. Electron microscopy demonstrated that a bar-like barrier structure in the channel of the nuclear pores, seen in uninfected cells, was missing in the infected cells, giving the impression of fully open pores. Transient expression of poliovirus 2A protease also resulted in relocation of the nuclear proteins. Lysates from poliovirus-infected or 2A-expressing cells induced efflux of 3xEGFP-NLS from the nuclei of permeabilized uninfected cells. This activity was inhibited by the elastase inhibitors elastatinal and N-(methoxysuccinyl)-L-alanyl-L-alanyl-L-prolyl-L-valine chloromethylketone (drugs known also to be inhibitors of poliovirus protease 2A), a caspase inhibitor zVAD(OMe), fmk, and some other protease inhibitors. These data suggest that 2A elicited nuclear efflux, possibly in cooperation with a zVAD(OMe).fmk-sensitive protease. However, poliovirus infection facilitated nuclear protein efflux also in cells deficient in caspase-3 and caspase-9, suggesting that the efflux may occur without the involvement of these enzymes. The biological relevance of nucleocytoplasmic traffic alterations in infected cells is discussed.
Collapse
Affiliation(s)
- George A Belov
- M. P. Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow
| | | | | | | | | | | | | |
Collapse
|
88
|
Affiliation(s)
- Birthe Fahrenkrog
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland.
| | | | | |
Collapse
|
89
|
Tounekti O, Zhang Y, Klaiman G, Goodyer CG, LeBlanc A. Proteasomal degradation of caspase-6 in 17beta-estradiol-treated neurons. J Neurochem 2004; 89:561-8. [PMID: 15086513 DOI: 10.1111/j.1471-4159.2004.02349.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In primary cultures of human neurons, 17beta-estradiol (17beta-E2) prevents caspase-6-mediated cell death and induces a caspase inhibitory factor (CIF) inhibiting active caspase-6 (Csp-6) in vitro. Here, we show that treatment of neurons with 17beta-E2 results in a proteasomal-dependent but ubiquitin-independent degradation of endogenous and exogenous active Csp-6 in live neurons and in cell free assays, respectively. We further show that the proteasomal-dependent degradation of Csp-6 is not required for its inhibition. Using several protease inhibitors, we find that leupeptin, E-64, and ALLN prevent inhibition of recombinant active Csp-6 (R-Csp-6) in 17beta-E2-treated neuronal protein extracts. Because all three protease inhibitors have the ability to inhibit cysteine proteases, we believe that a cysteinyl protease activity may be required for 17beta-E2-mediated inhibition of active Csp-6. However, we exclude caspases, calpains, and cathepsins as potential cysteinyl proteases involved in the 17beta-E2-mediated Csp-6 inhibition. The results suggest that a proteolytic activity inhibited by leupeptin, E-64, and ALLN is needed to inhibit Csp-6 and that the inhibited Csp-6 is subsequently degraded by the proteasome. The mechanism of 17beta-E2-mediated inhibition of Csp-6 is different from the ubiquitin-dependent proteasomal degradation of Csp-3 and Csp-7 by XIAP and cIAP2 but consistent with the mechanism of Baculovirus p35 inhibition of caspases.
Collapse
Affiliation(s)
- Omar Tounekti
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
90
|
Favreau C, Higuet D, Courvalin JC, Buendia B. Expression of a mutant lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol Cell Biol 2004; 24:1481-92. [PMID: 14749366 PMCID: PMC344177 DOI: 10.1128/mcb.24.4.1481-1492.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominantly inherited missense mutations in lamins A and C cause several tissue-specific diseases, including Emery-Dreifuss muscular dystrophy (EDMD) and Dunnigan-type familial partial lipodystrophy (FPLD). Here we analyze myoblast-to-myotube differentiation in C2C12 clones overexpressing lamin A mutated at arginine 453 (R453W), one of the most frequent mutations in EDMD. In contrast with clones expressing wild-type lamin A, these clones differentiate poorly or not at all, do not exit the cell cycle properly, and are extensively committed to apoptosis. These disorders are correlated with low levels of expression of transcription factor myogenin and with the persistence of a large pool of hyperphosphorylated retinoblastoma protein. Since clones mutated at arginine 482 (a site responsible for FPLD) differentiate normally, we conclude that C2C12 clones expressing R453W-mutated lamin A represent a good cellular model to study the pathophysiology of EDMD. Our hypothesis is that lamin A mutated at arginine 453 fails to build a functional scaffold and/or to maintain the chromatin compartmentation required for differentiation of myoblasts into myocytes.
Collapse
Affiliation(s)
- Catherine Favreau
- Département de Biologie Cellulaire, Institut Jacques Monod, CNRS, Universités Paris 6 & 7, 75251 Paris cedex 05, France
| | | | | | | |
Collapse
|
91
|
Gruenbaum Y, Goldman RD, Meyuhas R, Mills E, Margalit A, Fridkin A, Dayani Y, Prokocimer M, Enosh A. The nuclear lamina and its functions in the nucleus. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 226:1-62. [PMID: 12921235 DOI: 10.1016/s0074-7696(03)01001-5] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure. The nuclear lamina is an essential component of metazoan cells. It is involved in most nuclear activities including DNA replication, RNA transcription, nuclear and chromatin organization, cell cycle regulation, cell development and differentiation, nuclear migration, and apoptosis. Specific mutations in nuclear lamina genes cause a wide range of heritable human diseases. These diseases include Emery-Dreifuss muscular dystrophy, limb girdle muscular dystrophy, dilated cardiomyopathy (DCM) with conduction system disease, familial partial lipodystrophy (FPLD), autosomal recessive axonal neuropathy (Charcot-Marie-Tooth disorder type 2, CMT2), mandibuloacral dysplasia (MAD), Hutchison Gilford Progeria syndrome (HGS), Greenberg Skeletal Dysplasia, and Pelger-Huet anomaly (PHA). Genetic analyses in Caenorhabditis elegans, Drosophila, and mice show new insights into the functions of the nuclear lamina, and recent structural analyses have begun to unravel the molecular structure and assembly of lamins and their associated proteins.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Kihlmark M, Rustum C, Eriksson C, Beckman M, Iverfeldt K, Hallberg E. Correlation between nucleocytoplasmic transport and caspase-3-dependent dismantling of nuclear pores during apoptosis. Exp Cell Res 2004; 293:346-56. [PMID: 14729472 DOI: 10.1016/j.yexcr.2003.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During apoptosis (also called programmed cell death), the chromatin condenses and the DNA is cleaved into oligonucleosomal fragments. Caspases are believed to play a major role in nuclear apoptosis. However, the relation between dismantling of nuclear pores, disruption of the nucleocytoplasmic barrier, and nuclear entry of caspases is unclear. We have analyzed nuclear import of the green fluorescent protein fused to a nuclear localization signal (GFP-NLS) in tissue culture cells undergoing apoptosis. Decreased nuclear accumulation of GFP-NLS could be detected at the onset of nuclear apoptosis manifested as dramatic condensation and redistribution of chromatin toward the nuclear periphery. At this step, dismantling of nuclear pores was already evident as indicated by proteolysis of the nuclear pore membrane protein POM121. Thus, disruption of nuclear compartmentalization correlated with early signs of nuclear pore damage. Both these events clearly preceded massive DNA fragmentation, detected by TUNEL assay. Furthermore, we show that in apoptotic cells, POM121 is specifically cleaved at aspartate-531 in its large C-terminal portion by a caspase-3-dependent mechanism. Cleavage of the C-terminal portion of POM121, which is adjoining the nuclear pore complex, is likely to disrupt interactions with other nuclear pore proteins affecting the stability of the pore complex. A temporal correlation of apoptotic events supports a model where caspase-dependent disassembly of nuclear pores and disruption of the nucleocytoplasmic barrier paves the way for nuclear entry of caspases and subsequent activation of CAD-mediated DNA fragmentation.
Collapse
Affiliation(s)
- Madeleine Kihlmark
- Section for Natural Sciences, Södertörns Högskola (University College), 141 89 Huddinge, Sweden
| | | | | | | | | | | |
Collapse
|
93
|
Maraldi NM, Lattanzi G, Squarzoni S, Sabatelli P, Marmiroli S, Ognibene A, Manzoli FA. At the nucleus of the problem: nuclear proteins and disease. ADVANCES IN ENZYME REGULATION 2004; 43:411-43. [PMID: 12791400 DOI: 10.1016/s0065-2571(02)00042-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
94
|
Meyers M, Hwang A, Wagner MW, Boothman DA. Role of DNA mismatch repair in apoptotic responses to therapeutic agents. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2004; 44:249-264. [PMID: 15468331 DOI: 10.1002/em.20056] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Deficiencies in DNA mismatch repair (MMR) have been found in both hereditary cancer (i.e., hereditary nonpolyposis colorectal cancer) and sporadic cancers of various tissues. In addition to its primary roles in the correction of DNA replication errors and suppression of recombination, research in the last 10 years has shown that MMR is involved in many other processes, such as interaction with other DNA repair pathways, cell cycle checkpoint regulation, and apoptosis. Indeed, a cell's MMR status can influence its response to a wide variety of chemotherapeutic agents, such as temozolomide (and many other methylating agents), 6-thioguanine, cisplatin, ionizing radiation, etoposide, and 5-fluorouracil. For this reason, identification of a tumor's MMR deficiency (as indicated by the presence of microsatellite instability) is being utilized more and more as a prognostic indicator in the clinic. Here, we describe the basic mechanisms of MMR and apoptosis and investigate the literature examining the influence of MMR status on the apoptotic response following treatment with various therapeutic agents. Furthermore, using isogenic MMR-deficient (HCT116) and MMR-proficient (HCT116 3-6) cells, we demonstrate that there is no enhanced apoptosis in MMR-proficient cells following treatment with 5-fluoro-2'-deoxyuridine. In fact, apoptosis accounts for only a small portion of the induced cell death response.
Collapse
Affiliation(s)
- Mark Meyers
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
95
|
Kim JE, Tannenbaum SR. S-Nitrosation regulates the activation of endogenous procaspase-9 in HT-29 human colon carcinoma cells. J Biol Chem 2003; 279:9758-64. [PMID: 14701803 DOI: 10.1074/jbc.m312722200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide-mediated signals have been suggested to regulate the activity of caspases negatively, yet literature has provided little direct evidence. We show in this paper that cytokines and nitric-oxide synthase (NOS) inhibitors regulate S-nitrosation of an initiator caspase, procaspase-9, in a human colon adenocarcinoma cell line, HT-29. A NOS inhibitor, N(G)-methyl-l-arginine, enhanced the tumor necrosis factor-alpha (TNF-alpha)-induced cleavage of procaspase-9, procaspase-3, and poly-(ADP-ribose) polymerase, as well as the level of apoptosis. N(G)-Methyl-l-arginine, however, did not affect the cleavage of procaspase-8. These results suggest that nitric oxide regulates the cleavage of procaspase-9 and its downstream proteins and, subsequently, apoptosis in HT-29 cells. Labeling S-nitrosated cysteines with a biotin tag enabled us to reveal S-nitrosation of endogenous procaspase-9 that was immunoprecipitated from the HT-29 cell extracts. Furthermore, the treatment with TNF-alpha, as well as NOS inhibitors, decreased interferon-gamma-induced S-nitrosation in procaspase-9. Our results show that S-nitrosation of endogenous procaspase-9 occurs in the HT-29 cells under normal conditions and that denitrosation of procaspase-9 enhances its cleavage and consequent apoptosis. We, therefore, suggest that S-nitrosation regulates activation of endogenous procaspase-9 in HT-29 cells.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
96
|
Lukovic D, Komoriya A, Packard BZ, Ucker DS. Caspase activity is not sufficient to execute cell death. Exp Cell Res 2003; 289:384-95. [PMID: 14499640 DOI: 10.1016/s0014-4827(03)00289-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Molecular studies of the physiological cell death process have focused attention on the role of effector caspases as critical common elements of the lethal mechanism. Diverse death signals act afferently via distinct signaling pathways to activate these resident proenzyme molecules post-translationally. Whether this molecular convergence represents the mechanistic point of irreversible commitment to cell death has not been established. That a number of caspase substrates are proteins that serve important roles in cellular homeostasis has led to the view that the acquisition of this activity must be the determinative step in cell death. Observations that caspases serve in a regulatory role to catalyze the appearance of new activities involved in orderly cellular dissolution challenge this model of death as a simple process of proteolytic destruction. We found previously that caspase-dependent nuclear cyclin dependent kinase 2 (Cdk2) activity appears to be necessary for cell death. Employing direct cytofluorimetric analyses of intracellular caspase activity and colony forming assays, we now show that transient blockade of caspase-dependent Cdk2 activity confers long-lived sparing from death on cells otherwise triggered to die and fully replete with caspase activity. These data demonstrate that caspases, while necessary for apoptosis, are not sufficient to exert lethality. Caspase activation per se does not represent an irreversible point of commitment to physiological cell death.
Collapse
Affiliation(s)
- Dunja Lukovic
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
97
|
Escalier D, Silvius D, Xu X. Spermatogenesis of mice lacking CK2alpha': failure of germ cell survival and characteristic modifications of the spermatid nucleus. Mol Reprod Dev 2003; 66:190-201. [PMID: 12950107 DOI: 10.1002/mrd.10346] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Csnk2a2 encodes the CK2alpha'catalytic subunit of CK2 that is predominantly expressed in testis. Male mice in which Csnk2a2 has been disrupted were infertile and displayed oligozoospermia with an abnormal shape of the spermatid nucleus. In this study, Csnk2a2 null testes revealed extensive germ cell degenerative processes at all stages of spermatogenesis, including the first spermatogenesis wave. Nuclear envelope (NE) protrusions with loss of nuclear pores, swelling of the outer membrane, and disruption of the inner membrane were observed in cells ranging from spermatogonia to early spermatids. Most early round spermatids were depleted, and DNA-specific fluorescent dyes showed a large chromatin-free nuclear domain near the chromocenter. Spermatids that were not eliminated retained NE defects that could explain the acrosomal and nuclear abnormalities of Csnk2a2 null spermatozoa. Data suggest that CK2alpha' deficiency could impair the phosphorylation of nuclear proteins of male germ cells leading to a particular cell-death pathway characterized by NE protrusions and an unusual pattern of chromatin modifications in spermatids.
Collapse
Affiliation(s)
- Denise Escalier
- Histologie Fonctionnelle et Moléculaire, Université Paris 5, Paris, France.
| | | | | |
Collapse
|
98
|
Bamri-Ezzine S, Ao ZJ, Londoño I, Gingras D, Bendayan M. Apoptosis of tubular epithelial cells in glycogen nephrosis during diabetes. J Transl Med 2003; 83:1069-80. [PMID: 12861046 DOI: 10.1097/01.lab.0000078687.21634.69] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The important problem of the fate of glycogen-accumulating clear cells in glycogen nephrosis is still unsettled. In this study, we examine whether apoptosis plays a relevant role in the development of diabetic glycogen nephrosis and explore the involvement of the Fas/Fas-L system and the activation of the caspase cascade. Diabetes was induced in rats by streptozotocin injection. Glycogen-accumulating clear cells were identified in renal tissues of hyperglycemic rats. They were found to be concentrated in the thick ascending limbs and distal tubules. Large cellular glycogen accumulations were confirmed by biochemical assays and enzyme-gold cytochemistry. Clear cells displayed apoptotic features such as Annexin V binding, nuclear TUNEL (terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling), and the simultaneous occurrence of Fas, Annexin V, and TUNEL positivity. Western blot analysis demonstrated enhanced expression of Fas receptor/ligand and the activation of the caspase cascade in these cells because cleaved forms of the caspase-3, -8, and -9 were detected. Furthermore, active caspase-3 was located in nuclei by immunoelectron microscopy. Our results indicate that epithelial cells in thick ascending limbs and distal tubules that develop glycogen nephrosis in response to hyperglycemia undergo Fas/Fas-L mediated cell death. Thus, apoptosis could be playing a significant role in renal epithelial cell deletion during diabetes.
Collapse
Affiliation(s)
- Saoussen Bamri-Ezzine
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
99
|
Liu QY, Ribecco-Lutkiewicz M, Carson C, Testolin L, Bergeron D, Kohwi-Shigematsu T, Walker PR, Sikorska M. Mapping the initial DNA breaks in apoptotic Jurkat cells using ligation-mediated PCR. Cell Death Differ 2003; 10:278-89. [PMID: 12700628 DOI: 10.1038/sj.cdd.4401146] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Apoptotic DNA degradation could be initiated by the accumulation of single-strand (ss) breaks in vulnerable chromatin regions, such as base unpairing regions (BURs), which might be preferentially targeted for degradation by both proteases and nucleases. We tested this hypothesis in anti-Fas-treated apoptotic Jurkat cells. Several nuclear proteins known for their association with both MARs and the nuclear matrix, that is, PARP, NuMA, lamin B and SATB1, were degraded, but the morphological rearrangement of the BUR-binding SATB1 protein was one of the earliest detected changes. Subsequently, we have identified several genes containing sequences homologous to the 25 bp BUR element of the IgH gene, a known SATB1-binding site, and examined the integrity of genomic DNA in their vicinity. Multiple ss breaks were found in close proximity to these sites relative to adjacent regions of DNA. Consistent with our prediction, the results indicated that the initiation of DNA cleavage in anti-Fas-treated Jurkat cells occurred within the BUR sites, which likely became accessible to endonucleases due to the degradation of BUR-binding proteins.
Collapse
Affiliation(s)
- Q Y Liu
- Apoptosis Research Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Fischer U, Jänicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 2003; 10:76-100. [PMID: 12655297 PMCID: PMC7091709 DOI: 10.1038/sj.cdd.4401160] [Citation(s) in RCA: 768] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Apoptotic cell death is executed by the caspase-mediated cleavage of various vital proteins. Elucidating the consequences of this endoproteolytic cleavage is crucial for our understanding of cell death and other biological processes. Many caspase substrates are just cleaved as bystanders, because they happen to contain a caspase cleavage site in their sequence. Several targets, however, have a discrete function in propagation of the cell death process. Many structural and regulatory proteins are inactivated by caspases, while other substrates can be activated. In most cases, the consequences of this gain-of-function are poorly understood. Caspase substrates can regulate the key morphological changes in apoptosis. Several caspase substrates also act as transducers and amplifiers that determine the apoptotic threshold and cell fate. This review summarizes the known caspase substrates comprising a bewildering list of more than 280 different proteins. We highlight some recent aspects inferred by the cleavage of certain proteins in apoptosis. We also discuss emerging themes of caspase cleavage in other forms of cell death and, in particular, in apparently unrelated processes, such as cell cycle regulation and cellular differentiation.
Collapse
Affiliation(s)
- U Fischer
- Institute of Molecular Medicine, University of Düsseldorf, Germany
| | - R U Jänicke
- Institute of Molecular Medicine, University of Düsseldorf, Germany
| | | |
Collapse
|