51
|
Kim SW, Kang HJ, Jhon M, Kim JW, Lee JY, Walker AJ, Agustini B, Kim JM, Berk M. Statins and Inflammation: New Therapeutic Opportunities in Psychiatry. Front Psychiatry 2019; 10:103. [PMID: 30890971 PMCID: PMC6413672 DOI: 10.3389/fpsyt.2019.00103] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Statins, which are widely used to treat hypercholesterolemia, have anti-inflammatory and anti-oxidant effects. These are thought to be responsible for the potential effects of statins on various psychiatric disorders. In this study, we comprehensively review the literature to investigate the effects of statins on various psychiatric disorders including depression, schizophrenia, and dementia. In addition, we review adverse effects and drug interactions of statins to give clinically useful information guiding statin use in the psychiatric field. Statins seem useful in reducing depression, particularly in patients with physical disorders such as cardiovascular disease. In patients with schizophrenia, negative symptoms may be reduced by adjuvant statin therapy. Studies on cohorts at risk for dementia have generally shown protective effects of statins, while those on treatment for dementia show inconsistent results. In conclusion, statins used in combination with conventional psychotropic medications may be effective for various psychiatric disorders including depression, schizophrenia, and dementia. Further study is required to determine optimal doses and duration of statin use for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Min Jhon
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Adam J Walker
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Bruno Agustini
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, South Korea
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.,Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia.,The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| |
Collapse
|
52
|
Mane NR, Gajare KA, Deshmukh AA. Mild heat stress induces hormetic effects in protecting the primary culture of mouse prefrontal cerebrocortical neurons from neuropathological alterations. IBRO Rep 2018; 5:110-115. [PMID: 30519667 PMCID: PMC6260229 DOI: 10.1016/j.ibror.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022] Open
Abstract
Hormesis is a dose response phenomenon of cells and organisms to various types of stressors. Mild stress stimulates prosurvival pathways and makes the cells adaptive to stressful conditions. It is a widely used fundamental dose-response phenomenon in many biomedical and toxicological sciences, radiation biology, health science etc. Mild heat stress is an easily applicable hormetic agent that exerts consistent results. In the present investigations mouse cerebrocortical prefrontal neurons from E17 mouse embryos were grown in the laboratory on poly-L-lysine coated glass cover slips. The cells from the mild heat stressed group were subjected to a hyperthermic stress of 38 °C for 30 min every alternate day (i.e. mild heat stress was repeated after 48 h) up to the sixth day. After completion of twenty four hours of the final i.e. third exposure of the mild heat stress, the neurons were fixed for the cytochemical studies of neurofibrillary tangles, senile plaques, lipofuscin granules and Nissl substance. There was highly significant decrease in the neuropathological alterations (viz. deposition of Neurofibrillary tangles, deposition of senile plaques, accumulation of Lipofuscin granules) in the neurons from the mild heat stressed group as compared to control. Moreover, the Nissl substance was significantly preserved in the mild heat stressed group as compared to control. The results indicate that the applied mild heat stress (38 °C for 30 min) exerts beneficial effects on the prefrontal cerebrocortical neurons by slowing down the neuropathological alterations, suggesting the hormetic effect of the mild heat stress.
Collapse
Affiliation(s)
- Narayan R. Mane
- Cellular Stress Response Laboratory, Cell Biology Division, Department of Zoology, Shivaji University, Kolhapur, Maharashtra, 416 004, India
| | - Kavita A. Gajare
- Department of Zoology, The New College Kolhapur, Maharashtra, 416 012, India
| | - Ashish A. Deshmukh
- Cellular Stress Response Laboratory, Cell Biology Division, Department of Zoology, Shivaji University, Kolhapur, Maharashtra, 416 004, India
| |
Collapse
|
53
|
Recinto SJ, Paschkowsky S, Munter LM. An alternative processing pathway of APP reveals two distinct cleavage modes for rhomboid protease RHBDL4. Biol Chem 2018; 399:1399-1408. [DOI: 10.1515/hsz-2018-0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/28/2018] [Indexed: 02/02/2023]
Abstract
AbstractSince the first genetic description of a rhomboid inDrosophila melanogaster, tremendous efforts have been geared towards elucidating the proteolytic mechanism of this particular class of intramembrane proteases. In particular, mammalian rhomboid proteases sparked our interest and we aimed to investigate the human homologue RHBDL4. In light of our recent finding of the amyloid precursor protein (APP) family as efficient substrates of RHBDL4, we were enticed to further study the specific proteolytic mechanism of this enzyme by comparing cleavage patterns of wild type APP and APP TMS chimeras. Here, we demonstrate that the introduction of positively charged amino acid residues in the TMS redirects the RHBDL4-mediated cleavage of APP from its ectodomain closer towards the TMS, possibly inducing an ER-associated degradation (ERAD) of the substrate. In addition, we concluded that the cytoplasmic tail and proposed palmitoylation sites in the ectodomain of APP are not essential for the RHBDL4-mediated APP processing. In summary, our previously identified APP ectodomain cleavages by RHBDL4 are a subsidiary mechanism to the proposed RHBDL4-mediated ERAD of substrates likely through a single cleavage near or within the TMS.
Collapse
|
54
|
Noda Y, Kuzuya A, Tanigawa K, Araki M, Kawai R, Ma B, Sasakura Y, Maesako M, Tashiro Y, Miyamoto M, Uemura K, Okuno Y, Kinoshita A. Fibronectin type III domain-containing protein 5 interacts with APP and decreases amyloid β production in Alzheimer's disease. Mol Brain 2018; 11:61. [PMID: 30355327 PMCID: PMC6201590 DOI: 10.1186/s13041-018-0401-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
The deposition of Amyloid-beta peptides (Aβ) is detected at an earlier stage in Alzheimer’s disease (AD) pathology. Thus, the approach toward Aβ metabolism is considered to play a critical role in the onset and progression of AD. Mounting evidence suggests that lifestyle-related diseases are closely associated with AD, and exercise is especially linked to the prevention and the delayed progression of AD. We previously showed that exercise is more effective than diet control against Aβ pathology and cognitive deficit in AD mice fed a high-fat diet; however, the underlying molecular mechanisms remain poorly understood. On the other hand, a report suggested that exercise induced expression of fibronectin type III domain-containing protein 5 (FNDC5) in the hippocampus of mice through PGC1α pathway. Thus, in the current study, we investigated a possibility that FNDC5 interacts with amyloid precursor protein (APP) and affects Aβ metabolism. As a result, for the first time ever, we found the interaction between FNDC5 and APP, and forced expression of FNDC5 significantly decreased levels of both Aβ40 and Aβ42 secreted in the media. Taken together, our results indicate that FNDC5 significantly affects β-cleavage of APP via the interaction with APP, finally regulating Aβ levels. A deeper understanding of the mechanisms by which the interaction between APP and FNDC5 may affect Aβ production in an exercise-dependent manner would provide new preventive strategies against the development of AD.
Collapse
Affiliation(s)
- Yasuha Noda
- Department of Human Health Sciences, Graduated school of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Kuzuya
- Department of Neurology, Graduated school of Medicine, Kyoto University, 54 Shogoin kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kyousuke Tanigawa
- Department of Human Health Sciences, Graduated school of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsugu Araki
- Department of Human Health Sciences, Graduated school of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryoko Kawai
- Department of Pharmaceuticals, Kyoto University, 46 Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Biao Ma
- Research and Development Group for In Silico Drug Discovery, Pro-Cluster Kobe, Foundation for Biomedical Research and Innovation (FBRI), 6-3-5, Minatojima-Minamimachi Chuo-ku, Kobe, 650-0047, Japan
| | - Yoko Sasakura
- Research and Development Group for In Silico Drug Discovery, Pro-Cluster Kobe, Foundation for Biomedical Research and Innovation (FBRI), 6-3-5, Minatojima-Minamimachi Chuo-ku, Kobe, 650-0047, Japan
| | - Masato Maesako
- Neurobiology of Alzheimer's Disease Laboratory, Massachusetts General Hospital, Harvard Medical School, 149 13th Street Charlestown, Charlestown, MA, 02129, USA
| | - Yoshitaka Tashiro
- Department of Human Health Sciences, Graduated school of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masakazu Miyamoto
- Department of Neurology, Graduated school of Medicine, Kyoto University, 54 Shogoin kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kengo Uemura
- Department of Neurology, Graduated school of Medicine, Kyoto University, 54 Shogoin kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasushi Okuno
- Department of Human Health Sciences, Graduated school of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ayae Kinoshita
- Department of Human Health Sciences, Graduated school of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
55
|
Possible Clues for Brain Energy Translation via Endolysosomal Trafficking of APP-CTFs in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2764831. [PMID: 30420907 PMCID: PMC6215552 DOI: 10.1155/2018/2764831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/14/2018] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
Vascular dysfunctions, hypometabolism, and insulin resistance are high and early risk factors for Alzheimer's disease (AD), a leading neurological disease associated with memory decline and cognitive dysfunctions. Early defects in glucose transporters and glycolysis occur during the course of AD progression. Hypometabolism begins well before the onset of early AD symptoms; this timing implicates the vulnerability of hypometabolic brain regions to beta-secretase 1 (BACE-1) upregulation, oxidative stress, inflammation, synaptic failure, and cell death. Despite the fact that ketone bodies, astrocyte-neuron lactate shuttle, pentose phosphate pathway (PPP), and glycogenolysis compensate to provide energy to the starving AD brain, a considerable energy crisis still persists and increases during disease progression. Studies that track brain energy metabolism in humans, animal models of AD, and in vitro studies reveal striking upregulation of beta-amyloid precursor protein (β-APP) and carboxy-terminal fragments (CTFs). Currently, the precise role of CTFs is unclear, but evidence supports increased endosomal-lysosomal trafficking of β-APP and CTFs through autophagy through a vague mechanism. While intracellular accumulation of Aβ is attributed as both the cause and consequence of a defective endolysosomal-autophagic system, much remains to be explored about the other β-APP cleavage products. Many recent works report altered amino acid catabolism and expression of several urea cycle enzymes in AD brains, but the precise cause for this dysregulation is not fully explained. In this paper, we try to connect the role of CTFs in the energy translation process in AD brain based on recent findings.
Collapse
|
56
|
Lu L, Deng Y, Li X, Li H, Karniadakis GE. Understanding the Twisted Structure of Amyloid Fibrils via Molecular Simulations. J Phys Chem B 2018; 122:11302-11310. [PMID: 30106299 DOI: 10.1021/acs.jpcb.8b07255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accumulation and aggregation of amyloid are associated with the pathogenesis of many human diseases, such as Alzheimer's disease and Type 2 diabetes mellitus. Therefore, a quantitative understanding of the molecular mechanisms causing different aggregated structures and biomechanical properties of amyloid fibrils could shed some light into the progression of these diseases. In this work, we develop coarse-grained molecular dynamics (CGMD) models to simulate the dynamic self-assembly of two types of amyloids (amylin and amyloid β (Aβ)). We investigate the structural and mechanical properties of different types of aggregated amyloid fibrils. Our simulations demonstrate that amyloid fibrils could result from longitudinal growth of protofilament bundles, confirming one of the hypotheses on the fibril formation. In addition, we find that the persistence length of amylin fibrils increases concurrently with their pitch length, suggesting that the bending stiffness of amylin fibrils becomes larger when the amylin fibrils are less twisted. Similar results are observed for Aβ fibrils. These findings quantify the connection between the structural and the biomechanical properties of the fibrils. The CGMD models developed in this work can be potentially used to examine efficacy of anti-aggregation drugs, which could help in developing new treatments.
Collapse
Affiliation(s)
- Lu Lu
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - Yixiang Deng
- School of Engineering , Brown University , Providence , Rhode Island 02912 , United States
| | - Xuejin Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - He Li
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| | - George Em Karniadakis
- Division of Applied Mathematics , Brown University , Providence , Rhode Island 02912 , United States
| |
Collapse
|
57
|
Sarajärvi T, Jäntti M, Paldanius KMA, Natunen T, Wu JC, Mäkinen P, Tarvainen I, Tuominen RK, Talman V, Hiltunen M. Protein kinase C -activating isophthalate derivatives mitigate Alzheimer's disease-related cellular alterations. Neuropharmacology 2018; 141:76-88. [PMID: 30138694 DOI: 10.1016/j.neuropharm.2018.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022]
Abstract
Abnormal protein kinase C (PKC) function contributes to many pathophysiological processes relevant for Alzheimer's disease (AD), such as amyloid precursor protein (APP) processing. Phorbol esters and other PKC activators have been demonstrated to enhance the secretion of soluble APPα (sAPPα), reduce the levels of β-amyloid (Aβ), induce synaptogenesis, and promote neuroprotection. We have previously described isophthalate derivatives as a structurally simple family of PKC activators. Here, we characterised the effects of isophthalate derivatives HMI-1a3 and HMI-1b11 on neuronal viability, neuroinflammatory response, processing of APP and dendritic spine density and morphology in in vitro. HMI-1a3 increased the viability of embryonic primary cortical neurons and decreased the production of the pro-inflammatory mediator TNFα, but not that of nitric oxide, in mouse neuron-BV2 microglia co-cultures upon LPS- and IFN-γ-induced neuroinflammation. Furthermore, both HMI-1a3 and HMI-1b11 increased the levels of sAPPα relative to total sAPP and the ratio of Aβ42/Aβ40 in human SH-SY5Y neuroblastoma cells. Finally, bryostatin-1, but not HMI-1a3, increased the number of mushroom spines in proportion to total spine density in mature mouse hippocampal neuron cultures. These results suggest that the PKC activator HMI-1a3 exerts neuroprotective functions in the in vitro models relevant for AD by reducing the production of TNFα and increasing the secretion of neuroprotective sAPPα.
Collapse
Affiliation(s)
- T Sarajärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - M Jäntti
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - K M A Paldanius
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - T Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - J C Wu
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - P Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - I Tarvainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - R K Tuominen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - V Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - M Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
58
|
Li GZ, Liu F, Xu C, Li JY, Xu YJ. Selenium and Zinc against Aβ 25-35-Induced Cytotoxicity and Tau Phosphorylation in PC12 Cells and Inhibits γ-cleavage of APP. Biol Trace Elem Res 2018; 184:442-449. [PMID: 29081063 DOI: 10.1007/s12011-017-1162-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Amyloid beta (Aβ) is the main component of the amyloid plaques that accumulate in the brains of Alzheimer patients. The present study was conducted to investigate whether the combined treatment with selenium (Se) and zinc (Zn) offers more beneficial effects than that provided by either of them alone in reversing Aβ25-35-induced neurotoxicity in PC12 cells. Cells were pretreated with 0.1 μmol/L of Se and Zn for 4 h, after treated with 10 mmol/L Aβ25-35 for 24 h. Cells were divided into control and five treated groups, and received either 10 mmol/L Aβ25-35,10 mmol/L Aβ25-35 + 0.1 μmol/L Se, 10 mmol/L Aβ25-35 + 0.1 μmol/L Zn, 10 mmol/LAβ25-35 + 0.1 μmol/L Se + 0.1 μmol/L Zn, or 0.1 μmol/L Se + 0.1 μmol/L Zn. The result showed that cell viability was decreased in MTT metabolic rate; LDH release and MDA, H2O2, and NO levels were increased and the GSK-3β and phosphorylated tau protein level were increased in Aβ25-35-treated group (P < 0.05 or P < 0.01), which whole changes were attenuated by Se and Zn and Se combined Zn. In order to evaluate whether the Se and Zn have an effect on processing pathway of amyloid precursor protein (APP), we examined the activity of γ-secretase in primary cultured cortical neuron cells. ELISA analysis showed that Se and Zn could inhibit the activity of γ-secretase. Then we also investigated the effect of Se and Zn on the Aβ1-40 concentration and APP-N-terminal fragment expression from APP695 stably transfected Chinese hamster ovary (CHO) cells. APP695 stably transfected CHO cells were treated with 0.1 μmol/L Se and Zn; cells were divided into control and four treated groups, which received either 0.5 M DAPT, 0.1 μmol/L Se, 0.1 μmol/L Zn, or 0.1 μmol/L Se + 0.1 μmol/L Zn. Se and Zn could decrease Aβ1-40 production and increase the APP-N-terminal fragment protein expression. These experiments indicate that Se and Zn have a protective effect on AD pathology that a possible mechanism is inhibiting the activity of γ-secretase to decreasing Aβ1-40 production further influencing the APP processing. Altogether, our findings may provide a novel therapeutic target to treat AD sufferers.
Collapse
Affiliation(s)
- Guang-Zhe Li
- Department of Psychiatry, Yanbian Brain Hospital, Yanji, Jilin, 133000, China
| | - Fang Liu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China
| | - Cui Xu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China
| | - Jing-Yang Li
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China
| | - Yan-Ji Xu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
59
|
Cellular Receptors of Amyloid β Oligomers (AβOs) in Alzheimer's Disease. Int J Mol Sci 2018; 19:ijms19071884. [PMID: 29954063 PMCID: PMC6073792 DOI: 10.3390/ijms19071884] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
It is estimated that Alzheimer’s disease (AD) affects tens of millions of people, comprising not only suffering patients, but also their relatives and caregivers. AD is one of age-related neurodegenerative diseases (NDs) characterized by progressive synaptic damage and neuronal loss, which result in gradual cognitive impairment leading to dementia. The cause of AD remains still unresolved, despite being studied for more than a century. The hallmark pathological features of this disease are senile plaques within patients’ brain composed of amyloid beta (Aβ) and neurofibrillary tangles (NFTs) of Tau protein. However, the roles of Aβ and Tau in AD pathology are being questioned and other causes of AD are postulated. One of the most interesting theories proposed is the causative role of amyloid β oligomers (AβOs) aggregation in the pathogenesis of AD. Moreover, binding of AβOs to cell membranes is probably mediated by certain proteins on the neuronal cell surface acting as AβO receptors. The aim of our paper is to describe alternative hypotheses of AD etiology, including genetic alterations and the role of misfolded proteins, especially Aβ oligomers, in Alzheimer’s disease. Furthermore, in this review we present various putative cellular AβO receptors related to toxic activity of oligomers.
Collapse
|
60
|
Volloch V, Rits S. Results of Beta Secretase-Inhibitor Clinical Trials Support Amyloid Precursor Protein-Independent Generation of Beta Amyloid in Sporadic Alzheimer's Disease. Med Sci (Basel) 2018; 6:medsci6020045. [PMID: 29865246 PMCID: PMC6024788 DOI: 10.3390/medsci6020045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 12/31/2022] Open
Abstract
The present review analyzes the results of recent clinical trials of β secretase inhibition in sporadic Alzheimer’s disease (SAD), considers the striking dichotomy between successes in tests of β-site Amyloid Precursor Protein-Cleaving Enzyme (BACE) inhibitors in healthy subjects and familial Alzheimer’s disease (FAD) models versus persistent failures of clinical trials and interprets it as a confirmation of key predictions for a mechanism of amyloid precursor protein (APP)-independent, β secretase inhibition-resistant production of β amyloid in SAD, previously proposed by us. In light of this concept, FAD and SAD should be regarded as distinctly different diseases as far as β-amyloid generation mechanisms are concerned, and whereas β secretase inhibition would be neither applicable nor effective in the treatment of SAD, the β-site APP-Cleaving Enzyme (BACE) inhibitor(s) deemed failed in SAD trials could be perfectly suitable for the treatment of FAD. Moreover, targeting the aspects of Alzheimer’s disease (AD) other than cleavages of the APP by β and α secretases should have analogous impacts in both FAD and SAD.
Collapse
Affiliation(s)
- Vladimir Volloch
- Deptartment of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | - Sophia Rits
- Howard Hughes Medical Institute at Children's Hospital, Boston, MA 02115, USA.
- Deptartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
61
|
Ashraf J, Ahmad J, Ali A, Ul-Haq Z. Analyzing the Behavior of Neuronal Pathways in Alzheimer's Disease Using Petri Net Modeling Approach. Front Neuroinform 2018; 12:26. [PMID: 29875647 PMCID: PMC5974338 DOI: 10.3389/fninf.2018.00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's Disease (AD) is the most common neuro-degenerative disorder in the elderly that leads to dementia. The hallmark of AD is senile lesions made by abnormal aggregation of amyloid beta in extracellular space of brain. One of the challenges in AD treatment is to better understand the mechanism of action of key proteins and their related pathways involved in neuronal cell death in order to identify adequate therapeutic targets. This study focuses on the phenomenon of aggregation of amyloid beta into plaques by considering the signal transduction pathways of Calpain-Calpastatin (CAST) regulation system and Amyloid Precursor Protein (APP) processing pathways along with Ca2+ channels. These pathways are modeled and analyzed individually as well as collectively through Stochastic Petri Nets for comprehensive analysis and thorough understating of AD. The model predicts that the deregulation of Calpain activity, disruption of Calcium homeostasis, inhibition of CAST and elevation of abnormal APP processing are key cytotoxic events resulting in an early AD onset and progression. Interestingly, the model also reveals that plaques accumulation start early (at the age of 40) in life but symptoms appear late. These results suggest that the process of neuro-degeneration can be slowed down or paused by slowing down the degradation rate of Calpain-CAST Complex. In the light of this study, the suggestive therapeutic strategy might be the prevention of the degradation of Calpain-CAST complexes and the inhibition of Calpain for the treatment of neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Javaria Ashraf
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Amjad Ali
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
62
|
Bhatti S, Ali Shah SA, Ahmed T, Zahid S. Neuroprotective effects of Foeniculum vulgare seeds extract on lead-induced neurotoxicity in mice brain. Drug Chem Toxicol 2018; 41:399-407. [DOI: 10.1080/01480545.2018.1459669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Sheharbano Bhatti
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery, (AuRIns), Universiti Teknologi MARA Puncak Alam Campus, Bandar Puncak Alam, Malaysia
| | - Touqeer Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
63
|
Cruchaga C, Del-Aguila JL, Saef B, Black K, Fernandez MV, Budde J, Ibanez L, Deming Y, Kapoor M, Tosto G, Mayeux RP, Holtzman DM, Fagan AM, Morris JC, Bateman RJ, Goate AM, Harari O. Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms. Alzheimers Dement 2018; 14:205-214. [PMID: 28943286 PMCID: PMC5803427 DOI: 10.1016/j.jalz.2017.08.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/31/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine whether the extent of overlap of the genetic architecture among the sporadic late-onset Alzheimer's Disease (sLOAD), familial late-onset AD (fLOAD), sporadic early-onset AD (sEOAD), and autosomal dominant early-onset AD (eADAD). METHODS Polygenic risk scores (PRSs) were constructed using previously identified 21 genome-wide significant loci for LOAD risk. RESULTS We found that there is an overlap in the genetic architecture among sEOAD, fLOAD, and sLOAD. The highest association of the PRS and risk (odds ratio [OR] = 2.27; P = 1.29 × 10-7) was observed in sEOAD, followed by fLOAD (OR = 1.75; P = 1.12 × 10-7) and sLOAD (OR = 1.40; P = 1.21 × 10-3). The PRS was associated with cerebrospinal fluid ptau181-Aβ42 on eADAD (P = 4.36 × 10-2). CONCLUSION Our analysis confirms that the genetic factors identified for LOAD modulate risk in sLOAD and fLOAD and also sEOAD cohorts. Specifically, our results suggest that the burden of these risk variants is associated with familial clustering and earlier onset of AD. Although these variants are not associated with risk in the eADAD, they may be modulating age at onset.
Collapse
Affiliation(s)
- Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Saef
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathleen Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Manav Kapoor
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, NY, USA; Department of Neurology, Columbia University College of Physicians and Surgeons, New York-Presbyterian Hospital, New York, NY, USA
| | - Richard P Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, NY, USA; Gertrude H. Sergievsky Center, Columbia University College of Physicians and Surgeons, New York, NY, USA; School of Medicine, Mother and Teacher Pontifical Catholic University, Santiago, Dominican Republic
| | - David M Holtzman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne M Fagan
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
64
|
Stem Cell Therapies for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:61-84. [PMID: 29754175 DOI: 10.1007/978-3-319-74470-4_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cell therapies have been proposed as a treatment option for neurodegenerative diseases, but the best stem cell source and therapeutic efficacy for neuroregeneration remain uncertain. Embryonic stem cells (ESCs) and neural stem cells (NSCs), which can efficiently generate neural cells, could be good candidates but they pose ethical and practical issues. Not only difficult to find the good source of those cells but also they alway pose immunorejection problem since they may not be an autologous cells. Even if we overcome the immunorejection problem, it has also been reported that transplantation of ESCs develop teratoma. Although adult stem cells are more accessible, they have a limited developmental potential. We developed technologies to increase potency of mesenchymal stem cells, which allow them to develop into neural cells, by over expression of the ESC gene, nanog. We also developed a small molecule compound, which significantly increases endogenous NSCs by peripheral administration, eliminating even the necessity of stem cell injection to the brain. These novel technologies may offer neuroregenerative therapies for Alzheimers disease (AD). However, we found that AD pathological condition prevent neurogenesis from NSCs. This chapter discusses how to overcome the problem associated stem cell therapy under AD pathology and introduces exosome as a tool to improve the modification of adult stem cells. These new technologies may open a door for the new era for AD therapy.
Collapse
|
65
|
Sun J, Roy S. The physical approximation of APP and BACE-1: A key event in alzheimer's disease pathogenesis. Dev Neurobiol 2017; 78:340-347. [PMID: 29106038 DOI: 10.1002/dneu.22556] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of insoluble deposits of Amyloid β (Aβ) in brains. Aβ is derived by sequential cleavage of the amyloid precursor protein (APP) by β-site secretase enzyme (BACE-1) and γ-secretase. Proteolytic processing of APP by BACE-1 is the rate-limiting step in Aβ production, and this pathway is a prime target for AD drug development. Both APP and BACE-1 are membrane-spanning proteins, transported via secretory and endocytic pathways; and the physical interaction of APP and BACE-1 during trafficking is a key cell biological event initiating the amyloidogenic pathway. Here, we highlight recent research on intracellular trafficking/sorting of APP and BACE-1, and discuss how dysregulation of these pathways might lead to enhanced convergence of APP and BACE-1, and subsequent β-cleavage of APP. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 340-347, 2018.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705.,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705
| | - Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705.,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705
| |
Collapse
|
66
|
Smith DK, He M, Zhang CL, Zheng JC. The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Prog Neurobiol 2017; 157:212-229. [PMID: 26844759 PMCID: PMC5848468 DOI: 10.1016/j.pneurobio.2016.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Neural cell identity reprogramming strategies aim to treat age-related neurodegenerative disorders with newly induced neurons that regenerate neural architecture and functional circuits in vivo. The isolation and neural differentiation of pluripotent embryonic stem cells provided the first in vitro models of human neurodegenerative disease. Investigation into the molecular mechanisms underlying stem cell pluripotency revealed that somatic cells could be reprogrammed to induced pluripotent stem cells (iPSCs) and these cells could be used to model Alzheimer disease, amyotrophic lateral sclerosis, Huntington disease, and Parkinson disease. Additional neural precursor and direct transdifferentiation strategies further enabled the induction of diverse neural linages and neuron subtypes both in vitro and in vivo. In this review, we highlight neural induction strategies that utilize stem cells, iPSCs, and lineage reprogramming to model or treat age-related neurodegenerative diseases, as well as, the clinical challenges related to neural transplantation and in vivo reprogramming strategies.
Collapse
Affiliation(s)
- Derek K Smith
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Miao He
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Physical Therapy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Jialin C Zheng
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Family Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Center for Translational Neurodegeneration and Regenerative Therapy, the Collaborative Innovation Center for Brain Science, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
67
|
Sandin L, Bergkvist L, Nath S, Kielkopf C, Janefjord C, Helmfors L, Zetterberg H, Blennow K, Li H, Nilsberth C, Garner B, Brorsson AC, Kågedal K. Beneficial effects of increased lysozyme levels in Alzheimer's disease modelled in Drosophila melanogaster. FEBS J 2017; 283:3508-3522. [PMID: 27562772 PMCID: PMC5132093 DOI: 10.1111/febs.13830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 01/23/2023]
Abstract
Genetic polymorphisms of immune genes that associate with higher risk to develop Alzheimer's disease (AD) have led to an increased research interest on the involvement of the immune system in AD pathogenesis. A link between amyloid pathology and immune gene expression was suggested in a genome‐wide gene expression study of transgenic amyloid mouse models. In this study, the gene expression of lysozyme, a major player in the innate immune system, was found to be increased in a comparable pattern as the amyloid pathology developed in transgenic mouse models of AD. A similar pattern was seen at protein levels of lysozyme in human AD brain and CSF, but this lysozyme pattern was not seen in a tau transgenic mouse model. Lysozyme was demonstrated to be beneficial for different Drosophila melanogaster models of AD. In flies that expressed Aβ1‐42 or AβPP together with BACE1 in the eyes, the rough eye phenotype indicative of toxicity was completely rescued by coexpression of lysozyme. In Drosophila flies bearing the Aβ1‐42 variant with the Arctic gene mutation, lysozyme increased the fly survival and decreased locomotor dysfunction dose dependently. An interaction between lysozyme and Aβ1‐42 in the Drosophila eye was discovered. We propose that the increased levels of lysozyme, seen in mouse models of AD and in human AD cases, were triggered by Aβ1‐42 and caused a beneficial effect by binding of lysozyme to toxic species of Aβ1‐42, which prevented these from exerting their toxic effects. These results emphasize the possibility of lysozyme as biomarker and therapeutic target for AD.
Collapse
Affiliation(s)
- Linnea Sandin
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Liza Bergkvist
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Sangeeta Nath
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Claudia Kielkopf
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Camilla Janefjord
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden
| | - Linda Helmfors
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia
| | - Camilla Nilsberth
- Department of Acute Internal Medicine and Geriatrics and Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Australia.,School of Biological Sciences, University of Wollongong, Australia
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Sweden.
| | - Katarina Kågedal
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Sweden.
| |
Collapse
|
68
|
Amit T, Bar-Am O, Mechlovich D, Kupershmidt L, Youdim MBH, Weinreb O. The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer's disease models. Neuropharmacology 2017; 123:359-367. [PMID: 28571715 DOI: 10.1016/j.neuropharm.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In many of the neurodegenerative diseases, such as Alzheimer's disease (AD) and AD-related disorders, as well as in the regular ageing process, excessive generation of oxidative stress (OS) and accumulation of iron levels and deposition have been observed in specific affected-brain regions and thus, regarded as contributing factors to the pathogenesis of the diseases. In AD, iron promotes amyloid β (Aβ) neurotoxicity by producing free radical damage and OS in brain areas affected by neurodegeneration, presumably by facilitating the aggregation of Aβ. In addition, it was shown that iron modulates intracellular levels of the holo amyloid precursor protein (APP) by iron-responsive elements (IRE) RNA stem loops in the 5' untranslated region (5'UTR) of the APP transcript. As a consequence of these observations, iron chelation is one of the major new therapeutic strategies for the treatment of AD. This review describes the benefits and importance of the multimodal brain permeable chimeric iron-chelating/propargylamine drug M30, concerning its neuroprotective/neurorestorative inter-related activities relevant of the pathological features ascribed to AD, with a special focus on the effect of the drug on APP regulation and processing.
Collapse
Affiliation(s)
- Tamar Amit
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orit Bar-Am
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Danit Mechlovich
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Lana Kupershmidt
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orly Weinreb
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
69
|
Montagna E, Dorostkar MM, Herms J. The Role of APP in Structural Spine Plasticity. Front Mol Neurosci 2017; 10:136. [PMID: 28539872 PMCID: PMC5423954 DOI: 10.3389/fnmol.2017.00136] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/21/2017] [Indexed: 11/15/2022] Open
Abstract
Amyloid precursor protein (APP) is a transmembrane protein highly expressed in neurons. The full-length protein has cell-adhesion and receptor-like properties, which play roles in synapse formation and stability. Furthermore, APP can be cleaved by several proteases into numerous fragments, many of which affect synaptic function and stability. This review article focuses on the mechanisms of APP in structural spine plasticity, which encompasses the morphological alterations at excitatory synapses. These occur as changes in the number and morphology of dendritic spines, which correspond to the postsynaptic compartment of excitatory synapses. Both overexpression and knockout (KO) of APP lead to impaired synaptic plasticity. Recent data also suggest a role of APP in the regulation of astrocytic D-serine homeostasis, which in turn regulates synaptic plasticity.
Collapse
Affiliation(s)
- Elena Montagna
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilian-University MunichMunich, Germany
| | - Mario M Dorostkar
- Center for Neuropathology and Prion Research, Ludwig-Maximilian-University MunichMunich, Germany
| | - Jochen Herms
- Department for Translational Brain Research, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Maximilian-University MunichMunich, Germany.,Center for Neuropathology and Prion Research, Ludwig-Maximilian-University MunichMunich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Ludwig-Maximilian-University MunichMunich, Germany
| |
Collapse
|
70
|
Lee Y, Lee JS, Lee KJ, Turner RS, Hoe HS, Pak DTS. Polo-like kinase 2 phosphorylation of amyloid precursor protein regulates activity-dependent amyloidogenic processing. Neuropharmacology 2017; 117:387-400. [PMID: 28257888 PMCID: PMC5414040 DOI: 10.1016/j.neuropharm.2017.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with cognitive deficits. Amyloidogenic processing of amyloid precursor protein (APP) produces amyloid β (Aβ), the major component of hallmark AD plaques. Synaptic activity stimulates APP cleavage, whereas APP promotes excitatory synaptic transmission, suggesting APP participates in neuronal homeostasis. However, mechanisms linking synaptic activity to APP processing are unclear. Here we show that Polo-like kinase 2 (Plk2), an activity-inducible regulator of homeostatic plasticity, directly binds and phosphorylates threonine-668 and serine-675 of APP in vitro and associates with APP in vivo. Plk2 accelerates APP amyloidogenic cleavage by β-secretase at synapses and is required for neuronal overactivity-stimulated Aβ secretion. These findings implicate Plk2 as a novel mediator of activity-dependent APP amyloidogenic processing.
Collapse
Affiliation(s)
- Yeunkum Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007-2126, USA; Department of Neuroscience and Division of Brain Korea 21 Biomedical Science, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Ji Soo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007-2126, USA
| | - Kea Joo Lee
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007-2126, USA; Research Division, Korea Brain Research Institute, Daegu 700-010, Republic of Korea
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007-2126, USA
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007-2126, USA; Research Division, Korea Brain Research Institute, Daegu 700-010, Republic of Korea
| | - Daniel T S Pak
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007-2126, USA.
| |
Collapse
|
71
|
Campos-Peña V, Toral-Rios D, Becerril-Pérez F, Sánchez-Torres C, Delgado-Namorado Y, Torres-Ossorio E, Franco-Bocanegra D, Carvajal K. Metabolic Syndrome as a Risk Factor for Alzheimer's Disease: Is Aβ a Crucial Factor in Both Pathologies? Antioxid Redox Signal 2017; 26:542-560. [PMID: 27368351 DOI: 10.1089/ars.2016.6768] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Recently, chronic degenerative diseases have become one of the main health problems worldwide. That is the case of Alzheimer's disease (AD) and metabolic syndrome (MetS), whose expression can be influenced by different risk factors. Recent Advances: In recent decades, it has been widely described that MetS increases the risk of cognitive impairment and dementia. MetS pathogenesis involves several vascular risk factors such as diabetes, dyslipidemia, hypertension, and insulin resistance (I/R). CRITICAL ISSUES Reported evidence shows that vascular risk factors are associated with AD, particularly in the development of protein aggregation, inflammation, oxidative stress, neuronal dysfunction, and disturbances in signaling pathways, with insulin receptor signaling being a common alteration between MetS and AD. FUTURE DIRECTIONS Insulin signaling has been involved in tau phosphorylation and amyloid β (Aβ) metabolism. However, it has also been demonstrated that Aβ oligomers can bind to insulin receptors, triggering their internalization, decreasing neuron responsiveness to insulin, and promoting insulin I/R. Thus, it could be argued that Aβ could be a convergent factor in the development of both pathologies. Antioxid. Redox Signal. 26, 542-560.
Collapse
Affiliation(s)
| | - Danira Toral-Rios
- 2 Departamento de Fisiología Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Carmen Sánchez-Torres
- 4 Departamento of Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , Mexico City, Mexico
| | | | - Elimar Torres-Ossorio
- 6 Facultad de Química, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | | | - Karla Carvajal
- 7 Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría , Mexico City, Mexico
| |
Collapse
|
72
|
Zhang SN, Li XZ, Yang XY. Drug-likeness prediction of chemical constituents isolated from Chinese materia medica Ciwujia. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:131-138. [PMID: 28065780 DOI: 10.1016/j.jep.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/10/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ciwujia (CWJ), one of the most commonly used Chinese materia medicas (CMMs), is derived from the roots, rhizomes, and stems of Acanthopanax senticosus harms (AS). CWJ has been used for the treatment of various central nervous system (CNS) and peripheral system diseases. Drug-likeness prediction can help to analyze the absorption, distribution, metabolism, and excretion (ADME) processes of the compounds in CWJ, as well as their potential therapeutic and toxic effects, which is of significance in the confirmation of the active material bases of CWJ. MATERIALS AND METHODS The ADME properties of the compounds were calculated through web based PreADMET program and ACD/I-Lab 2.0. The potential therapeutic and toxicity targets of these compounds were screened by the ChemQuery tool in DrugBank and T3DB. RESULTS 14/39 compounds had moderate or good oral bioavailability (OB). 29/39 compounds bound weakly to the plasma proteins. 18/39 compounds might pass across the blood-brain barrier (BBB). Most of these compounds showed low renal excretion ability. 25/39 compounds had 99 structurally similar drugs and 158 potential therapeutic targets. Additionally, 17/39 compounds had 53 structurally similar toxins and 126 potential toxicity targets. CONCLUSION Our study suggests that these compounds have a certain drug-likeness potentials, which are also likely to be the material bases of CWJ. These results may provide a reference for the safe use of CWJ and the expansion of its application scope.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China
| | - Xu-Zhao Li
- Department of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025, PR China.
| | - Xu-Yan Yang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, PR China.
| |
Collapse
|
73
|
Tai SY, Chien CY, Wu DC, Lin KD, Ho BL, Chang YH, Chang YP. Risk of dementia from proton pump inhibitor use in Asian population: A nationwide cohort study in Taiwan. PLoS One 2017; 12:e0171006. [PMID: 28199356 PMCID: PMC5310771 DOI: 10.1371/journal.pone.0171006] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022] Open
Abstract
Introduction Concerns have been raised regarding the potential association between proton pump inhibitor (PPI) use and dementia. Objective This study aimed to examine this association in an Asian population. Methods Patients initiating PPI therapy between January 1, 2000 and December 31, 2003 without a prior history of dementia were identified from Taiwan’s National Health Insurance Research Database. The outcome of interest was all-cause dementia. Cox regression models were applied to estimate the hazard ratio (HR) of dementia. The cumulative PPI dosage stratified by quartiles of defined daily doses and adjusted for baseline disease risk score served as the primary variables compared against no PPI use. Results We analyzed the data of 15726 participants aged 40 years or older and free of dementia at baseline. PPI users (n = 7863; average follow-up 8.44 years) had a significantly increased risk of dementia over non—PPI users (n = 7863; average follow-up 9.55 years) (adjusted HR [aHR] 1.22; 95% confidence interval: 1.05–1.42). A significant association was observed between cumulative PPI use and risk of dementia (P for trend = .013). Subgroup analysis showed excess frequency of dementia in PPI users diagnosed with depression (aHR 2.73 [1.91–3.89]), hyperlipidemia (aHR 1.81 [1.38–2.38]), ischemic heart disease (aHR 1.55 [1.12–2.14]), and hypertension (aHR 1.54 [1.21–1.95]). Conclusions An increased risk for dementia was identified among the Asian PPI users. Cumulative PPI use was significantly associated with dementia. Further investigation into the possible biological mechanisms underlying the relationship between dementia and PPI use is warranted.
Collapse
Affiliation(s)
- Shu-Yu Tai
- Department of Family Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Chen-Yu Chien
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Otorhinolaryngology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung City, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Kun-Der Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- Division of Endocrinology and Metabolism, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Bo-Lin Ho
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yu-Han Chang
- Management Office, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yang-Pei Chang
- Department of Neurology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
- * E-mail:
| |
Collapse
|
74
|
Chen M, Wang J, Jiang J, Zheng X, Justice NJ, Wang K, Ran X, Li Y, Huo Q, Zhang J, Li H, Lu N, Wang Y, Zheng H, Long C, Yang L. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition. eLife 2017; 6. [PMID: 28054918 PMCID: PMC5224924 DOI: 10.7554/elife.20142] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Amyloid precursor protein (APP) is enriched at the synapse, but its synaptic function is still poorly understood. We previously showed that GABAergic short-term plasticity is impaired in App knock-out (App-/-) animals, but the precise mechanism by which APP regulates GABAergic synaptic transmission has remained elusive. Using electrophysiological, biochemical, moleculobiological, and pharmacological analysis, here we show that APP can physically interact with KCC2, a neuron-specific K+-Cl- cotransporter that is essential for Cl- homeostasis and fast GABAergic inhibition. APP deficiency results in significant reductions in both total and membrane KCC2 levels, leading to a depolarizing shift in the GABA reversal potential (EGABA). Simultaneous measurement of presynaptic action potentials and inhibitory postsynaptic currents (IPSCs) in hippocampal neurons reveals impaired unitary IPSC amplitudes attributable to a reduction in α1 subunit levels of GABAAR. Importantly, restoration of normal KCC2 expression and function in App-/- mice rescues EGABA, GABAAR α1 levels and GABAAR mediated phasic inhibition. We show that APP functions to limit tyrosine-phosphorylation and ubiquitination and thus subsequent degradation of KCC2, providing a mechanism by which APP influences KCC2 abundance. Together, these experiments elucidate a novel molecular pathway in which APP regulates, via protein-protein interaction with KCC2, GABAAR mediated inhibition in the hippocampus. DOI:http://dx.doi.org/10.7554/eLife.20142.001 Alzheimer’s disease is the most common form of dementia. One of the hallmarks of the disease is the formation of sticky protein clumps called amyloid plaques in the brain. These plaques are formed from specific fragments of a protein called APP. The intact form of APP is essential for synapses (the junctions across which neurons transmit signals) to form and work correctly. The hippocampus is one of the first brain regions to be affected in Alzheimer’s disease and is important for forming memories and emotions. In the hippocampus, GABAA receptors at synapses normally tightly regulate synaptic signaling by reducing the ability of the receiving neuron to respond, but this inhibition is disrupted in Alzheimer’s disease. Studies suggest that APP can affect how GABAA receptors transmit signals, but it is not known how it does so. One possibility is that APP regulates a protein called KCC2 that helps to maintain the inhibitory effect of GABAA receptors. To investigate this, Chen et al. genetically modified mice to lack the gene that produces APP. These mice had a lower level of KCC2 in their hippocampus than normal mice, and their GABAA receptors were less able to inhibit synaptic signaling. Further experiments demonstrated that APP physically interacts with KCC2 and maintains normal levels of the protein by preventing it from being chemically modified and degraded. Chen et al. also showed that treating mice that lack APP with specific compounds can restore KCC2 activity and return the behavior of synaptic GABAA receptors to normal. Future studies in mice (and eventually people) that exhibit symptoms of Alzheimer's disease will help to determine whether KCC2 is important in the development of the disease. If so, modifying the levels of the KCC2 protein in the brain could potentially help to slow down memory loss in Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.20142.002
Collapse
Affiliation(s)
- Ming Chen
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinzhao Wang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinxiang Jiang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Brain Science Institute, South China Normal University, Guangzhou, China
| | - Xingzhi Zheng
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, United States
| | - Kun Wang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiangqian Ran
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi Li
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qingwei Huo
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiajia Zhang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongmei Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States
| | - Nannan Lu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ying Wang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, United States
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China.,Brain Science Institute, South China Normal University, Guangzhou, China
| | - Li Yang
- School of Psychology and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Brain Science Institute, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
75
|
Bollimuntha S, Pani B, Singh BB. Neurological and Motor Disorders: Neuronal Store-Operated Ca 2+ Signaling: An Overview and Its Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:535-556. [PMID: 28900932 PMCID: PMC5821072 DOI: 10.1007/978-3-319-57732-6_27] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Calcium (Ca2+) is a ubiquitous second messenger that performs significant physiological task such as neurosecretion, exocytosis, neuronal growth/differentiation, and the development and/or maintenance of neural circuits. An important regulatory aspect of neuronal Ca2+ homeostasis is store-operated Ca2+ entry (SOCE) which, in recent years, has gained much attention for influencing a variety of nerve cell responses. Essentially, activation of SOCE ensues following the activation of the plasma membrane (PM) store-operated Ca2+ channels (SOCC) triggered by the depletion of endoplasmic reticulum (ER) Ca2+ stores. In addition to the TRPC (transient receptor potential canonical) and the Orai family of ion channels, STIM (stromal interacting molecule) proteins have been baptized as key molecular regulators of SOCE. Functional significance of the TRPC channels in neurons has been elaborately studied; however, information on Orai and STIM components of SOCE, although seems imminent, is currently limited. Importantly, perturbations in SOCE have been implicated in a spectrum of neuropathological conditions. Hence, understanding the precise involvement of SOCC in neurodegeneration would presumably unveil avenues for plausible therapeutic interventions. We thus review the role of SOCE-regulated neuronal Ca2+ signaling in selecting neurodegenerative conditions.
Collapse
Affiliation(s)
- Sunitha Bollimuntha
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Biswaranjan Pani
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA.
| |
Collapse
|
76
|
Stålberg P, Westin G, Thirlwell C. Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med 2016; 280:584-594. [PMID: 27306880 DOI: 10.1111/joim.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroendocrine tumour of the small intestine (SI-NET), formerly known as midgut carcinoid tumour, is the most common small intestinal malignancy. The incidence is rising, with recent reports of 0.67 per 100 000 in the USA and 1.12 per 100 000 in Sweden. SI-NETs often present a challenge in terms of diagnosis and treatment, as patients often have widespread disease and are beyond cure by surgery. Somatostatin analogues provide the mainstay of medical treatment to control hormonal excess and increase the time to progression. Despite overall favourable prognosis (5-year overall survival of 65%), there is a need to find markers to identify both patients with worse outcome and new targets for therapy. Loss on chromosome 18 has been reported in 60-90% of SI-NETs, but mutated genes on this chromosome have failed detection. Recently, a putative tumour suppressor role has been suggested for TCEB3C occurring at 18q21 (encoding elongin A3), which may undergo epigenetic repression. CDKN1B has recently been revealed as the only recurrently mutated gene in SI-NETs but, with a frequency as low as 8%, its role as a driver in SI-NET development may be questioned. Integrated genomewide analysis including exome and whole-genome sequencing, gene expression, DNA methylation and copy number analysis has identified three novel molecular subtypes of SI-NET with differing clinical outcome. DNA methylation analysis has demonstrated that SI-NETs have significant epigenetic dysregulation in 70-80% of tumours. In this review, we focus on understanding of the genetic, epigenetic and molecular events that lead to development and progression of SI-NETs.
Collapse
Affiliation(s)
- P Stålberg
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - G Westin
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - C Thirlwell
- Cancer Institute, University College London, London, UK
| |
Collapse
|
77
|
Ramaker JM, Cargill RS, Swanson TL, Quirindongo H, Cassar M, Kretzschmar D, Copenhaver PF. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development. Front Mol Neurosci 2016; 9:130. [PMID: 27932950 PMCID: PMC5122739 DOI: 10.3389/fnmol.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2) that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL) that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta), we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate APPL-dependent responses within the nervous system. Lastly, targeted expression of our double-tagged constructs (combined with time-lapse imaging) revealed that APP family proteins are subject to complex patterns of trafficking and processing that vary dramatically between different neuronal subtypes. In combination, our results provide a new perspective on how the regulation of APP family proteins can be modulated to accommodate a variety of cell type-specific responses within the embryonic and adult nervous system.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science UniversityPortland, OR, USA; Neuroscience Graduate Program, Oregon Health and Science UniversityPortland, OR, USA
| | - Robert S Cargill
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| | - Hanil Quirindongo
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
78
|
Bergkvist L, Sandin L, Kågedal K, Brorsson AC. AβPP processing results in greater toxicity per amount of Aβ1-42 than individually expressed and secreted Aβ1-42 in Drosophila melanogaster. Biol Open 2016; 5:1030-9. [PMID: 27387531 PMCID: PMC5004604 DOI: 10.1242/bio.017194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aggregation of the amyloid-β (Aβ) peptide into fibrillar deposits has long been considered the key neuropathological hallmark of Alzheimer's disease (AD). Aβ peptides are generated from proteolytic processing of the transmembrane Aβ precursor protein (AβPP) via sequential proteolysis through the β-secretase activity of β-site AβPP-cleaving enzyme (BACE1) and by the intramembranous enzyme γ-secretase. For over a decade, Drosophila melanogaster has been used as a model organism to study AD, and two different approaches have been developed to investigate the toxicity caused by AD-associated gene products in vivo. In one model, the Aβ peptide is directly over-expressed fused to a signal peptide, allowing secretion of the peptide into the extracellular space. In the other model, human AβPP is co-expressed with human BACE1, resulting in production of the Aβ peptide through the processing of AβPP by BACE1 and by endogenous fly γ-secretase. Here, we performed a parallel study of flies that expressed the Aβ1-42 peptide alone or that co-expressed AβPP and BACE1. Toxic effects (assessed by eye phenotype, longevity and locomotor assays) and levels of the Aβ1-42, Aβ1-40 and Aβ1-38 peptides were examined. Our data reveal that the toxic effect per amount of detected Aβ1-42 peptide was higher in the flies co-expressing AβPP and BACE1 than in the Aβ1-42-expressing flies, and that the co-existence of Aβ1-42 and Aβ1-40 in the flies co-expressing AβPP and BACE1 could be of significant importance to the neurotoxic effect detected in these flies. Thus, the toxicity detected in these two fly models seems to have different modes of action and is highly dependent on how and where the peptide is generated rather than on the actual level of the Aβ1-42 peptide in the flies. This is important knowledge that needs to be taken into consideration when using Drosophila models to investigate disease mechanisms or therapeutic strategies in AD research. Summary: In Drosophila, the proteotoxic effect of Aβ1-42 is highly dependent on how and where the peptide is generated, rather than on the peptide level in the flies, with implications for Alzheimer's disease research.
Collapse
Affiliation(s)
- Liza Bergkvist
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Linnea Sandin
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Katarina Kågedal
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, Linköping 58183, Sweden
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| |
Collapse
|
79
|
Masuzzo A, Dinet V, Cavanagh C, Mascarelli F, Krantic S. Amyloidosis in Retinal Neurodegenerative Diseases. Front Neurol 2016; 7:127. [PMID: 27551275 PMCID: PMC4976396 DOI: 10.3389/fneur.2016.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/27/2016] [Indexed: 01/18/2023] Open
Abstract
As a part of the central nervous system, the retina may reflect both physiological processes and abnormalities related to pathologies that affect the brain. Amyloidosis due to the accumulation of amyloid-beta (Aβ) was initially regarded as a specific and exclusive characteristic of neurodegenerative alterations seen in the brain of Alzheimer's disease (AD) patients. More recently, it was discovered that amyloidosis-related alterations, similar to those seen in the brain of Alzheimer's patients, also occur in the retina. Remarkably, these alterations were identified not only in primary retinal pathologies, such as age-related macular degeneration (AMD) and glaucoma, but also in the retinas of Alzheimer's patients. In this review, we first briefly discuss the biogenesis of Aβ, a peptide involved in amyloidosis. We then discuss some pathological aspects (synaptic dysfunction, mitochondrial failure, glial activation, and vascular abnormalities) related to the neurotoxic effects of Aβ. We finally highlight common features shared by AD, AMD, and glaucoma in the context of Aβ amyloidosis and further discuss why the retina, due to the transparency of the eye, can be considered as a "window" to the brain.
Collapse
Affiliation(s)
- Ambra Masuzzo
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Virginie Dinet
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Chelsea Cavanagh
- Department of Neuroscience, Douglas Hospital Research Center , Montreal, QC , Canada
| | - Frederic Mascarelli
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| | - Slavica Krantic
- Centre de Recherche des Cordeliers, Institut national de la santé et de la recherche médicale (INSERM), Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Université Pierre et Marie Curie Université Paris 06, Sorbonne Universités , Paris , France
| |
Collapse
|
80
|
Lei T, Yu L, Qin L, Xu B, Zhou L, Cheng J, Zhou H, Pang X, Wan Z. Stress kinases, endoplasmic reticulum stress, and Alzheimer's disease related markers in peripheral blood mononuclear cells from subjects with increased body weight. Sci Rep 2016; 6:30890. [PMID: 27481183 PMCID: PMC4969589 DOI: 10.1038/srep30890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022] Open
Abstract
We aimed to characterize endoplasmic reticulum stress, inflammation, and Alzheimer’s disease (AD) related markers in peripheral blood mononuclear cells (PBMCs) from males with varied BMI; and to explore whether high glucose and fatty acids (FFAs) might be critical factors for inducing metabolic alterations in PBMCs under obese condition. Approximately 45 middle-aged men were enrolled with varied BMI. At the protein expression level, compared to the lean, the phosphorylation of AMPK, and p-Akt at serine 473 were significantly reduced from the overweight (OW) and/or obese (OB); while the protein expression of p-JNK, cleaved caspase 3, CHOP and p-eIF2α were elevated from the OW and/or OB. At the mRNA expression level, ER stress markers (i.e. GRP78, CHOP and XBP-1), inflammatory markers (i.e.TLR2, TLR4 and CCR2) and AD markers (i.e. APP, PS1 and PS2) were significantly higher in PBMCs from OB compared to lean. In cultured PBMCs, high glucose and FFAs induced GRP78, CHOP and XBP-1 mRNA, and high glucose also induced APP, PS1 and PS2 mRNA. In conclusion, altered markers including AMPK, ER stress and AD related makers under obese condition could be easily obtained from PBMCs. These markers might provide new mechanistic links between obesity and other metabolic complications including AD.
Collapse
Affiliation(s)
- Ting Lei
- Suzhou Industrial Park center Disease Control &Prevention, 58 Suqian Road, Suzhou, 215123, P.R. China
| | - Lugang Yu
- Suzhou Industrial Park center Disease Control &Prevention, 58 Suqian Road, Suzhou, 215123, P.R. China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123, P.R. China
| | - Baohui Xu
- Suzhou Industrial Park center Disease Control &Prevention, 58 Suqian Road, Suzhou, 215123, P.R. China
| | - Lingmei Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123, P.R. China
| | - Jinbo Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123, P.R. China
| | - Hui Zhou
- Suzhou Industrial Park center Disease Control &Prevention, 58 Suqian Road, Suzhou, 215123, P.R. China
| | - Xing Pang
- Suzhou Industrial Park center Disease Control &Prevention, 58 Suqian Road, Suzhou, 215123, P.R. China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Renai Road, Suzhou, 215123, P.R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, Soochow University, 199 Renai Road, Suzhou, 215123, P.R. China
| |
Collapse
|
81
|
Sarajärvi T, Marttinen M, Natunen T, Kauppinen T, Mäkinen P, Helisalmi S, Laitinen M, Rauramaa T, Leinonen V, Petäjä-Repo U, Soininen H, Haapasalo A, Hiltunen M. Genetic Variation in δ-Opioid Receptor Associates with Increased β- and γ-Secretase Activity in the Late Stages of Alzheimer's Disease. J Alzheimers Dis 2016; 48:507-16. [PMID: 26402014 DOI: 10.3233/jad-150221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The agonist-induced activation of human δ-opioid receptor (δOR) has been shown to increase β- (BACE1) and γ-secretase activities leading to increased production of amyloid-β (Aβ) peptide. We have recently shown that phenylalanine to cysteine substitution at amino acid 27 in δOR (δOR-Phe27Cys) increases amyloid-β protein precursor processing through altered endocytic trafficking. Also, a genetic meta-analysis of the δOR-Phe27Cys variation (rs1042114) in two independent Alzheimer's disease (AD) patient cohorts indicated that the heterozygosity of δOR-Phe27Cys increases the risk of AD. Here, we investigated α-, β-, and γ-secretase activities in human brain with respect to δOR-Phe27Cys variation in the temporal cortex of 71 subjects with varying degree of AD-related neurofibrillary pathology (Braak stages I-VI). As a result, a significant increase in β- (p = 0.03) and γ- (p = 0.01), but not α-secretase, activities was observed in late stage AD samples (Braak stages V-VI), which were heterozygous for δOR-Phe27Cys as compared to the δOR-Phe27 and δOR-Cys27 homozygotes. The augmented β-secretase activity was not associated with increased mRNA expression or protein levels of BACE1 in the late stage AD patients, who were heterozygous for the δOR-Phe27Cys variation. These findings suggest that δOR-Phe27Cys variation modulates β- and γ-secretase activity in the late stages of AD likely via post-translational mechanisms other than alterations in the mRNA or protein levels of BACE1, or, in the expression of γ-secretase complex components.
Collapse
Affiliation(s)
- Timo Sarajärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Tarja Kauppinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Seppo Helisalmi
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Marjo Laitinen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland.,Institute of Clinical Medicine - Pathology, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Institute of Clinical Medicine - Neurosurgery, University of Eastern Finland and Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland
| | - Ulla Petäjä-Repo
- Medical Research Center Oulu and Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
82
|
Fe65 Is Phosphorylated on Ser289 after UV-Induced DNA Damage. PLoS One 2016; 11:e0155056. [PMID: 27176072 PMCID: PMC4866770 DOI: 10.1371/journal.pone.0155056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/24/2016] [Indexed: 11/19/2022] Open
Abstract
Fe65 undergoes a phosphatase-sensitive gel mobility shift after DNA damage, consistent with protein phosphorylation. A recent study identified Ser228 as a specific site of phosphorylation, targeted by the ATM and ATR protein kinases, with phosphorylation inhibiting the Fe65-dependent transcriptional activity of the amyloid precursor protein (APP). The direct binding of Fe65 to APP not only regulates target gene expression, but also contributes to secretase-mediated processing of APP, producing cytoactive proteolytic fragments including the APP intracellular domain (AICD) and cytotoxic amyloid β (Aβ) peptides. Given that the accumulation of Aβ peptides in neural plaques is a pathological feature of Alzheimer’s disease (AD), it is essential to understand the mechanisms controlling Aβ production. This will aid in the development of potential therapeutic agents that act to limit the deleterious production of Aβ peptides. The Fe65-APP complex has transcriptional activity and the complex is regulated by multiple post-translational modifications and other protein binding partners. In the present study, we have identified Ser289 as a novel site of UV-induced phosphorylation. Interestingly, this phosphorylation was mediated by ATM, rather than ATR, and occurred independently of APP. Neither phosphorylation nor mutation of Ser289 affected the Fe65-APP interaction, though this was markedly decreased after UV treatment, with a concomitant decrease in the protein levels of APP in cells. Using mutagenesis, we demonstrated that Fe65 Ser289 phosphorylation did not affect the transcriptional activity of the Fe65-APP complex, in contrast to the previously described Ser228 site.
Collapse
|
83
|
Kim BM, You MH, Chen CH, Suh J, Tanzi RE, Ho Lee T. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum Mol Genet 2016; 25:2498-2513. [PMID: 27094130 DOI: 10.1093/hmg/ddw114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/19/2022] Open
Abstract
Extracellular deposition of amyloid-beta (Aβ) peptide, a metabolite of sequential cleavage of amyloid precursor protein (APP), is a critical step in the pathogenesis of Alzheimer's disease (AD). While death-associated protein kinase 1 (DAPK1) is highly expressed in AD brains and its genetic variants are linked to AD risk, little is known about the impact of DAPK1 on APP metabolism and Aβ generation. In this study, we demonstrated a novel effect of DAPK1 in the regulation of APP processing using cell culture and mouse models. DAPK1, but not its kinase deficient mutant (K42A), significantly increased human Aβ secretion in neuronal cell culture models. Moreover, knockdown of DAPK1 expression or inhibition of DAPK1 catalytic activity significantly decreased Aβ secretion. Furthermore, DAPK1, but not K42A, triggered Thr668 phosphorylation of APP, which may initiate and facilitate amyloidogenic APP processing leading to the generation of Aβ. In Tg2576 APPswe-overexpressing mice, knockout of DAPK1 shifted APP processing toward non-amyloidogenic pathway and decreased Aβ generation. Finally, in AD brains, elevated DAPK1 levels showed co-relation with the increase of APP phosphorylation. Combined together, these results suggest that DAPK1 promotes the phosphorylation and amyloidogenic processing of APP, and that may serve a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Byeong Mo Kim
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Mi-Hyeon You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chun-Hau Chen
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jaehong Suh
- Genetics and Aging Research Unit, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute of Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
84
|
Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Aging Dis 2016; 7:163-79. [PMID: 27114849 PMCID: PMC4809608 DOI: 10.14336/ad.2015.0907] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/07/2015] [Indexed: 01/16/2023] Open
Abstract
Despite the significant health and economic burden that traumatic brain injury (TBI) places on society, the development of successful therapeutic agents have to date not translated into efficacious therapies in human clinical trials. Injury to the brain is ongoing after TBI, through a complex cascade of primary and secondary injury events, providing a valuable window of opportunity to help limit and prevent some of the severe consequences with a timely treatment. Of note, it has been suggested that novel treatments for TBI should be multifactorial in nature, mimicking the body's own endogenous repair response. Whilst research has historically focused on the role of the amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease, recent advances in trauma research have demonstrated that APP offers considerable neuroprotective properties following TBI, suggesting that APP is an ideal therapeutic candidate. Its acute upregulation following TBI has been shown to serve a beneficial role following trauma and has lead to significant advances in understanding the neuroprotective and neurotrophic functions of APP and its metabolites. Research has focused predominantly on the APP derivative sAPPα, which has consistently demonstrated neuroprotective and neurotrophic functions both in vitro and in vivo following various traumatic insults. Its neuroprotective activity has been narrowed down to a 15 amino acid sequence, and this region is linked to both heparan binding and growth-factor-like properties. It has been proposed that APP binds to heparan sulfate proteoglycans to exert its neuroprotective action. APP presents us with a novel therapeutic compound that could overcome many of the challenges that have stalled development of efficacious TBI treatments previously.
Collapse
Affiliation(s)
- Stephanie Plummer
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Corinna Van den Heuvel
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Emma Thornton
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Frances Corrigan
- Adelaide Centre for Neuroscience Research, the University of Adelaide, South Australia, Australia
| | - Roberto Cappai
- Department of Pathology, the University of Melbourne, Victoria, Australia
| |
Collapse
|
85
|
Lee TH, Park S, You MH, Lim JH, Min SH, Kim BM. A potential therapeutic effect of saikosaponin C as a novel dual-target anti-Alzheimer agent. J Neurochem 2016; 136:1232-1245. [PMID: 26710244 DOI: 10.1111/jnc.13515] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and the risk of developing it increases with advancing age. In this study, we investigated the protective effects of saikosaponin C (SSc), one of the main bioactive components produced by the traditional Chinese herb, radix bupleuri, the root of Bupleurum falcatum, against AD in various neuronal models. Interestingly, we found that SSc has dual effects on AD by targeting amyloid beta (Aβ) and tau, two key proteins in AD. SSc significantly suppressed the release of both Aβ peptides 1-40 and 1-42 into cell culture supernatants, though it does not affect BACE1 activity and expression. SSc also inhibited abnormal tau phosphorylation at multiple AD-related residues. Moreover, SSc seems to have beneficial effects on cellular tau function; it accelerated nerve growth factor-mediated neurite outgrowth and increased the assembly of microtubules. In addition, SSc increased synaptic marker proteins such as synaptophysin and PSD-95. Considering its various biological activities, our results suggest that SSc might be a novel therapeutic tool for treating human AD and other neurodegenerative diseases. Tau and amyloid beta are two key features in Alzheimer's disease. Saikosaponin C, an active component of Bupleuri Radix, inhibits abnormal tau phosphorylation and amyloid beta production, thereby promoting synaptic integrity. Saikosaponin C also prevents amyloid beta-induced apoptosis in brain vascular endothelial cells. Therefore, Saikosaponin C may provide a new therapeutic strategy for treatment of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Tae Ho Lee
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sungha Park
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, Korea
| | - Mi-Hyeon You
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical and Health Science, Konkuk University, Chungju, Korea
| | | | - Byeong Mo Kim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Diseases (SIRIC), Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
86
|
Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons. Neural Plast 2016; 2016:4145708. [PMID: 26881108 PMCID: PMC4736975 DOI: 10.1155/2016/4145708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022] Open
Abstract
The neurotrophin brain derived neurotrophic factor (BDNF) is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer's disease (AD). To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42) treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.
Collapse
|
87
|
Hunter S, Martin S, Brayne C. The APP Proteolytic System and Its Interactions with Dynamic Networks in Alzheimer's Disease. Methods Mol Biol 2016; 1303:71-99. [PMID: 26235060 DOI: 10.1007/978-1-4939-2627-5_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Diseases of aging are often complex and multifactorial, involving many genetic and life course modifiers. Systems biology is becoming an essential tool to investigate disease initiation and disease progression. Alzheimer's disease (AD) can be used as a case study to investigate the application of systems biology to complex disease. Here we describe approaches to capturing biological data, representing data in terms of networks and interpreting their meaning in relation to the human population. We highlight issues that remain to be addressed both in terms of modeling disease progression and in relating findings to the current understanding of human disease.
Collapse
Affiliation(s)
- Sally Hunter
- Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge School of Clinical Medicine, Forvie Site, Cambridge Biomedical Campus, Box 113, Cambridge, CB2 0SP, UK,
| | | | | |
Collapse
|
88
|
Abstract
The yeast Saccharomyces cerevisiae, a unicellular eukaryotic model, has enabled major breakthroughs in our understanding of a plethora of cellular and molecular processes. Today, a 're-invention' of its use in fundamental and applied research is paving the way for a better understanding of the mechanisms causing neurodegeneration. The increasing emergence of neurodegenerative disorders is becoming more and more problematic in our ageing society. Most prevalent is Alzheimer's disease (AD), affecting more than 35 million people worldwide (Abbott, Nature 475, S2-S4, 2011) and causing an enormous burden on a personal and communal level. The disease is characterized by two major pathological hallmarks: extracellular amyloid plaques consisting mainly of deposits of amyloid β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs), consisting mainly of aggregates of hyperphosphorylated tau protein. Despite the huge importance of thoroughly understanding the underlying molecular mechanisms of neurodegeneration, progress has been slow. However, multiple complementary research methods are proving their value, particularly with the work done with S. cerevisiae, which combines well-established, fast genetic and molecular techniques with the ability to faithfully capture key molecular aspects of neurodegeneration. In this review chapter, we focus on the considerable progress made using S. cerevisiae as a model system for Alzheimer's disease.
Collapse
|
89
|
Fedele E, Rivera D, Marengo B, Pronzato MA, Ricciarelli R. Amyloid β: Walking on the dark side of the moon. Mech Ageing Dev 2015; 152:1-4. [DOI: 10.1016/j.mad.2015.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022]
|
90
|
Brautigam H, Moreno CL, Steele JW, Bogush A, Dickstein DL, Kwok JBJ, Schofield PR, Thinakaran G, Mathews PM, Hof PR, Gandy S, Ehrlich ME. Physiologically generated presenilin 1 lacking exon 8 fails to rescue brain PS1-/- phenotype and forms complexes with wildtype PS1 and nicastrin. Sci Rep 2015; 5:17042. [PMID: 26608390 PMCID: PMC4660297 DOI: 10.1038/srep17042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/20/2015] [Indexed: 11/24/2022] Open
Abstract
The presenilin 1 (PSEN1) L271V mutation causes early-onset familial Alzheimer’s disease by disrupting the alternative splicing of the PSEN1 gene, producing some transcripts harboring the L271V point mutation and other transcripts lacking exon 8 (PS1∆exon8). We previously reported that PS1 L271V increased amyloid beta (Aβ) 42/40 ratios, while PS1∆exon8 reduced Aβ42/40 ratios, indicating that the former and not the exon 8 deletion transcript is amyloidogenic. Also, PS1∆exon8 did not rescue Aβ generation in PS1/2 double knockout cells indicating its identity as a severe loss-of-function splice form. PS1∆exon8 is generated physiologically raising the possibility that we had identified the first physiological inactive PS1 isoform. We studied PS1∆exon8in vivo by crossing PS1∆exon8 transgenics with either PS1-null or Dutch APPE693Q mice. As a control, we crossed APPE693Q with mice expressing a deletion in an adjacent exon (PS1∆exon9). PS1∆exon8 did not rescue embryonic lethality or Notch-deficient phenotypes of PS1-null mice displaying severe loss of function in vivo. We also demonstrate that this splice form can interact with wildtype PS1 using cultured cells and co-immunoprecipitation (co-IP)/bimolecular fluorescence complementation. Further co-IP demonstrates that PS1∆exon8 interacts with nicastrin, participating in the γ–secretase complex formation. These data support that catalytically inactive PS1∆exon8 is generated physiologically and participates in protein-protein interactions.
Collapse
Affiliation(s)
- Hannah Brautigam
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53706
| | - Cesar L Moreno
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John W Steele
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Cellular and Molecular Medicine,University of California San Diego, La Jolla, CA 92037.,Department of Preclinical Biology, OrPhi Therapeutics, Carlsbad, CA 92008
| | - Alexey Bogush
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, PA 19104
| | - Dara L Dickstein
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - John B J Kwok
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW 2031, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gopal Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, IL 60637
| | - Paul M Mathews
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016.,Nathan Kline Institute Center for Dementia Research, Orangeburg, NY 10962
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sam Gandy
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,James J. Peters VA Medical Center, Bronx, NY 10468
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
91
|
Natunen T, Takalo M, Kemppainen S, Leskelä S, Marttinen M, Kurkinen KMA, Pursiheimo JP, Sarajärvi T, Viswanathan J, Gabbouj S, Solje E, Tahvanainen E, Pirttimäki T, Kurki M, Paananen J, Rauramaa T, Miettinen P, Mäkinen P, Leinonen V, Soininen H, Airenne K, Tanzi RE, Tanila H, Haapasalo A, Hiltunen M. Relationship between ubiquilin-1 and BACE1 in human Alzheimer's disease and APdE9 transgenic mouse brain and cell-based models. Neurobiol Dis 2015; 85:187-205. [PMID: 26563932 DOI: 10.1016/j.nbd.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 09/13/2015] [Accepted: 11/07/2015] [Indexed: 11/16/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) and phosphorylated tau in the brain are central events underlying Alzheimer's disease (AD) pathogenesis. Aβ is generated from amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase-mediated cleavages. Ubiquilin-1, a ubiquitin-like protein, genetically associates with AD and affects APP trafficking, processing and degradation. Here, we have investigated ubiquilin-1 expression in human brain in relation to AD-related neurofibrillary pathology and the effects of ubiquilin-1 overexpression on BACE1, tau, neuroinflammation, and neuronal viability in vitro in co-cultures of mouse embryonic primary cortical neurons and microglial cells under acute neuroinflammation as well as neuronal cell lines, and in vivo in the brain of APdE9 transgenic mice at the early phase of the development of Aβ pathology. Ubiquilin-1 expression was decreased in human temporal cortex in relation to the early stages of AD-related neurofibrillary pathology (Braak stages 0-II vs. III-IV). There was a trend towards a positive correlation between ubiquilin-1 and BACE1 protein levels. Consistent with this, ubiquilin-1 overexpression in the neuron-microglia co-cultures with or without the induction of neuroinflammation resulted in a significant increase in endogenously expressed BACE1 levels. Sustained ubiquilin-1 overexpression in the brain of APdE9 mice resulted in a moderate, but insignificant increase in endogenous BACE1 levels and activity, coinciding with increased levels of soluble Aβ40 and Aβ42. BACE1 levels were also significantly increased in neuronal cells co-overexpressing ubiquilin-1 and BACE1. Ubiquilin-1 overexpression led to the stabilization of BACE1 protein levels, potentially through a mechanism involving decreased degradation in the lysosomal compartment. Ubiquilin-1 overexpression did not significantly affect the neuroinflammation response, but decreased neuronal viability in the neuron-microglia co-cultures under neuroinflammation. Taken together, these results suggest that ubiquilin-1 may mechanistically participate in AD molecular pathogenesis by affecting BACE1 and thereby APP processing and Aβ accumulation.
Collapse
Affiliation(s)
- Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Susanna Kemppainen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Kaisa M A Kurkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Juha-Pekka Pursiheimo
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, Turku, Finland
| | - Timo Sarajärvi
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jayashree Viswanathan
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Sami Gabbouj
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Eveliina Tahvanainen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Tiina Pirttimäki
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mitja Kurki
- Neurosurgery sIA Group, Kuopio University Hospital, Kuopio, Finland
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Pathology, Kuopio University Hospital, Kuopio, Finland; Institute of Clinical Medicine - Pathology, University of Eastern Finland, Kuopio, Finland
| | - Pasi Miettinen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ville Leinonen
- Neurosurgery of NeuroCenter, Kuopio University Hospital, Kuopio, Finland; Neurosurgery of NeuroCenter, University of Eastern Finland, Kuopio, Finland
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Kari Airenne
- The Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, Boston, MA 02129, United States; Harvard Medical School, Boston, MA 02129, United States
| | - Heikki Tanila
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Annakaisa Haapasalo
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|
92
|
Lin FC, Chuang YS, Hsieh HM, Lee TC, Chiu KF, Liu CK, Wu MT. Early Statin Use and the Progression of Alzheimer Disease: A Total Population-Based Case-Control Study. Medicine (Baltimore) 2015; 94:e2143. [PMID: 26632742 PMCID: PMC5059011 DOI: 10.1097/md.0000000000002143] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The protective effect of statin on Alzheimer disease (AD) is still controversial, probably due to the debate about when to start the use of statin and the lack of any large-scale randomized evidence that actually supports the hypothesis. The purpose of this study was to examine the protective effect of early statin use on mild-to-moderate AD in the total Taiwanese population.This was a total population-based case-control study, using the total population of Taiwanese citizens seen in general medical practice; therefore, the findings can be applied to the general population. The study patients were those with newly diagnosed dementia (ICD-9 290.x) and prescribed any acetylcholinesterase inhibitors (AChEI) from the Taiwan National Health Insurance dataset in 1997 to 2008. The newly diagnosed eligible mild-to-moderate AD patients were traced from the dates of their index dates, which was defined as the first day to receive any AChEI treatment, back to 1 year (exposure period) to categorize them into AD with early statin use and without early statin use. Early statin use was defined as patients using statin before AChEI treatment. Alzheimer disease patients with early statin use were those receiving any statin treatment during the exposure period. Then, we used propensity-score-matched strategy to match these 2 groups as 1:1. The matched study patients were followed-up from their index dates. The primary outcome was the discontinuation of AChEI treatment, indicating AD progression.There were 719 mild-to-moderate AD-paired patients with early statin use and without early statin use for analyses. Alzheimer disease progression was statistically lower in AD patients with early statin use than those without (P = 0.00054). After adjusting for other covariates, mild-to-moderate AD patients with early stain use exhibited a 0.85-risk (95% CI = 0.76-0.95, P = 0.0066) to have AD progression than those without.Early statin use was significantly associated with a reduction in AD progression in mild-to-moderate AD patients. The future randomized trial studies can confirm our findings.
Collapse
Affiliation(s)
- Feng-Cheng Lin
- From the Department of Public Health (F-CL, Y-SC, H-MH, K-FC, M-TW); Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University (F-CL, C-KL); Department of Neurology, Pingtung Hospital, Ministry of Health and Welfare (F-CL); Kaohsiung Municipal Ta-Tung Hospital (K-FC); Department of Health Promotion and Health Education, National Taiwan Normal University, Taipei (T-CL); Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung (M-TW); and Center of Environmental and Occupational Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (M-TW)
| | | | | | | | | | | | | |
Collapse
|
93
|
MacLeod R, Hillert EK, Cameron RT, Baillie GS. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Sci OA 2015; 1:FSO11. [PMID: 28031886 PMCID: PMC5137966 DOI: 10.4155/fso.15.9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly and its prevalence is set to increase rapidly in coming decades. However, there are as yet no available drugs that can halt or even stabilize disease progression. One of the main pathological features of AD is the presence in the brain of senile plaques mainly composed of aggregated β amyloid (Aβ), a derivative of the longer amyloid precursor protein (APP). The amyloid hypothesis proposes that the accumulation of Aβ within neural tissue is the initial event that triggers the disease. Here we review research efforts that have attempted to inhibit the generation of the Aβ peptide through modulation of the activity of the proteolytic secretases that act on APP and discuss whether this is a viable therapeutic strategy for treating AD.
Collapse
Affiliation(s)
- Ruth MacLeod
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ellin-Kristina Hillert
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ryan T Cameron
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
94
|
Xu DE, Zhang WM, Yang ZZ, Zhu HM, Yan K, Li S, Bagnard D, Dawe GS, Ma QH, Xiao ZC. Amyloid precursor protein at node of Ranvier modulates nodal formation. Cell Adh Migr 2015; 8:396-403. [PMID: 25482638 DOI: 10.4161/cam.28802] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Amyloid precursor protein (APP), commonly associated with Alzheimer disease, is upregulated and distributes evenly along the injured axons, and therefore, also known as a marker of demyelinating axonal injury and axonal degeneration. However, the physiological distribution and function of APP along myelinated axons was unknown. We report that APP aggregates at nodes of Ranvier (NOR) in the myelinated central nervous system (CNS) axons but not in the peripheral nervous system (PNS). At CNS NORs, APP expression co-localizes with tenascin-R and is flanked by juxtaparanodal potassium channel expression demonstrating that APP localized to NOR. In APP-knockout (KO) mice, nodal length is significantly increased, while sodium channels are still clustered at NORs. Moreover, APP KO and APP-overexpressing transgenic (APP TG) mice exhibited a decreased and an increased thickness of myelin in spinal cords, respectively, although the changes are limited in comparison to their littermate WT mice. The thickness of myelin in APP KO sciatic nerve also increased in comparison to that in WT mice. Our observations indicate that APP acts as a novel component at CNS NORs, modulating nodal formation and has minor effects in promoting myelination.
Collapse
Affiliation(s)
- De-En Xu
- a Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases ; Institute of Neuroscience; the Second Affiliated Hospital; Soochow University ; Suzhou , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Gautam V, D'Avanzo C, Berezovska O, Tanzi RE, Kovacs DM. Synaptotagmins interact with APP and promote Aβ generation. Mol Neurodegener 2015. [PMID: 26202512 PMCID: PMC4511450 DOI: 10.1186/s13024-015-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Accumulation of the β-amyloid peptide (Aβ) is a major pathological hallmark of Alzheimer’s disease (AD). Recent studies have shown that synaptic Aβ toxicity may directly impair synaptic function. However, proteins regulating Aβ generation at the synapse have not been characterized. Here, we sought to identify synaptic proteins that interact with the extracellular domain of APP and regulate Aβ generation. Results Affinity purification-coupled mass spectrometry identified members of the Synaptotagmin (Syt) family as novel interacting proteins with the APP ectodomain in mouse brains. Syt-1, −2 and −9 interacted with APP in cells and in mouse brains in vivo. Using a GST pull-down approach, we have further demonstrated that the Syt interaction site lies in the 108 amino acids linker region between the E1 and KPI domains of APP. Stable overexpression of Syt-1 or Syt-9 with APP in CHO and rat pheochromocytoma cells (PC12) significantly increased APP-CTF and sAPP levels, with a 2 to 3 fold increase in secreted Aβ levels in PC12 cells. Moreover, using a stable knockdown approach to reduce the expression of endogenous Syt-1 in PC12 cells, we have observed a ~ 50 % reduction in secreted Aβ generation. APP processing also decreased in these cells, shown by lower CTF levels. Lentiviral-mediated knock down of endogenous Syt-1 in mouse primary neurons also led to a significant reduction in both Aβ40 and Aβ42 generation. As secreted sAPPβ levels were significantly reduced in PC12 cells lacking Syt-1 expression, our results suggest that Syt-1 regulates Aβ generation by modulating BACE1-mediated cleavage of APP. Conclusion Altogether, our data identify the synaptic vesicle proteins Syt-1 and 9 as novel APP-interacting proteins that promote Aβ generation and thus may play an important role in the pathogenesis of AD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0028-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek Gautam
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
96
|
Mendoza-Oliva A, Ferrera P, Fragoso-Medina J, Arias C. Lovastatin Differentially Affects Neuronal Cholesterol and Amyloid-β Production in vivo and in vitro. CNS Neurosci Ther 2015; 21:631-41. [PMID: 26096465 DOI: 10.1111/cns.12420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/08/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS Epidemiological and experimental studies indicate that high cholesterol may increase susceptibility to age-associated neurodegenerative disorders, such as Alzheimer's disease (AD). Thus, it has been suggested that statins, which are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), may be a useful therapeutic tool to diminish the risk of AD. However, several studies that analyzed the therapeutic benefits of statins have yielded conflicting results. Herein, we investigated the role of lovastatin on neuronal cholesterol homeostasis and its effects on amyloid β protein production in vivo and in vitro. METHODS AND RESULTS Lovastatin effects were analyzed in vitro using differentiated human neuroblastoma cells and in vivo in a lovastatin-fed rat model. We demonstrated that lovastatin can differentially affect the expression of APP and Aβ production in vivo and in vitro. Lovastatin-induced HMGCR inhibition was detrimental to neuronal survival in vitro via a mechanism unrelated to the reduction of cholesterol. We found that in vivo, dietary cholesterol was associated with increased Aβ production in the cerebral cortex, and lovastatin was not able to reduce cholesterol levels. However, lovastatin induced a remarkable increase in the mature form of the sterol regulatory element-binding protein-2 (SREBP-2) as well as its target gene HMGCR, in both neuronal cells and in the brain. CONCLUSIONS Lovastatin modifies the mevalonate pathway without affecting cholesterol levels in vivo and is able to reduce Aβ levels only in vitro.
Collapse
Affiliation(s)
- Aydé Mendoza-Oliva
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Patricia Ferrera
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| | - Jorge Fragoso-Medina
- Departmento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F, México
| |
Collapse
|
97
|
Avila-Muñoz E, Arias C. Cholesterol-induced astrocyte activation is associated with increased amyloid precursor protein expression and processing. Glia 2015; 63:2010-2022. [PMID: 26096015 DOI: 10.1002/glia.22874] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 11/05/2022]
Abstract
Cholesterol is essential for maintaining lipid raft integrity and has been regarded as a crucial regulatory factor for amyloidogenesis in Alzheimer's disease (AD). The vast majority of studies on amyloid precursor protein (APP) metabolism and amyloid β-protein (Aβ) production have focused on neurons. The role of astrocytes remains largely unexplored, despite the presence of activated astrocytes in the brains of most patients with AD and in transgenic models of the disease. The role of cholesterol in Aβ production has been thoroughly studied in neurons and attributed to the participation of lipid rafts in APP metabolism. Thus, in this study, we analyzed the effect of cholesterol loading in astrocytes and analyzed the expression and processing of APP. We found that cholesterol exposure induced astrocyte activation, increased APP content, and enhanced the interaction of APP with BACE-1. These effects were associated with an enrichment of ganglioside GM1-cholesterol patches in the astrocyte membrane and with increased ROS production. GLIA 2015;63:2010-2022.
Collapse
Affiliation(s)
- Evangelina Avila-Muñoz
- Departamento De Medicina Genómica Y Toxicología Ambiental, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, D.F., México
| | - Clorinda Arias
- Departamento De Medicina Genómica Y Toxicología Ambiental, Instituto De Investigaciones Biomédicas, Universidad Nacional Autónoma De México, D.F., México
| |
Collapse
|
98
|
Lamoke F, Mazzone V, Persichini T, Maraschi A, Harris MB, Venema RC, Colasanti M, Gliozzi M, Muscoli C, Bartoli M, Mollace V. Amyloid β peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation. J Neuroinflammation 2015; 12:84. [PMID: 25935150 PMCID: PMC4438457 DOI: 10.1186/s12974-015-0304-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloid β (Aβ)-induced vascular dysfunction significantly contributes to the pathogenesis of Alzheimer's disease (AD). Aβ is known to impair endothelial nitric oxide synthase (eNOS) activity, thus inhibiting endothelial nitric oxide production (NO). METHOD In this study, we investigated Aβ-effects on heat shock protein 90 (HSP90) interaction with eNOS and Akt in cultured vascular endothelial cells and also explored the role of oxidative stress in this process. RESULTS Treatments of endothelial cells (EC) with Aβ promoted the constitutive association of HSP90 with eNOS but abrogated agonist (vascular endothelial growth factor (VEGF))-mediated HSP90 interaction with Akt. This effect resulted in blockade of agonist-mediated phosphorylation of Akt and eNOS at serine 1179. Furthermore, Aβ stimulated the production of reactive oxygen species in endothelial cells and concomitant treatments of the cells with the antioxidant N-acetyl-cysteine (NAC) prevented Aβ effects in promoting HSP90/eNOS interaction and rescued agonist-mediated Akt and eNOS phosphorylation. CONCLUSIONS The obtained data support the hypothesis that oxidative damage caused by Aβ results in altered interaction of HSP90 with Akt and eNOS, therefore promoting vascular dysfunction. This mechanism, by contributing to Aβ-mediated blockade of nitric oxide production, may significantly contribute to the cognitive impairment seen in AD patients.
Collapse
Affiliation(s)
- Folami Lamoke
- Department of Ophthalmology, Georgia Regents University, Health Sciences Campus, 1120 15th St., Augusta, GA, 30912, USA.
| | - Valeria Mazzone
- Department of Biology, University of Rome 'Roma Tre', Via Ostiense, 169, Rome, 00154, Italy.
| | - Tiziana Persichini
- Department of Biology, University of Rome 'Roma Tre', Via Ostiense, 169, Rome, 00154, Italy.
| | - Annamaria Maraschi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Milan, Italy.
| | - Michael Brennan Harris
- Department of Kinesiology, College of William and Mary, 200 Stadium Dr., Williamsburg, VA, 23186, USA.
| | - Richard C Venema
- Vascular Biology Center, Georgia Regents University, 1120 15th St., Augusta, GA, 30912, USA.
| | - Marco Colasanti
- Department of Biology, University of Rome 'Roma Tre', Via Ostiense, 169, Rome, 00154, Italy.
| | - Micaela Gliozzi
- IRC-FSH, Department of Health Sciences, University of Catanzaro 'Magna Graecia', Catanzaro Complesso 'Ninì Barbieri', Roccelletta di Borgia, 88021, Italy.
| | - Carolina Muscoli
- IRC-FSH, Department of Health Sciences, University of Catanzaro 'Magna Graecia', Catanzaro Complesso 'Ninì Barbieri', Roccelletta di Borgia, 88021, Italy. .,IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy.
| | - Manuela Bartoli
- Department of Ophthalmology, Georgia Regents University, Health Sciences Campus, 1120 15th St., Augusta, GA, 30912, USA.
| | - Vincenzo Mollace
- IRC-FSH, Department of Health Sciences, University of Catanzaro 'Magna Graecia', Catanzaro Complesso 'Ninì Barbieri', Roccelletta di Borgia, 88021, Italy. .,IRCCS San Raffaele Pisana, Via di Val Cannuta, 247, 00166, Rome, Italy.
| |
Collapse
|
99
|
Fe65 Ser228 is phosphorylated by ATM/ATR and inhibits Fe65-APP-mediated gene transcription. Biochem J 2015; 465:413-21. [PMID: 25397632 DOI: 10.1042/bj20140656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fe65 binds the amyloid precursor protein (APP) and regulates the secretase-mediated processing of APP into several proteolytic fragments, including amyloid β-peptides (Aβ) and APP intracellular domain (AICD). Aβ accumulation in neural plaques is a pathological feature of Alzheimer's disease (AD) and AICD has important roles in the regulation of gene transcription (in complex with Fe65). It is therefore important to understand how Fe65 is regulated and how this contributes to the function and/or processing of APP. Studies have also implicated Fe65 in the cellular DNA damage response with knockout mice showing increased DNA strand breaks and Fe65 demonstrating a gel mobility shift after DNA damage, consistent with protein phosphorylation. In the present study, we identified Fe65 Ser(228) as a novel target of the ATM (ataxia telangiectasia mutated) and ATR (ataxia-telangiectasia- and Rad3-related protein) protein kinases, in a reaction that occurred independently of APP. Neither phosphorylation nor mutation of Ser(228) affected the Fe65-APP complex, though this was markedly decreased after UV treatment, with a concomitant decrease in the protein levels of APP in cells. Finally, mutation of Ser(228) to alanine (thus blocking phosphorylation) caused a significant increase in Fe65-APP transcriptional activity, whereas phosphomimetic mutants (S(228)D and S(228)E) showed decreased transcriptional activity. These studies identify a novel phosphorylation site within Fe65 and a novel regulatory mechanism for the transcriptional activity of the Fe65-APP complex.
Collapse
|
100
|
Anticholinesterase and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of atriplex laciniata L.: potential effectiveness in Alzheimer's and other neurological disorders. Biol Res 2015; 48:21. [PMID: 25889712 PMCID: PMC4393635 DOI: 10.1186/s40659-015-0011-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Background Atriplex laciniata L. was investigated for phenolic, flavonoid contents, antioxidant, anticholinesterase activities, in an attempt to explore its effectiveness in Alzheimer’s and other neurological disorders. Plant crude methanolic extract (Al.MeF), subsequent fractions; n-hexane (Al.HxF), chloroform (Al.CfF), ethyl acetate (Al.EaF), aqueous (Al.WtF), Saponins (Al.SPF) and Flavonoids (Al.FLVF) were investigated for DPPH, ABTS and H2O2 free radical scavenging activities. Further these extracts were subjected to acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities using Ellman’s assay. Phenolic and Flavonoid contents were determined and expressed in mg Gallic acid GAE/g and Rutin RTE/g of samples respectively. Results In DPPH free radicals scavenging assay, Al.FLVF, Al.SPF and Al.MeF showed highest activity causing 89.41 ± 0.55, 83.37 ± 0.34 and 83.37 ± 0.34% inhibition of free radicals respectively at 1 mg/mL concentration. IC50 for these fractions were 33, 83 and 82 μg/mL respectively. Similarly, plant extracts showed high ABTS scavenging potential, i.e. Al.FLVF (90.34 ± 0.55), Al.CfF (83.42 ± 0.57), Al.MeF (81.49 ± 0.60) with IC50 of 30, 190 and 70 μg/ml respectively. further, H2O2 percent scavenging was highly appraised in Al.FLVF (91.29 ± 0.53, IC50 75), Al.SPF (85.35 ± 0.61, IC50 70) and Al.EaF (83.48 ± 0.67, IC50 270 μg/mL). All fractions exhibited concentration dependent AChE inhibitory activity as; Al.FLVF, 88.31 ± 0.57 (IC50 70 μg/mL), Al.SPF, 84.36 ± 0.64 (IC50 90 μg/mL), Al.MeF, 78.65 ± 0.70 (IC50 280 μg/mL), Al.EaF, 77.45 ± 0.46 (IC50 270 μg/mL) and Al.WtF 72.44 ± 0.58 (IC50 263 μg/mL) at 1 mg/mL. Likewise the percent BChE inhibitory activity was most obvious in Al.FLVF 85.46 ± 0.62 (IC50 100 μg/mL), Al.CfF 83.49 ± 0.46 (IC50 160 μg/mL), Al.MeF 82.68 ± 0.60 (IC50 220 μg/mL) and Al.SPF 80.37 ± 0.54 (IC50 120 μg/mL). Conclusions These results stipulate that A. laciniata is enriched with phenolic and flavonoid contents that possess significant antioxidant and anticholinestrase effects. This provide pharmacological basis for the presence of compounds that may be effective in Alzheimer’s and other neurological disorders.
Collapse
|