51
|
Shindo T, Ihashi S, Sakamoto Y, Okuno T, Tomikawa J, Miyamoto K. Visualization of endogenous nuclear F-actin in mouse embryos reveals abnormal actin assembly after somatic cell nuclear transfer. J Biochem 2021; 169:303-311. [PMID: 33169144 DOI: 10.1093/jb/mvaa125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/25/2020] [Indexed: 01/13/2023] Open
Abstract
Actin in the nucleus, referred to as nuclear actin, is involved in a variety of nuclear events. Nuclear actin is present as a globular (G-actin) and filamentous form (F-actin), and dynamic assembly/disassembly of nuclear actin profoundly affects nuclear functions. However, it is still challenging to observe endogenous nuclear F-actin. Here, we present a condition to visualize endogenous nuclear F-actin of mouse zygotes using different fixation methods. Zygotes fixed with paraformaldehyde and treated with fluorescently conjugated phalloidin show both short and long actin filaments in their pronuclei. Short nuclear actin filaments are characteristic of phalloidin staining, rather than the consequence of severing actin filaments by the fixation process, since long nuclear actin filaments probed with the nuclear actin chromobody are not disassembled into short filaments after fixation with paraformaldehyde. Furthermore, we find that nuclear actin assembly is impaired after somatic cell nuclear transfer (SCNT), suggesting abnormal nucleoskeleton structures in SCNT embryos. Taken together, our presented method for visualizing nuclear F-actin with phalloidin can be used to observe the states of nuclear actin assembly, and revealed improper reprogramming of actin nucleoskeleton structures in cloned mouse embryos.
Collapse
Affiliation(s)
- Taiki Shindo
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Shunya Ihashi
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Yuko Sakamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Tomomi Okuno
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Junko Tomikawa
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
52
|
Safaralizade M, Fuderer R, Grosse R, Zhao B. Measuring nuclear calcium and actin assembly in living cells. J Biochem 2021; 169:287-294. [PMID: 33479753 DOI: 10.1093/jb/mvab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/29/2020] [Indexed: 11/12/2022] Open
Abstract
Nuclear calcium signalling has emerged as a critical mechanism regulating processes like chromatin organization and gene expression. Recently, we have shown that nuclear calcium elevation triggers rapid and transient actin filament assembly inside the nucleus. Here, we constructed and employed a nuclear-specific calcium sensor based upon the new generation of genetically encoded probes jGCaMP7f. By fusing a nuclear localization signal to jGCaMP7f, we achieved highly efficient nuclear-specific targeting. Comparing the jGCaMP7f-NLS probe with the previous GCaMP6f-NLS calcium sensor showed clearly that jGCaMP7f-NLS is more sensitive and reverses significantly quicker thereby reflecting rapid nuclear calcium transients in a closely physiological manner. We further confirm that nuclear calcium transients precede nuclear actin polymerization by several seconds. Our data show that calcium-triggered nuclear actin assembly in fibroblasts is independent of the actin nucleating Arp2/3 complex. Together, jGCaMP7f-NLS represents an easy to use, reliable and highly sensitive nuclear calcium sensor that allows to tightly interrogate real-time, spatiotemporal calcium signalling and calcium-elicited effects in the nucleus of living cells.
Collapse
Affiliation(s)
| | | | - Robert Grosse
- Institute of Pharmacology, Faculty of Medicine.,Centre for Integrative Biological Signaling Studies, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany
| | - Bing Zhao
- Institute of Pharmacology, Faculty of Medicine.,Centre for Integrative Biological Signaling Studies, University of Freiburg, Albertstraße 25, D-79104 Freiburg, Germany
| |
Collapse
|
53
|
Schmitz-Elbers M, Lukinavičius G, Smit TH. Live Fluorescence Imaging of F-Actin Organization in Chick Whole Embryo Cultures Using SiR-Actin. Cells 2021; 10:1578. [PMID: 34206626 PMCID: PMC8303455 DOI: 10.3390/cells10071578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 11/24/2022] Open
Abstract
Morphogenesis is a continuous process of pattern formation so complex that it requires in vivo monitoring for better understanding. Changes in tissue shape are initiated at the cellular level, where dynamic intracellular F-actin networks determine the shape and motility of cells, influence differentiation and cytokinesis and mediate mechanical signaling. Here, we stain F-actin with the fluorogenic probe SiR-actin for live fluorescence imaging of whole chick embryos. We found that 50 nM SiR-actin in the culture medium is a safe and effective concentration for this purpose, as it provides high labeling density without inducing morphological malformations.
Collapse
Affiliation(s)
- Manuel Schmitz-Elbers
- Department of Orthopaedic Surgery, Amsterdam University Medical Centres, Amsterdam Movement Sciences, 1105 AZ Amsterdam, The Netherlands;
| | - Gražvydas Lukinavičius
- Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Theodoor H. Smit
- Department of Orthopaedic Surgery, Amsterdam University Medical Centres, Amsterdam Movement Sciences, 1105 AZ Amsterdam, The Netherlands;
- Department of Medical Biology, Amsterdam University Medical Centres, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
54
|
Li Y, Bhanja A, Upadhyaya A, Zhao X, Song W. WASp Is Crucial for the Unique Architecture of the Immunological Synapse in Germinal Center B-Cells. Front Cell Dev Biol 2021; 9:646077. [PMID: 34195186 PMCID: PMC8236648 DOI: 10.3389/fcell.2021.646077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
B-cells undergo somatic hypermutation and affinity maturation in germinal centers. Somatic hypermutated germinal center B-cells (GCBs) compete to engage with and capture antigens on follicular dendritic cells. Recent studies show that when encountering membrane antigens, GCBs generate actin-rich pod-like structures with B-cell receptor (BCR) microclusters to facilitate affinity discrimination. While deficiencies in actin regulators, including the Wiskott-Aldrich syndrome protein (WASp), cause B-cell affinity maturation defects, the mechanism by which actin regulates BCR signaling in GBCs is not fully understood. Using WASp knockout (WKO) mice that express Lifeact-GFP and live-cell total internal reflection fluorescence imaging, this study examined the role of WASp-mediated branched actin polymerization in the GCB immunological synapse. After rapid spreading on antigen-coated planar lipid bilayers, GCBs formed microclusters of phosphorylated BCRs and proximal signaling molecules at the center and the outer edge of the contact zone. The centralized signaling clusters localized at actin-rich GCB membrane protrusions. WKO reduced the centralized micro-signaling clusters by decreasing the number and stability of F-actin foci supporting GCB membrane protrusions. The actin structures that support the spreading membrane also appeared less frequently and regularly in WKO than in WT GCBs, which led to reductions in both the level and rate of GCB spreading and antigen gathering. Our results reveal essential roles for WASp in the generation and maintenance of unique structures for GCB immunological synapses.
Collapse
Affiliation(s)
- Yanan Li
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| | - Anshuman Bhanja
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, College Park, MD, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, College Park, MD, United States
| | - Xiaodong Zhao
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
55
|
Evaluation of Stable LifeAct-mRuby2- and LAMP1-NeonGreen Expressing A549 Cell Lines for Investigation of Aspergillus fumigatus Interaction with Pulmonary Cells. Int J Mol Sci 2021; 22:ijms22115965. [PMID: 34073107 PMCID: PMC8198894 DOI: 10.3390/ijms22115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/20/2022] Open
Abstract
Inhaled Aspergillus fumigatus spores can be internalized by alveolar type II cells. Cell lines stably expressing fluorescently labeled components of endocytic pathway enable investigations of intracellular organization during conidia internalization and measurement of the process kinetics. The goal of this report was to evaluate the methodological appliance of cell lines for studying fungal conidia internalization. We have generated A549 cell lines stably expressing fluorescently labeled actin (LifeAct-mRuby2) and late endosomal protein (LAMP1-NeonGreen) following an evaluation of cell-pathogen interactions in live and fixed cells. Our data show that the LAMP1-NeonGreen cell line can be used to visualize conidia co-localization with LAMP1 in live and fixed cells. However, caution is necessary when using LifeAct-mRuby2-cell lines as it may affect the conidia internalization dynamics.
Collapse
|
56
|
Gübeli RJ, Bertoldo D, Shimada K, Gerhold CB, Hurst V, Takahashi Y, Harada K, Mothukuri GK, Wilbs J, Harata M, Gasser SM, Heinis C. In Vitro-Evolved Peptides Bind Monomeric Actin and Mimic Actin-Binding Protein Thymosin-β4. ACS Chem Biol 2021; 16:820-828. [PMID: 33843189 DOI: 10.1021/acschembio.0c00825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Actin is the most abundant protein in eukaryotic cells and is key to many cellular functions. The filamentous form of actin (F-actin) can be studied with help of natural products that specifically recognize it, as for example fluorophore-labeled probes of the bicyclic peptide phalloidin, but no synthetic probes exist for the monomeric form of actin (G-actin). Herein, we have panned a phage display library consisting of more than 10 billion bicyclic peptides against G-actin and isolated binders with low nanomolar affinity and greater than 1000-fold selectivity over F-actin. Sequence analysis revealed a strong similarity to a region of thymosin-β4, a protein that weakly binds G-actin, and competition binding experiments confirmed a common binding region at the cleft between actin subdomains 1 and 3. Together with F-actin-specific peptides that we also isolated, we evaluated the G-actin peptides as probes in pull-down, imaging, and competition binding experiments. While the F-actin peptides were applied successfully for capturing actin in cell lysates and for imaging, the G-actin peptides did not bind in the cellular context, most likely due to competition with thymosin-β4 or related endogenous proteins for the same binding site.
Collapse
Affiliation(s)
- Raphael J. Gübeli
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Davide Bertoldo
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Christian B. Gerhold
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Yuichiro Takahashi
- Laboratory of Molecular Biology, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | - Kai Harada
- Laboratory of Molecular Biology, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | - Ganesh K. Mothukuri
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jonas Wilbs
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masahiko Harata
- Laboratory of Molecular Biology, Tohoku University, Tsutsumidori-Amamiyamachi 1-1, Aoba-ku, Sendai 981-8555, Japan
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
57
|
Simao M, Régnier F, Taheraly S, Fraisse A, Tacine R, Fraudeau M, Benabid A, Feuillet V, Lambert M, Delon J, Randriamampita C. cAMP Bursts Control T Cell Directionality by Actomyosin Cytoskeleton Remodeling. Front Cell Dev Biol 2021; 9:633099. [PMID: 34095108 PMCID: PMC8173256 DOI: 10.3389/fcell.2021.633099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
T lymphocyte migration is an essential step to mounting an efficient immune response. The rapid and random motility of these cells which favors their sentinel role is conditioned by chemokines as well as by the physical environment. Morphological changes, underlaid by dynamic actin cytoskeleton remodeling, are observed throughout migration but especially when the cell modifies its trajectory. However, the signaling cascade regulating the directional changes remains largely unknown. Using dynamic cell imaging, we investigated in this paper the signaling pathways involved in T cell directionality. We monitored cyclic adenosine 3′-5′ monosphosphate (cAMP) variation concomitantly with actomyosin distribution upon T lymphocyte migration and highlighted the fact that spontaneous bursts in cAMP starting from the leading edge, are sufficient to promote actomyosin redistribution triggering trajectory modification. Although cAMP is commonly considered as an immunosuppressive factor, our results suggest that, when transient, it rather favors the exploratory behavior of T cells.
Collapse
Affiliation(s)
- Morgane Simao
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Fabienne Régnier
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Sarah Taheraly
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Achille Fraisse
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France.,Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Rachida Tacine
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Marie Fraudeau
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Adam Benabid
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Vincent Feuillet
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Mireille Lambert
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | - Jérôme Delon
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris, France
| | | |
Collapse
|
58
|
Okuno T, Li WY, Hatano Y, Takasu A, Sakamoto Y, Yamamoto M, Ikeda Z, Shindo T, Plessner M, Morita K, Matsumoto K, Yamagata K, Grosse R, Miyamoto K. Zygotic Nuclear F-Actin Safeguards Embryonic Development. Cell Rep 2021; 31:107824. [PMID: 32610125 DOI: 10.1016/j.celrep.2020.107824] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/27/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022] Open
Abstract
After fertilization, sperm and oocyte nuclei are rapidly remodeled to form swollen pronuclei (PN) in mammalian zygotes, and the proper formation and function of PN are key to producing totipotent zygotes. However, how mature PN are formed has been unclear. We find that filamentous actin (F-actin) assembles in the PN of mouse zygotes and is required for fully functional PN. The perturbation of nuclear actin dynamics in zygotes results in the misregulation of genes related to genome integrity and abnormal development of mouse embryos. We show that nuclear F-actin ensures DNA damage repair, thus preventing the activation of a zygotic checkpoint. Furthermore, optogenetic control of cofilin nuclear localization reveals the dynamically regulated F-actin nucleoskeleton in zygotes, and its timely disassembly is needed for developmental progression. Nuclear F-actin is a hallmark of totipotent zygotic PN, and the temporal regulation of its polymerized state is necessary for normal embryonic development.
Collapse
Affiliation(s)
- Tomomi Okuno
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Wayne Yang Li
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Yu Hatano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Atsushi Takasu
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Yuko Sakamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Mari Yamamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Zenki Ikeda
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Taiki Shindo
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Matthias Plessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | - Kohtaro Morita
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Kazuya Matsumoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University Freiburg, Albertstrasse 25, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Kinokawa-shi, Wakayama 649-6493, Japan.
| |
Collapse
|
59
|
Das S, Stortz JF, Meissner M, Periz J. The multiple functions of actin in apicomplexan parasites. Cell Microbiol 2021; 23:e13345. [PMID: 33885206 DOI: 10.1111/cmi.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
The cytoskeletal protein actin is highly abundant and conserved in eukaryotic cells. It occurs in two different states- the globular (G-actin) form, which can polymerise into the filamentous (F-actin) form, fulfilling various critical functions including cytokinesis, cargo trafficking and cellular motility. In higher eukaryotes, there are several actin isoforms with nearly identical amino acid sequences. Despite the high level of amino acid identity, they display regulated expression patterns and unique non-redundant roles. The number of actin isoforms together with conserved sequences may reflect the selective pressure exerted by scores of actin binding proteins (ABPs) in higher eukaryotes. In contrast, in many protozoans such as apicomplexan parasites which possess only a few ABPs, the regulatory control of actin and its multiple functions are still obscure. Here, we provide a summary of the regulation and biological functions of actin in higher eukaryotes and compare it with the current knowledge in apicomplexans. We discuss future experiments that will help us understand the multiple, critical roles of this fascinating system in apicomplexans.
Collapse
Affiliation(s)
- Sujaan Das
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Johannes Felix Stortz
- Department Metabolism of Infection, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Markus Meissner
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| | - Javier Periz
- Faculty of Veterinary Medicine, Experimental Parasitology, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
60
|
New Insights into Cellular Functions of Nuclear Actin. BIOLOGY 2021; 10:biology10040304. [PMID: 33916969 PMCID: PMC8067577 DOI: 10.3390/biology10040304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary It is well known that actin forms a cytoplasmic network of microfilaments, the part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive for a very long time. Now, there is a very strong evidence that actin plays many important roles in the nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the future challenge will be to further define its functions in various cellular processes and diseases. Abstract Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of nuclear actin often undetectable by conventional staining and commercial antibodies used to identify cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is not only important for the function of the individual cell but also for the establishment of cell fate, and tissue and organ differentiation during development. Moreover, the changes in the nuclear, chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the newly described functions of nuclear actin.
Collapse
|
61
|
Engemann VI, Rink I, Kilb MF, Hungsberg M, Helmer D, Schmitz K. Cell-based actin polymerization assay to analyze chemokine inhibitors. J Pharmacol Toxicol Methods 2021; 109:107056. [PMID: 33819607 DOI: 10.1016/j.vascn.2021.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Chemokines play an important role in various diseases as signaling molecules for immune cells. Therefore, the inhibition of the chemokine-receptor interaction and the characterization of potential inhibitors are important steps in the development of new therapies. Here, we present a new cell-based assay for chemokine-receptor interaction, using chemokine-dependent actin polymerization as a readout. We used interleukin-8 (IL-8, CXCL8) as a model chemokine and measured the IL-8-dependent actin polymerization with Atto565-phalloidin by monitoring the fluorescence intensity in the cell layer after activation with IL-8. This assay needs no transfection, is easy to perform and requires only a few working steps. It can be used to confirm receptor activation and to characterize the effect of chemokine receptor antagonists. Experiments with the well-known CXCR1/2 inhibitor reparixin confirmed that the observed increase in fluorescence intensity is a result of chemokine receptor activation and can be inhibited in a dose-dependent manner. With optimized parameters, the difference between positive and negative control was highly significant and statistical Z´-factors of 0.4 were determined on average.
Collapse
Affiliation(s)
- Victoria I Engemann
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany
| | - Ina Rink
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany
| | - Michelle F Kilb
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany.
| | - Maximilian Hungsberg
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany.
| | - Dorothea Helmer
- Albert-Ludwigs-University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg im Breisgau, Germany.
| | - Katja Schmitz
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany.
| |
Collapse
|
62
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
63
|
Zhang B, Yu Q, Liu Y. Polarization of Stem Cells Directed by Magnetic Field-Manipulated Supramolecular Polymeric Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9580-9588. [PMID: 33599493 DOI: 10.1021/acsami.0c19428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Precise assembly of the cytoskeleton (e.g., actin, tubulin, and intermediate filaments) is of great importance for stem cell polarization and tissue regeneration. Recently, artificial manipulation of cytoskeleton assembly for remodeling stem cell polarization and ultimate cell fates attracts more and more interest of both chemists and biologists. Herein, we report the magnetic field-directed formation of biocompatible supramolecular polymeric nanofibers composed of two subunits: a β-cyclodextrin-bearing hyaluronic acid host polymer (HACD) and magnetic nanoparticles modified with actin-binding peptide and adamantane (MS-ABPAda). Transmission electron microscopy indicated that when HACD and MS-ABPAda were exposed to a magnetic field, they self-assembled into long nanofibers along the direction of the magnetic field, and the rate of nanofiber formation was linearly correlated with the strength of the magnetic field. Interestingly, when incubated with dental pulp stem cells, the nanofibers specifically drove tip extension and polarization of the cells, a phenomenon that can be attributed to targeting of actin-binding peptide to the actin cytoskeleton and subsequent polarization of the nanofibers. The successful application of these magnetic field-responsive supramolecular polymers on accurately driving polarization of mammalian cells is expected to be of great value for artificially manipulating cell fate and developing intelligent responsive materials in regenerative medicine.
Collapse
Affiliation(s)
- Bing Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
64
|
Colombo J, Antkowiak A, Kogan K, Kotila T, Elliott J, Guillotin A, Lappalainen P, Michelot A. A functional family of fluorescent nucleotide analogues to investigate actin dynamics and energetics. Nat Commun 2021; 12:548. [PMID: 33483497 PMCID: PMC7822861 DOI: 10.1038/s41467-020-20827-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Actin polymerization provides force for vital processes of the eukaryotic cell, but our understanding of actin dynamics and energetics remains limited due to the lack of high-quality probes. Most current probes affect dynamics of actin or its interactions with actin-binding proteins (ABPs), and cannot track the bound nucleotide. Here, we identify a family of highly sensitive fluorescent nucleotide analogues structurally compatible with actin. We demonstrate that these fluorescent nucleotides bind to actin, maintain functional interactions with a number of essential ABPs, are hydrolyzed within actin filaments, and provide energy to power actin-based processes. These probes also enable monitoring actin assembly and nucleotide exchange with single-molecule microscopy and fluorescence anisotropy kinetics, therefore providing robust and highly versatile tools to study actin dynamics and functions of ABPs.
Collapse
Affiliation(s)
- Jessica Colombo
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Adrien Antkowiak
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Konstantin Kogan
- grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Tommi Kotila
- grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Jenna Elliott
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Audrey Guillotin
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| | - Pekka Lappalainen
- grid.7737.40000 0004 0410 2071HiLIFE Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Alphée Michelot
- grid.462081.90000 0004 0598 4854Aix Marseille Univ, CNRS, IBDM, Turing Centre for Living Systems, 13288 Marseille, France
| |
Collapse
|
65
|
Schneider F, Colin-York H, Fritzsche M. Quantitative Bio-Imaging Tools to Dissect the Interplay of Membrane and Cytoskeletal Actin Dynamics in Immune Cells. Front Immunol 2021; 11:612542. [PMID: 33505401 PMCID: PMC7829180 DOI: 10.3389/fimmu.2020.612542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular function is reliant on the dynamic interplay between the plasma membrane and the actin cytoskeleton. This critical relationship is of particular importance in immune cells, where both the cytoskeleton and the plasma membrane work in concert to organize and potentiate immune signaling events. Despite their importance, there remains a critical gap in understanding how these respective dynamics are coupled, and how this coupling in turn may influence immune cell function from the bottom up. In this review, we highlight recent optical technologies that could provide strategies to investigate the simultaneous dynamics of both the cytoskeleton and membrane as well as their interplay, focusing on current and future applications in immune cells. We provide a guide of the spatio-temporal scale of each technique as well as highlighting novel probes and labels that have the potential to provide insights into membrane and cytoskeletal dynamics. The quantitative biophysical tools presented here provide a new and exciting route to uncover the relationship between plasma membrane and cytoskeletal dynamics that underlies immune cell function.
Collapse
Affiliation(s)
- Falk Schneider
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Huw Colin-York
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Marco Fritzsche
- Medical Research Council (MRC) Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, United Kingdom
| |
Collapse
|
66
|
Douglass M, Hopkins S, Pandey R, Singha P, Norman M, Handa H. S-Nitrosoglutathione-Based Nitric Oxide-Releasing Nanofibers Exhibit Dual Antimicrobial and Antithrombotic Activity for Biomedical Applications. Macromol Biosci 2021; 21:e2000248. [PMID: 33021079 PMCID: PMC7855517 DOI: 10.1002/mabi.202000248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Indexed: 12/20/2022]
Abstract
The novel use of nanofibers as a physical barrier between blood and medical devices has allowed for modifiable, innovative surface coatings on devices ordinarily plagued by thrombosis, delayed healing, and chronic infection. In this study, the nitric oxide (NO) donor S-nitrosoglutathione (GSNO) is blended with the biodegradable polymers polyhydroxybutyrate (PHB) and polylactic acid (PLA) for the fabrication of hemocompatible, antibacterial nanofibers tailored for blood-contacting applications. Stress/strain behavior of different concentrations of PHB and PLA is recorded to optimize the mechanical properties of the nanofibers. Nanofibers incorporated with different concentrations of GSNO (10, 15, 20 wt%) are evaluated based on their NO-releasing kinetics. PLA/PHB + 20 wt% GSNO nanofibers display the greatest NO release over 72 h (0.4-1.5 × 10-10 mol mg-1 min-1 ). NO-releasing fibers successfully reduce viable adhered bacterial counts by ≈80% after 24 h of exposure to Staphylococcus aureus. NO-releasing nanofibers exposed to porcine plasma reduce platelet adhesion by 64.6% compared to control nanofibers. The nanofibers are found noncytotoxic (>95% viability) toward NIH/3T3 mouse fibroblasts, and 4',6-diamidino-2-phenylindole and phalloidin staining shows that fibroblasts cultured on NO-releasing fibers have improved cellular adhesion and functionality. Therefore, these novel NO-releasing nanofibers provide a safe antimicrobial and hemocompatible coating for blood-contacting medical devices.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Rashmi Pandey
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Priya Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Megan Norman
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
67
|
Hansen CL, Pelegri F. Methods for Visualization of RNA and Cytoskeletal Elements in the Early Zebrafish Embryo. Methods Mol Biol 2021; 2218:219-244. [PMID: 33606235 PMCID: PMC8597646 DOI: 10.1007/978-1-0716-0970-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Zebrafish embryos, with their large size (>0.5 mm) and accessibility, are valuable tools for investigating core cellular processes. Many of those processes, such as cell division, asymmetric inheritance of cellular components, and structural dynamics involved in cell motility and morphology rely on cytoskeletal rearrangements and associated macromolecules. In addition to the protein-rich cytoskeleton, the early embryo is packed with maternally deposited RNA, which serves essential roles in establishing cell polarity, cell fate, and cell organization. Here, we present methods for visualizing endogenous RNA along with cytoskeletal structures, including microtubules and filamentous actin (F-actin) in the context of an intact vertebrate embryo. Each of the four protocols described herein (embryo fixation, RNA probe design/synthesis, double fluorescent in situ hybridization with tubulin immunofluorescence, and fluorescent in situ hybridization with phalloidin labeling of F-actin) are intended for optimal preservation and visualization of both the cytoskeleton and RNAs of interest. These methods can also be modified and applied to a broad range of other uses.
Collapse
Affiliation(s)
- Christina L Hansen
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
68
|
See C, Arya D, Lin E, Chiolo I. Live Cell Imaging of Nuclear Actin Filaments and Heterochromatic Repair foci in Drosophila and Mouse Cells. Methods Mol Biol 2021; 2153:459-482. [PMID: 32840799 DOI: 10.1007/978-1-0716-0644-5_32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that 'safe' homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here, we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including: imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.
Collapse
Affiliation(s)
- Colby See
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | - Deepak Arya
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | - Emily Lin
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA
| | - Irene Chiolo
- Molecular and Computational Biology Department, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
69
|
Smith CEL, Lake AVR, Johnson CA. Primary Cilia, Ciliogenesis and the Actin Cytoskeleton: A Little Less Resorption, A Little More Actin Please. Front Cell Dev Biol 2020; 8:622822. [PMID: 33392209 PMCID: PMC7773788 DOI: 10.3389/fcell.2020.622822] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Primary cilia are microtubule-based organelles that extend from the apical surface of most mammalian cells, forming when the basal body (derived from the mother centriole) docks at the apical cell membrane. They act as universal cellular "antennae" in vertebrates that receive and integrate mechanical and chemical signals from the extracellular environment, serving diverse roles in chemo-, mechano- and photo-sensation that control developmental signaling, cell polarity and cell proliferation. Mutations in ciliary genes cause a major group of inherited developmental disorders called ciliopathies. There are very few preventative treatments or new therapeutic interventions that modify disease progression or the long-term outlook of patients with these conditions. Recent work has identified at least four distinct but interrelated cellular processes that regulate cilia formation and maintenance, comprising the cell cycle, cellular proteostasis, signaling pathways and structural influences of the actin cytoskeleton. The actin cytoskeleton is composed of microfilaments that are formed from filamentous (F) polymers of globular G-actin subunits. Actin filaments are organized into bundles and networks, and are attached to the cell membrane, by diverse cross-linking proteins. During cell migration, actin filament bundles form either radially at the leading edge or as axial stress fibers. Early studies demonstrated that loss-of-function mutations in ciliopathy genes increased stress fiber formation and impaired ciliogenesis whereas pharmacological inhibition of actin polymerization promoted ciliogenesis. These studies suggest that polymerization of the actin cytoskeleton, F-actin branching and the formation of stress fibers all inhibit primary cilium formation, whereas depolymerization or depletion of actin enhance ciliogenesis. Here, we review the mechanistic basis for these effects on ciliogenesis, which comprise several cellular processes acting in concert at different timescales. Actin polymerization is both a physical barrier to both cilia-targeted vesicle transport and to the membrane remodeling required for ciliogenesis. In contrast, actin may cause cilia loss by localizing disassembly factors at the ciliary base, and F-actin branching may itself activate the YAP/TAZ pathway to promote cilia disassembly. The fundamental role of actin polymerization in the control of ciliogenesis may present potential new targets for disease-modifying therapeutic approaches in treating ciliopathies.
Collapse
Affiliation(s)
| | | | - Colin A. Johnson
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
70
|
Harris AR, Jreij P, Belardi B, Joffe AM, Bausch AR, Fletcher DA. Biased localization of actin binding proteins by actin filament conformation. Nat Commun 2020; 11:5973. [PMID: 33239610 PMCID: PMC7688639 DOI: 10.1038/s41467-020-19768-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022] Open
Abstract
The assembly of actin filaments into distinct cytoskeletal structures plays a critical role in cell physiology, but how proteins localize differentially to these structures within a shared cytoplasm remains unclear. Here, we show that the actin-binding domains of accessory proteins can be sensitive to filament conformational changes. Using a combination of live cell imaging and in vitro single molecule binding measurements, we show that tandem calponin homology domains (CH1-CH2) can be mutated to preferentially bind actin networks at the front or rear of motile cells. We demonstrate that the binding kinetics of CH1-CH2 domain mutants varies as actin filament conformation is altered by perturbations that include stabilizing drugs and other binding proteins. These findings suggest that conformational changes of actin filaments in cells could help to direct accessory binding proteins to different actin cytoskeletal structures through a biophysical feedback loop.
Collapse
Affiliation(s)
- Andrew R Harris
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Pamela Jreij
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Aaron M Joffe
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA
| | - Andreas R Bausch
- Lehrstuhl für Biophysik (E27), Technische Universität München, Garching, 85748, Germany
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 648 Stanley Hall MC 1762, Berkeley, CA, 94720, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
71
|
Belyy A, Merino F, Sitsel O, Raunser S. Structure of the Lifeact-F-actin complex. PLoS Biol 2020; 18:e3000925. [PMID: 33216759 PMCID: PMC7717565 DOI: 10.1371/journal.pbio.3000925] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 12/04/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022] Open
Abstract
Lifeact is a short actin-binding peptide that is used to visualize filamentous actin (F-actin) structures in live eukaryotic cells using fluorescence microscopy. However, this popular probe has been shown to alter cellular morphology by affecting the structure of the cytoskeleton. The molecular basis for such artefacts is poorly understood. Here, we determined the high-resolution structure of the Lifeact-F-actin complex using electron cryo-microscopy (cryo-EM). The structure reveals that Lifeact interacts with a hydrophobic binding pocket on F-actin and stretches over 2 adjacent actin subunits, stabilizing the DNase I-binding loop (D-loop) of actin in the closed conformation. Interestingly, the hydrophobic binding site is also used by actin-binding proteins, such as cofilin and myosin and actin-binding toxins, such as the hypervariable region of TccC3 (TccC3HVR) from Photorhabdus luminescens and ExoY from Pseudomonas aeruginosa. In vitro binding assays and activity measurements demonstrate that Lifeact indeed competes with these proteins, providing an explanation for the altering effects of Lifeact on cell morphology in vivo. Finally, we demonstrate that the affinity of Lifeact to F-actin can be increased by introducing mutations into the peptide, laying the foundation for designing improved actin probes for live cell imaging.
Collapse
Affiliation(s)
- Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- * E-mail:
| |
Collapse
|
72
|
Zhang Q, Chen CZ, Swaroop M, Xu M, Wang L, Lee J, Wang AQ, Pradhan M, Hagen N, Chen L, Shen M, Luo Z, Xu X, Xu Y, Huang W, Zheng W, Ye Y. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. Cell Discov 2020; 6:80. [PMID: 33298900 PMCID: PMC7610239 DOI: 10.1038/s41421-020-00222-5] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-Cov and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, and facilitates the attachment of Spike-bearing viral particles to the cell surface to promote viral entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry and reveals drugs capable of targeting this important step in the viral life cycle.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Zhengzheng Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy Qiu Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Natalie Hagen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Zhiji Luo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
73
|
Effects of Netarsudil on Actin-Driven Cellular Functions in Normal and Glaucomatous Trabecular Meshwork Cells: A Live Imaging Study. J Clin Med 2020; 9:jcm9113524. [PMID: 33142742 PMCID: PMC7693753 DOI: 10.3390/jcm9113524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
The actin cytoskeleton of trabecular meshwork (TM) cells is a therapeutic target for lowering intraocular pressure (IOP) in glaucoma patients. Netarsudil (the active ingredient in RhopressaTM) is a Rho-associated protein kinase inhibitor that induces disassembly of actin stress fibers. Here, we used live cell imaging of SiR-actin-labeled normal (NTM) and glaucomatous TM (GTM) cells to investigate actin dynamics during actin-driven biological processes with and without netarsudil treatment. Actin stress fibers were thicker in GTM than NTM cells and took longer (>120 min) to disassemble following addition of 1 µM netarsudil. Actin-rich extracellular vesicles (EVs) were derived by two mechanisms: exocytosis of intracellular-derived vesicles, and cleavage of filopodial tips, which detached the filopodia from the substratum, allowing them to retract to the cell body. While some phagocytosis was noted in untreated TM cells, netarsudil potently stimulated phagocytic uptake of EVs. Netarsudil treatment induced lateral fusion of tunneling nanotubes (TNTs) that connected adjacent TM cells; TNTs are important for TM cellular communication. Together, our results suggest that netarsudil may clear outflow channels in TM tissue by inducing phagocytosis and/or by modulating TM communication via EVs and TNTs. These cellular functions likely work together to regulate IOP in normal and glaucomatous TM.
Collapse
|
74
|
Abstract
Actin is a conserved cytoskeletal protein with essential functions. Here, we review the state-of-the-art reagents, tools and methods used to probe actin biology and functions in zebrafish embryo and larvae. We also discuss specific cell types and tissues where the study of actin in zebrafish has provided new insights into its functions.
Collapse
|
75
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
76
|
Leite J, Chan FY, Osório DS, Saramago J, Sobral AF, Silva AM, Gassmann R, Carvalho AX. Equatorial Non-muscle Myosin II and Plastin Cooperate to Align and Compact F-actin Bundles in the Cytokinetic Ring. Front Cell Dev Biol 2020; 8:573393. [PMID: 33102479 PMCID: PMC7546906 DOI: 10.3389/fcell.2020.573393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is the last step of cell division that physically partitions the mother cell into two daughter cells. Cytokinesis requires the assembly and constriction of a contractile ring, a circumferential array of filamentous actin (F-actin), non-muscle myosin II motors (myosin), and actin-binding proteins that forms at the cell equator. Cytokinesis is accompanied by long-range cortical flows from regions of relaxation toward regions of compression. In the C. elegans one-cell embryo, it has been suggested that anterior-directed cortical flows are the main driver of contractile ring assembly. Here, we use embryos co-expressing motor-dead and wild-type myosin to show that cortical flows can be severely reduced without major effects on contractile ring assembly and timely completion of cytokinesis. Fluorescence recovery after photobleaching in the ingressing furrow reveals that myosin recruitment kinetics are also unaffected by the absence of cortical flows. We find that myosin cooperates with the F-actin crosslinker plastin to align and compact F-actin bundles at the cell equator, and that this cross-talk is essential for cytokinesis. Our results thus argue against the idea that cortical flows are a major determinant of contractile ring assembly. Instead, we propose that contractile ring assembly requires localized concerted action of motor-competent myosin and plastin at the cell equator.
Collapse
Affiliation(s)
- Joana Leite
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Fung-Yi Chan
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Daniel S Osório
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Joana Saramago
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana F Sobral
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana M Silva
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana X Carvalho
- Cytoskeletal Dynamics Lab, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Cytoskeletal Dynamics Lab, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| |
Collapse
|
77
|
Chiarante N, Alonso CAI, Plaza J, Lottero-Leconte R, Arroyo-Salvo C, Yaneff A, Osycka-Salut CE, Davio C, Miragaya M, Perez-Martinez S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci Rep 2020; 10:15619. [PMID: 32973195 PMCID: PMC7518284 DOI: 10.1038/s41598-020-72425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 11/15/2022] Open
Abstract
Previously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events. MRP4 was localized in post-acrosomal region and mid-piece at 15 min capacitation, while at 45 min it was mainly located in the acrosome. After 15 min, MK571 decreased total sperm motility (TM), progressive motility (PM) and several kinematic parameters. The addition of ecAMP rescued MK571 effect and ecAMP alone increased the percentage of motile sperm and kinematics parameters. Since actin cytoskeleton plays essential roles in the regulation of sperm motility, we investigated if MRP4 activity might affect actin polymerization. After 15 min capacitation, an increase in F-actin was observed, which was inhibited by MK571. This effect was reverted by the addition of ecAMP. Furthermore, ecAMP alone increased F-actin levels while no F-actin was detected with ecAMP in the presence of PKA inhibitors. Our results support the importance of cAMP efflux through MRP4 in sperm capacitation and suggest its involvement in the regulation of actin polymerization and motility.
Collapse
Affiliation(s)
- Nicolás Chiarante
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jessica Plaza
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Raquel Lottero-Leconte
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Camila Arroyo-Salvo
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina
| | - Agustín Yaneff
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Claudia E Osycka-Salut
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIIB-UNSAM/CONICET), Campus Miguelete, Avenida 25 de Mayo y Francia, San Martín, B1650HMP, Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacológicas (ININFA) (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, C1113AAD, Buenos Aires, Argentina
| | - Marcelo Miragaya
- Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal (INITRA), UBA, Buenos Aires, Argentina
| | - Silvina Perez-Martinez
- Universidad Buenos Aires (UBA), Facultad de Medicina, (CONICET-UBA) Centro de Estudios Farmacológicos y Botánicos (CEFYBO), C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
78
|
Krippner S, Winkelmeier J, Knerr J, Brandt DT, Virant D, Schwan C, Endesfelder U, Grosse R. Postmitotic expansion of cell nuclei requires nuclear actin filament bundling by α-actinin 4. EMBO Rep 2020; 21:e50758. [PMID: 32959960 PMCID: PMC7645226 DOI: 10.15252/embr.202050758] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
The actin cytoskeleton operates in a multitude of cellular processes including cell shape and migration, mechanoregulation, and membrane or organelle dynamics. However, its filamentous properties and functions inside the mammalian cell nucleus are less well explored. We previously described transient actin assembly at mitotic exit that promotes nuclear expansion during chromatin decondensation. Here, we identify non‐muscle α‐actinin 4 (ACTN4) as a critical regulator to facilitate F‐actin reorganization and bundling during postmitotic nuclear expansion. ACTN4 binds to nuclear actin filament structures, and ACTN4 clusters associate with nuclear F‐actin in a highly dynamic fashion. ACTN4 but not ACTN1 is required for proper postmitotic nuclear volume expansion, mediated by its actin‐binding domain. Using super‐resolution imaging to quantify actin filament numbers and widths in individual nuclei, we find that ACTN4 is necessary for postmitotic nuclear actin reorganization and actin filament bundling. Our findings uncover a nuclear cytoskeletal function for ACTN4 to control nuclear size and chromatin organization during mitotic cell division.
Collapse
Affiliation(s)
- Sylvia Krippner
- Institute of Pharmacology, University of Freiburg, Freiburg, Germany
| | - Jannik Winkelmeier
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Julian Knerr
- Institute of Pharmacology, University of Freiburg, Freiburg, Germany
| | | | - David Virant
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Carsten Schwan
- Institute of Pharmacology, University of Freiburg, Freiburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Robert Grosse
- Institute of Pharmacology, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
79
|
Zhang Q, Chen CZ, Swaroop M, Xu M, Wang L, Lee J, Wang AQ, Pradhan M, Hagen N, Chen L, Shen M, Luo Z, Xu X, Xu Y, Huang W, Zheng W, Ye Y. Heparan sulfate assists SARS-CoV-2 in cell entry and can be targeted by approved drugs in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.14.202549. [PMID: 32699847 PMCID: PMC7373127 DOI: 10.1101/2020.07.14.202549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cell entry of SARS-CoV-2 has emerged as an attractive drug repurposing target for COVID-19. Here we combine genetics and chemical perturbation to demonstrate that ACE2-mediated entry of SARS-CoV and CoV-2 requires the cell surface heparan sulfate (HS) as an assisting cofactor: ablation of genes involved in HS biosynthesis or incubating cells with a HS mimetic both inhibit Spike-mediated viral entry. We show that heparin/HS binds to Spike directly, facilitates the attachment of viral particles to the cell surface to promote cell entry. We screened approved drugs and identified two classes of inhibitors that act via distinct mechanisms to target this entry pathway. Among the drugs characterized, Mitoxantrone is a potent HS inhibitor, while Sunitinib and BNTX disrupt the actin network to indirectly abrogate HS-assisted viral entry. We further show that drugs of the two classes can be combined to generate a synergized activity against SARS-CoV-2-induced cytopathic effect. Altogether, our study establishes HS as an attachment factor that assists SARS coronavirus cell entry, and reveals drugs capable of targeting this important step in the viral life cycle.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Manju Swaroop
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Lihui Wang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Juhyung Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Amy Q. Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Manisha Pradhan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Natalie Hagen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Lu Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Zhiji Luo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yue Xu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
80
|
Mogessie B. Advances and surprises in a decade of oocyte meiosis research. Essays Biochem 2020; 64:263-275. [PMID: 32538429 DOI: 10.1042/ebc20190068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Eggs are produced from progenitor oocytes through meiotic cell division. Fidelity of meiosis is critical for healthy embryogenesis - fertilisation of aneuploid eggs that contain the wrong number of chromosomes is a leading cause of genetic disorders including Down's syndrome, human embryo deaths and infertility. Incidence of meiosis-related oocyte and egg aneuploidies increases dramatically with advancing maternal age, which further complicates the 'meiosis problem'. We have just emerged from a decade of meiosis research that was packed with exciting and transformative research. This minireview will focus primarily on studies of mechanisms that directly influence chromosome segregation.
Collapse
Affiliation(s)
- Binyam Mogessie
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, U.K
| |
Collapse
|
81
|
Schiavon CR, Zhang T, Zhao B, Moore AS, Wales P, Andrade LR, Wu M, Sung TC, Dayn Y, Feng JW, Quintero OA, Shadel GS, Grosse R, Manor U. Actin chromobody imaging reveals sub-organellar actin dynamics. Nat Methods 2020; 17:917-921. [PMID: 32778832 PMCID: PMC7746311 DOI: 10.1038/s41592-020-0926-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/15/2020] [Indexed: 12/31/2022]
Abstract
The actin cytoskeleton plays multiple critical roles in cells, from cell migration to organelle dynamics. The small and transient actin structures regulating organelle dynamics are challenging to detect with fluorescence microscopy, making it difficult to determine whether actin filaments are directly associated with specific membranes. To address these limitations, we developed fluorescent-protein-tagged actin nanobodies, termed 'actin chromobodies' (ACs), targeted to organelle membranes to enable high-resolution imaging of sub-organellar actin dynamics.
Collapse
Affiliation(s)
- Cara R Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tong Zhang
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Zhao
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Pauline Wales
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Melissa Wu
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tsung-Chang Sung
- Transgenic Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Yelena Dayn
- Transgenic Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jasmine W Feng
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Omar A Quintero
- Department of Biology, University of Richmond, Richmond, VA, USA
| | - Gerald S Shadel
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
82
|
Abstract
The presence of actin in the nucleus has been a matter of debate for many years. In recent years many important roles of actin in the nucleus (transcriptional regulation, chromatin remodeling, DNA repair, cell division, maintenance of nuclear architecture) have been identified, and the precise control of nuclear actin levels has been demonstrated. The vital importance of the actin driven processes in the cell make it highly likely that dysregulation of nuclear actin dynamics and structure can be linked to tumor induction and -progression. In this chapter I summarize our current knowledge about nuclear actin in the cancer context.
Collapse
|
83
|
Oi C, Gidden Z, Holyoake L, Kantelberg O, Mochrie S, Horrocks MH, Regan L. LIVE-PAINT allows super-resolution microscopy inside living cells using reversible peptide-protein interactions. Commun Biol 2020; 3:458. [PMID: 32820217 PMCID: PMC7441314 DOI: 10.1038/s42003-020-01188-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/30/2020] [Indexed: 11/09/2022] Open
Abstract
We present LIVE-PAINT, a new approach to super-resolution fluorescent imaging inside live cells. In LIVE-PAINT only a short peptide sequence is fused to the protein being studied, unlike conventional super-resolution methods, which rely on directly fusing the biomolecule of interest to a large fluorescent protein, organic fluorophore, or oligonucleotide. LIVE-PAINT works by observing the blinking of localized fluorescence as this peptide is reversibly bound by a protein that is fused to a fluorescent protein. We have demonstrated the effectiveness of LIVE-PAINT by imaging a number of different proteins inside live S. cerevisiae. Not only is LIVE-PAINT widely applicable, easily implemented, and the modifications minimally perturbing, but we also anticipate it will extend data acquisition times compared to those previously possible with methods that involve direct fusion to a fluorescent protein.
Collapse
Affiliation(s)
- Curran Oi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, 06520, USA
| | - Zoe Gidden
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3DW, Scotland
| | - Louise Holyoake
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3DW, Scotland
| | - Owen Kantelberg
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, Scotland
| | - Simon Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT, 06520, USA
- Department of Physics, Yale University, New Haven, CT, 06520, USA
| | - Mathew H Horrocks
- School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, Scotland.
| | - Lynne Regan
- Center for Synthetic and Systems Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, Scotland.
| |
Collapse
|
84
|
Gil AA, Carrasco-López C, Zhu L, Zhao EM, Ravindran PT, Wilson MZ, Goglia AG, Avalos JL, Toettcher JE. Optogenetic control of protein binding using light-switchable nanobodies. Nat Commun 2020; 11:4044. [PMID: 32792536 PMCID: PMC7426870 DOI: 10.1038/s41467-020-17836-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
A growing number of optogenetic tools have been developed to reversibly control binding between two engineered protein domains. In contrast, relatively few tools confer light-switchable binding to a generic target protein of interest. Such a capability would offer substantial advantages, enabling photoswitchable binding to endogenous target proteins in cells or light-based protein purification in vitro. Here, we report the development of opto-nanobodies (OptoNBs), a versatile class of chimeric photoswitchable proteins whose binding to proteins of interest can be enhanced or inhibited upon blue light illumination. We find that OptoNBs are suitable for a range of applications including reversibly binding to endogenous intracellular targets, modulating signaling pathway activity, and controlling binding to purified protein targets in vitro. This work represents a step towards programmable photoswitchable regulation of a wide variety of target proteins.
Collapse
Affiliation(s)
- Agnieszka A Gil
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Liyuan Zhu
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Evan M Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | | | - Maxwell Z Wilson
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander G Goglia
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - José L Avalos
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
85
|
Pimm ML, Hotaling J, Henty-Ridilla JL. Profilin choreographs actin and microtubules in cells and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:155-204. [PMID: 32859370 PMCID: PMC7461721 DOI: 10.1016/bs.ircmb.2020.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Actin and microtubules play essential roles in aberrant cell processes that define and converge in cancer including: signaling, morphology, motility, and division. Actin and microtubules do not directly interact, however shared regulators coordinate these polymers. While many of the individual proteins important for regulating and choreographing actin and microtubule behaviors have been identified, the way these molecules collaborate or fail in normal or disease contexts is not fully understood. Decades of research focus on Profilin as a signaling molecule, lipid-binding protein, and canonical regulator of actin assembly. Recent reports demonstrate that Profilin also regulates microtubule dynamics and polymerization. Thus, Profilin can coordinate both actin and microtubule polymer systems. Here we reconsider the biochemical and cellular roles for Profilin with a focus on the essential cytoskeletal-based cell processes that go awry in cancer. We also explore how the use of model organisms has helped to elucidate mechanisms that underlie the regulatory essence of Profilin in vivo and in the context of disease.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica Hotaling
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Jessica L Henty-Ridilla
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States; Department of Biochemistry and Molecular Biology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States.
| |
Collapse
|
86
|
Sadoul K, Lafanechère L, Grichine A. Live imaging of single platelets at work. Platelets 2020; 31:551-558. [PMID: 31880193 DOI: 10.1080/09537104.2019.1708886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although live imaging of dynamic processes in platelets is a challenging task, several important observations have been published during the last 20 years. We will discuss the amazing insights that have been achieved, the difficulties that can be encountered as well as some questions still open and the future technical perspectives.
Collapse
Affiliation(s)
- Karin Sadoul
- Institute for Advanced Biosciences, University Grenoble Alpes , Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, University Grenoble Alpes , Grenoble, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, University Grenoble Alpes , Grenoble, France
| |
Collapse
|
87
|
Mishra P, Cohen RI, Zhao N, Moghe PV. Fluorescence-based actin turnover dynamics of stem cells as a profiling method for stem cell functional evolution, heterogeneity and phenotypic lineage parsing. Methods 2020; 190:44-54. [PMID: 32473293 DOI: 10.1016/j.ymeth.2020.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells are widely explored in regenerative medicine as a source to produce diverse cell types. Despite the wide usage of stem cells like mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), there is a lack of robust methods to rapidly discern the phenotypic and functional heterogeneity of stem cells. The organization of actin cytoskeleton has been previously used to discern divergent stem cell differentiation pathways. In this paper, we highlight the versatility of a cell profiling method for actin turnover dynamics. Actin filaments in live stem cells are labeled using SiR-actin, a cell permeable fluorogenic probe, to determine the endogenous actin turnover. Live MSC imaging after days of induction successfully demonstrated lineage specific change in actin turnover. Next, we highlighted the differences in the cellular heterogeneity of actin dynamics during adipogenic or osteogenic MSC differentiation. Next, we applied the method to differentiating iPSCs in culture, and detected a progressive slowdown in actin turnover during differentiation upon stimulation with neural or cardiac media. Finally, as a proof of concept, the actin dynamic profiling was used to isolate MSCs via flow cytometry prior to sorting into three distinct sub-populations with low, intermediate or high actin dynamics. A greater fraction of MSCs with more rapid actin dynamics demonstrated increased inclination for adipogenesis, whereas, slower actin dynamics correlated with increased osteogenesis. Together, these results show that actin turnover can serve as a versatile biomarker to not only track cellular phenotypic heterogeneity but also harvest live cells with potential for differential phenotypic fates.
Collapse
Affiliation(s)
- Prakhar Mishra
- Molecular Biosciences Graduate Program in Cell and Developmental Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ricky I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
88
|
Borowiak M, Küllmer F, Gegenfurtner F, Peil S, Nasufovic V, Zahler S, Thorn-Seshold O, Trauner D, Arndt HD. Optical Manipulation of F-Actin with Photoswitchable Small Molecules. J Am Chem Soc 2020; 142:9240-9249. [PMID: 32388980 DOI: 10.1021/jacs.9b12898] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell-permeable photoswitchable small molecules, termed optojasps, are introduced to optically control the dynamics of the actin cytoskeleton and cellular functions that depend on it. These light-dependent effectors were designed from the F-actin-stabilizing marine depsipeptide jasplakinolide by functionalizing them with azobenzene photoswitches. As demonstrated, optojasps can be employed to control cell viability, cell motility, and cytoskeletal signaling with the high spatial and temporal resolution that light affords. Optojasps can be expected to find applications in diverse areas of cell biological research. They may also provide a template for photopharmacology targeting the ubiquitous actin cytoskeleton with precision control in the micrometer range.
Collapse
Affiliation(s)
- Malgorzata Borowiak
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, München D-81377, Germany
| | - Florian Küllmer
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, Jena D-07743, Germany
| | - Florian Gegenfurtner
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, München D-81377, Germany
| | - Sebastian Peil
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, Jena D-07743, Germany
| | - Veselin Nasufovic
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, Jena D-07743, Germany
| | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, München D-81377, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University, Butenandtstrasse 5-13, München D-81377, Germany
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York 10003, New York, United States
| | - Hans-Dieter Arndt
- Institute for Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, Jena D-07743, Germany
| |
Collapse
|
89
|
Risinger AL, Du L. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products. Nat Prod Rep 2020; 37:634-652. [PMID: 31764930 PMCID: PMC7797185 DOI: 10.1039/c9np00053d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2014-2019We review recent progress on natural products that target cytoskeletal components, including microtubules, actin, intermediate filaments, and septins and highlight their demonstrated and potential utility in the treatment of human disease. The anticancer efficacy of microtubule targeted agents identified from plants, microbes, and marine organisms is well documented. We highlight new microtubule targeted agents currently in clinical evaluations for the treatment of drug resistant cancers and the accumulating evidence that the anticancer efficacy of these agents is not solely due to their antimitotic effects. Indeed, the effects of microtubule targeted agents on interphase microtubules are leading to their potential for more mechanistically guided use in cancers as well as neurological disease. The discussion of these agents as more targeted drugs also prompts a reevaluation of our thinking about natural products that target other components of the cytoskeleton. For instance, actin active natural products are largely considered chemical probes and non-selective toxins. However, studies utilizing these probes have uncovered aspects of actin biology that can be more specifically targeted to potentially treat cancer, neurological disorders, and infectious disease. Compounds that target intermediate filaments and septins are understudied, but their continued discovery and mechanistic evaluations have implications for numerous therapeutic indications.
Collapse
Affiliation(s)
- April L Risinger
- The University of Texas Health Science Center at San Antonio, Department of Pharmacology, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | |
Collapse
|
90
|
González-Gutiérrez AG, Verdín J, Rodríguez-Garay B. Simple Whole-Mount Staining Protocol of F-Actin for Studies of the Female Gametophyte in Agavoideae and Other Crassinucellate Ovules. FRONTIERS IN PLANT SCIENCE 2020; 11:384. [PMID: 32328076 PMCID: PMC7161591 DOI: 10.3389/fpls.2020.00384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/17/2020] [Indexed: 05/28/2023]
Abstract
During plant sexual reproduction, F-actin takes part in the elongation of the pollen tube and the movement of sperm cells along with it. Moreover, F-actin is involved in the transport of sperm cells throughout the embryo sac when double fertilization occurs. Different techniques for analysis of F-actin in plant cells have been developed: from classical actin-immunolocalization in fixed tissues to genetically tagged actin with fluorescent proteins for live imaging of cells. Despite the implementation of live cell imaging tools, fixed plant tissue methods for cytoskeletal studies remain an essential tool for genetically intractable systems. Also, most of the work on live imaging of the cytoskeleton has been conducted on cells located on the plant's surface, such as epidermal cells, trichomes, and root hairs. In cells situated in the plant's interior, especially those from plant species with thicker organ systems, it is necessary to utilize conventional sectioning and permeabilization methods to allow the label access to the cytoskeleton. Studies about the role of F-actin cytoskeleton during double fertilization in plants with crassinucellate ovules (e.g., Agave, Yucca, Polianthes, Prochnyantes, and Manfreda) remain scarce due to the difficulties to access the female gametophyte. Here, we have developed a straightforward method for analysis of F-actin in the female gametophyte of different Agavoideae sub-family species. The procedure includes the fixation of whole ovules with formaldehyde, followed by membrane permeabilization with cold acetone, a prolonged staining step with rhodamine-phalloidin, and Hoechst 33342 as a counterstain and two final steps of dehydration of samples in increasing-concentration series of cold isopropanol and clarification of tissues with methyl salicylate. This technique allows the analysis of a large number of samples in a short period, cell positioning relative to neighbor cells is maintained, and, with the help of a confocal microscope, reconstruction of a single 3D image of F-actin structures into the embryo sac can be obtained.
Collapse
Affiliation(s)
- Alejandra G González-Gutiérrez
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Jorge Verdín
- Unidad de Biotecnología Industrial, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| | - Benjamín Rodríguez-Garay
- Unidad de Biotecnología Vegetal, CIATEJ, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Zapopan, Mexico
| |
Collapse
|
91
|
Wipa P, Paensuwan P, Ngoenkam J, Woessner NM, Minguet S, Schamel WW, Pongcharoen S. Actin polymerization regulates recruitment of Nck to CD3ε upon T-cell receptor triggering. Immunology 2020; 159:298-308. [PMID: 31674657 PMCID: PMC7011646 DOI: 10.1111/imm.13146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022] Open
Abstract
Following T-cell antigen receptor (TCR) engagement, rearrangement of the actin cytoskeleton supports intracellular signal transduction and T-cell activation. The non-catalytic region of the tyrosine kinase (Nck) molecule is an adapter protein implicated in TCR-induced actin polymerization. Further, Nck is recruited to the CD3ε subunit of the TCR upon TCR triggering. Here we examine the role of actin polymerization in the recruitment of Nck to the TCR. To this end, Nck binding to CD3ε was quantified in Jurkat cells using the proximity ligation assay. We show that inhibition of actin polymerization using cytochalasin D delayed the recruitment of Nck1 to the TCR upon TCR triggering. Interestingly, CD3ε phosphorylation was also delayed. These findings suggest that actin polymerization promotes the recruitment of Nck to the TCR, enhancing downstream signaling, such as phosphorylation of CD3ε.
Collapse
Affiliation(s)
- Piyamaporn Wipa
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Pussadee Paensuwan
- Department of OptometryFaculty of Allied Health SciencesNaresuan UniversityPhitsanulokThailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and ParasitologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
| | - Nadine M. Woessner
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Susana Minguet
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency CCIMedical Center Freiburg and Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Wolfgang W. Schamel
- Department of ImmunologyFaculty of BiologyUniversity of FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
- Center for Chronic Immunodeficiency CCIMedical Center Freiburg and Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sutatip Pongcharoen
- Division of ImmunologyDepartment of MedicineFaculty of MedicineNaresuan UniversityPhitsanulokThailand
- Center of Excellence in Medical BiotechnologyFaculty of Medical ScienceNaresuan UniversityPhitsanulokThailand
- Research Center for Academic Excellence in Petroleum, Petrochemical, and Advanced MaterialsFaculty of ScienceNaresuan UniversityPhitsanulokThailand
| |
Collapse
|
92
|
Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep 2020; 10:3156. [PMID: 32081957 PMCID: PMC7035265 DOI: 10.1038/s41598-020-60145-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer demonstrates intra-tumour heterogeneity formed by a hierarchical structure comprised of cancer stem cells (CSCs) and their differentiated progenies. The mechanism by which CSCs are maintained and differentiated needs to be further elucidated, and there is evidence that the tumour microenvironment governs cancer stemness. Using PLR123, a colon cancer cell line with CSC properties, we determined the culture conditions necessary to establish a pair of three-dimensional (3D) culture models grown in Matrigel, designated stemCO and diffCO. The conditions were determined by comparing the phenotypes in the models with PLR123 mouse xenografts colonising lung and liver. StemCO resembled LGR5-positive undifferentiated tumours in the lung, and diffCO had lumen structures composed of polarised cells that were similar to the ductal structures found in differentiated tumours in the liver. In a case using the models for biomedical research, treatment with JAG-1 peptide or a γ-secretase inhibitor modified the Notch signaling and induced changes indicating that the signal participates in lumen formation in the models. Our results demonstrate that culture conditions affect the stemness of 3D culture models generated from CSCs and show that comparing models with different phenotypes is useful for studying how the tumour environment regulates cancer.
Collapse
|
93
|
Pospich S, Merino F, Raunser S. Structural Effects and Functional Implications of Phalloidin and Jasplakinolide Binding to Actin Filaments. Structure 2020; 28:437-449.e5. [PMID: 32084355 DOI: 10.1016/j.str.2020.01.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Actin undergoes structural transitions during polymerization, ATP hydrolysis, and subsequent release of inorganic phosphate. Several actin-binding proteins sense specific states during this transition and can thus target different regions of the actin filament. Here, we show in atomic detail that phalloidin, a mushroom toxin that is routinely used to stabilize and label actin filaments, suspends the structural changes in actin, likely influencing its interaction with actin-binding proteins. Furthermore, high-resolution cryoelectron microscopy structures reveal structural rearrangements in F-actin upon inorganic phosphate release in phalloidin-stabilized filaments. We find that the effect of the sponge toxin jasplakinolide differs from the one of phalloidin, despite their overlapping binding site and similar interactions with the actin filament. Analysis of structural conformations of F-actin suggests that stabilizing agents trap states within the natural conformational space of actin.
Collapse
Affiliation(s)
- Sabrina Pospich
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Felipe Merino
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund 44227, Germany.
| |
Collapse
|
94
|
Lee RM, Campanello L, Hourwitz MJ, Alvarez P, Omidvar A, Fourkas JT, Losert W. Quantifying topography-guided actin dynamics across scales using optical flow. Mol Biol Cell 2020; 31:1753-1764. [PMID: 32023172 PMCID: PMC7521856 DOI: 10.1091/mbc.e19-11-0614] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The dynamic rearrangement of the actin cytoskeleton is an essential component of many mechanotransduction and cellular force generation pathways. Here we use periodic surface topographies with feature sizes comparable to those of in vivo collagen fibers to measure and compare actin dynamics for two representative cell types that have markedly different migratory modes and physiological purposes: slowly migrating epithelial MCF10A cells and polarizing, fast-migrating, neutrophil-like HL60 cells. Both cell types exhibit reproducible guidance of actin waves (esotaxis) on these topographies, enabling quantitative comparisons of actin dynamics. We adapt a computer-vision algorithm, optical flow, to measure the directions of actin waves at the submicron scale. Clustering the optical flow into regions that move in similar directions enables micron-scale measurements of actin-wave speed and direction. Although the speed and morphology of actin waves differ between MCF10A and HL60 cells, the underlying actin guidance by nanotopography is similar in both cell types at the micron and submicron scales.
Collapse
Affiliation(s)
- Rachel M Lee
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| | | | - Matt J Hourwitz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Phillip Alvarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742
| | - Ava Omidvar
- Department of Physics, University of Maryland, College Park, MD 20742
| | - John T Fourkas
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742.,Department of Physics, University of Maryland, College Park, MD 20742.,University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
95
|
Montague SJ, Lim YJ, Lee WM, Gardiner EE. Imaging Platelet Processes and Function-Current and Emerging Approaches for Imaging in vitro and in vivo. Front Immunol 2020; 11:78. [PMID: 32082328 PMCID: PMC7005007 DOI: 10.3389/fimmu.2020.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Platelets are small anucleate cells that are essential for many biological processes including hemostasis, thrombosis, inflammation, innate immunity, tumor metastasis, and wound healing. Platelets circulate in the blood and in order to perform all of their biological roles, platelets must be able to arrest their movement at an appropriate site and time. Our knowledge of how platelets achieve this has expanded as our ability to visualize and quantify discreet platelet events has improved. Platelets are exquisitely sensitive to changes in blood flow parameters and so the visualization of rapid intricate platelet processes under conditions found in flowing blood provides a substantial challenge to the platelet imaging field. The platelet's size (~2 μm), rapid activation (milliseconds), and unsuitability for genetic manipulation, means that appropriate imaging tools are limited. However, with the application of modern imaging systems to study platelet function, our understanding of molecular events mediating platelet adhesion from a single-cell perspective, to platelet recruitment and activation, leading to thrombus (clot) formation has expanded dramatically. This review will discuss current platelet imaging techniques in vitro and in vivo, describing how the advancements in imaging have helped answer/expand on platelet biology with a particular focus on hemostasis. We will focus on platelet aggregation and thrombus formation, and how platelet imaging has enhanced our understanding of key events, highlighting the knowledge gained through the application of imaging modalities to experimental models in vitro and in vivo. Furthermore, we will review the limitations of current imaging techniques, and questions in thrombosis research that remain to be addressed. Finally, we will speculate how the same imaging advancements might be applied to the imaging of other vascular cell biological functions and visualization of dynamic cell-cell interactions.
Collapse
Affiliation(s)
- Samantha J. Montague
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Yean J. Lim
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Woei M. Lee
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, ACT, Australia
| | - Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
96
|
Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, Virtanen J, Moore HM, Vartiainen MK, Hodgson L, Verkhusha VV. Optogenetic regulation of endogenous proteins. Nat Commun 2020; 11:605. [PMID: 32001718 PMCID: PMC6992714 DOI: 10.1038/s41467-020-14460-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
Techniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control. We apply this system to regulate cytoskeletal and enzymatic functions of two non-tagged endogenous proteins, actin and RAS GTPase, involved in complex functional networks sensitive to perturbations. The optogenetically-enhanced intrabodies allow fast and reversible regulation of both proteins, as well as simultaneous monitoring of RAS signaling with visible-light biosensors, enabling all-optical approach. Growing number of intrabodies should make their incorporation into optogenetic tools the versatile technology to regulate endogenous targets.
Collapse
Affiliation(s)
- Taras A Redchuk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maren Hülsemann
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jori Virtanen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Henna M Moore
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
97
|
Nakai N, Sato K, Tani T, Saito K, Sato F, Terada S. Genetically encoded orientation probes for F-actin for fluorescence polarization microscopy. Microscopy (Oxf) 2020; 68:359-368. [PMID: 31264686 DOI: 10.1093/jmicro/dfz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Fluorescence polarization microscopy, which can visualize both position and orientation of fluorescent molecules, is useful for analyzing architectural dynamics of proteins in vivo, especially that of cytoskeletal proteins such as actin. Fluorescent phalloidin conjugates and SiR-actin can be used as F-actin orientation probes for fluorescence polarization microscopy, but a lack of appropriate methods for their introduction to living specimens especially to tissues, embryos, and whole animals hampers their applications to image the orientation of F-actin. To solve this problem, we have developed genetically encoded F-actin orientation probes for fluorescence polarization microscopy. We rigidly connected circular permutated green fluorescent protein (GFP) to the N-terminal α-helix of actin-binding protein Lifeact or utrophin calponin homology domain (UtrCH), and normal mEGFP to the C-terminal α-helix of UtrCH. After evaluation of ensemble and single particle fluorescence polarization with the instantaneous FluoPolScope, one of the constructs turned out to be suitable for practical usage in live cell imaging. Our new, genetically encoded F-actin orientation probe, which has a similar property of an F-actin probe to conventional GFP-UtrCH, is expected to report the 3D architecture of the actin cytoskeleton with fluorescence polarization microscopy, paving the way for both the single molecular orientation imaging in cultured cells and the sub-optical resolution architectural analysis of F-actin networks analysis of F-actin in various living systems.
Collapse
Affiliation(s)
- Nori Nakai
- Department of Neuroanatomy and Cellular Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Keisuke Sato
- Department of Neuroanatomy and Cellular Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tomomi Tani
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kenta Saito
- Department of Neuroanatomy and Cellular Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Fumiya Sato
- Department of Neuroanatomy and Cellular Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Sumio Terada
- Department of Neuroanatomy and Cellular Neurobiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
98
|
Kullmann JA, Meyer S, Pipicelli F, Kyrousi C, Schneider F, Bartels N, Cappello S, Rust MB. Profilin1-Dependent F-Actin Assembly Controls Division of Apical Radial Glia and Neocortex Development. Cereb Cortex 2019; 30:3467-3482. [DOI: 10.1093/cercor/bhz321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
Abstract
Neocortex development depends on neural stem cell proliferation, cell differentiation, neurogenesis, and neuronal migration. Cytoskeletal regulation is critical for all these processes, but the underlying mechanisms are only poorly understood. We previously implicated the cytoskeletal regulator profilin1 in cerebellar granule neuron migration. Since we found profilin1 expressed throughout mouse neocortex development, we here tested the hypothesis that profilin1 is crucial for neocortex development. We found no evidence for impaired neuron migration or layering in the neocortex of profilin1 mutant mice. However, proliferative activity at basal positions was doubled in the mutant neocortex during mid-neurogenesis, with a drastic and specific increase in basal Pax6+ cells indicative for elevated numbers of basal radial glia (bRG). This was accompanied by transiently increased neurogenesis and associated with mild invaginations resembling rudimentary neocortex folds. Our data are in line with a model in which profilin1-dependent actin assembly controls division of apical radial glia (aRG) and thereby the fate of their progenies. Via this mechanism, profilin1 restricts cell delamination from the ventricular surface and, hence, bRG production and thereby controls neocortex development in mice. Our data support the radial cone hypothesis” claiming that elevated bRG number causes neocortex folds.
Collapse
Affiliation(s)
- Jan A Kullmann
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Sophie Meyer
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Fabrizia Pipicelli
- Max-Planck Institute for Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Christina Kyrousi
- Max-Planck Institute for Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Nora Bartels
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Silvia Cappello
- Max-Planck Institute for Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
- DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| |
Collapse
|
99
|
Meka DP, Scharrenberg R, Zhao B, Kobler O, König T, Schaefer I, Schwanke B, Klykov S, Richter M, Eggert D, Windhorst S, Dotti CG, Kreutz MR, Mikhaylova M, Calderon de Anda F. Radial somatic F-actin organization affects growth cone dynamics during early neuronal development. EMBO Rep 2019; 20:e47743. [PMID: 31650708 PMCID: PMC6893363 DOI: 10.15252/embr.201947743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 09/06/2019] [Accepted: 09/27/2019] [Indexed: 11/16/2022] Open
Abstract
The centrosome is thought to be the major neuronal microtubule-organizing center (MTOC) in early neuronal development, producing microtubules with a radial organization. In addition, albeit in vitro, recent work showed that isolated centrosomes could serve as an actin-organizing center, raising the possibility that neuronal development may, in addition, require a centrosome-based actin radial organization. Here, we report, using super-resolution microscopy and live-cell imaging of cultured rodent neurons, F-actin organization around the centrosome with dynamic F-actin aster-like structures with F-actin fibers extending and retracting actively. Photoactivation/photoconversion experiments and molecular manipulations of F-actin stability reveal a robust flux of somatic F-actin toward the cell periphery. Finally, we show that somatic F-actin intermingles with centrosomal PCM-1 (pericentriolar material 1 protein) satellites. Knockdown of PCM-1 and disruption of centrosomal activity not only affect F-actin dynamics near the centrosome but also in distal growth cones. Collectively, the data show a radial F-actin organization during early neuronal development, which might be a cellular mechanism for providing peripheral regions with a fast and continuous source of actin polymers, hence sustaining initial neuronal development.
Collapse
Affiliation(s)
- Durga Praveen Meka
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Robin Scharrenberg
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bing Zhao
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Oliver Kobler
- Combinatorial Neuroimaging Core Facility (CNI)Leibniz Institute for NeurobiologyMagdeburgGermany
| | - Theresa König
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Irina Schaefer
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Birgit Schwanke
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Sergei Klykov
- Emmy‐Noether Group “Neuronal Protein Transport”Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Melanie Richter
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Dennis Eggert
- Max Planck Institute for the Structure and Dynamics of MatterHamburgGermany
- Heinrich Pette Institute—Leibniz Institute for Experimental VirologyHamburgGermany
| | - Sabine Windhorst
- Department of Biochemistry and Signal TransductionUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Carlos G Dotti
- Centro de Biología Molecular “Severo Ochoa”CSIC‐UAMMadridSpain
| | - Michael R Kreutz
- RG NeuroplasticityLeibniz Institute for NeurobiologyMagdeburgGermany
- Leibniz Guest Group “Dendritic Organelles and Synaptic Function”Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Marina Mikhaylova
- Emmy‐Noether Group “Neuronal Protein Transport”Center for Molecular Neurobiology (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Froylan Calderon de Anda
- RG Neuronal DevelopmentCenter for Molecular Neurobiology Hamburg (ZMNH)University Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
100
|
Aslam Y, Williamson J, Romashova V, Elder E, Krishna B, Wills M, Lehner P, Sinclair J, Poole E. Human Cytomegalovirus Upregulates Expression of HCLS1 Resulting in Increased Cell Motility and Transendothelial Migration during Latency. iScience 2019; 20:60-72. [PMID: 31569051 PMCID: PMC6817630 DOI: 10.1016/j.isci.2019.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/06/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus establishes a lifelong, latent infection in the human host and can cause significant morbidity and mortality, particularly, in immunocompromised individuals. One established site of HCMV latency and reactivation is in cells of the myeloid lineage. In undifferentiated myeloid cells, such as CD14+ monocytes, virus is maintained latently. We have recently reported an analysis of the total proteome of latently infected CD14+ monocytes, which identified an increase in hematopoietic lineage cell-specific protein (HCLS1). Here we show that this latency-associated upregulation of HCLS1 occurs in a US28-dependent manner and stabilizes actin structure in latently infected cells. This results in their increased motility and ability to transit endothelial cell layers. Thus, latency-associated increases in monocyte motility could aid dissemination of the latently infected reservoir, and targeting this increased motility could have an impact on the ability of latently infected monocytes to distribute to tissue sites of reactivation.
Collapse
Affiliation(s)
- Yusuf Aslam
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - James Williamson
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Elizabeth Elder
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Mark Wills
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul Lehner
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Cambridge University, Department of Medicine, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|