51
|
Wabnitz GH, Honus S, Habicht J, Orlik C, Kirchgessner H, Samstag Y. LFA-1 cluster formation in T-cells depends on L-plastin phosphorylation regulated by P90 RSK and PP2A. Cell Mol Life Sci 2021; 78:3543-3564. [PMID: 33449151 PMCID: PMC11072591 DOI: 10.1007/s00018-020-03744-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 10/25/2022]
Abstract
The integrin LFA-1 is crucial for T-cell/ APC interactions and sensitive recognition of antigens. Precise nanoscale organization and valency regulation of LFA-1 are mandatory for an appropriate function of the immune system. While the inside-out signals regulating the LFA-1 affinity are well described, the molecular mechanisms controlling LFA-1 avidity are still not fully understood. Here, we show that activation of the actin-bundling protein L-plastin (LPL) through phosphorylation at serine-5 enables the formation of clusters containing LFA-1 in high-affinity conformation. Phosphorylation of LPL is induced by an nPKC-MEK-p90RSK pathway and counter-regulated by the serine-threonine phosphatase PP2A. Interestingly, recruitment of LFA-1 into the T-cell/APC contact zone is not affected by LPL phosphorylation. Instead, for this process, activation of the actin-remodeling protein cofilin through dephosphorylation is essential. Together, this study reveals a dichotomic spatial regulation of LFA-1 clustering and microscale movement in T-cells by two different actin-binding proteins, LPL and cofilin.
Collapse
Affiliation(s)
- Guido H Wabnitz
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| | - Sibylle Honus
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Jüri Habicht
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Christian Orlik
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Henning Kirchgessner
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany
| |
Collapse
|
52
|
Cancer type-specific alterations in actin genes: Worth a closer look? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 360:133-184. [PMID: 33962749 DOI: 10.1016/bs.ircmb.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Actins form a strongly conserved family of proteins that are central to the functioning of the actin cytoskeleton partaking in natural processes such as cell division, adhesion, contraction and migration. These processes, however, also occur during the various phases of cancer progression. Yet, surprisingly, alterations in the six human actin genes in cancer studies have received little attention and the focus was mostly on deregulated expression levels of actins and even more so of actin-binding or regulatory proteins. Starting from the early mutation work in the 1980s, we propose based on reviewing literature and data from patient cancer genomes that alterations in actin genes are different in distinct cancer subtypes, suggesting some specificity. These actin gene alterations include (missense) mutations, gene fusions and copy number alterations (deletions and amplifications) and we illustrate their occurrence for a limited number of examples including actin mutations in lymphoid cancers and nonmelanoma skin cancer and actin gene copy number alterations for breast, prostate and liver cancers. A challenge in the future will be to further sort out the specificity per actin gene, alteration type and cancer subtype. Even more challenging is (experimentally) distinguishing between cause and consequence: which alterations are passengers and which are involved in tumor progression of particular cancer subtypes?
Collapse
|
53
|
Sharifi M, Bai Q, Babadaei MMN, Chowdhury F, Hassan M, Taghizadeh A, Derakhshankhah H, Khan S, Hasan A, Falahati M. 3D bioprinting of engineered breast cancer constructs for personalized and targeted cancer therapy. J Control Release 2021; 333:91-106. [PMID: 33774120 DOI: 10.1016/j.jconrel.2021.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
The bioprinting technique with specialized tissue production allows the study of biological, physiological, and behavioral changes of cancerous and non-cancerous tissues in response to pharmacological compounds in personalized medicine. To this end, to evaluate the efficacy of anticancer drugs before entering the clinical setting, tissue engineered 3D scaffolds containing breast cancer and derived from the especially patient, similar to the original tissue architecture, can potentially be used. Despite recent advances in the manufacturing of 3D bioprinted breast cancer tissue (BCT), many studies still suffer from reproducibility primarily because of the uncertainty of the materials used in the scaffolds and lack of printing methods. In this review, we present an overview of the breast cancer environment to optimize personalized treatment by examining and identifying the physiological and biological factors that mimic BCT. We also surveyed the materials and techniques related to 3D bioprinting, i.e, 3D bioprinting systems, current strategies for fabrication of 3D bioprinting tissues, cell adhesion and migration in 3D bioprinted BCT, and 3D bioprinted breast cancer metastasis models. Finally, we emphasized on the prospective future applications of 3D bioprinted cancer models for rapid and accurate drug screening in breast cancer.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farhan Chowdhury
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Mahbub Hassan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia
| | - Akbar Taghizadeh
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Suliman Khan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
54
|
Molè MA, Weberling A, Fässler R, Campbell A, Fishel S, Zernicka-Goetz M. Integrin β1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition. Cell Rep 2021; 34:108834. [PMID: 33691117 PMCID: PMC7966855 DOI: 10.1016/j.celrep.2021.108834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
At implantation, the embryo establishes contacts with the maternal endometrium. This stage is associated with a high incidence of preclinical pregnancy losses. While the maternal factors underlying uterine receptivity have been investigated, the signals required by the embryo for successful peri-implantation development remain elusive. To explore these, we studied integrin β1 signaling, as embryos deficient for this receptor degenerate at implantation. We demonstrate that the coordinated action of pro-survival signals and localized actomyosin suppression via integrin β1 permits the development of the embryo beyond implantation. Failure of either process leads to developmental arrest and apoptosis. Pharmacological stimulation through fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), coupled with ROCK-mediated actomyosin inhibition, rescues the deficiency of integrin β1, promoting progression to post-implantation stages. Mutual exclusion between integrin β1 and actomyosin seems to be conserved in the human embryo, suggesting the possibility that these mechanisms could also underlie the transition of the human epiblast from pre- to post-implantation.
Collapse
Affiliation(s)
- Matteo Amitaba Molè
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Antonia Weberling
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Alison Campbell
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, UK
| | - Simon Fishel
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham NG8 6PZ, UK; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Plasticity and Self-Organization Group, Division of Biology and Biological Engineering, California Institute of Technology (Caltech), Pasadena, CA 91125, USA.
| |
Collapse
|
55
|
Arumugam A, Subramani R, Lakshmanaswamy R. Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:596-606. [PMID: 33768141 PMCID: PMC7972938 DOI: 10.1016/j.omto.2021.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 02/18/2021] [Indexed: 01/04/2023]
Abstract
Triple-negative breast cancers (TNBCs) are aggressive cancers, which currently do not have effective treatment options. Migration and establishment of metastatic colonies require dynamic cytoskeletal modifications characterized by polymerization and depolymerization of actin. Studies have demonstrated a direct molecular link between the integrin-focal adhesion kinase (FAK) pathway and cytoskeletal modifications. Nimbolide, a major bioactive compound present in neem leaves, shows promising anti-cancer effect on various cancers. In this study, we have demonstrated the growth and metastasis inhibitory potential of nimbolide on TNBC cells. Nimbolide inhibited cell proliferation, migratory, and invasive abilities of TNBC cells and also changed the shape of MDA-MB-231 cells, which is correlated with cytoskeletal changes including actin depolymerization. Furthermore, analysis revealed that integrins αV and β3, ILK, FAK, and PAK levels were downregulated by nimbolide. Even in cells where Rac1/Cdc42 was constitutively activated, nimbolide inhibited the formation of filopodial structures. Immunofluorescence analysis of phosphorylated p21 activated kinase (pPAK) showed reduced expression in nimbolide-treated cells. Nimbolide significantly reduced the metastatic colony formation in lung, liver, and brain of athymic nude mice. In conclusion, our data demonstrate that nimbolide inhibits TNBC by altering the integrin and FAK signaling pathway.
Collapse
Affiliation(s)
- Arunkumar Arumugam
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
56
|
Malek N, Michrowska A, Mazurkiewicz E, Mrówczyńska E, Mackiewicz P, Mazur AJ. The origin of the expressed retrotransposed gene ACTBL2 and its influence on human melanoma cells' motility and focal adhesion formation. Sci Rep 2021; 11:3329. [PMID: 33558623 PMCID: PMC7870945 DOI: 10.1038/s41598-021-82074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
We have recently found that β-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Michrowska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
57
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
58
|
Cohesive cancer invasion of the biophysical barrier of smooth muscle. Cancer Metastasis Rev 2021; 40:205-219. [PMID: 33398621 DOI: 10.1007/s10555-020-09950-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023]
Abstract
Smooth muscle is found around organs in the digestive, respiratory, and reproductive tracts. Cancers arising in the bladder, prostate, stomach, colon, and other sites progress from low-risk disease to high-risk, lethal metastatic disease characterized by tumor invasion into, within, and through the biophysical barrier of smooth muscle. We consider here the unique biophysical properties of smooth muscle and how cohesive clusters of tumor use mechanosensing cell-cell and cell-ECM (extracellular matrix) adhesion receptors to move through a structured muscle and withstand the biophysical forces to reach distant sites. Understanding integrated mechanosensing features within tumor cluster and smooth muscle and potential triggers within adjacent adipose tissue, such as the unique damage-associated molecular pattern protein (DAMP), eNAMPT (extracellular nicotinamide phosphoribosyltransferase), or visfatin, offers an opportunity to prevent the first steps of invasion and metastasis through the structured muscle.
Collapse
|
59
|
Abstract
The extracellular matrix (ECM) is the noncellular compartment of living organisms and is formed of a complex network of cross-linked proteins, which is collectively known as the matrisome. Apart from providing the structure for an organism, cells interact and thereby communicate with the ECM. Cells interact with their surrounding ECM using cell-surface receptors, such as integrins. Upon integrin engagement with the ECM, cytoskeletal proteins are recruited to integrins and form a molecular protein complex known as the integrin adhesome. Global descriptions of the matrisome and integrin adhesome have been proposed using in silico bioinformatics approaches, as well as through biochemical enrichment of matrisome and adhesome fractions coupled with mass spectrometry-based proteomic analyses, providing inventories of their compositions in different contexts. Here, methods are described for the computational downstream analyses of matrisome and adhesome mass spectrometry datasets that are accessible to wet lab biologists, which include comparing datasets to in silico descriptions, generating interaction networks and performing functional ontological analyses.
Collapse
|
60
|
Karagöz Z, Rijns L, Dankers PY, van Griensven M, Carlier A. Towards understanding the messengers of extracellular space: Computational models of outside-in integrin reaction networks. Comput Struct Biotechnol J 2020; 19:303-314. [PMID: 33425258 PMCID: PMC7779863 DOI: 10.1016/j.csbj.2020.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
The interactions between cells and their extracellular matrix (ECM) are critically important for homeostatic control of cell growth, proliferation, differentiation and apoptosis. Transmembrane integrin molecules facilitate the communication between ECM and the cell. Since the characterization of integrins in the late 1980s, there has been great advancement in understanding the function of integrins at different subcellular levels. However, the versatility in molecular pathways integrins are involved in, the high diversity in their interaction partners both outside and inside the cell as well as on the cell membrane and the short lifetime of events happening at the cell-ECM interface make it difficult to elucidate all the details regarding integrin function experimentally. To overcome the experimental challenges and advance the understanding of integrin biology, computational modeling tools have been used extensively. In this review, we summarize the computational models of integrin signaling while we explain the function of integrins at three main subcellular levels (outside the cell, cell membrane, cytosol). We also discuss how these computational modeling efforts can be helpful in other disciplines such as biomaterial design. As such, this review is a didactic modeling summary for biomaterial researchers interested in complementing their experimental work with computational tools or for seasoned computational scientists that would like to advance current in silico integrin models.
Collapse
Affiliation(s)
- Zeynep Karagöz
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Laura Rijns
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Patricia Y.W. Dankers
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, the Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| |
Collapse
|
61
|
Involvement of the FAK Network in Pathologies Related to Altered Mechanotransduction. Int J Mol Sci 2020; 21:ijms21249426. [PMID: 33322030 PMCID: PMC7764271 DOI: 10.3390/ijms21249426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
Mechanotransduction is a physiological process in which external mechanical stimulations are perceived, interpreted, and translated by cells into biochemical signals. Mechanical stimulations exerted by extracellular matrix stiffness and cell–cell contacts are continuously applied to living cells, thus representing a key pivotal trigger for cell homeostasis, survival, and function, as well as an essential factor for proper organ development and metabolism. Indeed, a deregulation of the mechanotransduction process consequent to gene mutations or altered functions of proteins involved in perceiving cellular and extracellular mechanics can lead to a broad range of diseases, from muscular dystrophies and cardiomyopathies to cancer development and metastatization. Here, we recapitulate the involvement of focal adhesion kinase (FAK) in the cellular conditions deriving from altered mechanotransduction processes.
Collapse
|
62
|
Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell dissemination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 360:65-98. [PMID: 33962751 PMCID: PMC8246644 DOI: 10.1016/bs.ircmb.2020.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The actin cytoskeleton is a dynamic network that regulates cellular behavior from development to disease. By rearranging the actin cytoskeleton, cells are capable of migrating and invading during developmental processes; however, many of these cellular properties are hijacked by cancer cells to escape primary tumors and disseminate to distant organs in the body. In this review article, we highlight recent work describing how cancer cells regulate the actin cytoskeleton to achieve efficient invasion and metastatic colonization. We also review new imaging technologies that are capable of revealing the complex architecture and regulation of the actin cytoskeleton during motility and invasion of tumor cells.
Collapse
Affiliation(s)
- Chandrani Mondal
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie S Di Martino
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
63
|
Boujemaa-Paterski R, Martins B, Eibauer M, Beales CT, Geiger B, Medalia O. Talin-activated vinculin interacts with branched actin networks to initiate bundles. eLife 2020; 9:e53990. [PMID: 33185186 PMCID: PMC7682986 DOI: 10.7554/elife.53990] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Vinculin plays a fundamental role in integrin-mediated cell adhesion. Activated by talin, it interacts with diverse adhesome components, enabling mechanical coupling between the actin cytoskeleton and the extracellular matrix. Here we studied the interactions of activated full-length vinculin with actin and the way it regulates the organization and dynamics of the Arp2/3 complex-mediated branched actin network. Through a combination of surface patterning and light microscopy experiments we show that vinculin can bundle dendritic actin networks through rapid binding and filament crosslinking. We show that vinculin promotes stable but flexible actin bundles having a mixed-polarity organization, as confirmed by cryo-electron tomography. Adhesion-like synthetic design of vinculin activation by surface-bound talin revealed that clustered vinculin can initiate and immobilize bundles from mobile Arp2/3-branched networks. Our results provide a molecular basis for coordinate actin bundle formation at nascent adhesions.
Collapse
Affiliation(s)
- Rajaa Boujemaa-Paterski
- Department of Biochemistry, University of ZurichZurichSwitzerland
- Université Grenoble AlpesGrenobleFrance
| | - Bruno Martins
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Charlie T Beales
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of ScienceRehovotIsrael
| | - Ohad Medalia
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
64
|
Goodwin K, Nelson CM. Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics. Curr Top Dev Biol 2020; 143:239-280. [PMID: 33820623 DOI: 10.1016/bs.ctdb.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) and related technologies to identify cell types and measure gene expression in space, in time, and within lineages have multiplied rapidly in recent years. As these techniques proliferate, we are seeing an increase in their application to the study of developing tissues. Here, we focus on single-cell investigations of branching morphogenesis. Branched organs are highly complex but typically develop recursively, such that a given developmental stage theoretically contains the entire spectrum of cell identities from progenitor to terminally differentiated. Therefore, branched organs are a highly attractive system for study by scRNA-seq. First, we provide an update on advances in the field of scRNA-seq analysis, focusing on spatial transcriptomics, computational reconstruction of differentiation trajectories, and integration of scRNA-seq with lineage tracing. In addition, we discuss the possibilities and limitations for applying these techniques to studying branched organs. We then discuss exciting advances made using scRNA-seq in the study of branching morphogenesis and differentiation in mammalian organs, with emphasis on the lung, kidney, and mammary gland. We propose ways that scRNA-seq could be used to address outstanding questions in each organ. Finally, we highlight the importance of physical and mechanical signals in branching morphogenesis and speculate about how scRNA-seq and related techniques could be applied to study tissue morphogenesis beyond just differentiation.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
65
|
Cozzitorto C, Mueller L, Ruzittu S, Mah N, Willnow D, Darrigrand JF, Wilson H, Khosravinia D, Mahmoud AA, Risolino M, Selleri L, Spagnoli FM. A Specialized Niche in the Pancreatic Microenvironment Promotes Endocrine Differentiation. Dev Cell 2020; 55:150-162.e6. [PMID: 32857951 PMCID: PMC7720791 DOI: 10.1016/j.devcel.2020.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
Abstract
The interplay between pancreatic epithelium and the surrounding microenvironment is pivotal for pancreas formation and differentiation as well as adult organ homeostasis. The mesenchyme is the main component of the embryonic pancreatic microenvironment, yet its cellular identity is broadly defined, and whether it comprises functionally distinct cell subsets is not known. Using genetic lineage tracing, transcriptome, and functional studies, we identified mesenchymal populations with different roles during pancreatic development. Moreover, we showed that Pbx transcription factors act within the mouse pancreatic mesenchyme to define a pro-endocrine specialized niche. Pbx directs differentiation of endocrine progenitors into insulin- and glucagon-positive cells through non-cell-autonomous regulation of ECM-integrin interactions and soluble molecules. Next, we measured functional conservation between mouse and human pancreatic mesenchyme by testing identified mesenchymal factors in an iPSC-based differentiation model. Our findings provide insights into how lineage-specific crosstalk between epithelium and neighboring mesenchymal cells underpin the generation of different pancreatic cell types.
Collapse
Affiliation(s)
- Corinna Cozzitorto
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Department of Ophthalmology & Department of Anatomy, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laura Mueller
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Silvia Ruzittu
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Nancy Mah
- Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - David Willnow
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Jean-Francois Darrigrand
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Heather Wilson
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Daniel Khosravinia
- Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Amir-Ala Mahmoud
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Department of Orofacial Sciences & Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, HSW 710, San Francisco, CA 94143, USA
| | - Maurizio Risolino
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Department of Orofacial Sciences & Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, HSW 710, San Francisco, CA 94143, USA
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, Department of Orofacial Sciences & Department of Anatomy, University of California, San Francisco, 513 Parnassus Ave, HSW 710, San Francisco, CA 94143, USA
| | - Francesca M Spagnoli
- Max-Delbrueck Center for Molecular Medicine, Robert-Roessle Strasse 10, Berlin 13125, Germany; Centre for Stem Cell and Regenerative Medicine, King's College London, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
66
|
Revach OY, Grosheva I, Geiger B. Biomechanical regulation of focal adhesion and invadopodia formation. J Cell Sci 2020; 133:133/20/jcs244848. [DOI: 10.1242/jcs.244848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling ‘adhesome’ components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different – often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their ‘adhesive’ and ‘invasive’ functionalities require distinct sources of biomechanical reinforcement.
Collapse
Affiliation(s)
- Or-Yam Revach
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Grosheva
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
67
|
Kell MJ, Ang SF, Pigati L, Halpern A, Fölsch H. Novel function for AP-1B during cell migration. Mol Biol Cell 2020; 31:2475-2493. [PMID: 32816642 PMCID: PMC7851849 DOI: 10.1091/mbc.e20-04-0256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epithelial cell-specific clathrin adaptor protein (AP)-1B has a well-established role in polarized sorting of cargos to the basolateral membrane. Here we show that β1 integrin was dependent on AP-1B and its coadaptor, autosomal recessive hypercholesterolemia protein (ARH), for sorting to the basolateral membrane. We further demonstrate an unprecedented role for AP-1B at the basal plasma membrane during collective cell migration of epithelial sheets. During wound healing, expression of AP-1B (and ARH in AP–1B-positive cells) slowed epithelial-cell migration. We show that AP-1B colocalized with β1 integrin in focal adhesions during cell migration using confocal microscopy and total internal reflection fluorescence microscopy on fixed specimens. Further, AP-1B labeling in cell protrusions was distinct from labeling for the endocytic adaptor complex AP-2. Using stochastic optical reconstruction microscopy we identified numerous AP–1B-coated structures at or close to the basal plasma membrane in cell protrusions. In addition, immunoelectron microscopy showed AP-1B in coated pits and vesicles at the plasma membrane during cell migration. Lastly, quantitative real-time reverse transcription PCR analysis of human epithelial-derived cell lines revealed a loss of AP-1B expression in highly migratory metastatic cancer cells suggesting that AP-1B’s novel role at the basal plasma membrane during cell migration might be an anticancer mechanism.
Collapse
Affiliation(s)
- Margaret Johnson Kell
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Su Fen Ang
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Lucy Pigati
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Abby Halpern
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Heike Fölsch
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
68
|
Te Molder L, Hoekman L, Kreft M, Bleijerveld O, Sonnenberg A. Comparative interactomics analysis reveals potential regulators of α6β4 distribution in keratinocytes. Biol Open 2020; 9:bio.054155. [PMID: 32709696 PMCID: PMC7438003 DOI: 10.1242/bio.054155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The integrin α6β4 and cytoskeletal adaptor plectin are essential components of type I and type II hemidesmosomes (HDs). We recently identified an alternative type II HD adhesion complex that also contains CD151 and the integrin α3β1. Here, we have taken a BioID proximity labeling approach to define the proximity protein environment for α6β4 in keratinocytes. We identified 37 proteins that interacted with both α6 and β4, while 20 and 78 proteins specifically interacted with the α6 and β4 subunits, respectively. Many of the proximity interactors of α6β4 are components of focal adhesions (FAs) and the cortical microtubule stabilizing complex (CMSC). Though the close association of CMSCs with α6β4 in HDs was confirmed by immunofluorescence analysis, CMSCs have no role in the assembly of HDs. Analysis of the β4 interactome in the presence or absence of CD151 revealed that they are strikingly similar; only 11 different interactors were identified. One of these was the integrin α3β1, which interacted with α6β4 more strongly in the presence of CD151 than in its absence. These findings indicate that CD151 does not significantly contribute to the interactome of α6β4, but suggest a role of CD151 in linking α3β1 and α6β4 together in tetraspanin adhesion structures. Summary: Comparative interactomics analysis reveals close proximity of HDs, FAs and CMSCs, and a role of CD151 in linking α3β1 and α6β4 together in an alternative type II HD-like adhesion complex.
Collapse
Affiliation(s)
- Lisa Te Molder
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Maaike Kreft
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Onno Bleijerveld
- Mass Spectrometry/Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
69
|
Huang X, Qu R, Ouyang J, Zhong S, Dai J. An Overview of the Cytoskeleton-Associated Role of PDLIM5. Front Physiol 2020; 11:975. [PMID: 32848888 PMCID: PMC7426503 DOI: 10.3389/fphys.2020.00975] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine represented by stem cell technology has become one of the pillar medical technologies for human disease treatment. Cytoskeleton plays important roles in maintaining cell morphology, bearing external forces, and maintaining the effectiveness of cell internal structure, among which cytoskeleton related proteins are involved in and play an indispensable role in the changes of cytoskeleton. PDLIM5 is a cytoskeleton-related protein that, like other cytoskeletal proteins, acts as a binding protein. PDZ and LIM domain 5 (PDLIM5), also known as ENH (Enigma homolog), is a cytoplasmic protein with a molecular mass of about 63 KDa that consists of a PDZ domain at the N-terminus and three LIM domains at the C-terminus. PDLIM5 binds to the cytoskeleton and membrane proteins through its PDZ domain and interacts with various signaling molecules, including protein kinases and transcription factors, through its LIM domain. As a cytoskeleton-related protein, PDLIM5 plays an important role in regulating cell proliferation, differentiation and cell fate decision in multiple tissues and cell types. In this review, we briefly summarize the state of knowledge on the PDLIM5 gene, structural properties, and molecular functional mechanisms of the PDLIM5 protein, and its role in cells, tissues, and organ systems, and describe the possible underlying molecular signaling pathways. In the last part of this review, we will focus on discussing the limitations of existing research and the future prospects of PDLIM5 research in turn.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
70
|
Samaržija I, Dekanić A, Humphries JD, Paradžik M, Stojanović N, Humphries MJ, Ambriović-Ristov A. Integrin Crosstalk Contributes to the Complexity of Signalling and Unpredictable Cancer Cell Fates. Cancers (Basel) 2020; 12:E1910. [PMID: 32679769 PMCID: PMC7409212 DOI: 10.3390/cancers12071910] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of α and β subunits that control adhesion, proliferation and gene expression. The integrin heterodimer binding to ligand reorganises the cytoskeletal networks and triggers multiple signalling pathways that can cause changes in cell cycle, proliferation, differentiation, survival and motility. In addition, integrins have been identified as targets for many different diseases, including cancer. Integrin crosstalk is a mechanism by which a change in the expression of a certain integrin subunit or the activation of an integrin heterodimer may interfere with the expression and/or activation of other integrin subunit(s) in the very same cell. Here, we review the evidence for integrin crosstalk in a range of cellular systems, with a particular emphasis on cancer. We describe the molecular mechanisms of integrin crosstalk, the effects of cell fate determination, and the contribution of crosstalk to therapeutic outcomes. Our intention is to raise awareness of integrin crosstalk events such that the contribution of the phenomenon can be taken into account when researching the biological or pathophysiological roles of integrins.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Ana Dekanić
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK; (J.D.H.); (M.J.H.)
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.S.); (M.P.); (N.S.)
| |
Collapse
|
71
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
72
|
Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21114076. [PMID: 32517326 PMCID: PMC7312364 DOI: 10.3390/ijms21114076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion.
Collapse
|
73
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
74
|
Extracellular matrix stiffness and Wnt/β-catenin signaling in physiology and disease. Biochem Soc Trans 2020; 48:1187-1198. [DOI: 10.1042/bst20200026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
The Wnt/β-catenin signaling pathway plays fundamental roles during development, stem cell differentiation, and homeostasis, and its abnormal activation can lead to diseases. In recent years, it has become clear that this pathway integrates signals not only from Wnt ligands but also from other proteins and signaling routes. For instance, Wnt/β-catenin signaling involves YAP and TAZ, which are transcription factors with crucial roles in mechanotransduction. On the other hand, Wnt/β-catenin signaling is also modulated by integrins. Therefore, mechanical signals might similarly modulate the Wnt/β-catenin pathway. However, and despite the relevance that mechanosensitive Wnt/β-catenin signaling might have during physiology and diseases such as cancer, the role of mechanical cues on Wnt/β-catenin signaling has received less attention. This review aims to summarize recent evidence regarding the modulation of the Wnt/β-catenin signaling by a specific type of mechanical signal, the stiffness of the extracellular matrix. The review shows that mechanical stiffness can indeed modulate this pathway in several cell types, through differential expression of Wnt ligands, receptors and inhibitors, as well as by modulating β-catenin levels. However, the specific mechanisms are yet to be fully elucidated.
Collapse
|
75
|
Cell matrix adhesion in cell migration. Essays Biochem 2020; 63:535-551. [PMID: 31444228 DOI: 10.1042/ebc20190012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
The ability of cells to migrate is a fundamental physiological process involved in embryonic development, tissue homeostasis, immune surveillance and wound healing. In order for cells to migrate, they must interact with their environment using adhesion receptors, such as integrins, and form specialized adhesion complexes that mediate responses to different extracellular cues. In this review, we discuss the role of integrin adhesion complexes (IACs) in cell migration, highlighting the layers of regulation that are involved, including intracellular signalling cascades, mechanosensing and reciprocal feedback to the extracellular environment. We also discuss the role of IACs in extracellular matrix remodeling and how they impact upon cell migration.
Collapse
|
76
|
P 0-Related Protein Accelerates Human Mesenchymal Stromal Cell Migration by Modulating VLA-5 Interactions with Fibronectin. Cells 2020; 9:cells9051100. [PMID: 32365526 PMCID: PMC7290418 DOI: 10.3390/cells9051100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
P0-related protein (PZR), a Noonan and LEOPARD syndrome target, is a member of the transmembrane Immunoglobulin superfamily. Its cytoplasmic tail contains two immune-receptor tyrosine-based inhibitory motifs (ITIMs), implicated in adhesion-dependent signaling and regulating cell adhesion and motility. PZR promotes cell migration on the extracellular matrix (ECM) molecule, fibronectin, by interacting with SHP-2 (Src homology-2 domain-containing protein tyrosine phosphatase-2), a molecule essential for skeletal development and often mutated in Noonan and LEOPARD syndrome patients sharing overlapping musculoskeletal abnormalities and cardiac defects. To further explore the role of PZR, we assessed the expression of PZR and its ITIM-less isoform, PZRb, in human bone marrow mesenchymal stromal cells (hBM MSC), and its ability to facilitate adhesion to and spreading and migration on various ECM molecules. Furthermore, using siRNA knockdown, confocal microscopy, and immunoprecipitation assays, we assessed PZR and PZRb interactions with β1 integrins. PZR was the predominant isoform in hBM MSC. Migrating hBM MSCs interacted most effectively with fibronectin and required the association of PZR, but not PZRb, with the integrin, VLA-5(α5β1), leading to modulation of focal adhesion kinase phosphorylation and vinculin levels. This raises the possibility that dysregulation of PZR function may modify hBM MSC migratory behavior, potentially contributing to skeletal abnormalities.
Collapse
|
77
|
Malek N, Mrówczyńska E, Michrowska A, Mazurkiewicz E, Pavlyk I, Mazur AJ. Knockout of ACTB and ACTG1 with CRISPR/Cas9(D10A) Technique Shows that Non-Muscle β and γ Actin Are Not Equal in Relation to Human Melanoma Cells' Motility and Focal Adhesion Formation. Int J Mol Sci 2020; 21:ijms21082746. [PMID: 32326615 PMCID: PMC7216121 DOI: 10.3390/ijms21082746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022] Open
Abstract
Non-muscle actins have been studied for many decades; however, the reason for the existence of both isoforms is still unclear. Here we show, for the first time, a successful inactivation of the ACTB (CRISPR clones with inactivated ACTB, CR-ACTB) and ACTG1 (CRISPR clones with inactivated ACTG1, CR-ACTG1) genes in human melanoma cells (A375) via the RNA-guided D10A mutated Cas9 nuclease gene editing [CRISPR/Cas9(D10A)] technique. This approach allowed us to evaluate how melanoma cell motility was impacted by the lack of either β actin coded by ACTB or γ actin coded by ACTG1. First, we observed different distributions of β and γ actin in the cells, and the absence of one actin isoform was compensated for via increased expression of the other isoform. Moreover, we noted that γ actin knockout had more severe consequences on cell migration and invasion than β actin knockout. Next, we observed that the formation rate of bundled stress fibers in CR-ACTG1 cells was increased, but lamellipodial activity in these cells was impaired, compared to controls. Finally, we discovered that the formation rate of focal adhesions (FAs) and, subsequently, FA-dependent signaling were altered in both the CR-ACTB and CR-ACTG1 clones; however, a more detrimental effect was observed for γ actin-deficient cells. Our research shows that both non-muscle actins play distinctive roles in melanoma cells’ FA formation and motility.
Collapse
|
78
|
Microgravity and Cell Adherence. Int J Mol Sci 2020; 21:ijms21062214. [PMID: 32210077 PMCID: PMC7139536 DOI: 10.3390/ijms21062214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
|
79
|
Bergerhausen L, Grosche J, Meißner J, Hecker C, Caliandro MF, Westerhausen C, Kamenac A, Rezaei M, Mörgelin M, Poschmann G, Vestweber D, Hanschmann EM, Eble JA. Extracellular Redox Regulation of α7β Integrin-Mediated Cell Migration Is Signaled via a Dominant Thiol-Switch. Antioxidants (Basel) 2020; 9:antiox9030227. [PMID: 32164274 PMCID: PMC7139957 DOI: 10.3390/antiox9030227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
While adhering to extracellular matrix (ECM) proteins, such as laminin-111, cells temporarily produce hydrogen peroxide at adhesion sites. To study the redox regulation of α7β1 integrin-mediated cell adhesion to laminin-111, a conserved cysteine pair within the α-subunit hinge region was replaced for alanines. The molecular and cellular effects were analyzed by electron and atomic force microscopy, impedance-based migration assays, flow cytometry and live cell imaging. This cysteine pair constitutes a thiol-switch, which redox-dependently governs the equilibrium between an extended and a bent integrin conformation with high and low ligand binding activity, respectively. Hydrogen peroxide oxidizes the cysteines to a disulfide bond, increases ligand binding and promotes cell migration toward laminin-111. Inversely, extracellular thioredoxin-1 reduces the disulfide, thereby decreasing laminin binding. Mutation of this cysteine pair into the non-oxidizable hinge-mutant shows molecular and cellular effects similar to the reduced wild-type integrin, but lacks redox regulation. This proves the existence of a dominant thiol-switch within the α subunit hinge of α7β1 integrin, which is sufficient to implement activity regulation by extracellular redox agents in a redox-regulatory circuit. Our data reveal a novel and physiologically relevant thiol-based regulatory mechanism of integrin-mediated cell-ECM interactions, which employs short-lived hydrogen peroxide and extracellular thioredoxin-1 as signaling mediators.
Collapse
Affiliation(s)
- Lukas Bergerhausen
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christina Hecker
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Michele F. Caliandro
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | - Christoph Westerhausen
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
- Institute of Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Andrej Kamenac
- Biophysics Group, Department of Experimental Physics, Institute of Physics, University of Augsburg, 86159 Augsburg, Germany (A.K.)
| | - Maryam Rezaei
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
| | | | - Gereon Poschmann
- Institute of Molecular Medicine I, Functional Redox Proteomics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Dietmar Vestweber
- Department of Vascular Cell Biology, Max Planck-Institute of Molecular Biomedicine, 48149 Münster, Germany;
| | - Eva-Maria Hanschmann
- Department of Neurology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.H.); (E.-M.H.)
| | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany; (L.B.); (J.G.); (J.M.); (M.F.C.); (M.R.)
- Correspondence: ; Tel.: +49-251-835-5591
| |
Collapse
|
80
|
Astudillo P. Wnt5a Signaling in Gastric Cancer. Front Cell Dev Biol 2020; 8:110. [PMID: 32195251 PMCID: PMC7064718 DOI: 10.3389/fcell.2020.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Gastric cancer remains an important health challenge, accounting for a significant number of cancer-related deaths worldwide. Therefore, a deeper understanding of the molecular mechanisms involved in gastric cancer establishment and progression is highly desirable. The Wnt pathway plays a fundamental role in development, homeostasis, and disease, and abnormal Wnt signaling is commonly observed in several cancer types. Wnt5a, a ligand that activates the non-canonical branch of the Wnt pathway, can play a role as a tumor suppressor or by promoting cancer cell invasion and migration, although the molecular mechanisms explaining these roles have not been fully elucidated. Wnt5a is increased in gastric cancer samples; however, most gastric cancer cell lines seem to exhibit little expression of this ligand, thus raising the question about the source of this ligand in vivo. This review summarizes available research about Wnt5a expression and signaling in gastric cancer. In gastric cancer, Wnt5a promotes invasion and migration by modulating integrin adhesion turnover. Disheveled, a scaffolding protein with crucial roles in Wnt signaling, mediates the adhesion-related effects of Wnt5a in gastric cancer cells, and several studies provide growing support for a model whereby Disheveled-interacting proteins mediates Wnt5a signaling to modulate cytoskeleton dynamics. However, Wnt5a might induce other effects in gastric cancer cells, such as cell survival and induction of gene expression. On the other hand, the available evidence suggests that Wnt5a might be expressed by cells residing in the tumor microenvironment, where feedback mechanisms sustaining Wnt5a secretion and signaling might be established. This review analyzes the possible functions of Wnt5a in this pathological context and discusses potential links to mechanosensing and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Pablo Astudillo
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
81
|
Paradžik M, Humphries JD, Stojanović N, Nestić D, Majhen D, Dekanić A, Samaržija I, Sedda D, Weber I, Humphries MJ, Ambriović-Ristov A. KANK2 Links αVβ5 Focal Adhesions to Microtubules and Regulates Sensitivity to Microtubule Poisons and Cell Migration. Front Cell Dev Biol 2020; 8:125. [PMID: 32195252 PMCID: PMC7063070 DOI: 10.3389/fcell.2020.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Integrins are heterodimeric glycoproteins that bind cells to extracellular matrix. Upon integrin clustering, multimolecular integrin adhesion complexes (IACs) are formed, creating links to the cell cytoskeleton. We have previously observed decreased cell migration and increased sensitivity to microtubule (MT) poisons, paclitaxel and vincristine, in the melanoma cell line MDA-MB-435S upon transfection with integrin αV-specific siRNA, suggesting a link between adhesion and drug sensitivity. To elucidate the underlying mechanism, we determined αV-dependent changes in IAC composition. Using mass spectrometry (MS)-based proteomics, we analyzed the components of isolated IACs of MDA-MB-435S cells and two MDA-MB-435S-derived integrin αV-specific shRNA-expressing cell clones with decreased expression of integrin αV. MS analysis showed that cells preferentially use integrin αVβ5 for the formation of IACs. The differential analysis between MDA-MB-435S cells and clones with decreased expression of integrin αV identified key components of integrin αVβ5 adhesion complexes as talins 1 and 2, α-actinins 1 and 4, filamins A and B, plectin and vinculin. The data also revealed decreased levels of several components of the cortical microtubule stabilization complex, which recruits MTs to adhesion sites (notably liprins α and β, ELKS, LL5β, MACF1, KANK1, and KANK2), following αV knockdown. KANK2 knockdown in MDA-MB-435S cells mimicked the effect of integrin αV knockdown and resulted in increased sensitivity to MT poisons and decreased migration. Taken together, we conclude that KANK2 is a key molecule linking integrin αVβ5 IACs to MTs, and enabling the actin-MT crosstalk that is important for both sensitivity to MT poisons and cell migration.
Collapse
Affiliation(s)
- Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Nestić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Dekanić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Delphine Sedda
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Igor Weber
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
82
|
Murrey MW, Steer JH, Greenland EL, Proudfoot JM, Joyce DA, Pixley FJ. Adhesion, motility and matrix-degrading gene expression changes in CSF-1-induced mouse macrophage differentiation. J Cell Sci 2020; 133:jcs232405. [PMID: 32005697 DOI: 10.1242/jcs.232405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
Migratory macrophages play critical roles in tissue development, homeostasis and disease, so it is important to understand how their migration machinery is regulated. Whole-transcriptome sequencing revealed that CSF-1-stimulated differentiation of bone marrow-derived precursors into mature macrophages is accompanied by widespread, profound changes in the expression of genes regulating adhesion, actin cytoskeletal remodeling and extracellular matrix degradation. Significantly altered expression of almost 40% of adhesion genes, 60-86% of Rho family GTPases, their regulators and effectors and over 70% of extracellular proteases occurred. The gene expression changes were mirrored by changes in macrophage adhesion associated with increases in motility and matrix-degrading capacity. IL-4 further increased motility and matrix-degrading capacity in mature macrophages, with additional changes in migration machinery gene expression. Finally, siRNA-induced reductions in the expression of the core adhesion proteins paxillin and leupaxin decreased macrophage spreading and the number of adhesions, with distinct effects on adhesion and their distribution, and on matrix degradation. Together, the datasets provide an important resource to increase our understanding of the regulation of migration in macrophages and to develop therapies targeting disease-enhancing macrophages.
Collapse
Affiliation(s)
- Michael W Murrey
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - James H Steer
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Eloise L Greenland
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Julie M Proudfoot
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David A Joyce
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Fiona J Pixley
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
83
|
Liu H, Zhu L, Dudiki T, Gabanic B, Good L, Podrez EA, Cherepanova OA, Qin J, Byzova TV. Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3's Link to the Cytoskeleton. THE JOURNAL OF IMMUNOLOGY 2020; 204:1954-1967. [PMID: 32094207 DOI: 10.4049/jimmunol.1901134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Major myeloid cell functions from adhesion to migration and phagocytosis are mediated by integrin adhesion complexes, also known as adhesome. The presence of a direct integrin binding partner Kindlin-3 is crucial for these functions, and its lack causes severe immunodeficiency in humans. However, how Kindlin-3 is incorporated into the adhesome and how its function is regulated is poorly understood. In this study, using nuclear magnetic resonance spectroscopy, we show that Kindlin-3 directly interacts with paxillin (PXN) and leupaxin (LPXN) via G43/L47 within its F0 domain. Surprisingly, disruption of Kindlin-3-PXN/LPXN interactions in Raw 264.7 macrophages promoted cell spreading and polarization, resulting in upregulation of both general cell motility and directed cell migration, which is in a drastic contrast to the consequences of Kindlin-3 knockout. Moreover, disruption of Kindlin-3-PXN/LPXN binding promoted the transition from mesenchymal to amoeboid mode of movement as well as augmented phagocytosis. Thus, these novel links between Kindlin-3 and key adhesome members PXN/LPXN limit myeloid cell motility and phagocytosis, thereby providing an important immune regulatory mechanism.
Collapse
Affiliation(s)
- Huan Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Liang Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tejasvi Dudiki
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Benjamin Gabanic
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Logan Good
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Olga A Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
84
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
85
|
Lu J, Doyle AD, Shinsato Y, Wang S, Bodendorfer MA, Zheng M, Yamada KM. Basement Membrane Regulates Fibronectin Organization Using Sliding Focal Adhesions Driven by a Contractile Winch. Dev Cell 2020; 52:631-646.e4. [PMID: 32004443 DOI: 10.1016/j.devcel.2020.01.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/28/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023]
Abstract
We have discovered that basement membrane and its major components can induce rapid, strikingly robust fibronectin organization. In this new matrix assembly mechanism, α5β1 integrin-based focal adhesions slide actively on the underlying matrix toward the ventral cell center through the dynamic shortening of myosin IIA-associated actin stress fibers to drive rapid fibronectin fibrillogenesis distal to the adhesion. This mechanism contrasts with classical fibronectin assembly based on stable or fixed-position focal adhesions containing αVβ3 integrins plus α5β1 integrin translocation into proximal fibrillar adhesions. On basement membrane components, these sliding focal adhesions contain standard focal adhesion constituents but completely lack classical αVβ3 integrins. Instead, peripheral α3β1 or α2β1 adhesions mediate initial cell attachment but over time are switched to α5β1 integrin-based sliding focal adhesions to assemble fibronectin matrix. This basement-membrane-triggered mechanism produces rapid fibronectin fibrillogenesis, providing a mechanistic explanation for the well-known widespread accumulation of fibronectin at many organ basement membranes.
Collapse
Affiliation(s)
- Jiaoyang Lu
- School of Medicine, Shandong University, Jinan, Shandong 250012, China; Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Gastroenterology, Qilu Hospital, Jinan, Shandong 250012, China
| | - Andrew D Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshinari Shinsato
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Molly A Bodendorfer
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
86
|
Zheng Y, Leftheris K. Insights into Protein–Ligand Interactions in Integrin Complexes: Advances in Structure Determinations. J Med Chem 2020; 63:5675-5696. [DOI: 10.1021/acs.jmedchem.9b01869] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yajun Zheng
- Pliant Therapeutics, South San Francisco, California 94080, United States
| | - Katerina Leftheris
- Pliant Therapeutics, South San Francisco, California 94080, United States
| |
Collapse
|
87
|
|
88
|
Schulte C. Cluster-assembled nanostructured materials for cell biology. CLUSTER BEAM DEPOSITION OF FUNCTIONAL NANOMATERIALS AND DEVICES 2020. [DOI: 10.1016/b978-0-08-102515-4.00010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
89
|
Naba A, Ricard-Blum S. The Extracellular Matrix Goes -Omics: Resources and Tools. EXTRACELLULAR MATRIX OMICS 2020. [DOI: 10.1007/978-3-030-58330-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
90
|
Holliday LS, de Faria LP, Rody WJ. Actin and Actin-Associated Proteins in Extracellular Vesicles Shed by Osteoclasts. Int J Mol Sci 2019; 21:ijms21010158. [PMID: 31881680 PMCID: PMC6981389 DOI: 10.3390/ijms21010158] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are shed by all eukaryotic cells and have emerged as important intercellular regulators. EVs released by osteoclasts were recently identified as important coupling factors in bone remodeling. They are shed as osteoclasts resorb bone and stimulate osteoblasts to form bone to replace the bone resorbed. We reported the proteomic content of osteoclast EVs with data from two-dimensional, high resolution liquid chromatography/mass spectrometry. In this article, we examine in detail the actin and actin-associated proteins found in osteoclast EVs. Like EVs from other cell types, actin and various actin-associated proteins were abundant. These include components of the polymerization machinery, myosin mechanoenzymes, proteins that stabilize or depolymerize microfilaments, and actin-associated proteins that are involved in regulating integrins. The selective incorporation of actin-associated proteins into osteoclast EVs suggests that they have roles in the formation of EVs and/or the regulatory signaling functions of the EVs. Regulating integrins so that they bind extracellular matrix tightly, in order to attach EVs to the extracellular matrix at specific locations in organs and tissues, is one potential active role for actin-associated proteins in EVs.
Collapse
Affiliation(s)
- L. Shannon Holliday
- Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| | - Lorraine Perciliano de Faria
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo 01000, Brazil;
| | - Wellington J. Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University School of Dental Medicine, Stony Brook, NY 11794, USA;
| |
Collapse
|
91
|
Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. JAPANESE DENTAL SCIENCE REVIEW 2019; 56:50-55. [PMID: 31890058 PMCID: PMC6928270 DOI: 10.1016/j.jdsr.2019.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 10/26/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The bioactivity of biomaterials is closely related to cell response in contact with them. However, shortly after their insertion, materials are soon covered with proteins that constitute the biological fluids, and which render the direct surface recognition by cells almost impossible. The control of protein adsorption at the interface is therefore desirable. Extracellular matrix proteins are of particular interest in this sense, due to their well-known ability to modulate cell behavior. Particularly, fibronectin plays a leading role, being present in both healthy and injured tissues undergoing healing and regeneration. The aim of the present work is to give an overview on fibronectin and on its involvement in the control of cell behavior providing evidence of its pivotal role in the control of cell adhesion, spreading, migration, proliferation and differentiation. A deep insight into methods to enrich biomaterials surface with fibronectin will be then discussed, as well as new cues on the possibility to design tailored platforms able to specifically retain fibronectin from the surrounding extracellular milieu.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Klinik, Universität Bern, Freiburgstrasse 7, 3008 Bern, Switzerland
- Corresponding author. Present address: Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Kliniken, Universität Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Beatrice Mozzoni
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Istituto dei Materiali per l’Elettronica e l’Elettromagnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
92
|
Pankov R, Momchilova A, Stefanova N, Yamada KM. Characterization of stitch adhesions: Fibronectin-containing cell-cell contacts formed by fibroblasts. Exp Cell Res 2019; 384:111616. [PMID: 31499058 DOI: 10.1016/j.yexcr.2019.111616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/31/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022]
Abstract
Fibronectin is a multifunctional, extracellular matrix glycoprotein that exists either as an insoluble multimeric fibrillar component of the extracellular matrix or as a soluble monomer. Cells attach to fibronectin through transmembrane integrin receptors and form a variety of cell-matrix contacts. Here we show that primary fibroblasts can use fibronectin to organize a specific cell-cell contact - "stitch adhesions." This contact is formed by short parallel fibronectin fibrils connecting adjacent cells above the level of the focal adhesions that attach the cells to the substrate. Stitch adhesions contain integrin α5β1 but not αVβ3, align with actin filament bundles, and contain talin, tensin, α-actinin, vinculin, paxillin and a phosphorylated form of focal adhesion kinase. This combination of components differs from the described constituents of the known cell adhesions. Stitch adhesions are organized when protein synthesis and secretion are inhibited by cycloheximide and exogenous fibronectin is provided to the cells. The adhesion stitches described here provide an attractive model system for studying fibronectin fibrillogenesis and the mechanisms governing the formation of cellular adhesions.
Collapse
Affiliation(s)
- Roumen Pankov
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tsankov Str, 1164, Sofia, Bulgaria.
| | - Albena Momchilova
- Department of Lipid-Protein Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl 21, 1113, Sofia, Bulgaria
| | - Nadezhda Stefanova
- Department of Cytology, Histology and Embryology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8, Dragan Tsankov Str, 1164, Sofia, Bulgaria
| | - Kenneth M Yamada
- Cell Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
93
|
Mitchell JM, Nichols SA. Diverse cell junctions with unique molecular composition in tissues of a sponge (Porifera). EvoDevo 2019; 10:26. [PMID: 31687123 PMCID: PMC6820919 DOI: 10.1186/s13227-019-0139-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
The integrity and organization of animal tissues depend upon specialized protein complexes that mediate adhesion between cells with each other (cadherin-based adherens junctions), and with the extracellular matrix (integrin-based focal adhesions). Reconstructing how and when these cell junctions evolved is central to understanding early tissue evolution in animals. We examined focal adhesion protein homologs in tissues of the freshwater sponge, Ephydatia muelleri (phylum Porifera; class Demospongiae). Our principal findings are that (1) sponge focal adhesion homologs (integrin, talin, focal adhesion kinase, etc.) co-precipitate as a complex, separate from adherens junction proteins; (2) that actin-based structures resembling focal adhesions form at the cell–substrate interface, and their abundance is dynamically regulated in response to fluid shear; (3) focal adhesion proteins localize to both cell–cell and cell–extracellular matrix adhesions, and; (4) the adherens junction protein β-catenin is co-distributed with focal adhesion proteins at cell–cell junctions everywhere except the choanoderm, and at novel junctions between cells with spicules, and between cells with environmental bacteria. These results clarify the diversity, distribution and molecular composition of cell junctions in tissues of E. muelleri, but raise new questions about their functional properties and ancestry.
Collapse
Affiliation(s)
- Jennyfer M Mitchell
- 1Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave. SGM 203, Denver, CO 80208 USA.,2Present Address: University of Colorado, Anschutz Medical Campus, 12801 E. 17th Ave. RC1S, 11401G, Aurora, CO 80045 USA
| | - Scott A Nichols
- 1Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave. SGM 203, Denver, CO 80208 USA
| |
Collapse
|
94
|
Stubb A, Guzmán C, Närvä E, Aaron J, Chew TL, Saari M, Miihkinen M, Jacquemet G, Ivaska J. Superresolution architecture of cornerstone focal adhesions in human pluripotent stem cells. Nat Commun 2019; 10:4756. [PMID: 31628312 PMCID: PMC6802214 DOI: 10.1038/s41467-019-12611-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
While it is clear that key transcriptional programmes are important for maintaining pluripotency, the requirement for cell adhesion to the extracellular matrix remains poorly defined. Human pluripotent stem cells (hPSCs) form colonies encircled by an actin ring and large stable cornerstone focal adhesions (FA). Using superresolution two-colour interferometric photo-activated localisation microscopy, we examine the three-dimensional architecture of cornerstone adhesions and report vertical lamination of FA proteins with three main structural features distinct from previously studied focal adhesions: 1) integrin β5 and talin are present at high density, at the edges of cornerstone FA, adjacent to a vertical kank-rich protein wall, 2) vinculin localises higher than previously reported, displaying a head-above-tail orientation, and 3) surprisingly, actin and α-actinin are present in two discrete z-layers. Finally, we report that depletion of kanks diminishes FA patterning, and actin organisation within the colony, indicating a role for kanks in hPSC colony architecture.
Collapse
Affiliation(s)
- Aki Stubb
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Camilo Guzmán
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Nanophotonics and Bioimaging Facility, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Elisa Närvä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VI, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VI, 20147, USA
| | - Markku Saari
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Mitro Miihkinen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
- Department of Biochemistry, University of Turku, FIN-20520, Turku, Finland.
| |
Collapse
|
95
|
Alfieri R, Vassalli M, Viti F. Flow-induced mechanotransduction in skeletal cells. Biophys Rev 2019; 11:729-743. [PMID: 31529361 DOI: 10.1007/s12551-019-00596-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Human body is subject to many and variegated mechanical stimuli, actuated in different ranges of force, frequency, and duration. The process through which cells "feel" forces and convert them into biochemical cascades is called mechanotransduction. In this review, the effects of fluid shear stress on bone cells will be presented. After an introduction to present the major players in bone system, we describe the mechanoreceptors in bone tissue that can feel and process fluid flow. In the second part of the review, we present an overview of the biological processes and biochemical cascades initiated by fluid shear stress in bone cells.
Collapse
Affiliation(s)
- Roberta Alfieri
- Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" - National Research Council (IGM-CNR), Via Abbiategrasso, 207, 27100, Pavia, Italy
| | - Massimo Vassalli
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy
| | - Federica Viti
- Institute of Biophysics - National Research Council (IBF-CNR), Via De Marini, 6, 16149, Genoa, Italy.
| |
Collapse
|
96
|
Asaro RJ, Lin K, Zhu Q. Mechanosensitivity Occurs along the Adhesome's Force Train and Affects Traction Stress. Biophys J 2019; 117:1599-1614. [PMID: 31604520 DOI: 10.1016/j.bpj.2019.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, we consider the process of force development along the adhesome within cell focal adhesions. Our model adhesome consists of the actin cytoskeleton-vinculin-talin-integrin-ligand-extracellular matrix-substrate force train. We specifically consider the effects of substrate stiffness on the force levels expected along the train and on the traction stresses they create at the substrate. We find that significant effects of substrate stiffness are manifest within each constitutive component of the force train and on the density and distribution of integrin/ligand anchorage points with the substrate. By following each component of the force train, we are able to delineate specific gaps in the quantitative descriptions of bond survival that must be addressed so that improved quantitative forecasts become possible. Our analysis provides, however, a rational description for the various levels of traction stresses that have been reported and of the effect of substrate stiffness. Our approach has the advantage of being quite clear as to how each constituent contributes to the net development of force and traction stress. We demonstrate that to provide truly quantitative forecasts for traction stress, a far more detailed description of integrin/ligand density and distribution is required. Although integrin density is already a well-recognized important feature of adhesion, our analysis places a finer point on it in the manner of how we evaluate the magnitude of traction stress. We provide mechanistic insight into how understanding of this vital element of the adhesion process may proceed by addressing mechanistic causes of integrin clustering that may lead to patterning.
Collapse
Affiliation(s)
- Robert J Asaro
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California.
| | - Kuanpo Lin
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| | - Qiang Zhu
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| |
Collapse
|
97
|
van Gaal RC, Buskermolen ABC, Ippel BD, Fransen PPKH, Zaccaria S, Bouten CVC, Dankers PYW. Functional peptide presentation on different hydrogen bonding biomaterials using supramolecular additives. Biomaterials 2019; 224:119466. [PMID: 31542516 DOI: 10.1016/j.biomaterials.2019.119466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 01/20/2023]
Abstract
Supramolecular biomaterials based on hydrogen bonding units can be conveniently functionalized in a mix-and-match approach using supramolecular additives. The presentation of bioactive additives has been sparsely investigated in supramolecular-based elastomeric biomaterials. Here it was investigated how cell adhesive peptides are presented and affect the surface in supramolecular biomaterials based either on ureido-pyrimidinone (UPy) or bisurea (BU) moieties. Polycaprolactone modified with UPy or BU moieties served as the base material. RGD or cyclic (c)RGD were conjugated to complementary supramolecular motifs, and were mixed with the corresponding base materials as supramolecular additives. Biomaterial surface morphology changed upon bioactivation, resulting in the formation of random aggregates on UPy-based materials, and fibrous aggregates on BU-materials. Moreover, peptide type affected aggregation morphology, in which RGD led to larger cluster formation than cRGD. Increased cRGD concentrations led to reduced focal adhesion size and cell migration velocity, and increased focal adhesion numbers in both systems, yet most prominent on functionalized BU-biomaterials. In conclusion, both systems exhibited distinct peptide presenting properties, of which the BU-system most strongly affected cellular adhesive behavior on the biomaterial. This research provided deeper insights in the differences between supramolecular elastomeric platforms, and the level of peptide introduction for biomaterial applications.
Collapse
Affiliation(s)
- Ronald C van Gaal
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Antonetta B C Buskermolen
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Bastiaan D Ippel
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Peter-Paul K H Fransen
- Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Sabrina Zaccaria
- Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Carlijn V C Bouten
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Patricia Y W Dankers
- Laboratory for Cell and Tissue Engineering, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, PO Box 513, 5600, MB, Eindhoven, the Netherlands; Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands.
| |
Collapse
|
98
|
Jayadev R, Chi Q, Keeley DP, Hastie EL, Kelley LC, Sherwood DR. α-Integrins dictate distinct modes of type IV collagen recruitment to basement membranes. J Cell Biol 2019; 218:3098-3116. [PMID: 31387941 PMCID: PMC6719451 DOI: 10.1083/jcb.201903124] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/16/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023] Open
Abstract
Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/βPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/βPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Daniel P Keeley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Eric L Hastie
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Durham, NC
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, NC
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC
| |
Collapse
|
99
|
Kothari P, Johnson C, Sandone C, Iglesias PA, Robinson DN. How the mechanobiome drives cell behavior, viewed through the lens of control theory. J Cell Sci 2019; 132:jcs234476. [PMID: 31477578 PMCID: PMC6771144 DOI: 10.1242/jcs.234476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cells have evolved sophisticated systems that integrate internal and external inputs to coordinate cell shape changes during processes, such as development, cell identity determination, and cell and tissue homeostasis. Cellular shape-change events are driven by the mechanobiome, the network of macromolecules that allows cells to generate, sense and respond to externally imposed and internally generated forces. Together, these components build the cellular contractility network, which is governed by a control system. Proteins, such as non-muscle myosin II, function as both sensors and actuators, which then link to scaffolding proteins, transcription factors and metabolic proteins to create feedback loops that generate the foundational mechanical properties of the cell and modulate cellular behaviors. In this Review, we highlight proteins that establish and maintain the setpoint, or baseline, for the control system and explore the feedback loops that integrate different cellular processes with cell mechanics. Uncovering the genetic, biophysical and biochemical interactions between these molecular components allows us to apply concepts from control theory to provide a systems-level understanding of cellular processes. Importantly, the actomyosin network has emerged as more than simply a 'downstream' effector of linear signaling pathways. Instead, it is also a significant driver of cellular processes traditionally considered to be 'upstream'.
Collapse
Affiliation(s)
- Priyanka Kothari
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cecilia Johnson
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Corinne Sandone
- Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, M 21205, USA
| | - Pablo A Iglesias
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Douglas N Robinson
- Departments of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
100
|
Cross-Talk between Hemidesmosomes and Focal Adhesions: A Primer for Wound Healing, Blistering Skin Disease, and Skin Aging. J Invest Dermatol 2019; 139:1854-1856. [DOI: 10.1016/j.jid.2019.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 01/17/2023]
|