51
|
Wang Z, Ishihara Y, Ishikawa T, Hoshijima M, Odagaki N, Ei Hsu Hlaing E, Kamioka H. Screening of key candidate genes and pathways for osteocytes involved in the differential response to different types of mechanical stimulation using a bioinformatics analysis. J Bone Miner Metab 2019; 37:614-626. [PMID: 30413886 DOI: 10.1007/s00774-018-0963-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/25/2018] [Indexed: 12/16/2022]
Abstract
This study aimed to predict the key genes and pathways that are activated when different types of mechanical loading are applied to osteocytes. mRNA expression datasets (series number of GSE62128 and GSE42874) were obtained from Gene Expression Omnibus database (GEO). High gravity-treated osteocytic MLO-Y4 cell-line samples from GSE62128 (Set1), and fluid flow-treated MLO-Y4 samples from GSE42874 (Set2) were employed. After identifying the differentially expressed genes (DEGs), functional enrichment was performed. The common DEGs between Set1 and Set2 were considered as key DEGs, then a protein-protein interaction (PPI) network was constructed using the minimal nodes from all of the DEGs in Set1 and Set2, which linked most of the key DEGs. Several open source software programs were employed to process and analyze the original data. The bioinformatic results and the biological meaning were validated by in vitro experiments. High gravity and fluid flow induced opposite expression trends in the key DEGs. The hypoxia-related biological process and signaling pathway were the common functional enrichment terms among the DEGs from Set1, Set2 and the PPI network. The expression of almost all the key DEGs (Pdk1, Ccng2, Eno2, Egln1, Higd1a, Slc5a3 and Mxi1) were mechano-sensitive. Eno2 was identified as the hub gene in the PPI network. Eno2 knockdown results in expression changes of some other key DEGs (Pdk1, Mxi1 and Higd1a). Our findings indicated that the hypoxia response might have an important role in the differential responses of osteocytes to the different types of mechanical force.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan
| | | | - Takanori Ishikawa
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Mitsuhiro Hoshijima
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan
| | - Naoya Odagaki
- Department of Orthodontics, Okayama University Hospital, Okayama, Japan
| | - Ei Ei Hsu Hlaing
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
52
|
Singh A, Gupta MK, Mishra SP. Study of correlation of level of expression of Wnt signaling pathway inhibitors sclerostin and dickkopf-1 with disease activity and severity in rheumatoid arthritis patients. Drug Discov Ther 2019; 13:22-27. [PMID: 30880318 DOI: 10.5582/ddt.2019.01011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study was done with aim to assess the serum sclerostin and dickkopf-1 (DKK-1) level in patients of rheumatoid arthritis (RA) and to correlate their level with disease activity and bone mineral density. Fifty patients of RA and equal age and sex matched healthy controls were included in the study. Patients were evaluated clinically and investigated with routine blood tests along with rheumatoid factor (RF), anti-citrullinated protein antibody (anti-CCP2), radiographs and bone mineral density (BMD). Serum sclerostin and DKK-1 levels of both cases and controls was assayed by using enzyme-linked immunosorbent assay (ELISA) assay [RayBio®, Georgia, USA with coefficient of variation percent (CV %), < 10%] and compared with disease activity and bone mineral density. Disease activity was measured by Disease Activity Score 28 (DAS28) along with Modified Health Assessment Questionnaire (MHAQ) score. Mean serum sclerostin and DKK-1 was significantly higher in study group as compared to control group. Serum sclerostin showed significant correlation with disease activity scores (DAS score and MHAQ score), erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) level. Serum sclerostin at level of 394 pg/mL was found to have diagnostic significance with sensitivity of 100% and specificity of 90%. DKK-1 level shows significantly positive correlation with larson score which denotes radiological progression (r value 0.468; p value 0.001). More studies with larger sample size of RA patients are needed for better determination of the role of sclerostin and DKK-1 in RA. Also, the correlation of these and other bone turn over markers will help decipher their role with disease progression in RA patients.
Collapse
Affiliation(s)
- Anup Singh
- Department of Geriatric Medicine, Institute of Medical Sciences, Banaras Hindu University
| | - Manish Kumar Gupta
- Department of General Medicine, Institute of Medical Sciences, Banaras Hindu University
| | | |
Collapse
|
53
|
Wang K, Le L, Chun BM, Tiede-Lewis LM, Shiflett LA, Prideaux M, Campos RS, Veno PA, Xie Y, Dusevich V, Bonewald LF, Dallas SL. A Novel Osteogenic Cell Line That Differentiates Into GFP-Tagged Osteocytes and Forms Mineral With a Bone-Like Lacunocanalicular Structure. J Bone Miner Res 2019; 34:979-995. [PMID: 30882939 PMCID: PMC7350928 DOI: 10.1002/jbmr.3720] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 01/20/2023]
Abstract
Osteocytes, the most abundant cells in bone, were once thought to be inactive, but are now known to have multifunctional roles in bone, including in mechanotransduction, regulation of osteoblast and osteoclast function and phosphate homeostasis. Because osteocytes are embedded in a mineralized matrix and are challenging to study, there is a need for new tools and cell models to understand their biology. We have generated two clonal osteogenic cell lines, OmGFP66 and OmGFP10, by immortalization of primary bone cells from mice expressing a membrane-targeted GFP driven by the Dmp1-promoter. One of these clones, OmGFP66, has unique properties compared with previous osteogenic and osteocyte cell models and forms 3-dimensional mineralized bone-like structures, containing highly dendritic GFP-positive osteocytes, embedded in clearly defined lacunae. Confocal and electron microscopy showed that structurally and morphologically, these bone-like structures resemble bone in vivo, even mimicking the lacunocanalicular ultrastructure and 3D spacing of in vivo osteocytes. In osteogenic conditions, OmGFP66 cells express alkaline phosphatase (ALP), produce a mineralized type I collagen matrix, and constitutively express the early osteocyte marker, E11/gp38. With differentiation they express osteocyte markers, Dmp1, Phex, Mepe, Fgf23, and the mature osteocyte marker, Sost. They also express RankL, Opg, and Hif1α, and show expected osteocyte responses to PTH, including downregulation of Sost, Dmp1, and Opg and upregulation of RankL and E11/gp38. Live cell imaging revealed the dynamic process by which OmGFP66 bone-like structures form, the motile properties of embedding osteocytes and the integration of osteocyte differentiation with mineralization. The OmGFP10 clone showed an osteocyte gene expression profile similar to OmGFP66, but formed less organized bone nodule-like mineral, similar to other osteogenic cell models. Not only do these cell lines provide useful new tools for mechanistic and dynamic studies of osteocyte differentiation, function, and biomineralization, but OmGFP66 cells have the unique property of modeling osteocytes in their natural bone microenvironment. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Kun Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lisa Le
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Brad M Chun
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lora A Shiflett
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Matthew Prideaux
- Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Richard S Campos
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Patricia A Veno
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| | - Lynda F Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, School of Medicine, Indiana University, Indianapolis, IN, USA.,Department of Orthopaedic Surgery, Indiana University, Indianapolis, IN, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri, Kansas City, Kansas City, MO, USA
| |
Collapse
|
54
|
Ehnert S, Aspera-Werz RH, Ruoß M, Dooley S, Hengstler JG, Nadalin S, Relja B, Badke A, Nussler AK. Hepatic Osteodystrophy-Molecular Mechanisms Proposed to Favor Its Development. Int J Mol Sci 2019; 20:2555. [PMID: 31137669 PMCID: PMC6566554 DOI: 10.3390/ijms20102555] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Almost all patients with chronic liver diseases (CLD) show altered bone metabolism. Depending on the etiology, this manifests in a severe osteoporosis in up to 75% of the affected patients. Due to high prevalence, the generic term hepatic osteodystrophy (HOD) evolved, describing altered bone metabolism, decreased bone mineral density, and deterioration of bone structure in patients with CLD. Once developed, HOD is difficult to treat and increases the risk of fragility fractures. Existing fractures affect the quality of life and, more importantly, long-term prognosis of these patients, which presents with increased mortality. Thus, special care is required to support the healing process. However, for early diagnosis (reduce fracture risk) and development of adequate treatment strategies (support healing of existing fractures), it is essential to understand the underlying mechanisms that link disturbed liver function with this bone phenotype. In the present review, we summarize proposed molecular mechanisms favoring the development of HOD and compromising the healing of associated fractures, including alterations in vitamin D metabolism and action, disbalances in transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling with histone deacetylases (HDACs) as secondary regulators, as well as alterations in the receptor activator of nuclear factor kappa B ligand (RANKL)-osteoprotegerin (OPG) system mediated by sclerostin. Based on these mechanisms, we give an overview on the limitations of early diagnosis of HOD with established serum markers.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Romina H Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Marc Ruoß
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Steven Dooley
- Department of Medicine II, Molecular Hepatology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany.
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, 44139 Dortmund, Germany.
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, 72076 Tuebingen, Germany.
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60590 Frankfurt, Germany.
| | - Andreas Badke
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, 72076 Tuebingen, Germany.
| |
Collapse
|
55
|
Faraahi Z, Baud'huin M, Croucher PI, Eaton C, Lawson MA. Sostdc1: A soluble BMP and Wnt antagonist that is induced by the interaction between myeloma cells and osteoblast lineage cells. Bone 2019; 122:82-92. [PMID: 30776499 PMCID: PMC6458996 DOI: 10.1016/j.bone.2019.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
Abstract
Multiple myeloma (MM) is characterised by destructive lytic bone disease, caused by induction of bone resorption and impaired bone formation. Our understanding of the molecular mechanisms responsible for osteoblast suppression, are limited. Using the 5T2MM murine model of MM we have previously shown that suppression of the activity of a known inhibitor of bone formation Dikkopf-1 (Dkk1) prevents the development of lytic bone disease. Here we have demonstrated that another potential inhibitor of bone formation, sclerostin domain containing 1 (Sostdc1) is expressed at low levels in MM and osteoblast lineage cells when these cells are grown separately in cell culture but its expression is significantly induced in both cell types when these cells are in contact. The distribution of Sostdc1 staining in bones infiltrated with 5TGM1 myeloma cells in vivo suggested its presence in both myeloma and osteoblast lineage populations when in close proximity. We have also shown that recombinant Sostdc1 inhibits both bone morphogenic proteins (BMP2 and 7) and Wnt signalling in primary osteoblasts and suppresses differentiation of these cells. Together, these findings suggest that Sostdc1 expression in 5TGM1-infiltrated bones as a result of the interaction between myeloma and osteoblast lineage populations, could result in suppression of osteoblast differentiation.
Collapse
Affiliation(s)
- Z Faraahi
- Institute for Cancer Sciences, University of Manchester, UK
| | | | - P I Croucher
- Bone Biology Division, Garvan Institute of Medical Research, Sydney, Australia
| | - C Eaton
- Department of Oncology and Metabolism, Medical School, University of Sheffield, UK
| | - M A Lawson
- Department of Oncology and Metabolism, Medical School, University of Sheffield, UK.
| |
Collapse
|
56
|
Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone 2019; 122:101-113. [PMID: 30743014 PMCID: PMC6638547 DOI: 10.1016/j.bone.2019.01.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Osteoporosis is an aging-related disease of reduced bone mass that is particularly prevalent in post-menopausal women, but also affects the aged male population and is associated with increased fracture risk. Osteoporosis is the result of an imbalance whereby bone formation by osteoblasts no longer keeps pace with resorption of bone by osteoclasts. Osteocytes are the most abundant cells in bone and, although previously thought to be quiescent, they are now known to be active, multifunctional cells that play a key role in the maintenance of bone mass by regulating both osteoblast and osteoclast activity. They are also thought to regulate bone mass through their role as mechanoresponsive cells in bone that coordinate adaptive responses to mechanical loading. Osteocytes form an extensive interconnected network throughout the mineralized bone matrix and receive their nutrients as well as hormones and signaling factors through the lacunocanalicular system. Several studies have shown that the extent and connectivity of the lacunocanalicular system and osteocyte networks degenerates in aged humans as well as in animal models of aging. It is also known that the bone anabolic response to loading is decreased with aging. This review summarizes recent research on the degenerative changes that occur in osteocytes and their lacunocanalicular system as a result of aging and discusses the implications for skeletal health and homeostasis as well as potential mechanisms that may underlie these degenerative changes. Since osteocytes are such key regulators of skeletal homeostasis, maintaining the health of the osteocyte network would seem critical for maintenance of bone health. Therefore, a more complete understanding of the structure and function of the osteocyte network, its lacunocanalicular system, and the degenerative changes that occur with aging should lead to advances in our understanding of age related bone loss and potentially lead to improved therapies.
Collapse
Affiliation(s)
- LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America.
| |
Collapse
|
57
|
Tang Q, Su YW, Fan CM, Chung R, Hassanshahi M, Peymanfar Y, Xian CJ. Release of CXCL12 From Apoptotic Skeletal Cells Contributes to Bone Growth Defects Following Dexamethasone Therapy in Rats. J Bone Miner Res 2019; 34:310-326. [PMID: 30395366 DOI: 10.1002/jbmr.3597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/31/2018] [Accepted: 09/23/2018] [Indexed: 12/17/2022]
Abstract
Dexamethasone (Dex) is known to cause significant bone growth impairment in childhood. Although previous studies have suggested roles of osteocyte apoptosis in the enhanced osteoclastic recruitment and local bone loss, whether it is so in the growing bone following Dex treatment requires to be established. The current study addressed the potential roles of chemokine CXCL12 in chondroclast/osteoclast recruitment and bone defects following Dex treatment. Significant apoptosis was observed in cultured mature ATDC5 chondrocytes and IDG-SW3 osteocytes after 48 hours of 10-6 M Dex treatment, and CXCL12 was identified to exhibit the most prominent induction in Dex-treated cells. Conditioned medium from the treated chondrocytes/osteocytes enhanced migration of RAW264.7 osteoclast precursor cells, which was significantly inhibited by the presence of the anti-CXCL12 neutralizing antibody. To investigate the roles of the induced CXCL12 in bone defects caused by Dex treatment, young rats were orally gavaged daily with saline or Dex at 1 mg/kg/day for 2 weeks, and received an intraperitoneal injection of anti-CXCL12 antibody or control IgG (1 mg/kg, three times per week). Aside from oxidative stress induction systemically, Dex treatment caused reductions in growth plate thickness, primary spongiosa height, and metaphysis trabecular bone volume, which are associated with induced chondrocyte/osteocyte apoptosis and enhanced chondroclast/osteoclast recruitment and osteoclastogenic differentiation potential. CXCL12 was induced in apoptotic growth plate chondrocytes and metaphyseal bone osteocytes. Anti-CXCL12 antibody supplementation considerably attenuated Dex-induced chondroclast/osteoclast recruitment and loss of growth plate cartilage and trabecular bone. CXCL12 neutralization did not affect bone marrow osteogenic potential, adiposity, and microvasculature. Thus, CXCL12 was identified as a potential molecular linker between Dex-induced skeletal cell apoptosis and chondroclastic/osteoclastic recruitment, as well as growth plate cartilage/bone loss, revealing a therapeutic potential of CXCL12 functional blockade in preventing bone growth defects during/after Dex treatment. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Qian Tang
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yu-Wen Su
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Chia-Ming Fan
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia.,Ningbo No. 6 Hospital, Ningbo, 315040, China
| |
Collapse
|
58
|
Lemaire V, Cox DR. Dynamics of Bone Cell Interactions and Differential Responses to PTH and Antibody-Based Therapies. Bull Math Biol 2018; 81:3575-3622. [PMID: 30460589 DOI: 10.1007/s11538-018-0533-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 11/01/2018] [Indexed: 01/04/2023]
Abstract
We propose a mathematical model describing the dynamics of osteoblasts and osteoclasts in bone remodeling. The goal of this work is to develop an integrated modeling framework for bone remodeling and bone cell signaling dynamics that could be used to explore qualitatively combination treatments for osteoporosis in humans. The model has been calibrated using 57 checks from the literature. Specific global optimization methods based on qualitative objectives have been developed to perform the model calibration. We also added pharmacokinetics representations of three drugs to the model, which are teriparatide (PTH(1-34)), denosumab (a RANKL antibody) and romosozumab (a sclerostin antibody), achieving excellent goodness-of-fit of human clinical data. The model reproduces the paradoxical effects of PTH on the bone mass, where continuous administration of PTH results in bone loss but intermittent administration of PTH leads to bone gain, thus proposing an explanation of this phenomenon. We used the model to simulate different categories of osteoporosis. The main attributes of each disease are qualitatively well captured by the model, for example changes in bone turnover in the disease states. We explored dosing regimens for each disease based on the combination of denosumab and romosozumab, identifying adequate ratios and doses of both drugs for subpopulations of patients in function of categories of osteoporosis and the degree of severity of the disease.
Collapse
Affiliation(s)
- Vincent Lemaire
- Rinat (Pfizer Inc.), 230 East Grand Avenue, South San Francisco, CA, 94080, USA. .,Genentech, 1 DNA Way, MS 463A, South San Francisco, CA, 94080, USA.
| | - David R Cox
- Rinat (Pfizer Inc.), 230 East Grand Avenue, South San Francisco, CA, 94080, USA
| |
Collapse
|
59
|
Yu YH, Wilk K, Waldon PL, Intini G. In vivo identification of Bmp2-correlation networks during fracture healing by means of a limb-specific conditional inactivation of Bmp2. Bone 2018; 116:103-110. [PMID: 30048819 PMCID: PMC6613210 DOI: 10.1016/j.bone.2018.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/09/2018] [Accepted: 07/21/2018] [Indexed: 12/31/2022]
Abstract
Bmp2 is known to play an essential role in the initiation of fracture healing via periosteal activation. Specifically, activation and subsequent differentiation of periosteal progenitor cells requires Bmp2 signaling for activation of the osteo-chondrogenic pathway. Here, we explored the interactive transcriptional gene-gene interplays between Bmp2 and 150 known candidate genes during fracture repair. We constructed the interactive Bmp2 signaling pathways in vivo, by comparing gene expression levels prior and 24 h post femur fracture, in presence (wild type) and in absence of Bmp2 (Bmp2c/c;Prx1::cre limb-specific conditional knockout). Twenty-six differentially expressed genes (pre- vs. post-fracture), which demonstrated high correlations within each experimental condition, were used to construct the co-expression networks. Topological dynamic shifts across different co-expression networks characterized the 26 differentially expressed genes as non-redundant focal linking hubs, redundant connecting hubs, periphery genes, or non-existent. Top-ranked up- or down-regulated genes were identified and discussed. Protein-protein interactions in public databases support our findings. Thus, the co-expression networks from this study can be used for future experimental hypotheses.
Collapse
Affiliation(s)
- Yau-Hua Yu
- Dept. of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Dept. of Periodontology, Tufts University School of Dental Medicine, Boston MA, USA.
| | - Katarzyna Wilk
- Dept. of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - PhiAnh L Waldon
- Dept. of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Giuseppe Intini
- Dept. of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USAa.
| |
Collapse
|
60
|
Kawasaki M, Kawasaki K, Meguro F, Yamada A, Ishikawa R, Porntaveetus T, Blackburn J, Otsuka-Tanaka Y, Saito N, Ota MS, Sharpe PT, Kessler JA, Herz J, Cobourne MT, Maeda T, Ohazama A. Lrp4/Wise regulates palatal rugae development through Turing-type reaction-diffusion mechanisms. PLoS One 2018; 13:e0204126. [PMID: 30235284 PMCID: PMC6147471 DOI: 10.1371/journal.pone.0204126] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Periodic patterning of iterative structures is diverse across the animal kingdom. Clarifying the molecular mechanisms involved in the formation of these structure helps to elucidate the process of organogenesis. Turing-type reaction-diffusion mechanisms have been shown to play a critical role in regulating periodic patterning in organogenesis. Palatal rugae are periodically patterned ridges situated on the hard palate of mammals. We have previously shown that the palatal rugae develop by a Turing-type reaction-diffusion mechanism, which is reliant upon Shh (as an inhibitor) and Fgf (as an activator) signaling for appropriate organization of these structures. The disturbance of Shh and Fgf signaling lead to disorganized palatal rugae. However, the mechanism itself is not fully understood. Here we found that Lrp4 (transmembrane protein) was expressed in a complementary pattern to Wise (a secreted BMP antagonist and Wnt modulator) expression in palatal rugae development, representing Lrp4 expression in developing rugae and Wise in the inter-rugal epithelium. Highly disorganized palatal rugae was observed in both Wise and Lrp4 mutant mice, and these mutants also showed the downregulation of Shh signaling, which was accompanied with upregulation of Fgf signaling. Wise and Lrp4 are thus likely to control palatal rugae development by regulating reaction-diffusion mechanisms through Shh and Fgf signaling. We also found that Bmp and Wnt signaling were partially involved in this mechanism.
Collapse
Affiliation(s)
- Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
- Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryuichi Ishikawa
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Thantrira Porntaveetus
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - James Blackburn
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Yoko Otsuka-Tanaka
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Naoaki Saito
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masato S. Ota
- Laboratory of Food Biological Science, Department of Food and Nutrition, Japan Women’s University, Bunkyo, Japan
| | - Paul T. Sharpe
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - John A. Kessler
- Department of Neurology, Northwestern University, Feinberg Medical School, Chicago, IL, United States of America
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, United States of America
| | - Martyn T. Cobourne
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Centre for Craniofacial Development and Regeneration, Dental Institute, King's College London, Guy's Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
61
|
Moorer MC, Riddle RC. Regulation of Osteoblast Metabolism by Wnt Signaling. Endocrinol Metab (Seoul) 2018; 33:318-330. [PMID: 30112869 PMCID: PMC6145954 DOI: 10.3803/enm.2018.33.3.318] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/01/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Wnt/β-catenin signaling plays a critical role in the achievement of peak bone mass, affecting the commitment of mesenchymal progenitors to the osteoblast lineage and the anabolic capacity of osteoblasts depositing bone matrix. Recent studies suggest that this evolutionarily-conserved, developmental pathway exerts its anabolic effects in part by coordinating osteoblast activity with intermediary metabolism. These findings are compatible with the cloning of the gene encoding the low-density lipoprotein related receptor-5 (LRP5) Wnt co-receptor from a diabetes-susceptibility locus and the now well-established linkage between Wnt signaling and metabolism. In this article, we provide an overview of the role of Wnt signaling in whole-body metabolism and review the literature regarding the impact of Wnt signaling on the osteoblast's utilization of three different energy sources: fatty acids, glucose, and glutamine. Special attention is devoted to the net effect of nutrient utilization and the mode of regulation by Wnt signaling. Mechanistic studies indicate that the utilization of each substrate is governed by a unique mechanism of control with β-catenin-dependent signaling regulating fatty acid β-oxidation, while glucose and glutamine utilization are β-catenin-independent and downstream of mammalian target of rapamycin complex 2 (mTORC2) and mammalian target of rapamycin complex 1 (mTORC1) activation, respectively. The emergence of these data has provided a new context for the mechanisms by which Wnt signaling influences bone development.
Collapse
Affiliation(s)
- Megan C Moorer
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD, USA.
| |
Collapse
|
62
|
Chen D, Xie R, Shu B, Landay AL, Wei C, Reiser J, Spagnoli A, Torquati A, Forsyth CB, Keshavarzian A, Sumner DR. Wnt signaling in bone, kidney, intestine, and adipose tissue and interorgan interaction in aging. Ann N Y Acad Sci 2018; 1442:48-60. [PMID: 30101565 DOI: 10.1111/nyas.13945] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/02/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
Abstract
Over the last two decades, it has become increasingly apparent that Wnt signaling plays a critical role in development and adult tissue homeostasis in multiple organs and in the pathogenesis of many diseases. In particular, a crucial role for Wnt signaling in bone development and bone tissue homeostasis has been well recognized. Numerous genome-wide association studies confirmed the importance of Wnt signaling in controlling bone mass. Moreover, ample evidence suggests that Wnt signaling is essential for kidney, intestine, and adipose tissue development and homeostasis. Recent emerging evidence demonstrates that Wnt signaling may play a fundamental role in the aging process of those organs. New discoveries show that bone is not only the major reservoir for calcium and phosphate storage, but also the largest organ with multiple functions, including mineral and energy metabolism. The interactions among bone, kidney, intestine, and adipose tissue are controlled and regulated by several endocrine signals, including FGF23, klotho, sclerostin, osteocalcin, vitamin D, and leptin. Since the aging process is characterized by structural and functional decline in almost all tissues and organs, understanding the Wnt signaling-related interactions among bone, kidney, intestine, and adipose tissue in aging may shed light on the pathogenesis of age-related diseases.
Collapse
Affiliation(s)
- Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Rong Xie
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Bing Shu
- Spine Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Alan L Landay
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois
| | - Changli Wei
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Anna Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, Illinois
| | - Alfonso Torquati
- Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | | | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - D Rick Sumner
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
63
|
Ferland-McCollough D, Maselli D, Spinetti G, Sambataro M, Sullivan N, Blom A, Madeddu P. MCP-1 Feedback Loop Between Adipocytes and Mesenchymal Stromal Cells Causes Fat Accumulation and Contributes to Hematopoietic Stem Cell Rarefaction in the Bone Marrow of Patients With Diabetes. Diabetes 2018; 67:1380-1394. [PMID: 29703845 DOI: 10.2337/db18-0044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/14/2018] [Indexed: 11/13/2022]
Abstract
Fat accumulates in bone marrow (BM) of patients with diabetes. In this study, we investigated the mechanisms and consequences of this phenomenon. BM mesenchymal stromal cells (BM-MSCs) from patients with type 2 diabetes (T2D) constitutively express adipogenic markers and robustly differentiate into adipocytes (ADs) upon in vitro induction as compared with BM-MSCs from subjects without diabetes. Moreover, BM-ADs from subjects with T2D (T2D BM-ADs) paracrinally stimulate a transcriptional adipogenic program in BM-MSCs. Antagonism of MCP-1, a chemokine pivotally expressed in T2D BM-ADs, prevented the T2D BM-AD secretome from converting BM-MSCs into ADs. Mechanistic validation of human data was next performed in an obese T2D mouse model. Systemic antagonism of MCP-1 improved metabolic control, reduced BM fat, and increased osteocyte density. It also indirectly re-established the abundance of long-term versus short-term hematopoietic stem cells. We reveal a diabetic feedback loop in which 1) BM-MSCs are constitutively inclined to make ADs, and 2) mature BM-ADs, via secreted MCP-1, relentlessly fuel BM-MSC determination into new fat. Pharmacological inhibition of MCP-1 signaling can contrast this vicious cycle, restoring, at least in part, the balance between adipogenesis and hematopoiesis in BM from subjects with T2D.
Collapse
Affiliation(s)
- David Ferland-McCollough
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K.
| | - Davide Maselli
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Gaia Spinetti
- Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica, Milan, Italy
| | - Maria Sambataro
- Department of Specialized Medicines, Endocrine, Metabolic and Nutrition Diseases Unit, Santa Maria of Ca' Foncello Hospital, Treviso, Italy
| | - Niall Sullivan
- Avon Orthopaedic Centre, Southmead Hospital, Bristol, U.K
| | - Ashley Blom
- Muscloskeletal Research Unit, School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - Paolo Madeddu
- Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, U.K.
| |
Collapse
|
64
|
Abstract
PURPOSE OF REVIEW The group of sclerosing bone disorders encompasses a variety of disorders all marked by increased bone mass. In this review, we give an overview of the genetic causes of this heterogeneous group of disorders and briefly touch upon the value of these findings for the development of novel therapeutic agents. RECENT FINDINGS Advances in the next-generation sequencing technologies are accelerating the molecular dissection of the pathogenic mechanisms underlying skeletal dysplasias. Throughout the years, the genetic cause of these disorders has been extensively studied which resulted in the identification of a variety of disease-causing genes and pathways that are involved in bone formation by osteoblasts, bone resorption by osteoclasts, or both processes. Due to this rapidly increasing knowledge, the insights into the regulatory mechanisms of bone metabolism are continuously improving resulting in the identification of novel therapeutic targets for disorders with reduced bone mass and increased bone fragility.
Collapse
Affiliation(s)
- Raphaël De Ridder
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| | - Wim Van Hul
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium.
| |
Collapse
|
65
|
Baron R, Gori F. Targeting WNT signaling in the treatment of osteoporosis. Curr Opin Pharmacol 2018; 40:134-141. [PMID: 29753194 DOI: 10.1016/j.coph.2018.04.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/21/2018] [Indexed: 12/17/2022]
Abstract
Osteoporosis is a widespread chronic disease characterized by low bone density, altered microstructure and bone fragility, leading to low impact fractures in affected individuals. The discovery of a few mutations that cause extremely rare human diseases has identified the WNT signaling pathway as a candidate for therapeutic intervention aimed at increasing bone mass and strength. In particular, inhibition of sclerostin, a WNT antagonist secreted by osteocytes, has proven in clinical trials to be a very efficient osteo-anabolic approach. One year of monthly administration of antibodies to sclerostin rapidly decreases bone resorption and increases bone formation and bone density at all sites, decreasing markedly fracture risk in treated patients. Their effect is however limited in time and cardiovascular adverse events have been reported in one clinical trial.
Collapse
Affiliation(s)
- Roland Baron
- Harvard Medical School, Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard School of Dental Medicine, Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Boston, MA, USA.
| | - Francesca Gori
- Harvard School of Dental Medicine, Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Boston, MA, USA
| |
Collapse
|
66
|
Yogui FC, Momesso GAC, Faverani LP, Polo TOB, Ramalho-Ferreira G, Hassumi JS, Rossi AC, Freire AR, Prado FB, Okamoto R. A SERM increasing the expression of the osteoblastogenesis and mineralization-related proteins and improving quality of bone tissue in an experimental model of osteoporosis. J Appl Oral Sci 2018; 26:e20170329. [PMID: 29742257 PMCID: PMC5933824 DOI: 10.1590/1678-7757-2017-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/09/2017] [Indexed: 01/17/2023] Open
Abstract
Raloxifene is an antiresorptive drug, selective estrogen receptor modulator (SERM) used in the treatment of osteoporosis. Objective To evaluate proteins related to bone repair at the peri-implant bone in a rat model of osteoporosis treated with raloxifene. Material and Methods 72 rats were divided into three groups: SHAM (healthy animals), OVX (ovariectomized animals), and RLX (ovariectomized animals treated with raloxifene). Raloxifene was administered by gavage (1 mg/kg/day). Tibial implantation was performed 30 days after ovariectomy, and animals were euthanized at 14, 42, and 60 days postoperatively. Samples were collected and analyzed by immunohistochemical reactions, molecular analysis, and microtomographic parameters. Results RLX showed intense staining of all investigated proteins at both time points except for RUNX2. These results were similar to SHAM and opposite to OVX, showing mild staining. The PCR gene expression of OC and ALP values for RLX (P<0.05) followed by SHAM and OVX groups. For BSP data, the highest expression was observed in the RLX groups and the lowest expression was observed in the OVX groups (P<0.05). For RUNX2 data, RLX and SHAM groups showed greater values compared to OVX (P<0.05). At 60 days postoperatively, microtomography parameters, related to closed porosity, showed higher values for (Po.N), (Po.V), and (Po) in RLX and SHAM groups, whereas OVX groups showed lower results (P<0.05); (BV) values (P=0.009); regarding total porosity (Po.tot), RLX group had statistically significant lower values than OVX and SHAM groups (P=0.009). Regarding the open porosity (Po.V and Po), the SHAM group presented the highest values, followed by OVX and RLX groups (P<0.05). The Structural Model Index (SMI), RLX group showed a value closer to zero than SHAM group (P<0.05). Conclusions Raloxifene had a positive effect on the expression of osteoblastogenesis/mineralization-related proteins and on micro-CT parameters related to peri-implant bone healing.
Collapse
Affiliation(s)
- Fernanda Costa Yogui
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Gustavo Antonio Correa Momesso
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Leonardo Perez Faverani
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Tarik Ocon Braga Polo
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Gabriel Ramalho-Ferreira
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Jaqueline Suemi Hassumi
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Ana Cláudia Rossi
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Anatomia, Piracicaba, SP, Brasil
| | - Alexandre Rodrigues Freire
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Anatomia, Piracicaba, SP, Brasil
| | - Felippe Bevilacqua Prado
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Departamento de Anatomia, Piracicaba, SP, Brasil
| | - Roberta Okamoto
- Universidade Estadual Paulista (UNESP), Faculdade de Odontologia de Araçatuba, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| |
Collapse
|
67
|
Yorgan T, David JP, Amling M, Schinke T. The high bone mass phenotype of Lrp5-mutant mice is not affected by megakaryocyte depletion. Biochem Biophys Res Commun 2018; 497:659-666. [PMID: 29454962 DOI: 10.1016/j.bbrc.2018.02.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/18/2022]
Abstract
Bone remodeling is a continuously ongoing process mediated by bone-resorbing osteoclasts and bone-forming osteoblasts. One key regulator of bone formation is the putative Wnt co-receptor Lrp5, where activating mutations in the extracellular domain cause increased bone formation in mice and humans. We have previously reported that megakaryocyte numbers are increased the bone marrow of mice carrying a high bone mass mutation (HBM) of Lrp5 (Lrp5G170V). Since megakaryocytes can promote bone formation, we addressed the question, if the bone remodeling phenotype of Lrp5G170V mice is affected by megakaryocyte depletion. For that purpose we took advantage of a mouse model carrying a mutation of the Mpl gene, encoding the thrombopoietin receptor. These mice (Mplhlb219) were crossed with Lrp5G170V mice to generate animals carrying both mutations in a homozygous state. Using μCT, undecalcified histology and bone-specific histomorphometry of 12 weeks old littermates we observed that megakaryocyte number was remarkably decreased in Mplhlb219/Lrp5G170V mice, yet the high bone mass phenotype of Lrp5G170V mice was not significantly affected by the homozygous Mpl mutation. Finally, when we analyzed 24 weeks old wildtype and Mplhlb219 mice we did not observe a statistically significant alteration of bone remodeling in the latter ones. Taken together, our results demonstrate that an increased number of bone marrow megakaryocytes does not contribute to the increased bone formation caused by Lrp5 activation.
Collapse
Affiliation(s)
- Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany.
| |
Collapse
|
68
|
Canalis E. MANAGEMENT OF ENDOCRINE DISEASE: Novel anabolic treatments for osteoporosis. Eur J Endocrinol 2018; 178:R33-R44. [PMID: 29113980 PMCID: PMC5819362 DOI: 10.1530/eje-17-0920] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
Skeletal anabolic agents enhance bone formation, which is determined by the number and function of osteoblasts. Signals that influence the differentiation and function of cells of the osteoblast lineage play a role in the mechanism of action of anabolic agents in the skeleton. Wnts induce the differentiation of mesenchymal stem cells toward osteoblasts, and insulin-like growth factor I (IGF-I) enhances the function of mature osteoblasts. The activity of Wnt and IGF-I is controlled by proteins that bind to the growth factor or to its receptors. Sclerostin is a Wnt antagonist that binds to Wnt co-receptors and prevents Wnt signal activation. Teriparatide, a 1-34 amino terminal fragment of parathyroid hormone (PTH), and abaloparatide, a modified 1-34 amino terminal fragment of PTH-related peptide (PTHrp), induce IGF-I, increase bone mineral density (BMD), reduce the incidence of vertebral and non-vertebral fractures and are approved for the treatment of postmenopausal osteoporosis. Romosozumab, a humanized anti-sclerostin antibody, increases bone formation, decreases bone resorption, increases BMD and reduces the incidence of vertebral fractures. An increased incidence of cardiovascular events has been associated with romosozumab, which is yet to be approved for the treatment of osteoporosis. In conclusion, cell and molecular studies have formed the foundation for the development of new anabolic therapies for osteoporosis with proven efficacy on the incidence of new fractures.
Collapse
Affiliation(s)
- Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
69
|
Langdahl BL, Ralston SH. How Basic Science Discoveries Have Shaped the Treatment of Bone and Mineral Disorders. J Bone Miner Res 2017; 32:2324-2330. [PMID: 29194750 DOI: 10.1002/jbmr.3316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bente L Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Stuart H Ralston
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
70
|
Tiede-Lewis LM, Xie Y, Hulbert MA, Campos R, Dallas MR, Dusevich V, Bonewald LF, Dallas SL. Degeneration of the osteocyte network in the C57BL/6 mouse model of aging. Aging (Albany NY) 2017; 9:2190-2208. [PMID: 29074822 PMCID: PMC5680562 DOI: 10.18632/aging.101308] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/15/2017] [Indexed: 11/25/2022]
Abstract
Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging.
Collapse
Affiliation(s)
- LeAnn M. Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Molly A. Hulbert
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Richard Campos
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Mark R. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Vladimir Dusevich
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Lynda F. Bonewald
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
- Departments of Anatomy and Cell Biology and Orthopaedic Surgery, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Sarah L. Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
71
|
Lim J, Grafe I, Alexander S, Lee B. Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone 2017; 102:40-49. [PMID: 28232077 PMCID: PMC5607741 DOI: 10.1016/j.bone.2017.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/07/2017] [Accepted: 02/11/2017] [Indexed: 12/25/2022]
Abstract
Osteogenesis Imperfecta (OI) is a genetic disorder characterized by various clinical features including bone deformities, low bone mass, brittle bones, and connective tissue manifestations. The predominant cause of OI is due to mutations in the two genes that encode type I collagen. However, recent advances in sequencing technology has led to the discovery of novel genes that are implicated in recessive and dominant OI. These include genes that regulate the post-translational modification, secretion and processing of type I collagen as well as those required for osteoblast differentiation and bone mineralization. As such, OI has become a spectrum of genetic disorders informing about the determinants of both bone quantity and quality. Here we summarize the known genetic causes of OI, animal models that recapitulate the human disease and mechanisms that underlie disease pathogenesis. Additionally, we discuss the effects of disrupted collagen networks on extracellular matrix signaling and its impact on disease progression.
Collapse
Affiliation(s)
- Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefanie Alexander
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
72
|
Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017; 169:985-999. [PMID: 28575679 DOI: 10.1016/j.cell.2017.05.016] [Citation(s) in RCA: 3032] [Impact Index Per Article: 379.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022]
Abstract
The WNT signal transduction cascade is a main regulator of development throughout the animal kingdom. Wnts are also key drivers of most types of tissue stem cells in adult mammals. Unsurprisingly, mutated Wnt pathway components are causative to multiple growth-related pathologies and to cancer. Here, we describe the core Wnt/β-catenin signaling pathway, how it controls stem cells, and contributes to disease. Finally, we discuss strategies for Wnt-based therapies.
Collapse
|
73
|
Wehmeyer C, Pap T, Buckley CD, Naylor AJ. The role of stromal cells in inflammatory bone loss. Clin Exp Immunol 2017; 189:1-11. [PMID: 28419440 PMCID: PMC5461090 DOI: 10.1111/cei.12979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2017] [Indexed: 12/26/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, local and systemic bone loss and a lack of compensatory bone repair. Fibroblast-like synoviocytes (FLS) are the most abundant cells of the stroma and a key population in autoimmune diseases such as RA. An increasing body of evidence suggests that these cells play not only an important role in chronic inflammation and synovial hyperplasia, but also impact bone remodelling. Under inflammatory conditions FLS release inflammatory cytokines, regulate bone destruction and formation and communicate with immune cells to control bone homeostasis. Other stromal cells, such as osteoblasts and terminally differentiated osteoblasts, termed osteocytes, are also involved in the regulation of bone homeostasis and are dysregulated during inflammation. This review highlights our current understanding of how stromal cells influence the balance between bone formation and bone destruction. Increasing our understanding of these processes is critical to enable the development of novel therapeutic strategies with which to treat bone loss in RA.
Collapse
Affiliation(s)
- C. Wehmeyer
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - T. Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital MuensterMuensterGermany
| | - C. D. Buckley
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| | - A. J. Naylor
- Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth HospitalBirminghamUK
| |
Collapse
|
74
|
Joeng KS, Lee YC, Lim J, Chen Y, Jiang MM, Munivez E, Ambrose C, Lee BH. Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 2017. [PMID: 28628032 DOI: 10.1172/jci92617] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mutations in WNT1 cause osteogenesis imperfecta (OI) and early-onset osteoporosis, identifying it as a key Wnt ligand in human bone homeostasis. However, how and where WNT1 acts in bone are unclear. To address this mechanism, we generated late-osteoblast-specific and osteocyte-specific WNT1 loss- and gain-of-function mouse models. Deletion of Wnt1 in osteocytes resulted in low bone mass with spontaneous fractures similar to that observed in OI patients. Conversely, Wnt1 overexpression from osteocytes stimulated bone formation by increasing osteoblast number and activity, which was due in part to activation of mTORC1 signaling. While antiresorptive therapy is the mainstay of OI treatment, it has limited efficacy in WNT1-related OI. In this study, anti-sclerostin antibody (Scl-Ab) treatment effectively improved bone mass and dramatically decreased fracture rate in swaying mice, a model of global Wnt1 loss. Collectively, our data suggest that WNT1-related OI and osteoporosis are caused in part by decreased mTORC1-dependent osteoblast function resulting from loss of WNT1 signaling in osteocytes. As such, this work identifies an anabolic function of osteocytes as a source of Wnt in bone development and homoeostasis, complementing their known function as targets of Wnt signaling in regulating osteoclastogenesis. Finally, this study suggests that Scl-Ab is an effective genotype-specific treatment option for WNT1-related OI and osteoporosis.
Collapse
Affiliation(s)
- Kyu Sang Joeng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yi-Chien Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Catherine Ambrose
- Department of Orthopedic Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Brendan H Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW The goal of this paper is to evaluate critically the literature published over the past 3 years regarding the Wnt signaling pathway. The Wnt pathway was found to be involved in bone biology in 2001-2002 with the discovery of a (G171V) mutation in the lipoprotein receptor-related protein 5 (LRP5) that resulted in high bone mass and another mutation that completely inactivated Lrp5 function and resulted in osteoporosis pseudoglioma syndrome (OPPG). The molecular biology has been complex, and very interesting. It has provided many opportunities for exploitation to develop new clinical treatments, particularly for osteoporosis. More clinical possibilities include: treatments for fracture healing, corticosteroid osteoporosis, osteogenesis imperfecta, and others. In addition, we wish to provide historical information coming from distant publications (~350 years ago) regarding bone biology that have been confirmed by study of Wnt signaling. RECENT FINDINGS A recent finding is the development of an antibody to sclerostin that is under study as a treatment for osteoporosis. Development of treatments for other forms of osteoporosis, such as corticosteroid osteoporosis, is also underway. The full range of the applications of the work is not yet been achieved.
Collapse
Affiliation(s)
- Mark L Johnson
- Department of Oral and Craniofacial Sciences, UMKC School of Dentistry, 650 East 25th Street, Kansas City, MO, 64108, USA
| | - Robert R Recker
- Creighton University, 601 N 30th St., Ste 4841, Omaha, NE, 68131, USA.
| |
Collapse
|
76
|
Gao H, Zhai M, Wang P, Zhang X, Cai J, Chen X, Shen G, Luo E, Jing D. Low-level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling-associated mechanism. Mol Med Rep 2017; 16:317-324. [DOI: 10.3892/mmr.2017.6608] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/23/2016] [Indexed: 11/05/2022] Open
|
77
|
Ma YL, Hamang M, Lucchesi J, Bivi N, Zeng Q, Adrian MD, Raines SE, Li J, Kuhstoss SA, Obungu V, Bryant HU, Krishnan V. Time course of disassociation of bone formation signals with bone mass and bone strength in sclerostin antibody treated ovariectomized rats. Bone 2017; 97:20-28. [PMID: 27939957 DOI: 10.1016/j.bone.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/02/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
Sclerostin antibodies increase bone mass by stimulating bone formation. However, human and animal studies show that bone formation increases transiently and returns to pre-treatment level despite ongoing antibody treatment. To understand its mechanism of action, we studied the time course of bone formation, correlating the rate and extent of accrual of bone mass and strength after sclerostin antibody treatment. Ovariectomized (OVX) rats were treated with a sclerostin-antibody (Scle-ab) at 20mg/kg sc once weekly and sacrificed at baseline and 2, 3, 4, 6, and 8weeks post-treatment. In Scle-ab treated rats, serum PINP and OCN rapidly increased at week 1, peaked around week 3, and returned to OVX control levels by week 6. Transcript analyses from the distal femur revealed an early increase in bone formation followed by a sustained decrease in bone resorption genes. Lumbar vertebral (LV) osteoblast surface increased 88% by week 2, and bone formation rate (BFR/BS) increased 138% by week 4. Both parameters were below OVX control by week 8. Bone formation was primarily a result of modeling based formation. Endocortical and periosteal BFR/BS peaked around week 4 at 313% and 585% of OVX control, respectively. BFR/BS then declined but remained higher than OVX control on both surfaces through week 8. Histomorphometric analyses showed LV-BV/TV did not further increase after week 4, while BMD continued to increase at LV, mid femur (MF), and femoral neck (FN) through week 8. Biomechanical tests showed a similar improvement in bone strength through 8weeks in MF and FN, but bone strength plateaued between weeks 6 and 8 for LV. Our data suggest that bone formation with Scle-ab treatment is rapid and modeling formation dominated in OVX rats. Although transient, the bone formation response persists longer in cortical than trabecular bone.
Collapse
Affiliation(s)
- Yanfei L Ma
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| | - Matthew Hamang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan Lucchesi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Nicoletta Bivi
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Qianqiang Zeng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mary D Adrian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Sarah E Raines
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jiliang Li
- Indiana University-Purdue University, Indianapolis, IN, USA
| | - Stuart A Kuhstoss
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Victor Obungu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Henry U Bryant
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Venkatesh Krishnan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
78
|
Wu J, Ma L, Wu L, Jin Q. Wnt-β-catenin signaling pathway inhibition by sclerostin may protect against degradation in healthy but not osteoarthritic cartilage. Mol Med Rep 2017; 15:2423-2432. [PMID: 28259981 PMCID: PMC5428759 DOI: 10.3892/mmr.2017.6278] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 10/04/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to determine the regulation of sclerostin (SOST) in osteoarthritis (OA) and its effect on articular cartilage degradation. Human cartilage samples from healthy and OA subjects were assessed by Safranin O staining and immunohistochemistry. Primary chondrocytes were pre‑incubated with 250 ng/ml SOST, 10 ng/ml interleukin‑1‑α (IL‑1α) or a combination of the two. The effects of treatment on the Wnt-β-catenin signaling pathway and cartilage degradation were examined by reverse transcription‑quantitative polymerase chain reaction and western blotting. SOST was detected in the cartilage focal area, demonstrating secretion by osteocytes and chondrocytes. SOST has been identified to inhibit the Wnt-β-catenin signaling pathway by binding to low‑density lipoprotein‑related receptors 5 and 6, and catabolic factors were decreased in healthy chondrocytes. However, SOST did not influence human OA chondrocytes. IL‑1α activated the Wnt-β-catenin signaling pathway and promoted cartilage degradation, which was inhibited by SOST in healthy and OA cartilage. The results of the present study suggested that SOST is important in maintaining the integrity of healthy, but not end‑stage OA, cartilage.
Collapse
Affiliation(s)
- Jiang Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Long Ma
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Long Wu
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Qunhua Jin
- Orthopedics Ward 3, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
79
|
Sclerostin Promotes Bone Remodeling in the Process of Tooth Movement. PLoS One 2017; 12:e0167312. [PMID: 28081119 PMCID: PMC5230762 DOI: 10.1371/journal.pone.0167312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/13/2016] [Indexed: 12/17/2022] Open
Abstract
Tooth movement is a biological process of bone remodeling induced by mechanical force. Sclerostin secreted by osteocytes is mechanosensory and important in bone remodeling. However, little is known regarding the role of sclerostin in tooth movement. In this study, models of experimental tooth movement were established in rats and mice. Sclerostin expression was investigated with immunohistochemistry staining, and osteoclastic activity was analyzed with tartrate-resistant acid phosphatase (TRAP) staining. MLO-Y4 osteocyte-like cells underwent uniaxial compression and tension stress or were cultured in hypoxia conditions. Expression of sclerostin was assessed by RT-qPCR and ELISA. MLO-Y4 cells were cultured with recombinant human sclerostin (rhSCL) interference and then co-cultured with RAW264.7 osteoclast precursor cells. Expressions of RANKL and OPG were analyzed by RT-qPCR, and osteoclastic activity was assessed by TRAP staining. During tooth movement, sclerostin was expressed differently in compression and tension sites. In SOST knock-out mice, there were significantly fewer TRAP-positive cells than in WT mice during tooth movement in compression sites. In-vitro studies showed that the expression of sclerostin in MLO-Y4 osteocyte-like cells was not different under a uniaxial compression and tension force, whereas hypoxia conditions significantly increased sclerostin expression in MLO-Y4 cells. rhSCL interference increased the expression of RANKL and the RANKL/OPG ratio in MLO-Y4 cells and the osteoclastic induction ability of MLO-Y4 cells in experimental osteocyte-osteoclast co-culture. These data suggest that sclerostin plays an important role in the bone remodeling of tooth movement.
Collapse
|
80
|
Blair HC, Larrouture QC, Li Y, Lin H, Beer-Stoltz D, Liu L, Tuan RS, Robinson LJ, Schlesinger PH, Nelson DJ. Osteoblast Differentiation and Bone Matrix Formation In Vivo and In Vitro. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:268-280. [PMID: 27846781 DOI: 10.1089/ten.teb.2016.0454] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the characteristics of osteoblast differentiation and bone matrix synthesis. Bone in air breathing vertebrates is a specialized tissue that developmentally replaces simpler solid tissues, usually cartilage. Bone is a living organ bounded by a layer of osteoblasts that, because of transport and compartmentalization requirements, produce bone matrix exclusively as an organized tight epithelium. With matrix growth, osteoblasts are reorganized and incorporated into the matrix as living cells, osteocytes, which communicate with each other and surface epithelium by cell processes within canaliculi in the matrix. The osteoblasts secrete the organic matrix, which are dense collagen layers that alternate parallel and orthogonal to the axis of stress loading. Into this matrix is deposited extremely dense hydroxyapatite-based mineral driven by both active and passive transport and pH control. As the matrix matures, hydroxyapatite microcrystals are organized into a sophisticated composite in the collagen layer by nucleation in the protein lattice. Recent studies on differentiating osteoblast precursors revealed a sophisticated proton export network driving mineralization, a gene expression program organized with the compartmentalization of the osteoblast epithelium that produces the mature bone matrix composite, despite varying serum calcium and phosphate. Key issues not well defined include how new osteoblasts are incorporated in the epithelial layer, replacing those incorporated in the accumulating matrix. Development of bone in vitro is the subject of numerous projects using various matrices and mesenchymal stem cell-derived preparations in bioreactors. These preparations reflect the structure of bone to variable extents, and include cells at many different stages of differentiation. Major challenges are production of bone matrix approaching the in vivo density and support for trabecular bone formation. In vitro differentiation is limited by the organization and density of osteoblasts and by endogenous and exogenous inhibitors.
Collapse
Affiliation(s)
- Harry C Blair
- 1 Veteran's Affairs Medical Center , Pittsburgh, Pennsylvania.,2 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | | - Yanan Li
- 3 Department of Stomatology, Chinese PLA General Hospital , Beijing, China
| | - Hang Lin
- 4 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Donna Beer-Stoltz
- 2 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Li Liu
- 2 Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 4 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Lisa J Robinson
- 5 Department of Pathology, West Virginia University School of Medicine , Morgantown, West Virginia.,6 Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Paul H Schlesinger
- 7 Department of Cell Biology, Washington University , Saint Louis, Missouri
| | - Deborah J Nelson
- 8 Department of Neurobiology, Pharmacology & Physiology, University of Chicago , Chicago, Illinois
| |
Collapse
|
81
|
Rolvien T, Amling M. Bone biology in the elderly: clinical importance for fracture treatment. Innov Surg Sci 2016; 1:49-55. [PMID: 31579719 PMCID: PMC6753994 DOI: 10.1515/iss-2016-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/15/2016] [Indexed: 12/15/2022] Open
Abstract
Age-related bone impairment often leads to fragility fractures in the elderly. Although excellent surgical care is widely provided, diagnosis and treatment of the underlying bone disorder are often not kept in mind. The interplay of the three major bone cells – osteoblasts, osteoclasts, and osteocytes – is normally well regulated via the secretion of messengers to control bone remodeling. Possible imbalances that might occur in the elderly are partly due to age, genetic risk factors, and adverse lifestyle factors but importantly also due to imbalances in calcium homeostasis (mostly due to vitamin D deficiency or hypochlorhydria), which have to be eliminated. Therefore, the cooperation between the trauma surgeon and the osteologist is of major importance to diagnose and treat the respective patients at risk. We propose that any patient suffering from fragility fractures is rigorously screened for osteoporosis and metabolic bone diseases. This includes bone density measurement by dual-energy X-ray absorptiometry, laboratory tests for calcium, phosphate, vitamin D, and bone turnover markers, as well as additional diagnostic modalities if needed. Thereby, most risk factors, including vitamin D deficiency, can be identified and treated while patients who meet the criteria for a specific therapy (i.e. antiresorptive and osteoanabolic) receive such. If local health systems succeed to manage this process of secondary fracture prevention, morbidity and mortality of fragility fractures will decline to a minimum level.
Collapse
Affiliation(s)
- Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| |
Collapse
|
82
|
Yang H, Dong J, Xiong W, Fang Z, Guan H, Li F. N-cadherin restrains PTH repressive effects on sclerostin/SOST by regulating LRP6-PTH1R interaction. Ann N Y Acad Sci 2016; 1385:41-52. [PMID: 27723935 DOI: 10.1111/nyas.13221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022]
Abstract
Sclerostin/SOST is a robust negative regulator of bone formation. Loss-of-function mutations of the sclerostin gene (SOST) cause sclerosteosis and Van Buchem disease characterized by bone overgrowth. Mediated by myocyte enhancer factor 2 (MEF2) transcription factors, parathyroid hormone (PTH) suppresses SOST expression through formation of complexes of parathyroid hormone-parathyroid hormone-related peptide receptor 1 (PTH1R) and lipoprotein receptor-related protein 6 (LRP6). N-cadherin has been shown to negatively regulate Wnt/β-catenin and PTH induced, protein kinase-dependent β-catenin signaling. Here, we investigated whether N-cadherin mediates the inhibitory effects of PTH on sclerostin/SOST. In vitro, overexpression of N-cadherin resulted in blunted PTH suppressive effects on sclerostin/SOST expression, as detected by immunoblot and qPCR analysis; PTH-induced downregulation of MEF2A, C, and D was impaired by N-cadherin; and N-cadherin reduced LRP6-PTHR1 interaction and endocytosis in response to PTH. In vivo, intermittent PTH (iPTH)-induced suppression of sclerostin/SOST was accentuated in Dmp1-cre; Cdh2f/f (Cdh2ΔDmp1 ) mice, compared with Cdh2f/f mice. Additionally, iPTH had greater bone anabolic effects in Cdh2ΔDmp1 mice compared to Cdh2f/f mice. These data indicate that N-cadherin negatively mediates PTH suppressive effects on sclerostin/SOST by regulating LRP6-PTHR1 interaction, ultimately influencing PTH anabolic effects on bone.
Collapse
Affiliation(s)
- Hailin Yang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China.,Department of Orthopaedics, People's Hospital of Jieshou City, Jieshou, Anhui, P.R. China
| | - Jinbo Dong
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Wei Xiong
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Zhong Fang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Hanfeng Guan
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Feng Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| |
Collapse
|
83
|
Ross RD, Mashiatulla M, Acerbo AS, Almer JD, Miller LM, Johnson ML, Sumner DR. HBM Mice Have Altered Bone Matrix Composition and Improved Material Toughness. Calcif Tissue Int 2016; 99:384-95. [PMID: 27230741 PMCID: PMC7376697 DOI: 10.1007/s00223-016-0154-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/12/2016] [Indexed: 01/22/2023]
Abstract
The G171V mutation in the low-density lipoprotein receptor-related protein 5 (LRP5) leads to a high bone mass (HBM) phenotype. Studies using HBM transgenic mouse models have consistently found increased bone mass and whole-bone strength, but little attention has been paid to the composition of the bone matrix. The current study sought to determine if the cortical bone matrix composition differs in HBM and wild-type mice and to determine how much of the variance in bone material properties is explained by variance in matrix composition. Consistent with previous studies, HBM mice had greater cortical area, moment of inertia, ultimate force, bending stiffness, and energy to failure than wild-type animals. The increased energy to failure was primarily caused by a large increase in post-yield behavior, with no difference in pre-yield behavior. The HBM mice had increased mineral-to-matrix and collagen cross-link ratios, and decreased crystallinity, carbonate, and acid phosphate substitution as measured by Fourier transform infrared microspectroscopy, but no differences in crystal length, intra-fibular strains, and mineral spacing compared to wild-type controls, as measured by X-ray scattering. The largest between genotype difference in material properties was a twofold increase in the modulus of toughness in HBM mice. Step-wise regression analyses showed that the specific matrix compositional parameters most closely associated with material properties varied between the wild-type and HBM genotypes. Although the mechanisms controlling the paradoxical combination of more mineralized yet tougher bone in HBM mice remain to be fully explained, the findings suggest that LRP5 represents a target to not only build bone mass but also to improve bone quality.
Collapse
Affiliation(s)
- Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 South Paulina, Suite 507, Chicago, IL, 60612, USA.
| | - Maleeha Mashiatulla
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 South Paulina, Suite 507, Chicago, IL, 60612, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alvin S Acerbo
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, USA
| | - Jonathan D Almer
- X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Lisa M Miller
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY, USA
| | - Mark L Johnson
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, USA
| | - D Rick Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 South Paulina, Suite 507, Chicago, IL, 60612, USA
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
84
|
Collette NM, Yee CS, Hum NR, Murugesh DK, Christiansen BA, Xie L, Economides AN, Manilay JO, Robling AG, Loots GG. Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells. Bone 2016; 88:20-30. [PMID: 27102547 PMCID: PMC6277141 DOI: 10.1016/j.bone.2016.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1(-/-)) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1(-/-) cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1(-/-) mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1(-/-) 5day calluses harbor >2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1(-/-) mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum.
Collapse
Affiliation(s)
- Nicole M Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Cristal S Yee
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA
| | - Nicholas R Hum
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Deepa K Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | | | - LiQin Xie
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Jennifer O Manilay
- Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA
| | | | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California at Merced, Merced, CA, USA.
| |
Collapse
|
85
|
Jin T. Current Understanding on Role of the Wnt Signaling Pathway Effector TCF7L2 in Glucose Homeostasis. Endocr Rev 2016; 37:254-77. [PMID: 27159876 DOI: 10.1210/er.2015-1146] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of the Wnt signaling pathway in metabolic homeostasis has drawn our intensive attention, especially after the genome-wide association study discovery that certain polymorphisms of its key effector TCF7L2 are strongly associated with the susceptibility to type 2 diabetes. For a decade, great efforts have been made in determining the function of TCF7L2 in various metabolic organs, which have generated both considerable achievements and disputes. In this review, I will briefly introduce the canonical Wnt signaling pathway, focusing on its effector β-catenin/TCF, including emphasizing the bidirectional feature of TCFs and β-catenin post-translational modifications. I will then summarize the observations on the association between TCF7L2 polymorphisms and type 2 diabetes risk. The main content, however, is on the intensive functional exploration of the metabolic role of TCF7L2, including the disputes generated on determining its role in the pancreas and liver with various transgenic mouse lines. Finally, I will discuss those achievements and disputes and present my future perspectives.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
86
|
Quent VM, Theodoropoulos C, Hutmacher DW, Reichert JC. Differential osteogenicity of multiple donor-derived human mesenchymal stem cells and osteoblasts in monolayer, scaffold-based 3D culture and in vivo. ACTA ACUST UNITED AC 2016; 61:253-66. [DOI: 10.1515/bmt-2014-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/13/2015] [Indexed: 11/15/2022]
Abstract
Abstract
We set out to compare the osteogenicity of human mesenchymal stem (hMSCs) and osteoblasts (hOBs). Upon osteogenic induction in monolayer, hMSCs showed superior matrix mineralization expressing characteristic bone-related genes. For scaffold cultures, both cell types presented spindle-shaped, osteoblast-like morphologies forming a dense, interconnected network of high viability. On the scaffolds, hOBs proliferated faster. A general upregulation of parathyroid hormone-related protein (PTHrP), osteoprotegrin (OPG), receptor activator of NF-κB ligand (RANKL), sclerostin (SOST), and dentin matrix protein 1 (DMP1) was observed for both cell types. Simultaneously, PTHrP, RANKL and DMP-1 expression decreased under osteogenic stimulation, while OPG and SOST increased significantly. Following transplantation into NOD/SCID mice, μCT and histology showed increased bone deposition with hOBs. The bone was vascularized, and amounts further increased for both cell types after recombinant human bone morphogenic protein 7 (rhBMP-7) addition also stimulating osteoclastogenesis. Complete bone organogenesis was evidenced by the presence of osteocytes and hematopoietic precursors. Our study results support the asking to develop 3D cellular models closely mimicking the functions of living tissues suitable for in vivo translation.
Collapse
|
87
|
Sun W, Shi Y, Lee WC, Lee SY, Long F. Rictor is required for optimal bone accrual in response to anti-sclerostin therapy in the mouse. Bone 2016; 85:1-8. [PMID: 26780446 PMCID: PMC4896354 DOI: 10.1016/j.bone.2016.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/23/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023]
Abstract
Wnt signaling has emerged as a major target pathway for the development of novel bone anabolic therapies. Neutralizing antibodies against the secreted Wnt antagonist sclerostin (Scl-Ab) increase bone mass in both animal models and humans. Because we have previously shown that Rictor-dependent mTORC2 activity contributes to Wnt signaling, we test here whether Rictor is required for Scl-Ab to promote bone anabolism. Mice with Rictor deleted in the early embryonic limb mesenchyme (Prx1-Cre;Rictor(f/f), hereafter RiCKO) were subjected to Scl-Ab treatment for 5weeks starting at 4months of age. In vivo micro-computed tomography (μCT) analyses before the treatment showed that the RiCKO mice displayed normal trabecular, but less cortical bone mass than the littermate controls. After 5weeks of treatment, Scl-Ab dose-dependently increased trabecular and cortical bone mass in both control and RiCKO mice, but the increase was significantly blunted in the latter. Dynamic histomorphometry revealed that the RiCKO mice formed less bone than the control in response to Scl-Ab. In addition, the RiCKO mice possessed fewer osteoclasts than normal under the basal condition and exhibited lesser suppression in osteoclast number by Scl-Ab. Consistent with the fewer osteoclasts in vivo, bone marrow stromal cells (BMSC) from the RiCKO mice expressed less Rankl but normal levels of Opg or M-CSF, and were less effective than the control cells in supporting osteoclastogenesis in vitro. The reliance of Rankl on Rictor appeared to be independent of Wnt-β-catenin or Wnt-mTORC2 signaling as Wnt3a had no effect on Rankl expression by BMSC from either control or RICKO mice. Overall, Rictor in the limb mesenchymal lineage is required for the normal response to the anti-sclerostin therapy in both bone formation and resorption.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yu Shi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wen-Chih Lee
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seung-Yon Lee
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
88
|
El-Bakry S, Saber N, Zidan H, Samaha D. Sclerostin as an innovative insight towards understanding Rheumatoid Arthritis. EGYPTIAN RHEUMATOLOGIST 2016. [DOI: 10.1016/j.ejr.2015.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
89
|
Xu Y, Wang L, Sun Y, Han X, Gao T, Xu X, Chen T, Zhao X, Zeng H, Wang Y, Bai D. Sclerostin is essential for alveolar bone loss in occlusal hypofunction. Exp Ther Med 2016; 11:1812-1818. [PMID: 27168809 DOI: 10.3892/etm.2016.3124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/23/2015] [Indexed: 02/05/2023] Open
Abstract
Bone loss is caused by occlusal hypofunction and is a serious health concern. This is particularly true of tooth loss, which is common in the elderly. However, the cellular and molecular mechanisms underlying bone loss have yet to be fully elucidated. Sclerostin and Wnt/β-catenin signaling have previously been reported to serve important roles in regulating bone remodeling. Therefore, the present study aimed to investigate the involvement of sclerostin and Wnt/β-catenin signaling in occlusal hypofunction-induced alveolar bone remodeling. The unilateral maxillary molars of 14 male Sprague-Dawley rats were extracted in order to establish a model of occlusal hypofunction. For each rat, the non-extraction side was treated as the control group for comparisons with the extraction side. At 8 weeks after tooth extraction, the rats were sacrificed and alveolar bone specimens were harvested for X-ray radiography, micro-computed tomography (CT) and histological and immunohistochemical examinations. Bone loss and architecture deterioration were observed at the occlusal hypofunction side. The bone mineral density was markedly decreased and the ratio of bone volume to total volume was significantly decreased at the hypofunction side, as compared with the control side (P<0.001). In addition, the number of osteoclasts at the hypofunction side were significantly increased compared with that in the control side (P<0.001), as demonstrated using tartrate-resistant acid phosphatase staining. Furthermore, the protein expression levels of sclerostin and receptor activator of nuclear factor-κB ligand were increased, whereas those of β-catenin were decreased, at the hypofunction side when compared with the control side. In conclusion, the results of the present study suggested that occlusal hypofunction-induced bone loss may be associated with upregulated expression of sclerostin, which, in turn, may inhibit the activity of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yang Xu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lufei Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yao Sun
- Department of Oral Implantology, Dental Transformation Medical Center, College of Stomatology, Tongji University, Shanghai 200011, P.R. China
| | - Xianglong Han
- Department of Oral Implantology, Dental Transformation Medical Center, College of Stomatology, Tongji University, Shanghai 200011, P.R. China
| | - Tian Gao
- Department of Obstetrics and Gynecology, Transformation Medical Center, Tongji University, Shanghai 200011, P.R. China
| | - Xin Xu
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tian Chen
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xuefeng Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huan Zeng
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanmin Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ding Bai
- Department of Orthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
90
|
Sun T, Leung F, Lu WW. MiR-9-5p, miR-675-5p and miR-138-5p Damages the Strontium and LRP5-Mediated Skeletal Cell Proliferation, Differentiation, and Adhesion. Int J Mol Sci 2016; 17:236. [PMID: 26891291 PMCID: PMC4783967 DOI: 10.3390/ijms17020236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
This study was designed to evaluate the effects of strontium on the expression levels of microRNAs (miRNAs) and to explore their effects on skeletal cell proliferation, differentiation, adhesion, and apoptosis. The targets of these miRNAs were also studied. Molecular cloning, cell proliferation assay, cell apoptosis assay, quantitative real-time PCR, and luciferase reporter assay were used. Strontium altered the expression levels of miRNAs in vitro and in vivo. miR-9-5p, miR-675-5p, and miR-138-5p impaired skeletal cell proliferation, cell differentiation and cell adhesion. miR-9-5p and miR-675-5p induced MC3T3-E1 cell apoptosis more specifically than miR-138-5p. miR-9-5p, miR-675-5p, and miR-138-5p targeted glycogen synthase kinase 3 β (GSK3β), ATPase Aminophospholipid Transporter Class I Type 8A Member 2 (ATP8A2), and Eukaryotic Translation Initiation Factor 4E Binding Protein 1 (EIF4EBP1), respectively. Low-density lipoprotein receptor-related protein 5 (LRP5) played a positive role in skeletal development. miR-9-5p, miR-675-5p, and miR-138-5p damage strontium and LRP5-mediated skeletal cell proliferation, differentiation, and adhesion, and induce cell apoptosis by targeting GSK3β, ATP8A2, and EIF4EBP1, respectively.
Collapse
Affiliation(s)
- Tianhao Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Frankie Leung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Shenzhen Key Laboratory for Innovative Technology, The University of Hong Kong Shenzhen Hospital, Shenzhen 518000, China.
| | - William W Lu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen 518000, China.
| |
Collapse
|
91
|
Yee CS, Xie L, Hatsell S, Hum N, Murugesh D, Economides AN, Loots GG, Collette NM. Sclerostin antibody treatment improves fracture outcomes in a Type I diabetic mouse model. Bone 2016; 82:122-34. [PMID: 25952969 PMCID: PMC4635060 DOI: 10.1016/j.bone.2015.04.048] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 01/08/2023]
Abstract
Type 1 diabetes mellitus (T1DM) patients have osteopenia and impaired fracture healing due to decreased osteoblast activity. Further, no adequate treatments are currently available that can restore impaired healing in T1DM; hence a significant need exists to investigate new therapeutics for treatment of orthopedic complications. Sclerostin (SOST), a WNT antagonist, negatively regulates bone formation, and SostAb is a potent bone anabolic agent. To determine whether SOST antibody (SostAb) treatment improves fracture healing in streptozotocin (STZ) induced T1DM mice, we administered SostAb twice weekly for up to 21days post-fracture, and examined bone quality and callus outcomes at 21days and 42days post-fracture (11 and 14weeks of age, respectively). Here we show that SostAb treatment improves bone parameters; these improvements persist after cessation of antibody treatment. Markers of osteoblast differentiation such as Runx2, collagen I, osteocalcin, and DMP1 were reduced, while an abundant number of SP7/osterix-positive early osteoblasts were observed on the bone surface of STZ calluses. These results suggest that STZ calluses have poor osteogenesis resulting from failure of osteoblasts to fully differentiate and produce mineralized matrix, which produces a less mineralized callus. SostAb treatment enhanced fracture healing in both normal and STZ groups, and in STZ+SostAb mice, also reversed the lower mineralization seen in STZ calluses. Micro-CT analysis of calluses revealed improved bone parameters with SostAb treatment, and the mineralized bone was comparable to Controls. Additionally, we found sclerostin levels to be elevated in STZ mice and β-catenin activity to be reduced. Consistent with its function as a WNT antagonist, SostAb treatment enhanced β-catenin activity, but also increased the levels of SOST in the callus and in circulation. Our results indicate that SostAb treatment rescues the impaired osteogenesis seen in the STZ induced T1DM fracture model by facilitating osteoblast differentiation and mineralization of bone.
Collapse
Affiliation(s)
- Cristal S Yee
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - LiQin Xie
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Nicholas Hum
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA
| | - Deepa Murugesh
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | | | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-452, Livermore, CA 94550, USA; School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Nicole M Collette
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| |
Collapse
|
92
|
van den Bosch MH, Gleissl TA, Blom AB, van den Berg WB, van Lent PL, van der Kraan PM. Wnts talking with the TGF-β superfamily: WISPers about modulation of osteoarthritis. Rheumatology (Oxford) 2015; 55:1536-47. [PMID: 26667213 DOI: 10.1093/rheumatology/kev402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
The Wnt signalling pathway is gaining increasing attention in the field of joint pathologies, attributable to its role in the development and homeostasis of the tissues found in the joint, including bone and cartilage. Imbalance in this pathway has been implicated in the development and progression of OA, and interference with the pathway might therefore depict an effective treatment strategy. Though offering multiple opportunities, it is yet to be decided which starting point will bring forth the most promising results. The complexity of the pathway and its interaction with other pathways (such as the TGF-β signalling pathway, which also has a central role in the maintenance of joint homeostasis) means that acting directly on proteins in this signalling cascade entails a high risk of undesired side effects. Therefore, interference with Wnt-induced proteins, such as WISP1, might be an overall more effective and safer therapeutic approach to inhibit the pathological events that take place during OA.
Collapse
Affiliation(s)
- Martijn H van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Teresa A Gleissl
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim B van den Berg
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter L van Lent
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
93
|
Niziolek PJ, Bullock W, Warman ML, Robling AG. Missense Mutations in LRP5 Associated with High Bone Mass Protect the Mouse Skeleton from Disuse- and Ovariectomy-Induced Osteopenia. PLoS One 2015; 10:e0140775. [PMID: 26554834 PMCID: PMC4640505 DOI: 10.1371/journal.pone.0140775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/30/2015] [Indexed: 12/17/2022] Open
Abstract
The low density lipoprotein receptor-related protein-5 (LRP5), a co-receptor in the Wnt signaling pathway, modulates bone mass in humans and in mice. Lrp5 knock-out mice have severely impaired responsiveness to mechanical stimulation whereas Lrp5 gain-of-function knock-in and transgenic mice have enhanced responsiveness to mechanical stimulation. Those observations highlight the importance of Lrp5 protein in bone cell mechanotransduction. It is unclear if and how high bone mass-causing (HBM) point mutations in Lrp5 alter the bone-wasting effects of mechanical disuse. To address this issue we explored the skeletal effects of mechanical disuse using two models, tail suspension and Botulinum toxin-induced muscle paralysis, in two different Lrp5 HBM knock-in mouse models. A separate experiment employing estrogen withdrawal-induced bone loss by ovariectomy was also conducted as a control. Both disuse stimuli induced significant bone loss in WT mice, but Lrp5 A214V and G171V were partially or fully protected from the bone loss that normally results from disuse. Trabecular bone parameters among HBM mice were significantly affected by disuse in both models, but these data are consistent with DEXA data showing a failure to continue growing in HBM mice, rather than a loss of pre-existing bone. Ovariectomy in Lrp5 HBM mice resulted in similar protection from catabolism as was observed for the disuse experiments. In conclusion, the Lrp5 HBM alleles offer significant protection from the resorptive effects of disuse and from estrogen withdrawal, and consequently, present a potential mechanism to mimic with pharmaceutical intervention to protect against various bone-wasting stimuli.
Collapse
MESH Headings
- Animals
- Bone Density/genetics
- Bone Density/physiology
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/pathology
- Bone Diseases, Metabolic/prevention & control
- Botulinum Toxins/toxicity
- Disease Models, Animal
- Estrogens/deficiency
- Estrogens/physiology
- Female
- Femur/pathology
- Gene Knock-In Techniques
- Humans
- Immobilization/adverse effects
- Low Density Lipoprotein Receptor-Related Protein-5/genetics
- Low Density Lipoprotein Receptor-Related Protein-5/physiology
- Mechanotransduction, Cellular/genetics
- Mechanotransduction, Cellular/physiology
- Mice
- Mutation, Missense
- Osteoporosis, Postmenopausal/pathology
- Osteoporosis, Postmenopausal/prevention & control
- Ovariectomy/adverse effects
- Paralysis/chemically induced
- Paralysis/complications
- Paralysis/pathology
- Point Mutation
- Stress, Mechanical
- Weight-Bearing
Collapse
Affiliation(s)
- Paul J. Niziolek
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Whitney Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthew L. Warman
- Department of Orthopaedic Surgery, Children’s Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Massachusetts, United States of America
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
94
|
Thouverey C, Caverzasio J. Sclerostin inhibits osteoblast differentiation without affecting BMP2/SMAD1/5 or Wnt3a/β-catenin signaling but through activation of platelet-derived growth factor receptor signaling in vitro. BONEKEY REPORTS 2015; 4:757. [PMID: 26587226 DOI: 10.1038/bonekey.2015.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/29/2015] [Indexed: 01/18/2023]
Abstract
Sclerostin inhibits bone formation mostly by antagonizing LRP5/6, thus inhibiting Wnt signaling. However, experiments with genetically modified mouse models suggest that a significant part of sclerostin-mediated inhibition of bone formation is due to interactions with other binding partners. The objective of the present work was to identify signaling pathways affected by sclerostin in relation with its inhibitory action on osteogenic differentiation of C3H10T1/2 cells, MC3T3-E1 cells and primary osteoblasts. Sclerostin inhibited BMP2-induced osteoblast differentiation without altering SMAD1/5 phosphorylation and transcriptional activity. Moreover, sclerostin prevented Wnt3a-mediated osteoblastogenesis without affecting LRP5/6 phosphorylation or β-catenin transcriptional activity. In addition, sclerostin inhibited mineralization promoted by GSK3 inhibition, which mimics canonical Wnt signaling without activation of LRP5/6, suggesting that sclerostin can prevent osteoblast differentiation without antagonizing LRP5/6. Finally, we found that sclerostin could activate platelet-derived growth factor receptor (PDGFR) and its downstream signaling pathways PLCγ, PKC, Akt and ERK1/2. PDGFR inhibition could reverse sclerostin-mediated inhibitory activity on BMP2-induced osteoblast differentiation. Therefore, our data suggest that sclerostin can activate PDGFR signaling by itself, and this functional interaction may be involved in the negative effect of sclerostin on osteoblast differentiation.
Collapse
Affiliation(s)
- Cyril Thouverey
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| | - Joseph Caverzasio
- Service of Bone Diseases, Department of Internal Medicine Specialties, University Hospital of Geneva , Geneva, Switzerland
| |
Collapse
|
95
|
Abstract
Wnt signaling plays key roles in many aspects of development. In this review, we will briefly describe the components of signaling pathways induced by Wnt ligands and then describe the current state of research as this applies to aspects of development and disease as it relates to skeletal muscle and bone. We will conclude with a discussion of the parallels and differences in Wnt signaling in these two contexts and how these pathways are being (or could potentially be) targeted for therapeutic treatment of musculoskeletal diseases. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Michael A Rudnicki
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Bart O Williams
- Center for Skeletal Disease and Tumor Metastasis, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
96
|
Ahmadzadeh A, Norozi F, Shahrabi S, Shahjahani M, Saki N. Wnt/β-catenin signaling in bone marrow niche. Cell Tissue Res 2015; 363:321-35. [PMID: 26475718 DOI: 10.1007/s00441-015-2300-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/20/2015] [Indexed: 12/14/2022]
Abstract
The bone marrow (BM) niche is a specific physiological environment for hematopoietic and non-hematopoietic stem cells (HSCs). Several signaling pathways (including Wnt/β-catenin) regulate various aspects of stem cell growth, function and death in the BM niche. In addition, the canonical Wnt pathway is crucial for directing self-renewal and differentiation as important mechanisms in many types of stem cells. We review the role of the Wnt/β-catenin pathway in the BM niche and its importance in stem cells. Relevant literature was identified by a PubMed search (1997-2014) of English-language literature by using the following keywords: BM niche, Wnt/β-catenin signaling, osteoblast, osteoclast and bone disease. The Wnt/β-catenin pathway regulates the stability of the β-catenin proto-oncogene. The stabilized β-catenin then translocates to the nucleus, forming a β-catenin-TCF/LEF complex regulating the transcription of specific target genes. Stem cells require β-catenin to mediate their response to Wnt signaling for maintenance and transition from the pluripotent state during embryogenesis. In adult stem cells, Wnt signaling functions at various hierarchical levels to contribute to the specification of the diverse tissues. Aberrant Wnt/β-catenin signaling and its downstream transcriptional regulators are observed in several malignant stem cells and human cancers. Because Wnt signaling can maintain stem cells and cancer cells, the ability to modulate the Wnt pathway either positively or negatively may be of therapeutic relevance. The controlled activation of Wnt signaling might allow us to enhance stem and progenitor cell activity when regeneration is needed.
Collapse
Affiliation(s)
- Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad Shahjahani
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
97
|
Niziolek PJ, MacDonald BT, Kedlaya R, Zhang M, Bellido T, He X, Warman ML, Robling AG. High Bone Mass-Causing Mutant LRP5 Receptors Are Resistant to Endogenous Inhibitors In Vivo. J Bone Miner Res 2015; 30:1822-30. [PMID: 25808845 PMCID: PMC4580530 DOI: 10.1002/jbmr.2514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/17/2022]
Abstract
Certain missense mutations affecting LRP5 cause high bone mass (HBM) in humans. Based on in vitro evidence, HBM LRP5 receptors are thought to exert their effects by providing resistance to binding/inhibition of secreted LRP5 inhibitors such as sclerostin (SOST) and Dickkopf homolog-1 (DKK1). We previously reported the creation of two Lrp5 HBM knock-in mouse models, in which the human p.A214V or p.G171V missense mutations were knocked into the endogenous Lrp5 locus. To determine whether HBM knock-in mice are resistant to SOST- or DKK1-induced osteopenia, we bred Lrp5 HBM mice with transgenic mice that overexpress human SOST in osteocytes ((8kb) Dmp1-SOST) or mouse DKK1 in osteoblasts and osteocytes ((2.3kb) Col1a1-Dkk1). We observed that the (8kb) Dmp1-SOST transgene significantly lowered whole-body bone mineral density (BMD), bone mineral content (BMC), femoral and vertebral trabecular bone volume fraction (BV/TV), and periosteal bone-formation rate (BFR) in wild-type mice but not in mice with Lrp5 p.G171V and p.A214V alleles. The (2.3kb) Col1a1-Dkk1 transgene significantly lowered whole-body BMD, BMC, and vertebral BV/TV in wild-type mice and affected p.A214V mice more than p.G171V mice. These in vivo data support in vitro studies regarding the mechanism of HBM-causing mutations, and imply that HBM LRP5 receptors differ in their relative sensitivity to inhibition by SOST and DKK1.
Collapse
Affiliation(s)
- Paul J. Niziolek
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bryan T. MacDonald
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Rajendra Kedlaya
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minjie Zhang
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Orthopaedic Surgery and Genetics, Harvard Medical School, Boston, MA, USA
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xi He
- The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA USA
| | - Matthew L. Warman
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Orthopaedic Surgery and Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Biomedical Engineering, Indiana University–Purdue University at Indianapolis (IUPUI), Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN USA
| |
Collapse
|
98
|
The Wnt inhibitor dickkopf-1: a link between breast cancer and bone metastases. Clin Exp Metastasis 2015; 32:857-66. [DOI: 10.1007/s10585-015-9750-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
|
99
|
Mora S, Puzzovio M, Giacomet V, Fabiano V, Maruca K, Capelli S, Nannini P, Lombardi G, Zuccotti GV. Sclerostin and DKK-1: two important regulators of bone metabolism in HIV-infected youths. Endocrine 2015; 49:783-90. [PMID: 25596857 DOI: 10.1007/s12020-015-0527-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/08/2015] [Indexed: 12/17/2022]
Abstract
Reduced bone mineral density (BMD) and altered bone metabolism are common findings in HIV-infected patients. Increased bone formation has been described both in HIV-infected adults and children. Wnt ligands promote bone formation by stimulating osteoblast differentiation and their survival. Sclerostin and dickkopf factor 1 (DKK-1), Wnt antagonists, are important negative regulators of bone formation. We studied 86 HIV-infected patients whose ages ranged from 5.7 to 27.9 years. Patients were all on antiretroviral therapy, but seven who were naïve to treatment. Bone alkaline phosphatase (BAP), sclerostin, and DKK-1 were measured in serum by enzyme immunoassay. BMD was measured by dual-energy X-ray absorptiometry at the lumbar spine and in the whole skeleton. Biochemical indexes were also measured in 143 healthy controls (age range 4.5-27.4 years). HIV-infected patients had lower than normal BMD (spine P < 0.005, and whole skeleton P < 0.03). BAP measurements were significantly higher in HIV-infected patients than controls (P ≤ 0.05). Sclerostin and DKK-1 concentrations were markedly lower than in controls (P ≤ 0.0006, and P ≤ 0.03, respectively). The serum concentration of both analytes of patients naïve to antiretroviral treatment was not different from that of treated patients. No correlations were found between sclerostin, DKK-1, and bone mineral measurements. Our data confirm the alteration of bone metabolism pathways in HIV-infected individuals. The lower concentration of Wnt antagonists is consistent with the increased bone formation markers.
Collapse
Affiliation(s)
- Stefano Mora
- Laboratory of Pediatric Endocrinology, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, MI, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Warrington NM, Kemp JP, Tilling K, Tobias JH, Evans DM. Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence. Hum Mol Genet 2015; 24:4158-66. [PMID: 25941325 PMCID: PMC4476449 DOI: 10.1093/hmg/ddv143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/09/2015] [Accepted: 04/19/2015] [Indexed: 01/27/2023] Open
Abstract
Previous studies have identified 63 single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD) in adults. These SNPs are thought to reflect variants that influence bone maintenance and/or loss in adults. It is unclear whether they affect the rate of bone acquisition during adolescence. Bone measurements and genetic data were available on 6397 individuals from the Avon Longitudinal Study of Parents and Children at up to five follow-up clinics. Linear mixed effects models with smoothing splines were used for longitudinal modelling of BMD and its components bone mineral content (BMC) and bone area (BA), from 9 to 17 years. Genotype data from the 63 adult BMD associated SNPs were investigated individually and as a genetic risk score in the longitudinal model. Each additional BMD lowering allele of the genetic risk score was associated with lower BMD at age 13 [per allele effect size, 0.002 g/cm(2) (SE = 0.0001, P = 1.24 × 10(-38))] and decreased BMD acquisition from 9 to 17 years (P = 9.17 × 10(-7)). This association was driven by changes in BMC rather than BA. The genetic risk score explained ∼2% of the variation in BMD at 9 and 17 years, a third of that explained in adults (6%). Genetic variants that putatively affect bone maintenance and/or loss in adults appear to have a small influence on the rate of bone acquisition through adolescence.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia,
| | - John P Kemp
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia, MRC Integrative Epidemiology Unit, School of Social and Community Medicine and
| | - Kate Tilling
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine and
| | | | - David M Evans
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia, MRC Integrative Epidemiology Unit, School of Social and Community Medicine and
| |
Collapse
|