51
|
T1R3 homomeric sweet taste receptor regulates adipogenesis through Gαs-mediated microtubules disassembly and Rho activation in 3T3-L1 cells. PLoS One 2017; 12:e0176841. [PMID: 28472098 PMCID: PMC5417608 DOI: 10.1371/journal.pone.0176841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
We previously reported that 3T3-L1 cells express a functional sweet taste receptor possibly as a T1R3 homomer that is coupled to Gs and negatively regulates adipogenesis by a Gαs-mediated but cAMP-independent mechanism. Here, we show that stimulation of this receptor with sucralose or saccharin induced disassembly of the microtubules in 3T3-L1 preadipocytes, which was attenuated by overexpression of the dominant-negative mutant of Gαs (Gαs-G226A). In contrast, overexpression of the constitutively active mutant of Gαs (Gαs-Q227L) as well as treatment with cholera toxin or isoproterenol but not with forskolin caused disassembly of the microtubules. Sweetener-induced microtubule disassembly was accompanied by activation of RhoA and Rho-associated kinase (ROCK). This was attenuated with by knockdown of GEF-H1, a microtubule-localized guanine nucleotide exchange factor for Rho GTPase. Furthermore, overexpression of the dominant-negative mutant of RhoA (RhoA-T19N) blocked sweetener-induced dephosphorylation of Akt and repression of PPARγ and C/EBPα in the early phase of adipogenic differentiation. These results suggest that the T1R3 homomeric sweet taste receptor negatively regulates adipogenesis through Gαs-mediated microtubule disassembly and consequent activation of the Rho/ROCK pathway.
Collapse
|
52
|
On the Emerging Role of the Taste Receptor Type 1 (T1R) Family of Nutrient-Sensors in the Musculoskeletal System. Molecules 2017; 22:molecules22030469. [PMID: 28294983 PMCID: PMC6155268 DOI: 10.3390/molecules22030469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023] Open
Abstract
The special sense of taste guides and guards food intake and is essential for body maintenance. Salty and sour tastes are sensed via ion channels or gated ion channels while G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family sense sweet and umami tastes and GPCRs of the taste receptor type 2 (T2R) family sense bitter tastes. T1R and T2R receptors share similar downstream signaling pathways that result in the stimulation of phospholipase-C-β2. The T1R family includes three members that form heterodimeric complexes to recognize either amino acids or sweet molecules such as glucose. Although these functions were originally described in gustatory tissue, T1R family members are expressed in numerous non-gustatory tissues and are now viewed as nutrient sensors that play important roles in monitoring global glucose and amino acid status. Here, we highlight emerging evidence detailing the function of T1R family members in the musculoskeletal system and review these findings in the context of the musculoskeletal diseases sarcopenia and osteoporosis, which are major public health problems among the elderly that affect locomotion, activities of daily living, and quality of life. These studies raise the possibility that T1R family member function may be modulated for therapeutic benefit.
Collapse
|
53
|
Abstract
T1R2-T1R3 is a heteromeric receptor that binds sugars, high potency sweeteners, and sweet taste blockers. In rodents, T1R2-T1R3 is largely responsible for transducing sweet taste perception. T1R2-T1R3 is also expressed in non-taste tissues, and a growing body of evidence suggests that it helps regulate glucose and lipid metabolism. It was previously shown that clofibric acid, a blood lipid-lowering drug, binds T1R2-T1R3 and inhibits its activity in vitro The purpose of this study was to determine whether clofibric acid inhibits sweetness perception in humans and is, therefore, a T1R2-T1R3 antagonist in vivo Fourteen participants rated the sweetness intensity of 4 sweeteners (sucrose, sucralose, Na cyclamate, acesulfame K) across a broad range of concentrations. Each sweetener was prepared in solution neat and in mixture with either clofibric acid or lactisole. Clofibric acid inhibited sweetness of every sweetener. Consistent with competitive binding, inhibition by clofibric acid was diminished with increasing sweetener concentration. This study provides in vivo evidence that the lipid-lowering drug clofibric acid inhibits sweetness perception and is, therefore, a T1R carbohydrate receptor inhibitor. Our results are consistent with previous in vitro findings. Given that T1R2-T1R3 may in part regulate glucose and lipid metabolism, future studies should investigate the metabolic effects of T1R inhibition.
Collapse
Affiliation(s)
- Matthew Kochem
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA and
| | - Paul A S Breslin
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA and
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| |
Collapse
|
54
|
Steensels S, Vancleef L, Depoortere I. The Sweetener-Sensing Mechanisms of the Ghrelin Cell. Nutrients 2016; 8:E795. [PMID: 27941594 PMCID: PMC5188450 DOI: 10.3390/nu8120795] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] Open
Abstract
Carbohydrate administration decreases plasma levels of the 'hunger hormone' ghrelin. The ghrelin cell is co-localized with the sweet taste receptor subunit, TAS1R3, and the gustatory G-protein, gustducin, both involved in the sensing of sweeteners by entero-endocrine cells. This study investigated the role of gustducin-mediated sweet taste receptor signaling on ghrelin secretion in a gastric ghrelinoma cell line, tissue segments and mice. The monosaccharide d-glucose and low-intensity sweetener oligofructose (OFS) decreased (p < 0.001) ghrelin secretion while the high-intensity sweetener sucralose increased (p < 0.001) ghrelin secretion in vitro. These effects were not mediated via the sweet taste receptor or glucose transporters (the sodium-dependent glucose cotransporter SGLT-1 and GLUT2). The effect of these compounds was mimicked ex vivo in gastric and jejunal segments from both wild type (WT) and α-gustducin knockout (α-gust-/-) mice. In vivo, the sensing of d-glucose was polarized since intragastric but not intravenous administration of d-glucose decreased (p < 0.05) ghrelin levels in an α-gustducin independent manner which involved inhibition of duodenal ghrelin release. In contrast, neither OFS nor sucralose affected ghrelin secretion in vivo. In conclusion, α-gustducin-mediated sweet taste receptor signaling does not play a functional role in the sensing of carbohydrates, or low- or high-intensity sweeteners by the ghrelin cell.
Collapse
Affiliation(s)
- Sandra Steensels
- Gut Peptide Lab, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven-KU Leuven, 3000 Leuven, Belgium.
| | - Laurien Vancleef
- Gut Peptide Lab, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven-KU Leuven, 3000 Leuven, Belgium.
| | - Inge Depoortere
- Gut Peptide Lab, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven-KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
55
|
Sweet Taste Perception is Associated with Body Mass Index at the Phenotypic and Genotypic Level. Twin Res Hum Genet 2016; 19:465-71. [DOI: 10.1017/thg.2016.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Investigations on the relationship between sweet taste perception and body mass index (BMI) have been inconclusive. Here, we report a longitudinal analysis using a genetically informative sample of 1,576 adolescent Australian twins to explore the relationship between BMI and sweet taste. First, we estimated the phenotypic correlations between perception scores for four different sweet compounds (glucose, fructose, neohesperidine dihydrochalcone (NHDC), and aspartame) and BMI. Then, we computed the association between adolescent taste perception and BMI in early adulthood (reported 9 years later). Finally, we used twin modeling and polygenic risk prediction analysis to investigate the genetic overlap between BMI and sweet taste perception. Our findings revealed that BMI in early adulthood was significantly associated with each of the sweet perception scores, with the strongest correlation observed in aspartame withr= 0.09 (p= .007). However, only limited evidence of association was observed between sweet taste perception and BMI that was measured at the same time (in adolescence), with the strongest evidence of association observed for glucose with a correlation coefficient ofr= 0.06 (p= .029) and for aspartame withr= 0.06 (p= .035). We found a significant (p< .05) genetic correlation between glucose and NHDC perception and BMI. Our analyses suggest that sweet taste perception in adolescence can be a potential indicator of BMI in early adulthood. This association is further supported by evidence of genetic overlap between the traits, suggesting that some BMI genes may be acting through biological pathways of taste perception.
Collapse
|
56
|
Kojima I, Nakagawa Y, Hamano K, Medina J, Li L, Nagasawa M. Glucose-Sensing Receptor T1R3: A New Signaling Receptor Activated by Glucose in Pancreatic β-Cells. Biol Pharm Bull 2016; 38:674-9. [PMID: 25947913 DOI: 10.1248/bpb.b14-00895] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Subunits of the sweet taste receptors T1R2 and T1R3 are expressed in pancreatic β-cells. Compared with T1R3, mRNA expression of T1R2 is considerably lower. At the protein level, expression of T1R2 is undetectable in β-cells. Accordingly, a major component of the sweet taste-sensing receptor in β-cells may be a homodimer of T1R3 rather than a heterodimer of T1R2/T1R3. Inhibition of this receptor by gurmarin or deletion of the T1R3 gene attenuates glucose-induced insulin secretion from β-cells. Hence the T1R3 homodimer functions as a glucose-sensing receptor (GSR) in pancreatic β-cells. When GSR is activated by the T1R3 agonist sucralose, elevation of intracellular ATP concentration ([ATP]i) is observed. Sucralose increases [ATP]i even in the absence of ambient glucose, indicating that sucralose increases [ATP]i not simply by activating glucokinase, a rate-limiting enzyme in the glycolytic pathway. In addition, sucralose augments elevation of [ATP]i induced by methylsuccinate, suggesting that sucralose activates mitochondrial metabolism. Nonmetabolizable 3-O-methylglucose also increases [ATP]i and knockdown of T1R3 attenuates elevation of [ATP]i induced by high concentration of glucose. Collectively, these results indicate that the T1R3 homodimer functions as a GSR; this receptor is involved in glucose-induced insulin secretion by activating glucose metabolism probably in mitochondria.
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular & Cellular Regulation, Gunma University
| | | | | | | | | | | |
Collapse
|
57
|
Smith KR, Hussain T, Karimian Azari E, Steiner JL, Ayala JE, Pratley RE, Kyriazis GA. Disruption of the sugar-sensing receptor T1R2 attenuates metabolic derangements associated with diet-induced obesity. Am J Physiol Endocrinol Metab 2016; 310:E688-E698. [PMID: 26884387 PMCID: PMC4835941 DOI: 10.1152/ajpendo.00484.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/12/2016] [Indexed: 11/22/2022]
Abstract
Sweet taste receptors (STRs) on the tongue mediate gustatory sweet sensing, but their expression in the gut, pancreas, and adipose tissue suggests a physiological contribution to whole body nutrient sensing and metabolism. However, little is known about the function and contribution of these sugar sensors during metabolic stress induced by overnutrition and subsequent obesity. Here, we investigated the effects of high-fat/low-carbohydrate (HF/LC) diet on glucose homeostasis and energy balance in mice with global disruption of the sweet taste receptor protein T1R2. We assessed body composition, energy balance, glucose homeostasis, and tissue-specific nutrient metabolism in T1R2 knockout (T1R2-KO) mice fed a HF/LC diet for 12 wk. HF/LC diet-fed T1R2-KO mice gained a similar amount of body mass as did WT mice, but had reduced fat mass and increased lean mass relative to WT mice. T1R2-KO mice were also hyperphagic and hyperactive. Ablation of the T1R2 sugar sensor protected mice from HF/LC diet-induced hyperinsulinemia and altered substrate utilization, including increased rates of glucose oxidation and decreased liver triglyceride (TG) accumulation, despite normal intestinal fat absorption. Finally, STRs (T1r2/T1r3) were upregulated in the adipose tissue of WT mice in response to HF/LC diet, and their expression positively correlated with fat mass and glucose intolerance. The chemosensory receptor T1R2, plays an important role in glucose homeostasis during diet-induced obesity through the regulation of yet to be identified molecular mechanisms that alter energy disposal and utilization in peripheral tissues.
Collapse
Affiliation(s)
- Kathleen R Smith
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida; and
| | - Tania Hussain
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida; and
| | - Elnaz Karimian Azari
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida; and
| | - Jennifer L Steiner
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida; and
| | - Julio E Ayala
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida; and
| | - Richard E Pratley
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida; and
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| | - George A Kyriazis
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida; and
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida
| |
Collapse
|
58
|
Avau B, Depoortere I. The bitter truth about bitter taste receptors: beyond sensing bitter in the oral cavity. Acta Physiol (Oxf) 2016; 216:407-20. [PMID: 26493384 DOI: 10.1111/apha.12621] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/28/2015] [Accepted: 10/14/2015] [Indexed: 11/26/2022]
Abstract
The bitter taste receptor (TAS2R)-family of G-protein-coupled receptors has been identified on the tongue as detectors of bitter taste over a decade ago. In the last few years, they have been discovered in an ever growing number of extra-oral tissues, including the airways, the gut, the brain and even the testis. In tissues that contact the exterior, protective functions for TAS2Rs have been proposed, in analogy to their function on the tongue as toxicity detector. However, TAS2Rs have also been found in internal organs, suggesting other roles for these receptors, perhaps involving as yet unidentified endogenous ligands. The current review gives an overview of the different proposed functions for TAS2Rs in tissues other than the oral cavity; from appetite regulation to the treatment of asthma, regulation of gastrointestinal motility and control of airway innate immunity.
Collapse
Affiliation(s)
- B. Avau
- Translational Research Center for Gastrointestinal Disorders (TARGID); Gut Peptide Research Lab; University of Leuven; Leuven Belgium
| | - I. Depoortere
- Translational Research Center for Gastrointestinal Disorders (TARGID); Gut Peptide Research Lab; University of Leuven; Leuven Belgium
| |
Collapse
|
59
|
The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice. PLoS One 2015; 10:e0145538. [PMID: 26692363 PMCID: PMC4686985 DOI: 10.1371/journal.pone.0145538] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022] Open
Abstract
Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R) have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/-) mice became less obese than wild type (WT) mice when fed a high-fat diet (HFD). White adipose tissue (WAT) mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT) thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB) or quinine (Q) during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB), but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.
Collapse
|
60
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
61
|
Hamano K, Nakagawa Y, Ohtsu Y, Li L, Medina J, Tanaka Y, Masuda K, Komatsu M, Kojima I. Lactisole inhibits the glucose-sensing receptor T1R3 expressed in mouse pancreatic β-cells. J Endocrinol 2015; 226:57-66. [PMID: 25994004 DOI: 10.1530/joe-15-0102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 11/08/2022]
Abstract
Glucose activates the glucose-sensing receptor T1R3 and facilitates its own metabolism in pancreatic β-cells. An inhibitor of this receptor would be helpful in elucidating the physiological function of the glucose-sensing receptor. The present study was conducted to examine whether or not lactisole can be used as an inhibitor of the glucose-sensing receptor. In MIN6 cells, in a dose-dependent manner, lactisole inhibited insulin secretion induced by sweeteners, acesulfame-K, sucralose and glycyrrhizin. The IC50 was ∼4 mmol/l. Lactisole attenuated the elevation of cytoplasmic Ca2+ concentration ([Ca2+]c) evoked by sucralose and acesulfame-K but did not affect the elevation of intracellular cAMP concentration ([cAMP]c) induced by these sweeteners. Lactisole also inhibited the action of glucose in MIN6 cells. Thus, lactisole significantly reduced elevations of intracellular [NADH] and intracellular [ATP] induced by glucose, and also inhibited glucose-induced insulin secretion. To further examine the effect of lactisole on T1R3, we prepared HEK293 cells stably expressing mouse T1R3. In these cells, sucralose elevated both [Ca2+]c and [cAMP]c. Lactisole attenuated the sucralose-induced increase in [Ca2+]c but did not affect the elevation of [cAMP]c. Finally, lactisole inhibited insulin secretion induced by a high concentration of glucose in mouse islets. These results indicate that the mouse glucose-sensing receptor was inhibited by lactisole. Lactisole may be useful in assessing the role of the glucose-sensing receptor in mouse pancreatic β-cells.
Collapse
Affiliation(s)
- Kunihisa Hamano
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Yuko Nakagawa
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiaki Ohtsu
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Longfei Li
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Johan Medina
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Yuji Tanaka
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Katsuyoshi Masuda
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuhisa Komatsu
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| | - Itaru Kojima
- Institute for Molecular and Cellular RegulationGunma University, Maebashi 371-8512, JapanDepartment of General MedicineNational Defense Medical College, Tokorozawa, JapanSuntory Institute for Bioorganic ResearchOsaka, JapanDepartment of Internal MedicineShinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
62
|
Malki A, Fiedler J, Fricke K, Ballweg I, Pfaffl MW, Krautwurst D. Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. J Leukoc Biol 2015; 97:533-45. [PMID: 25624459 DOI: 10.1189/jlb.2a0714-331rr] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our cellular immune system has to cope constantly with foodborne substances that enter the bloodstream postprandially. Here, they may activate leukocytes via specific but yet mostly unknown receptors. Ectopic RNA expression out of gene families of chemosensory receptors, i.e., the ∼400 ORs, ∼25 TAS2R bitter-taste receptors, and the TAS1R umami- and sweet-taste receptor dimers by which we typically detect foodborne substances, has been reported in a variety of peripheral tissues unrelated to olfaction or taste. In the present study, we have now discovered, by gene-specific RT-PCR experiments, the mRNA expression of most of the Class I ORs (TAS1R) and TAS2R in 5 different types of blood leukocytes. Surprisingly, we did not detect Class II OR mRNA. By RT-qPCR, we show the mRNA expression of human chemosensory receptors and their cow orthologs in PMN, thus suggesting an evolutionary concept. By immunocytochemistry, we demonstrate that some olfactory and taste receptors are expressed, on average, in 40-60% of PMN and T or B cells and largely coexpress in the same subpopulation of PMN. The mRNA expression and the size of subpopulations expressing certain chemosensory receptors varied largely among individual blood samples, suggesting a regulated expression of olfactory and taste receptors in these cells. Moreover, we show mRNA expression of their downstream signaling molecules and demonstrate that PTX abolishes saccharin- or 2-PEA-induced PMN chemotactic migration, indicating a role for Gi-type proteins. In summary, our data suggest "chemosensory"-type subpopulations of circulating leukocytes.
Collapse
Affiliation(s)
- Agne Malki
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Julia Fiedler
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Kristina Fricke
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Ines Ballweg
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Michael W Pfaffl
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| | - Dietmar Krautwurst
- *Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institute, Freising, Germany; and Technische Universität München, Lehrstuhl für Physiologie-Wissenschaftszentrum Weihenstephan, Freising, Germany
| |
Collapse
|
63
|
Lee RJ, Cohen NA. Taste receptors in innate immunity. Cell Mol Life Sci 2015; 72:217-36. [PMID: 25323130 PMCID: PMC4286424 DOI: 10.1007/s00018-014-1736-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023]
Abstract
Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein-coupled receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5th floor, Philadelphia, PA 19104 USA
| | - Noam A. Cohen
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Ravdin Building, 5th floor, Philadelphia, PA 19104 USA
- Philadelphia Veterans Affairs Medical Center Surgical Services, 3900 Woodland Ave, Philadelphia, PA 19104 USA
| |
Collapse
|
64
|
Kojima I, Nakagawa Y, Ohtsu Y, Hamano K, Medina J, Nagasawa M. Return of the glucoreceptor: Glucose activates the glucose-sensing receptor T1R3 and facilitates metabolism in pancreatic β-cells. J Diabetes Investig 2014; 6:256-63. [PMID: 25969708 PMCID: PMC4420555 DOI: 10.1111/jdi.12304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 01/29/2023] Open
Abstract
Subunits of the sweet taste receptor, namely T1R2 and T1R3, are expressed in mouse pancreatic islets. Quantitatively, the expression of messenger ribonucleic acid for T1R2 is much lower than that of T1R3, and immunoreactive T1R2 is in fact undetectable. Presumably, a homodimer of T1R3 could function as a signaling receptor. Activation of this receptor by adding an artificial sweetener, sucralose, leads to an increase in intracellular adenosine triphosphate ([ATP]c). This increase in [ATP]c is observed in the absence of ambient glucose. Sucralose also augments elevation of [ATP]c induced by methylsuccinate, a substrate for mitochondria. Consequently, activation of T1R3 promotes metabolism in mitochondria and increases [ATP]c. 3-O-Methylglucose, a non-metabolizable analog of glucose, also increases [ATP]c. Conversely, knockdown of T1R3 attenuates elevation of [ATP]c induced by glucose. Hence, glucose promotes its own metabolism by activating T1R3 and augmenting ATP production. Collectively, a homodimer of T1R3 functions as a cell surface glucose-sensing receptor and participates in the action of glucose on insulin secretion. The glucose-sensing receptor T1R3 might be the putative glucoreceptor proposed decades ago by Niki et al. The glucose-sensing receptor is involved in the action of glucose and modulates glucose metabolism in pancreatic β-cells.
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Yuko Nakagawa
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Yoshiaki Ohtsu
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Kunihisa Hamano
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Johan Medina
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| | - Masahiro Nagasawa
- Institute for Molecular & Cellular Regulation, Gunma University Maebashi, Japan
| |
Collapse
|
65
|
van der Wielen N, van Avesaat M, de Wit NJW, Vogels JTWE, Troost F, Masclee A, Koopmans SJ, van der Meulen J, Boekschoten MV, Müller M, Hendriks HFJ, Witkamp RF, Meijerink J. Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine. PLoS One 2014; 9:e107531. [PMID: 25216051 PMCID: PMC4162619 DOI: 10.1371/journal.pone.0107531] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 08/12/2014] [Indexed: 01/29/2023] Open
Abstract
INTRODUCTION Intestinal chemosensory receptors and transporters are able to detect food-derived molecules and are involved in the modulation of gut hormone release. Gut hormones play an important role in the regulation of food intake and the control of gastrointestinal functioning. This mechanism is often referred to as "nutrient sensing". Knowledge of the distribution of chemosensors along the intestinal tract is important to gain insight in nutrient detection and sensing, both pivotal processes for the regulation of food intake. However, most knowledge is derived from rodents, whereas studies in man and pig are limited, and cross-species comparisons are lacking. AIM To characterize and compare intestinal expression patterns of genes related to nutrient sensing in mice, pigs and humans. METHODS Mucosal biopsy samples taken at six locations in human intestine (n = 40) were analyzed by qPCR. Intestinal scrapings from 14 locations in pigs (n = 6) and from 10 locations in mice (n = 4) were analyzed by qPCR and microarray, respectively. The gene expression of glucagon, cholecystokinin, peptide YY, glucagon-like peptide-1 receptor, taste receptor T1R3, sodium/glucose cotransporter, peptide transporter-1, GPR120, taste receptor T1R1, GPR119 and GPR93 was investigated. Partial least squares (PLS) modeling was used to compare the intestinal expression pattern between the three species. RESULTS AND CONCLUSION The studied genes were found to display specific expression patterns along the intestinal tract. PLS analysis showed a high similarity between human, pig and mouse in the expression of genes related to nutrient sensing in the distal ileum, and between human and pig in the colon. The gene expression pattern was most deviating between the species in the proximal intestine. Our results give new insights in interspecies similarities and provide new leads for translational research and models aiming to modulate food intake processes in man.
Collapse
Affiliation(s)
- Nikkie van der Wielen
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Mark van Avesaat
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Nicole J. W. de Wit
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jack T. W. E. Vogels
- Netherlands Organisation for Applied Scientific Research, TNO, Zeist, The Netherlands
| | - Freddy Troost
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ad Masclee
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, NUTRIM, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sietse-Jan Koopmans
- Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
- Animal Sciences Group, Wageningen University and Research centre, Lelystad, The Netherlands
| | - Jan van der Meulen
- Animal Sciences Group, Wageningen University and Research centre, Lelystad, The Netherlands
| | - Mark V. Boekschoten
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Michael Müller
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Henk F. J. Hendriks
- Top Institute Food and Nutrition, 9A, Wageningen, The Netherlands
- Netherlands Organisation for Applied Scientific Research, TNO, Zeist, The Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
66
|
Ohtsu Y, Nakagawa Y, Nagasawa M, Takeda S, Arakawa H, Kojima I. Diverse signaling systems activated by the sweet taste receptor in human GLP-1-secreting cells. Mol Cell Endocrinol 2014; 394:70-9. [PMID: 25017733 DOI: 10.1016/j.mce.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/30/2014] [Accepted: 07/04/2014] [Indexed: 01/08/2023]
Abstract
Sweet taste receptor regulates GLP-1 secretion in enteroendocrine L-cells. We investigated the signaling system activated by this receptor using Hutu-80 cells. We stimulated them with sucralose, saccharin, acesulfame K and glycyrrhizin. These sweeteners stimulated GLP-1 secretion, which was attenuated by lactisole. All these sweeteners elevated cytoplasmic cyclic AMP ([cAMP]c) whereas only sucralose and saccharin induced a monophasic increase in cytoplasmic Ca(2+) ([Ca(2+)]c). Removal of extracellular calcium or sodium and addition of a Gq/11 inhibitor greatly reduced the [Ca(2+)]c responses to two sweeteners. In contrast, acesulfame K induced rapid and sustained reduction of [Ca(2+)]c. In addition, glycyrrhizin first reduced [Ca(2+)]c which was followed by an elevation of [Ca(2+)]c. Reductions of [Ca(2+)]c induced by acesulfame K and glycyrrhizin were attenuated by a calmodulin inhibitor or by knockdown of the plasma membrane calcium pump. These results indicate that various sweet molecules act as biased agonists and evoke strikingly different patterns of intracellular signals.
Collapse
Affiliation(s)
- Yoshiaki Ohtsu
- Institute for Molecular & Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Yuko Nakagawa
- Institute for Molecular & Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Masahiro Nagasawa
- Institute for Molecular & Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | - Shigeki Takeda
- Gunma University Graduate School of Technology, Kiryu 376-8515, Japan
| | - Hirokazu Arakawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Itaru Kojima
- Institute for Molecular & Cellular Regulation, Gunma University, Maebashi 371-8512, Japan.
| |
Collapse
|
67
|
Normal roles for dietary fructose in carbohydrate metabolism. Nutrients 2014; 6:3117-29. [PMID: 25100436 PMCID: PMC4145298 DOI: 10.3390/nu6083117] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 01/22/2023] Open
Abstract
Although there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver. Fructose accelerates carbohydrate oxidation after a meal. In addition, emerging evidence suggests that fructose may also play a role in the secretion of insulin and GLP-1, and in the maturation of preadipocytes to increase fat storage capacity. Therefore, fructose undergoing its normal metabolism has the interesting property of potentiating the disposal of a dietary carbohydrate load through several routes.
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW This review summarizes and discusses the current knowledge about the physiological roles of the sweet taste receptor in oral and extraoral tissues. RECENT FINDINGS The expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, including the gut, pancreas, bladder, brain and, more recently, bone and adipose tissues. In the gut, this receptor has been suggested to be involved in luminal glucose sensing, the release of some satiety hormones, the expression of glucose transporters, and the maintenance of glucose homeostasis. More recently, the sweet taste receptor was proposed to regulate adipogenesis and bone biology. SUMMARY The perception of sweet taste is mediated by the T1R2/T1R3 receptor, which is expressed in the oral cavity, wherein it provides input on the caloric and macronutrient contents of ingested food. This receptor recognizes all the chemically diverse compounds perceived as sweet by human beings, including natural sugars and sweeteners. Importantly, the expression of a functional sweet taste receptor has been reported in numerous extragustatory tissues, wherein it has been proposed to regulate metabolic processes. This newly recognized role of the sweet taste receptor makes this receptor a potential novel therapeutic target for the treatment of obesity and related metabolic dysfunctions, such as diabetes and hyperlipidemia.
Collapse
Affiliation(s)
- Anni Laffitte
- INRA UMR1324, CNRS UMR6265, Université de Bourgogne, Centre des Sciences du GoÛt et de l'Alimentation, Dijon, France
| | | | | |
Collapse
|
69
|
Kojima I, Nakagawa Y, Ohtsu Y, Medina A, Nagasawa M. Sweet Taste-Sensing Receptors Expressed in Pancreatic β-Cells: Sweet Molecules Act as Biased Agonists. Endocrinol Metab (Seoul) 2014; 29:12-9. [PMID: 24741449 PMCID: PMC3970274 DOI: 10.3803/enm.2014.29.1.12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The sweet taste receptors present in the taste buds are heterodimers comprised of T1R2 and T1R3. This receptor is also expressed in pancreatic β-cells. When the expression of receptor subunits is determined in β-cells by quantitative reverse transcription polymerase chain reaction, the mRNA expression level of T1R2 is extremely low compared to that of T1R3. In fact, the expression of T1R2 is undetectable at the protein level. Furthermore, knockdown of T1R2 does not affect the effect of sweet molecules, whereas knockdown of T1R3 markedly attenuates the effect of sweet molecules. Consequently, a homodimer of T1R3 functions as a receptor sensing sweet molecules in β-cells, which we designate as sweet taste-sensing receptors (STSRs). Various sweet molecules activate STSR in β-cells and augment insulin secretion. With regard to intracellular signals, sweet molecules act on STSRs and increase cytoplasmic Ca(2+) and/or cyclic AMP (cAMP). Specifically, when an STSR is stimulated by one of four different sweet molecules (sucralose, acesulfame potassium, sodium saccharin, or glycyrrhizin), distinct signaling pathways are activated. Patterns of changes in cytoplasmic Ca(2+) and/or cAMP induced by these sweet molecules are all different from each other. Hence, sweet molecules activate STSRs by acting as biased agonists.
Collapse
Affiliation(s)
- Itaru Kojima
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yuko Nakagawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yoshiaki Ohtsu
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Anya Medina
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Masahiro Nagasawa
- Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| |
Collapse
|
70
|
Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF, Cohen NA. Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 2014; 124:1393-405. [PMID: 24531552 DOI: 10.1172/jci72094] [Citation(s) in RCA: 309] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/11/2013] [Indexed: 12/11/2022] Open
Abstract
Bitter taste receptors (T2Rs) in the human airway detect harmful compounds, including secreted bacterial products. Here, using human primary sinonasal air-liquid interface cultures and tissue explants, we determined that activation of a subset of airway T2Rs expressed in nasal solitary chemosensory cells activates a calcium wave that propagates through gap junctions to the surrounding respiratory epithelial cells. The T2R-dependent calcium wave stimulated robust secretion of antimicrobial peptides into the mucus that was capable of killing a variety of respiratory pathogens. Furthermore, sweet taste receptor (T1R2/3) activation suppressed T2R-mediated antimicrobial peptide secretion, suggesting that T1R2/3-mediated inhibition of T2Rs prevents full antimicrobial peptide release during times of relative health. In contrast, during acute bacterial infection, T1R2/3 is likely deactivated in response to bacterial consumption of airway surface liquid glucose, alleviating T2R inhibition and resulting in antimicrobial peptide secretion. We found that patients with chronic rhinosinusitis have elevated glucose concentrations in their nasal secretions, and other reports have shown that patients with hyperglycemia likewise have elevated nasal glucose levels. These data suggest that increased glucose in respiratory secretions in pathologic states, such as chronic rhinosinusitis or hyperglycemia, promotes tonic activation of T1R2/3 and suppresses T2R-mediated innate defense. Furthermore, targeting T1R2/3-dependent suppression of T2Rs may have therapeutic potential for upper respiratory tract infections.
Collapse
|
71
|
Simon BR, Learman BS, Parlee SD, Scheller EL, Mori H, Cawthorn WP, Ning X, Krishnan V, Ma YL, Tyrberg B, MacDougald OA. Sweet taste receptor deficient mice have decreased adiposity and increased bone mass. PLoS One 2014; 9:e86454. [PMID: 24466105 PMCID: PMC3899259 DOI: 10.1371/journal.pone.0086454] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.
Collapse
Affiliation(s)
- Becky R. Simon
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian S. Learman
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sebastian D. Parlee
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erica L. Scheller
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hiroyuki Mori
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William P. Cawthorn
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, United States of America
| | - Xiaomin Ning
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Venkatesh Krishnan
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, United States of America
| | - Yanfei L. Ma
- Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana, United States of America
| | - Björn Tyrberg
- Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg, Maryland, United States of America
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
| | - Ormond A. MacDougald
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
72
|
Taste Receptor Gene Expression Outside the Gustatory System. TOPICS IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1007/7355_2014_79] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
73
|
Extrasensory perception: odorant and taste receptors beyond the nose and mouth. Pharmacol Ther 2013; 142:41-61. [PMID: 24280065 DOI: 10.1016/j.pharmthera.2013.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane receptors and are prime therapeutic targets. The odorant and taste receptors account for over half of the GPCR repertoire, yet they are generally excluded from large-scale, drug candidate analyses. Accumulating molecular evidence indicates that the odorant and taste receptors are widely expressed throughout the body and functional beyond the oronasal cavity - with roles including nutrient sensing, autophagy, muscle regeneration, regulation of gut motility, protective airway reflexes, bronchodilation, and respiratory disease. Given this expanding array of actions, the restricted perception of these GPCRs as mere mediators of smell and taste is outdated. Moreover, delineation of the precise actions of odorant and taste GPCRs continues to be hampered by the relative paucity of selective and specific experimental tools, as well as the lack of defined receptor pharmacology. In this review, we summarize the evidence for expression and function of odorant and taste receptors in tissues beyond the nose and mouth, and we highlight their broad potential in physiology and pathophysiology.
Collapse
|
74
|
Simon BR, Parlee SD, Learman BS, Mori H, Scheller EL, Cawthorn WP, Ning X, Gallagher K, Tyrberg B, Assadi-Porter FM, Evans CR, MacDougald OA. Artificial sweeteners stimulate adipogenesis and suppress lipolysis independently of sweet taste receptors. J Biol Chem 2013; 288:32475-32489. [PMID: 24068707 DOI: 10.1074/jbc.m113.514034] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
G protein-coupled receptors mediate responses to a myriad of ligands, some of which regulate adipocyte differentiation and metabolism. The sweet taste receptors T1R2 and T1R3 are G protein-coupled receptors that function as carbohydrate sensors in taste buds, gut, and pancreas. Here we report that sweet taste receptors T1R2 and T1R3 are expressed throughout adipogenesis and in adipose tissues. Treatment of mouse and human precursor cells with artificial sweeteners, saccharin and acesulfame potassium, enhanced adipogenesis. Saccharin treatment of 3T3-L1 cells and primary mesenchymal stem cells rapidly stimulated phosphorylation of Akt and downstream targets with functions in adipogenesis such as cAMP-response element-binding protein and FOXO1; however, increased expression of peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α was not observed until relatively late in differentiation. Saccharin-stimulated Akt phosphorylation at Thr-308 occurred within 5 min, was phosphatidylinositol 3-kinase-dependent, and occurred in the presence of high concentrations of insulin and dexamethasone; phosphorylation of Ser-473 occurred more gradually. Surprisingly, neither saccharin-stimulated adipogenesis nor Thr-308 phosphorylation was dependent on expression of T1R2 and/or T1R3, although Ser-473 phosphorylation was impaired in T1R2/T1R3 double knock-out precursors. In mature adipocytes, artificial sweetener treatment suppressed lipolysis even in the presence of forskolin, and lipolytic responses were correlated with phosphorylation of hormone-sensitive lipase. Suppression of lipolysis by saccharin in adipocytes was also independent of T1R2 and T1R3. These results suggest that some artificial sweeteners have previously uncharacterized metabolic effects on adipocyte differentiation and metabolism and that effects of artificial sweeteners on adipose tissue biology may be largely independent of the classical sweet taste receptors, T1R2 and T1R3.
Collapse
Affiliation(s)
| | | | | | | | | | - William P Cawthorn
- Departments of Molecular and Integrative Physiology,; Musculoskeletal Research, Lilly Research Laboratories, Indianapolis, Indiana 46285
| | - Xiaomin Ning
- Departments of Molecular and Integrative Physiology
| | | | - Björn Tyrberg
- Cardiovascular and Metabolic Disease, MedImmune LLC, Gaithersburg Headquarters, Gaithersburg, Maryland 20878,; Metabolic Signaling and Disease, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827
| | | | | | - Ormond A MacDougald
- From the Program in Cellular and Molecular Biology; Departments of Molecular and Integrative Physiology,; Internal Medicine, University of Michigan, Ann Arbor, Michigan 48105,.
| |
Collapse
|
75
|
Nakagawa Y, Nagasawa M, Mogami H, Lohse M, Ninomiya Y, Kojima I. Multimodal function of the sweet taste receptor expressed in pancreatic β-cells: generation of diverse patterns of intracellular signals by sweet agonists. Endocr J 2013; 60:1191-206. [PMID: 23933592 DOI: 10.1507/endocrj.ej13-0282] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The sweet taste receptor is expressed in the taste bud and is activated by numerous sweet molecules with diverse chemical structures. It is, however, not known whether these sweet agonists induce a similar cellular response in target cells. Using MIN6 cells, a pancreatic β-cell line expressing endogenous sweet taste receptor, we addressed this question by monitoring changes in cytoplasmic Ca2+ ([Ca2+]i) and cAMP ([cAMP]i) induced by four sweet taste receptor agonists. Glycyrrhizin evoked sustained elevation of [Ca2+]i but [cAMP]i was not affected. Conversely, an artificial sweetener saccharin induced sustained elevation of [cAMP]i but did not increase [Ca2+]i. In contrast, sucralose and acesulfame K induced rapid and sustained increases in both [Ca2+]i and [cAMP]i. Although the latter two sweeteners increased [Ca2+]i and [cAMP]i, their actions were not identical: [Ca2+]i response to sucralose but not acesulfame K was inhibited by gurmarin, an antagonist of the sweet taste receptor which blocks the gustducin-dependent pathway. In addition, [Ca2+]i response to acesulfame K but not to sucralose was resistant to a Gq inhibitor. These results indicate that four types of sweeteners activate the sweet taste receptor differently and generate distinct patterns of intracellular signals. The sweet taste receptor has amazing multimodal functions producing multiple patterns of intracellular signals.
Collapse
Affiliation(s)
- Yuko Nakagawa
- Institute for Molecular & Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Sasaki T, Shimpuku M, Kitazumi T, Hiraga H, Nakagawa Y, Shibata H, Okamatsu-Ogura Y, Kikuchi O, Kim HJ, Fujita Y, Maruyama J, Susanti VY, Yokota-Hashimoto H, Kobayashi M, Saito M, Kitamura T. Miglitol prevents diet-induced obesity by stimulating brown adipose tissue and energy expenditure independent of preventing the digestion of carbohydrates. Endocr J 2013; 60:1117-29. [PMID: 23995917 DOI: 10.1507/endocrj.ej13-0333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Miglitol is an alpha-glucosidase inhibitor that improves post-prandial hyperglycemia, and it is the only drug in its class that enters the bloodstream. Anecdotally, miglitol lowers patient body weight more effectively than other alpha-glucosidase inhibitors, but the precise mechanism has not been addressed. Therefore, we analyzed the anti-obesity effects of miglitol in mice and in the HB2 brown adipocyte cell line. Miglitol prevented diet-induced obesity by stimulating energy expenditure without affecting food intake in mice. Long-term miglitol treatment dose-dependently prevented diet-induced obesity and induced mitochondrial gene expression in brown adipose tissue. The anti-obesity effect was independent of preventing carbohydrate digestion in the gastrointestinal tract. Miglitol effectively stimulated energy expenditure in mice fed a high-fat high-monocarbohydrate diet, and intraperitoneal injection of miglitol was sufficient to stimulate energy expenditure in mice. Acarbose, which is a non-absorbable alpha glucosidase inhibitor, also prevented diet-induced obesity, but through a different mechanism: it did not stimulate energy expenditure, but caused indigestion, leading to less energy absorption. Miglitol promoted adrenergic signaling in brown adipocytes in vitro. These data indicate that circulating miglitol stimulates brown adipose tissue and increases energy expenditure, thereby preventing diet-induced obesity. Further optimizing miglitol's effect on brown adipose tissue could lead to a novel anti-obesity drug.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory of Metabolic Signal, Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|