51
|
Yu Q, Fang D, Swerdlow RH, Yu H, Chen JX, Yan SS. Antioxidants Rescue Mitochondrial Transport in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 2018; 54:679-90. [PMID: 27567872 DOI: 10.3233/jad-160532] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial dysfunction and axonal degeneration are early pathological features of Alzheimer's disease (AD)-affected brains. The underlying mechanisms and strategies to rescue it have not been well elucidated. Here, we evaluated axonal mitochondrial transport and function in AD subject-derived mitochondria. We analyzed mitochondrial transport and kinetics in human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were derived from platelets of patients with sporadic AD and compared these AD cybrid cell lines with cybrid cell lines whose mitochondria were derived from age-matched, cognitively normal subjects. Human AD cybrid cell lines, when induced to differentiate, developed stunted projections. Mitochondrial transport and function within neuronal processes/axons was altered in AD-derived mitochondria. Antioxidants reversed deficits in axonal mitochondrial transport and function. These findings suggest that antioxidants may be able to mitigate the consequences of AD-associated mitochondrial dysfunction. The present study provides evidence of the cause/effect of AD specific mitochondrial defects, which significantly enhances our understanding of the AD pathogenesis and exploring the effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Du Fang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | | | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
52
|
Lee JK, Kim NJ. Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer's Disease. Molecules 2017; 22:molecules22081287. [PMID: 28767069 PMCID: PMC6152076 DOI: 10.3390/molecules22081287] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
P38 mitogen-activated protein kinase (MAPK) is a crucial target for chronic inflammatory diseases. Alzheimer’s disease (AD) is characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain, as well as neurodegeneration, and there is no known cure. Recent studies on the underlying biology of AD in cellular and animal models have indicated that p38 MAPK is capable of orchestrating diverse events related to AD, such as tau phosphorylation, neurotoxicity, neuroinflammation and synaptic dysfunction. Thus, the inhibition of p38 MAPK is considered a promising strategy for the treatment of AD. In this review, we summarize recent advances in the targeting of p38 MAPK as a potential strategy for the treatment of AD and envision possibilities of p38 MAPK inhibitors as a fundamental therapeutics for AD.
Collapse
Affiliation(s)
- Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea.
| |
Collapse
|
53
|
Loss of succinyl-CoA synthase ADP-forming β subunit disrupts mtDNA stability and mitochondrial dynamics in neurons. Sci Rep 2017; 7:7169. [PMID: 28769029 PMCID: PMC5541051 DOI: 10.1038/s41598-017-05168-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/24/2017] [Indexed: 11/30/2022] Open
Abstract
Succinyl Coenzyme A synthetase (SCS) is a key mitochondrial enzyme. Defected SCS ADP-forming β subunit (SCS A-β) is linked to lethal infantile Leigh or leigh-like syndrome. However, the impacts of SCS A-β deficiency on mitochondria specifically in neurons have not yet been comprehensively investigated. Here, by down-regulating the expression levels of SCS A-β in cultured mouse neurons, we have found that SCS A-β deficiency induces severe mitochondrial dysfunction including lowered oxidative phosphorylation (OXPHOS) efficiency, increased mitochondrial superoxide production, and mtDNA depletion as well as aberrations of mitochondrial fusion and fission proteins, which eventually leads to neuronal stress. Our data also suggest that the deregulation of mitochondrial nucleoside diphosphate kinase (NDPK) together with defects in mitochondrial transcription factors including mitochondrial DNA pol γ and Twinkle contribute to SCS A-β deficiency-mediated mtDNA instability. Furthermore, we have found that SCS A-β deficiency has detrimental influence on neuronal mitochondrial dynamics. Put together, the results have furnished our knowledge on the pathogenesis of SCS A-β deficiency-related mitochondrial diseases and revealed the vital role of SCS A-β in maintaining neuronal mitochondrial quality control and neuronal physiology.
Collapse
|
54
|
Kou X, Li J, Liu X, Chang J, Zhao Q, Jia S, Fan J, Chen N. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics. J Appl Physiol (1985) 2017; 122:1462-1469. [DOI: 10.1152/japplphysiol.00018.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 01/07/2023] Open
Abstract
microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer’s disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a.
Collapse
Affiliation(s)
- Xianjuan Kou
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Jie Li
- Graduate School, Wuhan Sports University, Wuhan, China; and
| | - Xingran Liu
- Graduate School, Wuhan Sports University, Wuhan, China; and
| | - Jingru Chang
- Graduate School, Wuhan Sports University, Wuhan, China; and
| | - Qingxia Zhao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina
| | - Shaohui Jia
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Sport Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|
55
|
Pérez MJ, Quintanilla RA. Development or disease: duality of the mitochondrial permeability transition pore. Dev Biol 2017; 426:1-7. [PMID: 28457864 DOI: 10.1016/j.ydbio.2017.04.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022]
Abstract
Mitochondria is not only a dynamic organelle that produces ATP, but is also an important contributor to cell functions in both development and cell death processes. These paradoxical functions of mitochondria are partially regulated by the mitochondrial permeability transition pore (mPTP), a high-conductance channel that can induce loss of mitochondrial membrane potential, impairment of cellular calcium homeostasis, oxidative stress, and a decrease in ATP production upon pathological activation. Interestingly, despite their different etiologies, several neurodegenerative diseases and heart ischemic injuries share mitochondrial dysfunction as a common element. Generally, mitochondrial impairment is triggered by calcium deregulation that could lead to mPTP opening and cell death. Several studies have shown that opening of the mPTP not only induces mitochondrial damage and cell death, but is also a physiological mechanism involved in different cellular functions. The mPTP participates in regular calcium-release mechanisms that are required for proper metabolic regulation; it is hypothesized that the transient opening of this structure could be the principal mediator of cardiac and brain development. The mPTP also plays a role in protecting against different brain and cardiac disorders in the elderly population. Therefore, the aim of this work was to discuss different studies that show this controversial characteristic of the mPTP; although mPTP is normally associated with several pathological events, new critical findings suggest its importance in mitochondrial function and cell development.
Collapse
Affiliation(s)
- María José Pérez
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Universidad Autónoma de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIAA), Santiago, Chile.
| |
Collapse
|
56
|
He Y, Zhang L, Zhu Z, Xiao A, Yu H, Gan X. Blockade of cyclophilin D rescues dexamethasone-induced oxidative stress in gingival tissue. PLoS One 2017; 12:e0173270. [PMID: 28273124 PMCID: PMC5342226 DOI: 10.1371/journal.pone.0173270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoids (GCs) are frequently used for the suppression of inflammation in chronic inflammatory diseases. Excessive GCs usage is greatly associated with several side effects, including gingival ulceration, the downward migration of the epithelium, attachment loss and disruption of transeptal fibers. The mechanisms underlying GCs-induced impairments in gingival tissue remains poorly understood. Mitochondrial dysfunction is associated with various oral diseases, such as chronic periodontitis, age-related alveolar bone loss and hydrogen peroxide-induced cell injury in gingival. Here, we reported an unexplored role of cyclophilin D (CypD), the major component of mitochondrial permeability transition pore (mPTP), in dexamethasone (Dex)-induced oxidative stress accumulation and cell dysfunctions in gingival tissue. We demonstrated that the expression level of CypD significantly increased under Dex treatment. Blockade of CypD by pharmaceutical inhibitor cyclosporine A (CsA) significantly protected against Dex-induced oxidative stress accumulation in gingival tissue. And the protective effects of blocking CypD in Dex-induced gingival fibroblasts dysfunction were evidenced by rescued mitochondrial function and suppressed production of reactive oxygen species (ROS). In addition, blockade of CypD by pharmaceutical inhibitor CsA or gene knockdown also restored Dex-induced cell toxicity in HGF-1 cells, as shown by suppressed mitochondrial ROS production, increased CcO activity and decreased apoptosis. We also suggested a role of oxidative stress-mediated p38 signal transduction in this event, and antioxidant N-acety-l-cysteine (NAC) could obviously blunted Dex-induced oxidative stress. These findings provide new insights into the role of CypD-dependent mitochondrial pathway in the Dex-induced gingival injury, indicating that CypD may be potential therapeutic strategy for preventing Dex-induced oxidative stress and cell injury in gingival tissue.
Collapse
Affiliation(s)
- Yuting He
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoli Zhu
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueqi Gan
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Akhter F, Chen D, Yan SF, Yan SS. Mitochondrial Perturbation in Alzheimer's Disease and Diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 146:341-361. [PMID: 28253990 DOI: 10.1016/bs.pmbts.2016.12.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are well-known cellular organelles that play a vital role in cellular bioenergetics, heme biosynthesis, thermogenesis, calcium homeostasis, lipid catabolism, and other metabolic activities. Given the extensive role of mitochondria in cell function, mitochondrial dysfunction plays a part in many diseases, including diabetes and Alzheimer's disease (AD). In most cases, there is overwhelming evidence that impaired mitochondrial function is a causative factor in these diseases. Studying mitochondrial function in diseased cells vs healthy cells may reveal the modified mechanisms and molecular components involved in specific disease states. In this chapter, we provide a concise overview of the major recent findings on mitochondrial abnormalities and their link to synaptic dysfunction relevant to neurodegeneration and cognitive decline in AD and diabetes. Our increased understanding of the role of mitochondrial perturbation indicates that the development of specific small molecules targeting aberrant mitochondrial function could provide therapeutic benefits for the brain in combating aging-related dementia and neurodegenerative diseases by powering up brain energy and improving synaptic function and transmission.
Collapse
Affiliation(s)
- F Akhter
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - D Chen
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S F Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States
| | - S S Yan
- School of Pharmacy, Higuchi Bioscience Center, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
58
|
Arrázola MS, Ramos-Fernández E, Cisternas P, Ordenes D, Inestrosa NC. Wnt Signaling Prevents the Aβ Oligomer-Induced Mitochondrial Permeability Transition Pore Opening Preserving Mitochondrial Structure in Hippocampal Neurons. PLoS One 2017; 12:e0168840. [PMID: 28060833 PMCID: PMC5218554 DOI: 10.1371/journal.pone.0168840] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/05/2016] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder mainly known for synaptic impairment and neuronal cell loss, affecting memory processes. Beside these damages, mitochondria have been implicated in the pathogenesis of AD through the induction of the mitochondrial permeability transition pore (mPTP). The mPTP is a non-selective pore that is formed under apoptotic conditions, disturbing mitochondrial structure and thus, neuronal viability. In AD, Aβ oligomers (Aβos) favor the opening of the pore, activating mitochondria-dependent neuronal cell death cascades. The Wnt signaling activated through the ligand Wnt3a has been described as a neuroprotective signaling pathway against amyloid-β (Aβ) peptide toxicity in AD. However, the mechanisms by which Wnt signaling prevents Aβos-induced neuronal cell death are unclear. We proposed here to study whether Wnt signaling protects neurons earlier than the late damages in the progression of the disease, through the preservation of the mitochondrial structure by the mPTP inhibition. To study specific events related to mitochondrial permeabilization we performed live-cell imaging from primary rat hippocampal neurons, and electron microscopy to analyze the mitochondrial morphology and structure. We report here that Wnt3a prevents an Aβos-induced cascade of mitochondrial events that leads to neuronal cell death. This cascade involves (a) mPTP opening, (b) mitochondrial swelling, (c) mitochondrial membrane potential loss and (d) cytochrome c release, thus leading to neuronal cell death. Furthermore, our results suggest that the activation of the Wnt signaling prevents mPTP opening by two possible mechanisms, which involve the inhibition of mitochondrial GSK-3β and/or the modulation of mitochondrial hexokinase II levels and activity. This study suggests a possible new approach for the treatment of AD from a mitochondrial perspective, and will also open new lines of study in the field of Wnt signaling in neuroprotection.
Collapse
Affiliation(s)
- Macarena S Arrázola
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Ramos-Fernández
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Universidad de Atacama, Facultad de Ciencias Naturales, Departamento de Química y Biología, Copiapó, Chile
| | - Daniela Ordenes
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
59
|
Hu H, Tan CC, Tan L, Yu JT. A Mitocentric View of Alzheimer's Disease. Mol Neurobiol 2016; 54:6046-6060. [PMID: 27696116 DOI: 10.1007/s12035-016-0117-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with an increasing morbidity, mortality, and economic cost. Plaques formed by amyloid beta peptide (Aβ) and neurofibrillary tangles formed by microtubule-associated protein tau are two main characters of AD. Though previous studies have focused on Aβ and tau and got some progressions on their toxicity mechanisms, no significantly effective treatments targeting the Aβ and tau have been found. However, it is worth noting that mounting evidences showed that mitochondrial dysfunction is an early event during the process of AD pathologic changes. What is more, these studies also showed an obvious association between mitochondrial dysfunction and Aβ/tau toxicity. Furthermore, both genetic and environmental factors may increase the oxidative stress and the mitochondria are also the sensitive target of ROS, which may form a vicious feedback between mitochondrial dysfunction and oxidative stress, eventually resulting in deficient energy, synaptic failure, and cell death. This article reviews the previous related studies from different aspects and concludes the critical roles of mitochondrial dysfunction in AD, suggesting a different route to AD therapy, which may guide the research and treatment direction.
Collapse
Affiliation(s)
- Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
60
|
Fang D, Yan S, Yu Q, Chen D, Yan SS. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci Rep 2016; 6:31462. [PMID: 27535796 PMCID: PMC4989148 DOI: 10.1038/srep31462] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are essential dynamic organelles for energy production. Mitochondria dynamically change their shapes tightly coupled to fission and fusion. Imbalance of fission and fusion can cause deficits in mitochondrial respiration, morphology and motility. Mfn2 (mitofusin 2), a mitochondrial membrane protein that participates in mitochondrial fusion in mammalian cells, contributes to the maintenance and operation of the mitochondrial network. Due to lack of applicable model systems, the mechanisms and involvement of mitochondria in neurogenesis in human brain cells have not been well explored. Here, by employing the human induced pluripotent stem cells (hiPSCs) differentiation system, we fully characterized mitochondrial development, neurogenesis and synapse formation in hiPSCs-derived cortical neurons. Differentiation of hiPSCs to cortical neurons with extended period demonstrates mature neurophysiology characterization and functional synaptic network formation. Mitochondrial respiration, morphology and motility in the differentiated neurons also exhibit pronounced development during differentiation. Mfn2 knock-down results in deficits in mitochondrial metabolism and network, neurogenesis and synapse formation, while Mfn2 overexpression enhances mitochondrial bioenergetics and functions, and promotes the differentiation and maturation of neurons. Together, our data indicate that Mfn2 is essential for human mitochondrial development in neuronal maturation and differentiation, which will enhance our understanding of the role of Mfn2 in neurogenesis.
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Qing Yu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Doris Chen
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
61
|
Villmow M, Baumann M, Malesevic M, Sachs R, Hause G, Fändrich M, Balbach J, Schiene-Fischer C. Inhibition of Aβ(1-40) fibril formation by cyclophilins. Biochem J 2016; 473:1355-68. [PMID: 26994210 DOI: 10.1042/bcj20160098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/16/2016] [Indexed: 12/16/2023]
Abstract
Cyclophilins interact directly with the Alzheimer's disease peptide Aβ (amyloid β-peptide) and are therefore involved in the early stages of Alzheimer's disease. Aβ binding to CypD (cyclophilin D) induces dysfunction of human mitochondria. We found that both CypD and CypA suppress in vitro fibril formation of Aβ(1-40) at substoichiometric concentrations when present early in the aggregation process. The prototypic inhibitor CsA (cyclosporin A) of both cyclophilins as well as the new water-soluble MM258 derivative prevented this suppression. A SPOT peptide array approach and NMR titration experiments confirmed binding of Aβ(1-40) to the catalytic site of CypD mainly via residues Lys(16)-Glu(22) The peptide Aβ(16-20) representing this section showed submicromolar IC50 values for the peptidyl prolyl cis-trans isomerase activity of CypD and CypA and low-micromolar KD values in ITC experiments. Chemical cross-linking and NMR-detected hydrogen-deuterium exchange experiments revealed a shift in the populations of small Aβ(1-40) oligomers towards the monomeric species, which we investigated in the present study as being the main process of prevention of Aβ fibril formation by cyclophilins.
Collapse
Affiliation(s)
- Marten Villmow
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Monika Baumann
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Miroslav Malesevic
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Rolf Sachs
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Gerd Hause
- Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Marcus Fändrich
- Institute for Pharmaceutical Biotechnology, Ulm University, Helmholtzstraße 8/1, D-89081 Ulm, Germany
| | - Jochen Balbach
- Institute of Physics, Biophysics, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 7, D-06120 Halle (Saale), Germany
| | - Cordelia Schiene-Fischer
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle (Saale), Germany
| |
Collapse
|
62
|
Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun 2016; 7:11483. [PMID: 27151236 PMCID: PMC5494197 DOI: 10.1038/ncomms11483] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/31/2016] [Indexed: 01/10/2023] Open
Abstract
F1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer’s disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear. Here, we observe selective loss of the oligomycin sensitivity conferring protein (OSCP) subunit of the F1FO-ATP synthase and the physical interaction of OSCP with amyloid beta (Aβ) in the brains of AD individuals and in an AD mouse model. Changes in OSCP levels are more pronounced in neuronal mitochondria. OSCP loss and its interplay with Aβ disrupt F1FO-ATP synthase, leading to reduced ATP production, elevated oxidative stress and activated mPT. The restoration of OSCP ameliorates Aβ-mediated mouse and human neuronal mitochondrial impairments and the resultant synaptic injury. Therefore, mitochondrial F1FO-ATP synthase dysfunction associated with AD progression could potentially be prevented by OSCP stabilization. F1FO ATP synthase is a critical enzyme for the maintenance of mitochondrial function. Here the authors demonstrate that loss of the F1FO-ATP synthase subunit OSCP and the interaction of OSCP with Aβ peptide in Alzheimer’s disease patients and mouse models lead to F1FO-ATP synthase deregulation and disruption of synaptic mitochondrial function.
Collapse
|
63
|
Gibbs KL, Greensmith L, Schiavo G. Regulation of Axonal Transport by Protein Kinases. Trends Biochem Sci 2016; 40:597-610. [PMID: 26410600 DOI: 10.1016/j.tibs.2015.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022]
Abstract
The intracellular transport of organelles, proteins, lipids, and RNA along the axon is essential for neuronal function and survival. This process, called axonal transport, is mediated by two classes of ATP-dependent motors, kinesins, and cytoplasmic dynein, which carry their cargoes along microtubule tracks. Protein kinases regulate axonal transport through direct phosphorylation of motors, adapter proteins, and cargoes, and indirectly through modification of the microtubule network. The misregulation of axonal transport by protein kinases has been implicated in the pathogenesis of several nervous system disorders. Here, we review the role of protein kinases acting directly on axonal transport and discuss how their deregulation affects neuronal function, paving the way for the exploitation of these enzymes as novel drug targets.
Collapse
Affiliation(s)
- Katherine L Gibbs
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, WC1N 3BG London, UK.
| |
Collapse
|
64
|
Novoderezhkina EA, Zhivotovsky BD, Gogvadze VG. Induction of unspecific permeabilization of mitochondrial membrane and its role in cell death. Mol Biol 2016. [DOI: 10.1134/s0026893316010167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
65
|
Identification of a Small Molecule Cyclophilin D Inhibitor for Rescuing Aβ-Mediated Mitochondrial Dysfunction. ACS Med Chem Lett 2016; 7:294-9. [PMID: 26985318 DOI: 10.1021/acsmedchemlett.5b00451] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/06/2016] [Indexed: 11/29/2022] Open
Abstract
Cyclophilin D (CypD), a peptidylprolyl isomerase F (PPIase), plays a central role in opening the mitochondrial membrane permeability transition pore leading to cell death. CypD resides in the mitochondrial matrix, associates with the inner mitochondrial membrane, interacts with amyloid beta to exacerbate mitochondrial and neuronal stress and has been linked to Alzheimer's disease (AD). We report the biological activity of a small-molecule CypD inhibitor (C-9), which binds strongly to CypD and attenuates mitochondrial and cellular perturbation insulted by Aβ and calcium stress. Binding affinities for C-9 were determined using in vitro surface plasmon resonance. This compound antagonized calcium-mediated mitochondrial swelling, abolished Aβ-induced mitochondrial dysfunction as shown by increased cytochrome c oxidase activity and adenosine-5'-triphosphate levels, and inhibited CypD PPIase enzymatic activity by real-time fluorescence capture assay using Hamamatsu FDSS 7000. Compound C-9 seems a good candidate for further investigation as an AD drug.
Collapse
|
66
|
Wang L, Guo L, Lu L, Sun H, Shao M, Beck SJ, Li L, Ramachandran J, Du Y, Du H. Synaptosomal Mitochondrial Dysfunction in 5xFAD Mouse Model of Alzheimer's Disease. PLoS One 2016; 11:e0150441. [PMID: 26942905 PMCID: PMC4778903 DOI: 10.1371/journal.pone.0150441] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/13/2016] [Indexed: 11/23/2022] Open
Abstract
Brain mitochondrial dysfunction is hallmark pathology of Alzheimer’s disease (AD). Recently, the role of synaptosomal mitochondrial dysfunction in the development of synaptic injury in AD has received increasing attention. Synaptosomal mitochondria are a subgroup of neuronal mitochondria specifically locating at synapses. They play an essential role in fueling synaptic functions by providing energy on the site; and their defects may lead to synaptic failure, which is an early and pronounced pathology in AD. In our previous studies we have determined early synaptosomal mitochondrial dysfunction in an AD animal model (J20 line) overexpressing human Amyloid beta (Aβ), the key mediator of AD. In view of the limitations of J20 line mice in representing the full aspects of amyloidopathy in AD cases, we employed 5xFAD mice which are thought to be a desirable paradigm of amyloidopathy as seen in AD subjects. In addition, we have also examined the status of synaptosomal mitochondrial dynamics as well as Parkin-mediated mitophagy which have not been previously investigated in this mouse model. In comparison to nontransgenic (nonTg mice), 5xFAD mice demonstrated prominent synaptosomal mitochondrial dysfunction. Moreover, synaptosomal mitochondria from the AD mouse model displayed imbalanced mitochondrial dynamics towards fission along with activated Parkin and LC3BII recruitment correlating to spatial learning & memory impairments in 5xFAD mice in an age-dependent manner. These results suggest that synaptosomal mitochondrial deficits are primary pathology in Aβ-rich environments and further confirm the relevance of synaptosomal mitochondrial deficits to the development of AD.
Collapse
Affiliation(s)
- Lu Wang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
| | - Lan Guo
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Lin Lu
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
| | - Huili Sun
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shenzhen Traditional Medicine Hospital, Shenzhen, Guangdong Province, China, 518031
| | - Muming Shao
- Shenzhen Traditional Medicine Hospital, Shenzhen, Guangdong Province, China, 518031
| | - Simon J. Beck
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Lin Li
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Janani Ramachandran
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
| | - Yifeng Du
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
| | - Heng Du
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, United States of America, 75080
- Shandong University, Shandong Provincial Hospital, Jinan, Shandong Province, China, 250100
- * E-mail:
| |
Collapse
|
67
|
Warne J, Pryce G, Hill JM, Shi X, Lennerås F, Puentes F, Kip M, Hilditch L, Walker P, Simone MI, Chan AWE, Towers GJ, Coker AR, Duchen MR, Szabadkai G, Baker D, Selwood DL. Selective Inhibition of the Mitochondrial Permeability Transition Pore Protects against Neurodegeneration in Experimental Multiple Sclerosis. J Biol Chem 2016; 291:4356-73. [PMID: 26679998 PMCID: PMC4813465 DOI: 10.1074/jbc.m115.700385] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.
Collapse
Affiliation(s)
- Justin Warne
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Gareth Pryce
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom, the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Julia M Hill
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Xiao Shi
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Felicia Lennerås
- the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Fabiola Puentes
- the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom
| | - Maarten Kip
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Laura Hilditch
- the Medical Research Council Centre for Medical Molecular Biology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Paul Walker
- Cyprotex Discovery Ltd., 100 Barbirolli Square, Manchester M2 3AB, United Kingdom, and
| | - Michela I Simone
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - A W Edith Chan
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Greg J Towers
- the Medical Research Council Centre for Medical Molecular Biology, Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Alun R Coker
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michael R Duchen
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | - Gyorgy Szabadkai
- the Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom, the Department of Biomedical Sciences, University of Padua, Padua 35122, Italy
| | - David Baker
- the Neuroimmunology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, United Kingdom,
| | - David L Selwood
- From the Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
68
|
Kim B, Park J, Chang KT, Lee DS. Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERK-Drp1-mediated mitochondrial fragmentation. Free Radic Biol Med 2016; 90:184-94. [PMID: 26582373 DOI: 10.1016/j.freeradbiomed.2015.11.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is caused by amyloid-beta oligomers (AβOs). AβOs induce cell death by triggering oxidative stress and mitochondrial dysfunction. A recent study showed that AβO-induced oxidative stress is associated with extracellular signal-regulated kinase (ERK)-dynamin related protein 1 (Drp1)-mediated mitochondrial fission. Reactive oxygen species (ROS) are regulated by antioxidant enzymes, especially peroxiredoxins (Prxs) that scavenge H2O2. These enzymes inhibit neuronal cell death induced by various neurotoxic reagents. However, it is unclear whether Prx5, which is specifically expressed in neuronal cells, protects these cells from AβO-induced damage. In this study, we found that Prx5 expression was upregulated by AβO-induced oxidative stress and that Prx5 decreased ERK-Drp1-mediated mitochondrial fragmentation and apoptosis of HT-22 neuronal cells. Prx5 expression was affected by AβO, and amelioration of oxidative stress by N-acetyl-L-cysteine decreased AβO-induced Prx5 expression. Prx5 overexpression reduced ROS as well as RNS and apoptotic cell death but Prx5 knockdown did not. In addition, Prx5 overexpression ameliorated ERK-Drp1-mediated mitochondrial fragmentation but Prx5 knockdown did not. These results indicated that inducible Prx5 expression by AβO plays a key role in inhibiting both ERK-Drp1-induced mitochondrial fragmentation and neuronal cell death by regulating oxidative stress. Thus, Prx5 may be a new therapeutic agent for treating AD.
Collapse
Affiliation(s)
- Bokyung Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Junghyung Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
69
|
Transient Cerebral Ischemia Promotes Brain Mitochondrial Dysfunction and Exacerbates Cognitive Impairments in Young 5xFAD Mice. PLoS One 2015; 10:e0144068. [PMID: 26632816 PMCID: PMC4669173 DOI: 10.1371/journal.pone.0144068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/12/2015] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is heterogeneous and multifactorial neurological disorder; and the risk factors of AD still remain elusive. Recent studies have highlighted the role of vascular factors in promoting the progression of AD and have suggested that ischemic events increase the incidence of AD. However, the detailed mechanisms linking ischemic insult to the progression of AD is still largely undetermined. In this study, we have established a transient cerebral ischemia model on young 5xFAD mice and their non-transgenic (nonTg) littermates by the transient occlusion of bilateral common carotid arteries. We have found that transient cerebral ischemia significantly exacerbates brain mitochondrial dysfunction including mitochondrial respiration deficits, oxidative stress as well as suppressed levels of mitochondrial fusion proteins including optic atrophy 1 (OPA1) and mitofusin 2 (MFN2) in young 5xFAD mice resulting in aggravated spatial learning and memory. Intriguingly, transient cerebral ischemia did not induce elevation in the levels of cortical or mitochondrial Amyloid beta (Aβ)1-40 or 1–42 levels in 5xFAD mice. In addition, the glucose- and oxygen-deprivation-induced apoptotic neuronal death in Aβ-treated neurons was significantly mitigated by mitochondria-targeted antioxidant mitotempo which suppresses mitochondrial superoxide levels. Therefore, the simplest interpretation of our results is that young 5xFAD mice with pre-existing AD-like mitochondrial dysfunction are more susceptible to the effects of transient cerebral ischemia; and ischemic events may exacerbate dementia and worsen the outcome of AD patients by exacerbating mitochondrial dysfunction.
Collapse
|
70
|
Gan KJ, Silverman MA. Imaging organelle transport in primary hippocampal neurons treated with amyloid-β oligomers. Methods Cell Biol 2015; 131:425-51. [PMID: 26794527 DOI: 10.1016/bs.mcb.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a strategy for fluorescent imaging of organelle transport in primary hippocampal neurons treated with amyloid-β (Aβ) peptides that cause Alzheimer's disease (AD). This method enables careful, rigorous analyses of axonal transport defects, which are implicated in AD and other neurodegenerative diseases. Moreover, we present and emphasize guidelines for investigating Aβ-induced mechanisms of axonal transport disruption in the absence of nonspecific, irreversible cellular toxicity. This approach should be accessible to most laboratories equipped with cell culture facilities and a standard fluorescent microscope and may be adapted to other cell types.
Collapse
Affiliation(s)
- Kathlyn J Gan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Michael A Silverman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada; Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
71
|
Hagl S, Kocher A, Schiborr C, Kolesova N, Frank J, Eckert GP. Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice - Impact on bioavailability. Neurochem Int 2015; 89:234-42. [PMID: 26254982 DOI: 10.1016/j.neuint.2015.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 01/19/2023]
Abstract
Curcumin, a polyphenolic compound abundant in the rhizome of Curcuma longa, has been reported to have various beneficial biological and pharmacological activities. Recent research revealed that curcumin might be valuable in the prevention and therapy of numerous disorders including neurodegenerative diseases like Alzheimer's disease. Due to its low absorption and quick elimination from the body, curcumin bioavailability is rather low which poses major problems for the use of curcumin as a therapeutic agent. There are several approaches to ameliorate curcumin bioavailability after oral administration, amongst them simultaneous administration with secondary plant compounds, micronization and micellation. We examined bioavailability in vivo in NMRI mice and the effects of native curcumin and a newly developed curcumin micelles formulation on mitochondrial function in vitro in PC12 cells and ex vivo in isolated mouse brain mitochondria. We found that curcumin micelles improved bioavailability of native curcumin around 10- to 40-fold in plasma and brain of mice. Incubation with native curcumin and curcumin micelles prevented isolated mouse brain mitochondria from swelling, indicating less mitochondrial permeability transition pore (mPTP) opening and prevention of injury. Curcumin micelles proved to be more efficient in preventing mitochondrial swelling in isolated mouse brain mitochondria and protecting PC12 cells from nitrosative stress than native curcumin. Due to their improved effectivity, curcumin micelles might be a suitable formulation for the prevention of mitochondrial dysfunction in brain aging and neurodegeneration.
Collapse
Affiliation(s)
- Stephanie Hagl
- Department of Pharmacology, Biozentrum Niederursel, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| | - Alexa Kocher
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Christina Schiborr
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Natalie Kolesova
- Department of Pharmacology, Biozentrum Niederursel, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Gunter P Eckert
- Department of Pharmacology, Biozentrum Niederursel, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
72
|
Gainutdinov T, Molkentin JD, Siemen D, Ziemer M, Debska-Vielhaber G, Vielhaber S, Gizatullina Z, Orynbayeva Z, Gellerich FN. Knockout of cyclophilin D in Ppif⁻/⁻ mice increases stability of brain mitochondria against Ca²⁺ stress. Arch Biochem Biophys 2015; 579:40-6. [PMID: 26032335 DOI: 10.1016/j.abb.2015.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/24/2015] [Accepted: 05/25/2015] [Indexed: 01/16/2023]
Abstract
The mitochondrial peptidyl prolyl isomerase cyclophilin D (CypD) activates permeability transition (PT). To study the role of CypD in this process we compared the functions of brain mitochondria isolated from wild type (BMWT) and CypD knockout (Ppif(-/-)) mice (BMKO) with and without CypD inhibitor Cyclosporin A (CsA) under normal and Ca(2+) stress conditions. Our data demonstrate that BMKO are characterized by higher rates of glutamate/malate-dependent oxidative phosphorylation, higher membrane potential and higher resistance to detrimental Ca(2+) effects than BMWT. Under the elevated Ca(2+) and correspondingly decreased membrane potential the dose response in BMKO shifts to higher Ca(2+) concentrations as compared to BMWT. However, significantly high Ca(2+) levels result in complete loss of membrane potential in BMKO, too. CsA diminishes the loss of membrane potential in BMWT but has no protecting effect in BMKO. The results are in line with the assumption that PT is regulated by CypD under the control of matrix Ca(2+). Due to missing of CypD the BMKO can favor PT only at high Ca(2+) concentrations. It is concluded that CypD sensitizes the brain mitochondria to PT, and its inhibition by CsA or CypD absence improves the complex I-related mitochondrial function and increases mitochondria stability against Ca(2+) stress.
Collapse
Affiliation(s)
- T Gainutdinov
- Department of Neurology, Otto-von-Guericke-University, Magdeburg D-39120, Germany; Institute of Ecology and Use of Mineral Resources, Academy of Sciences of Tatarstan, Kazan 420087, Russian Federation
| | - J D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - D Siemen
- Department of Neurology, Otto-von-Guericke-University, Magdeburg D-39120, Germany
| | - M Ziemer
- Department of Neurology, Otto-von-Guericke-University, Magdeburg D-39120, Germany
| | - G Debska-Vielhaber
- Department of Neurology, Otto-von-Guericke-University, Magdeburg D-39120, Germany
| | - S Vielhaber
- Department of Neurology, Otto-von-Guericke-University, Magdeburg D-39120, Germany
| | - Z Gizatullina
- Leibniz Institute for Neurobiology, Brennecke Str. 6, Magdeburg D-39118, Germany
| | - Z Orynbayeva
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - F N Gellerich
- Department of Neurology, Otto-von-Guericke-University, Magdeburg D-39120, Germany; Leibniz Institute for Neurobiology, Brennecke Str. 6, Magdeburg D-39118, Germany.
| |
Collapse
|
73
|
Mitochondrial Dysfunction Contributes to the Pathogenesis of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015. [PMID: 26221414 PMCID: PMC4499633 DOI: 10.1155/2015/509654] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of people worldwide. Currently, there is no effective treatment for AD, which indicates the necessity to understand the pathogenic mechanism of this disorder. Extracellular aggregates of amyloid precursor protein (APP), called Aβ peptide and neurofibrillary tangles (NFTs), formed by tau protein in the hyperphosphorylated form are considered the hallmarks of AD. Accumulative evidence suggests that tau pathology and Aβ affect neuronal cells compromising energy supply, antioxidant response, and synaptic activity. In this context, it has been showed that mitochondrial function could be affected by the presence of tau pathology and Aβ in AD. Mitochondria are essential for brain cells function and the improvement of mitochondrial activity contributes to preventing neurodegeneration. Several reports have suggested that mitochondria could be affected in terms of morphology, bioenergetics, and transport in AD. These defects affect mitochondrial health, which later will contribute to the pathogenesis of AD. In this review, we will discuss evidence that supports the importance of mitochondrial injury in the pathogenesis of AD and how studying these mechanisms could lead us to suggest new targets for diagnostic and therapeutic intervention against neurodegeneration.
Collapse
|
74
|
Fang D, Wang Y, Zhang Z, Du H, Yan S, Sun Q, Zhong C, Wu L, Vangavaragu JR, Yan S, Hu G, Guo L, Rabinowitz M, Glaser E, Arancio O, Sosunov AA, McKhann GM, Chen JX, Yan SS. Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease's mouse model. Hum Mol Genet 2015; 24:5198-210. [PMID: 26123488 DOI: 10.1093/hmg/ddv241] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/22/2015] [Indexed: 12/23/2022] Open
Abstract
Accumulation of amyloid-β (Aβ) in synaptic mitochondria is associated with mitochondrial and synaptic injury. The underlying mechanisms and strategies to eliminate Aβ and rescue mitochondrial and synaptic defects remain elusive. Presequence protease (PreP), a mitochondrial peptidasome, is a novel mitochondrial Aβ degrading enzyme. Here, we demonstrate for the first time that increased expression of active human PreP in cortical neurons attenuates Alzheimer disease's (AD)-like mitochondrial amyloid pathology and synaptic mitochondrial dysfunction, and suppresses mitochondrial oxidative stress. Notably, PreP-overexpressed AD mice show significant reduction in the production of proinflammatory mediators. Accordingly, increased neuronal PreP expression improves learning and memory and synaptic function in vivo AD mice, and alleviates Aβ-mediated reduction of long-term potentiation (LTP). Our results provide in vivo evidence that PreP may play an important role in maintaining mitochondrial integrity and function by clearance and degradation of mitochondrial Aβ along with the improvement in synaptic and behavioral function in AD mouse model. Thus, enhancing PreP activity/expression may be a new therapeutic avenue for treatment of AD.
Collapse
Affiliation(s)
- Du Fang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Zhihua Zhang
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA, School of Life Sciences, Beijing Normal University, Beijing 100871, China
| | - Heng Du
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shiqiang Yan
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Qinru Sun
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Changjia Zhong
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Long Wu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Jhansi Rani Vangavaragu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shijun Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Molly Rabinowitz
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Elzbieta Glaser
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA and
| | - Guy M McKhann
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA and
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA,
| |
Collapse
|
75
|
Carvalho C, Correia SC, Cardoso S, Plácido AI, Candeias E, Duarte AI, Moreira PI. The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Rev Neurother 2015; 15:867-84. [DOI: 10.1586/14737175.2015.1058160] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
Kubik LL, Landis RW, Remmer H, Bergin IL, Philbert MA. 1,3-dinitrobenzene induces age- and region-specific oxidation to mitochondria-related proteins in brain. Toxicol Sci 2015; 145:48-58. [PMID: 25716674 DOI: 10.1093/toxsci/kfv015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Regions of the brain with high energy requirements are especially sensitive to perturbations in mitochondrial function. Hence, neurotoxicant exposures that target mitochondria in regions of high energy demand have the potential to accelerate mitochondrial damage inherently occurring during the aging process. 1,3-Dinitrobenzene (DNB) is a model neurotoxicant that selectively targets mitochondria in brainstem nuclei innervated by the eighth cranial nerve. This study investigates the role of age in the regional susceptibility of brain mitochondria-related proteins (MRPs) to oxidation following exposure to DNB. Male F344 rats (1 month old [young], 3 months old [adult], 18 months old [aged]) were exposed to 10 mg/kg DNB prior to mitochondrial isolation and histopathology experiments. Using a high-throughput proteomic approach, 3 important region- and age-related increases in DNB-induced MRP oxidation were determined: (1) brainstem mitochondria are ×3 more sensitive to DNB-induced oxidation than cortical mitochondria; (2) oxidation of brainstem MRPs is significantly higher than in cortical counterparts; and (3) MRPs from the brainstems of older rats are significantly more oxidized than those from young or adult rats. Furthermore, lower levels of DNB cause signs of intoxication (ataxia, chromodacryorrhea) and vacuolation of the susceptible neuropil in aged animals, while neither is observed in DNB-exposed young rats. Additionally, methemoglobin levels increase significantly in DNB-exposed adult and aged animals, but not young DNB-exposed animals. This suggests that oxidation of key MRPs observed in brainstem of aged animals is necessary for DNB-induced signs of intoxication and lesion formation. These results provide compelling evidence that environmental chemicals such as DNB may aid in the acceleration of injury to specific brain regions by inducing oxidation of sensitive mitochondrial proteins.
Collapse
Affiliation(s)
- Laura L Kubik
- *Toxicology Program, Department of Environmental Health Sciences, School of Public Health, Department of Biological Chemistry and Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rory W Landis
- *Toxicology Program, Department of Environmental Health Sciences, School of Public Health, Department of Biological Chemistry and Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Henriette Remmer
- *Toxicology Program, Department of Environmental Health Sciences, School of Public Health, Department of Biological Chemistry and Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Ingrid L Bergin
- *Toxicology Program, Department of Environmental Health Sciences, School of Public Health, Department of Biological Chemistry and Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Martin A Philbert
- *Toxicology Program, Department of Environmental Health Sciences, School of Public Health, Department of Biological Chemistry and Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
77
|
Blair LJ, Baker JD, Sabbagh JJ, Dickey CA. The emerging role of peptidyl-prolyl isomerase chaperones in tau oligomerization, amyloid processing, and Alzheimer's disease. J Neurochem 2015; 133:1-13. [PMID: 25628064 DOI: 10.1111/jnc.13033] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022]
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule-associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease, the other being amyloid beta (Ab). PPIases, including Pin1, FK506-binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline-directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Ab production or the toxicity associated with Ab pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in Alzheimer's disease and represent a family rich in targets for modulating the accumulation and toxicity.
Collapse
Affiliation(s)
- Laura J Blair
- Department of Molecular Medicine, Byrd Alzheimer's Institute, University of South Florida, Tampa, Florida, USA
| | | | | | | |
Collapse
|
78
|
Multi-faced neuroprotective effects of geniposide depending on the RAGE-mediated signaling in an Alzheimer mouse model. Neuropharmacology 2015; 89:175-84. [DOI: 10.1016/j.neuropharm.2014.09.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/29/2014] [Accepted: 09/15/2014] [Indexed: 12/24/2022]
|
79
|
Ferreira IL, Ferreiro E, Schmidt J, Cardoso JM, Pereira CM, Carvalho AL, Oliveira CR, Rego AC. Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol Aging 2015; 36:680-92. [DOI: 10.1016/j.neurobiolaging.2014.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 08/26/2014] [Accepted: 09/02/2014] [Indexed: 11/24/2022]
|
80
|
Du H, Guo L, Wu X, Sosunov AA, McKhann GM, Chen JX, Yan SS. Cyclophilin D deficiency rescues Aβ-impaired PKA/CREB signaling and alleviates synaptic degeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2517-27. [PMID: 23507145 PMCID: PMC3868643 DOI: 10.1016/j.bbadis.2013.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/14/2013] [Accepted: 03/08/2013] [Indexed: 12/14/2022]
Abstract
The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability transition pore (mPTP), is involved in amyloid beta (Aβ)-instigated mitochondrial dysfunction. Blockade of CypD prevents Aβ-induced mitochondrial malfunction and the consequent cognitive impairments. Here, we showed the elimination of reactive oxygen species (ROS) by antioxidants probucol or superoxide dismutase (SOD)/catalase blocks Aβ-mediated inactivation of protein kinase A (PKA)/cAMP regulatory-element-binding (CREB) signal transduction pathway and loss of synapse, suggesting the detrimental effects of oxidative stress on neuronal PKA/CREB activity. Notably, neurons lacking CypD significantly attenuate Aβ-induced ROS. Consequently, CypD-deficient neurons are resistant to Aβ-disrupted PKA/CREB signaling by increased PKA activity, phosphorylation of PKA catalytic subunit (PKA C), and CREB. In parallel, lack of CypD protects neurons from Aβ-induced loss of synapses and synaptic dysfunction. Furthermore, compared to the mAPP mice, CypD-deficient mAPP mice reveal less inactivation of PKA-CREB activity and increased synaptic density, attenuate abnormalities in dendritic spine maturation, and improve spontaneous synaptic activity. These findings provide new insights into a mechanism in the crosstalk between the CypD-dependent mitochondrial oxidative stress and signaling cascade, leading to synaptic injury, functioning through the PKA/CREB signal transduction pathway.
Collapse
Affiliation(s)
- Heng Du
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Xiaoping Wu
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | - Guy M McKhann
- Department of Neurosurgery, Physicians & Surgeons College of Columbia University, New York, NY 10032, USA
| | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 1003, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
81
|
Gan X, Wu L, Huang S, Zhong C, Shi H, Li G, Yu H, Howard Swerdlow R, Xi Chen J, Yan SS. Oxidative stress-mediated activation of extracellular signal-regulated kinase contributes to mild cognitive impairment-related mitochondrial dysfunction. Free Radic Biol Med 2014; 75:230-40. [PMID: 25064321 PMCID: PMC4392773 DOI: 10.1016/j.freeradbiomed.2014.07.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/29/2014] [Accepted: 07/16/2014] [Indexed: 02/05/2023]
Abstract
Mild cognitive impairment (MCI) occurs during the predementia stage of Alzheimer disease (AD) and is characterized by a decline in cognitive abilities that frequently represents a transition between normal cognition and AD dementia. Its pathogenesis is not well understood. Here, we demonstrate the direct consequences and potential mechanisms of oxidative stress and mitochondrial dynamic and functional defects in MCI-derived mitochondria. Using a cytoplasmic hybrid (cybrid) cell model in which mitochondria from MCI or age-matched non-MCI subjects were incorporated into a human neuronal cell line depleted of endogenous mitochondrial DNA, we evaluated the mitochondrial dynamics and functions, as well as the role of oxidative stress in the resultant cybrid lines. We demonstrated that increased expression levels of mitofusin 2 (Mfn2) are markedly induced by oxidative stress in MCI-derived mitochondria along with aberrant mitochondrial functions. Inhibition of oxidative stress rescues MCI-impaired mitochondrial fusion/fission balance as shown by the suppression of Mfn2 expression, attenuation of abnormal mitochondrial morphology and distribution, and improvement in mitochondrial function. Furthermore, blockade of MCI-related stress-mediated activation of extracellular signal-regulated kinase (ERK) signaling not only attenuates aberrant mitochondrial morphology and function but also restores mitochondrial fission and fusion balance, in particular inhibition of overexpressed Mfn2. Our results provide new insights into the role of the oxidative stress-ERK-Mfn2 signal axis in MCI-related mitochondrial abnormalities, indicating that the MCI phase may be targetable for the development of new therapeutic approaches that improve mitochondrial function in age-related neurodegeneration.
Collapse
Affiliation(s)
- Xueqi Gan
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Long Wu
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shengbin Huang
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Changjia Zhong
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Honglian Shi
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Guangyue Li
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | | | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
82
|
Abstract
Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France. Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France.
| |
Collapse
|
83
|
Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, Murase H, Tobisawa T, Ogasawara M, Horio Y, Miura T. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J Biol Chem 2014; 289:29285-96. [PMID: 25187518 DOI: 10.1074/jbc.m114.563924] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a major positive regulator of the mitochondrial permeability transition pore (mPTP), a principle trigger of cell death, under the condition of oxidative stress. However, the mechanism by which cytosolic GSK-3β translocates to mitochondria, promoting mPTP opening, remains unclear. Here we addressed this issue by analyses of the effect of site-directed mutations in GSK-3β on mitochondrial translocation and protein/protein interactions upon oxidative stress. H9c2 cardiomyoblasts were transfected with GFP-tagged GSK-3β (WT), a mutant GSK-3β insensitive to inhibitory phosphorylation (S9A), or kinase-deficient GSK-3β (K85R). Time lapse observation revealed that WT and S9A translocated from the cytosol to the mitochondria more promptly than did K85R after exposure to oxidative stress. H2O2 increased the density of nine spots on two-dimensional gel electrophoresis of anti-GSK-3β-immunoprecipitates by more than 3-fold. MALDI-TOF/MS analysis revealed that one of the spots contained voltage-dependent anion channel 2 (VDAC2). Knockdown of VDAC2, but not VDAC1 or VDAC3, by siRNA attenuated both the mitochondrial translocation of GSK-3β and mPTP opening under stress conditions. The mitochondrial translocation of GSK-3β was attenuated also when Lys-15, but not Arg-4 or Arg-6, in the N-terminal domain of GSK-3β was replaced with alanine. The oxidative stress-induced mitochondrial translocation of GSK-3β was associated with an increase in cell death, which was suppressed by lithium chloride (LiCl), a GSK-3β inhibitor. These results demonstrate that GSK-3β translocates from the cytosol to mitochondria in a kinase activity- and VDAC2-dependent manner in which an N-terminal domain of GSK-3β may function as a mitochondrial targeting sequence.
Collapse
Affiliation(s)
- Masaya Tanno
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Atsushi Kuno
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and Pharmacology, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo 060-8543, Japan
| | - Satoko Ishikawa
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Takayuki Miki
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Hidemichi Kouzu
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Toshiyuki Yano
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Hiromichi Murase
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Toshiyuki Tobisawa
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Makoto Ogasawara
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Yoshiyuki Horio
- Pharmacology, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo 060-8543, Japan
| | - Tetsuji Miura
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| |
Collapse
|
84
|
Rao VK, Carlson EA, Yan SS. Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:1267-72. [PMID: 24055979 PMCID: PMC3991756 DOI: 10.1016/j.bbadis.2013.09.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/07/2013] [Indexed: 01/16/2023]
Abstract
Mitochondrial permeability transition pore (mPTP) plays a central role in alterations of mitochondrial structure and function leading to neuronal injury relevant to aging and neurodegenerative diseases including Alzheimer's disease (AD). mPTP putatively consists of the voltage-dependent anion channel (VDAC), the adenine nucleotide translocator (ANT) and cyclophilin D (CypD). Reactive oxygen species (ROS) increase intra-cellular calcium and enhance the formation of mPTP that leads to neuronal cell death in AD. CypD-dependent mPTP can play a crucial role in ischemia/reperfusion injury. The interaction of amyloid beta peptide (Aβ) with CypD potentiates mitochondrial and neuronal perturbation. This interaction triggers the formation of mPTP, resulting in decreased mitochondrial membrane potential, impaired mitochondrial respiration function, increased oxidative stress, release of cytochrome c, and impaired axonal mitochondrial transport. Thus, the CypD-dependent mPTP is directly linked to the cellular and synaptic perturbations observed in the pathogenesis of AD. Designing small molecules to block this interaction would lessen the effects of Aβ neurotoxicity. This review summarizes the recent progress on mPTP and its potential therapeutic target for neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Valasani Koteswara Rao
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66047, USA
| | - Emily A Carlson
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66047, USA
| | - Shirley Shidu Yan
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
85
|
Axonal Transport Defects in Alzheimer’s Disease. Mol Neurobiol 2014; 51:1309-21. [DOI: 10.1007/s12035-014-8810-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
|
86
|
Manczak M, Sheiko T, Craigen WJ, Reddy PH. Reduced VDAC1 protects against Alzheimer's disease, mitochondria, and synaptic deficiencies. J Alzheimers Dis 2014; 37:679-90. [PMID: 23948905 DOI: 10.3233/jad-130761] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective of this study was to elucidate the effect of VDAC1 on Alzheimer's disease (AD)-related genes, mitochondrial activity, and synaptic viability. Recent knockout studies of VDAC1 revealed that homozygote VDAC1 knockout (VDAC1-/-) mice exhibited disrupted learning and synaptic plasticity, and in contrast, VDAC1+/- mice appeared normal in terms of lifespan, fertility, and viability relative to wild-type mice. However, the effects of reduced VDAC1 on mitochondrial/synaptic genes and mitochondrial function in AD-affected neurons are not well understood. In the present study, we characterized mitochondrial/synaptic and AD-related genes and mitochondrial function in VDAC1+/- mice and VDAC1+/+ mice. We found reduced mRNA levels in the AD-related genes, including AβPP, Tau, PS1, PS2, and BACE1; increased levels of the mitochondrial fusion genes Mfn1, Mfn2; reduced levels of the fission genes Drp1 and Fis1; and reduced levels of the mitochondrial permeability transition pore genes VDAC1, ANT, and CypD in VDAC1+/- mice relative to VDAC1+/+ mice. Hexokinase 1 and 2 were significantly upregulated in the VDAC+/- mice. The synaptic genes synaptophysin, synapsin 1 and 2, synaptobrevin 1 and 2, neurogranin, and PSD95 were also upregulated in the VDAC1+/- mice. Free radical production and lipid peroxidation levels were reduced in the VDAC1+/- mice, and cytochrome oxidase activity and ATP levels were elevated, indicating enhanced mitochondrial function in the VDAC1+/- mice. These findings suggest that reduced VDAC1 expression, such as that we found in the VDAC1+/- mice, may be beneficial to synaptic activity, may improve function, and may protect against toxicities of AD-related genes.
Collapse
Affiliation(s)
- Maria Manczak
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | | | | | | |
Collapse
|
87
|
Zhang H, Wang Y, Yan S, Du F, Wu L, Yan S, Yan SS. Genetic deficiency of neuronal RAGE protects against AGE-induced synaptic injury. Cell Death Dis 2014; 5:e1288. [PMID: 24922072 PMCID: PMC4611721 DOI: 10.1038/cddis.2014.248] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 01/11/2023]
Abstract
Synaptic dysfunction and degeneration is an early pathological feature of aging and age-related diseases, including Alzheimer's disease (AD). Aging is associated with increased generation and deposition of advanced glycation endproducts (AGEs), resulting from nonenzymatic glycation (or oxidation) proteins and lipids. AGE formation is accelerated in diabetes and AD-affected brain, contributing to cellular perturbation. The extent of AGEs' involvement, if at all, in alterations in synaptic structure and function is currently unknown. Here we analyze the contribution of neuronal receptor of AGEs (RAGE) signaling to AGE-mediated synaptic injury using novel transgenic neuronal RAGE knockout mice specifically targeted to the forebrain and transgenic mice expressing neuronal dominant-negative RAGE (DN-RAGE). Addition of AGEs to brain slices impaired hippocampal long-term potentiation (LTP). Similarly, treatment of hippocampal neurons with AGEs significantly decreases synaptic density. Such detrimental effects are largely reversed by genetic RAGE depletion. Notably, brain slices from mice with neuronal RAGE deficiency or DN-RAGE are resistant to AGE-induced LTP deficit. Further, RAGE deficiency or DN-RAGE blocks AGE-induced activation of p38 signaling. Taken together, these data show that neuronal RAGE functions as a signal transducer for AGE-induced synaptic dysfunction, thereby providing new insights into a mechanism by which the AGEs–RAGE-dependent signaling cascade contributes to synaptic injury via the p38 MAP kinase signal transduction pathway. Thus, RAGE blockade may be a target for development of interventions aimed at preventing the progression of cognitive decline in aging and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongju Zhang
- 1] Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA [2] School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yongfu Wang
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shijun Yan
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Fang Du
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Long Wu
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Shiqiang Yan
- School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Shirley S Yan
- Departments of Pharmacology and Toxicology and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
88
|
Sun Q, Jia N, Wang W, Jin H, Xu J, Hu H. Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening. PLoS One 2014; 9:e98866. [PMID: 24905226 PMCID: PMC4048237 DOI: 10.1371/journal.pone.0098866] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/08/2014] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial dysfunction caused by amyloid β-peptide (Aβ) plays an important role in the pathogenesis of Alzheimer disease (AD). Substantial evidence has indicated that the mitochondrial permeability transition pore (mPTP) opening is involved in Aβ-induced neuronal death and reactive oxygen species (ROS) generation. Astragaloside IV (AS-IV), one of the major active constituents of Astragalus membranaceus, has been reported as an effective anti-oxidant for treating neurodegenerative diseases. However, the molecular mechanisms still need to be clarified. In this study, we investigated whether AS-IV could prevent Aβ1-42-induced neurotoxicity in SK-N-SH cells via inhibiting the mPTP opening. The results showed that pretreatment of AS-IV significantly increased the viability of neuronal cells, reduced apoptosis, decreased the generation of intracellular reactive oxygen species (ROS) and decreased mitochondrial superoxide in the presence of Aβ1-42. In addition, pretreatment of AS-IV inhibited the mPTP opening, rescued mitochondrial membrane potential (ΔΨm), enhanced ATP generation, improved the activity of cytochrome c oxidase and blocked cytochrome c release from mitochondria in Aβ1-42 rich milieu. Moreover, pretreatment of AS-IV reduced the expression of Bax and cleaved caspase-3 and increased the expression of Bcl-2 in an Aβ1-42 rich environment. These data indicate that AS-IV prevents Aβ1-42-induced SK-N-SH cell apoptosis via inhibiting the mPTP opening and ROS generation. These results provide novel insights of AS-IV for the prevention and treatment of neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Qinru Sun
- Department of Human Anatomy and Histo-Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ning Jia
- Department of Human Anatomy and Histo-Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- * E-mail: (NJ); (HH)
| | - Weixi Wang
- Department of Human Anatomy and Histo-Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Hui Jin
- Department of Human Anatomy and Histo-Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jiehua Xu
- Department of Human Anatomy and Histo-Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Haitao Hu
- Department of Human Anatomy and Histo-Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- * E-mail: (NJ); (HH)
| |
Collapse
|
89
|
Valasani KR, Carlson EA, Battaile KP, Bisson A, Wang C, Lovell S, Yan SS. High-resolution crystal structures of two crystal forms of human cyclophilin D in complex with PEG 400 molecules. Acta Crystallogr F Struct Biol Commun 2014; 70:717-22. [PMID: 24915078 PMCID: PMC4051522 DOI: 10.1107/s2053230x14009480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/28/2014] [Indexed: 11/10/2022] Open
Abstract
Cyclophilin D (CypD) is a key mitochondrial target for amyloid-β-induced mitochondrial and synaptic dysfunction and is considered a potential drug target for Alzheimer's disease. The high-resolution crystal structures of primitive orthorhombic (CypD-o) and primitive tetragonal (CypD-t) forms have been determined to 1.45 and 0.85 Å resolution, respectively, and are nearly identical structurally. Although an isomorphous structure of CypD-t has previously been reported, the structure reported here was determined at atomic resolution, while CypD-o represents a new crystal form for this protein. In addition, each crystal form contains a PEG 400 molecule bound to the same region along with a second PEG 400 site in CypD-t which occupies the cyclosporine A inhibitor binding site of CypD. Highly precise structural information for CypD should be extremely useful for discerning the detailed interaction of small molecules, particularly drugs and/or inhibitors, bound to CypD. The 0.85 Å resolution structure of CypD-t is the highest to date for any CypD structure.
Collapse
Affiliation(s)
- Koteswara Rao Valasani
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Emily A. Carlson
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Kevin P. Battaile
- IMCA-CAT, Hauptman–Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439, USA
| | - Andrea Bisson
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, KS 66047, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
90
|
Gan X, Huang S, Wu L, Wang Y, Hu G, Li G, Zhang H, Yu H, Swerdlow RH, Chen JX, Yan SS. Inhibition of ERK-DLP1 signaling and mitochondrial division alleviates mitochondrial dysfunction in Alzheimer's disease cybrid cell. Biochim Biophys Acta Mol Basis Dis 2013; 1842:220-31. [PMID: 24252614 DOI: 10.1016/j.bbadis.2013.11.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/27/2013] [Accepted: 11/11/2013] [Indexed: 02/05/2023]
Abstract
Mitochondrial dysfunction is an early pathological feature of Alzheimer's disease (AD). The underlying mechanisms and strategies to repair it remain unclear. Here, we demonstrate for the first time the direct consequences and potential mechanisms of mitochondrial functional defects associated with abnormal mitochondrial dynamics in AD. Using cytoplasmic hybrid (cybrid) neurons with incorporated platelet mitochondria from AD and age-matched non-AD human subjects into mitochondrial DNA (mtDNA)-depleted neuronal cells, we observed that AD cybrid cells had significant changes in morphology and function; such changes associate with altered expression and distribution of dynamin-like protein (DLP1) and mitofusin 2 (Mfn2). Treatment with antioxidant protects against AD mitochondria-induced extracellular signal-regulated kinase (ERK) activation and mitochondrial fission-fusion imbalances. Notably, inhibition of ERK activation not only attenuates aberrant mitochondrial morphology and function but also restores the mitochondrial fission and fusion balance. These effects suggest a role of oxidative stress-mediated ERK signal transduction in modulation of mitochondrial fission and fusion events. Further, blockade of the mitochondrial fission protein DLP1 by a genetic manipulation with a dominant negative DLP1 (DLP1(K38A)), its expression with siRNA-DLP1, or inhibition of mitochondrial division with mdivi-1 attenuates mitochondrial functional defects observed in AD cybrid cells. Our results provide new insights into mitochondrial dysfunction resulting from changes in the ERK-fission/fusion (DLP1) machinery and signaling pathway. The protective effect of mdivi-1 and inhibition of ERK signaling on maintenance of normal mitochondrial structure and function holds promise as a potential novel therapeutic strategy for AD.
Collapse
Affiliation(s)
- Xueqi Gan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Shengbin Huang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Long Wu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Yongfu Wang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Gang Hu
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Guangyue Li
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | - Hongju Zhang
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du 610041, China
| | | | - John Xi Chen
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 1003, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
91
|
Wang Z, Cai F, Hu L, Lu Y. The role of mitochondrial permeability transition pore in regulating the shedding of the platelet GPIbα ectodomain. Platelets 2013; 25:373-81. [DOI: 10.3109/09537104.2013.821604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|