51
|
Martínez-Sancho E, Dorado-Liñán I, Hacke UG, Seidel H, Menzel A. Contrasting Hydraulic Architectures of Scots Pine and Sessile Oak at Their Southernmost Distribution Limits. FRONTIERS IN PLANT SCIENCE 2017; 8:598. [PMID: 28473841 PMCID: PMC5397420 DOI: 10.3389/fpls.2017.00598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 05/05/2023]
Abstract
Many temperate European tree species have their southernmost distribution limits in the Mediterranean Basin. The projected climatic conditions, particularly an increase in dryness, might induce an altitudinal and latitudinal retreat at their southernmost distribution limit. Therefore, characterizing the morphological and physiological variability of temperate tree species under dry conditions is essential to understand species' responses to expected climate change. In this study, we compared branch-level hydraulic traits of four Scots pine and four sessile oak natural stands located at the western and central Mediterranean Basin to assess their adjustment to water limiting conditions. Hydraulic traits such as xylem- and leaf-specific maximum hydraulic conductivity (KS-MAX and KL-MAX), leaf-to-xylem area ratio (AL:AX) and functional xylem fraction (FX) were measured in July 2015 during a long and exceptionally dry summer. Additionally, xylem-specific native hydraulic conductivity (KS-N) and native percentage of loss of hydraulic conductivity (PLC) were measured for Scots pine. Interspecific differences in these hydraulic traits as well as intraspecific variability between sites were assessed. The influence of annual, summer and growing season site climatic aridity (P/PET) on intraspecific variability was investigated. Sessile oak displayed higher values of KS-MAX, KL-MAX, AL:AX but a smaller percentage of FX than Scots pines. Scots pine did not vary in any of the measured hydraulic traits across the sites, and PLC values were low for all sites, even during one of the warmest summers in the region. In contrast, sessile oak showed significant differences in KS-MAX, KL-MAX, and FX across sites, which were significantly related to site aridity. The striking similarity in the hydraulic traits across Scots pine sites suggests that no adjustment in hydraulic architecture was needed, likely as a consequence of a drought-avoidance strategy. In contrast, sessile oak displayed adjustments in the hydraulic architecture along an aridity gradient, pointing to a drought-tolerance strategy.
Collapse
Affiliation(s)
- Elisabet Martínez-Sancho
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität MünchenFreising, Germany
| | - Isabel Dorado-Liñán
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität MünchenFreising, Germany
- Departamento de Silvicultura y Gestión de los Sistemas Forestales, Centro de Investigación Forestal–Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Uwe G. Hacke
- Department of Renewable Resources, University of Alberta, EdmontonAB, Canada
| | - Hannes Seidel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität MünchenFreising, Germany
| | - Annette Menzel
- Ecoclimatology, Department of Ecology and Ecosystem Management, Technische Universität MünchenFreising, Germany
- Institute for Advanced Study, Technische Universität MünchenGarching, Germany
| |
Collapse
|
52
|
Hember RA, Kurz WA, Coops NC. Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America. GLOBAL CHANGE BIOLOGY 2017; 23:1691-1710. [PMID: 27624980 DOI: 10.1111/gcb.13428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 05/25/2023]
Abstract
Accounting for water stress-induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species-specific relationships between probability of mortality (Pm ) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (Ws,z ) and reference evapotranspiration (ETr,z ) at each field plot. The models additionally tested for interactions between the water-balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross-validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water-balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole-plant, leaf-specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr-1 in 1951 to 2.0% yr-1 in 2014 (a net change of 0.9 ± 0.3% yr-1 ). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak-to-moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This 'learn-as-we-go' approach - defined by sampling rare drought events as they continue to intensify - will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change.
Collapse
Affiliation(s)
- Robbie A Hember
- Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, Canada, V8Z 1M5
| | - Werner A Kurz
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, Canada, V8Z 1M5
| | - Nicholas C Coops
- Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
53
|
Acácio V, Dias FS, Catry FX, Rocha M, Moreira F. Landscape dynamics in Mediterranean oak forests under global change: understanding the role of anthropogenic and environmental drivers across forest types. GLOBAL CHANGE BIOLOGY 2017; 23:1199-1217. [PMID: 27589680 DOI: 10.1111/gcb.13487] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
The Mediterranean region is projected to be extremely vulnerable to global change, which will affect the distribution of typical forest types such as native oak forests. However, our understanding of Mediterranean oak forest responses to future conditions is still very limited by the lack of knowledge on oak forest dynamics and species-specific responses to multiple drivers. We compared the long-term (1966-2006) forest persistence and land cover change among evergreen (cork oak and holm oak) and deciduous oak forests and evaluated the importance of anthropogenic and environmental drivers on observed changes for Portugal. We used National Forest Inventories to quantify the changes in oak forests and explored the drivers of change using multinomial logistic regression analysis and an information theoretical approach. We found distinct trends among oak forest types, reflecting the differences in oak economic value, protection status and management schemes: cork oak forests were the most persistent (62%), changing mostly to pines and eucalypt; holm oak forests were less persistent (53.2%), changing mostly to agriculture; and deciduous oak forests were the least persistent (45.7%), changing mostly to shrublands. Drivers of change had distinct importance across oak forest types, but drivers from anthropogenic origin (wildfires, population density, and land accessibility) were always among the most important. Climatic extremes were also important predictors of oak forest changes, namely extreme temperatures for evergreen oak forests and deficit of precipitation for deciduous oak forests. Our results indicate that under increasing human pressure and forecasted climate change, evergreen oak forests will continue declining and deciduous oak forests will be replaced by forests dominated by more xeric species. In the long run, multiple disturbances may change competitive dominance from oak forests to pyrophytic shrublands. A better understanding of forest dynamics and the inclusion of anthropogenic drivers on models of vegetation change will improve predicting the future of Mediterranean oak forests.
Collapse
Affiliation(s)
- Vanda Acácio
- Centre for Applied Ecology (CEABN/InBIO), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Filipe S Dias
- Centre for Applied Ecology (CEABN/InBIO), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Filipe X Catry
- Centre for Applied Ecology (CEABN/InBIO), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Marta Rocha
- Centre for Applied Ecology (CEABN/InBIO), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Francisco Moreira
- Centre for Applied Ecology (CEABN/InBIO), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
- REN Biodiversity Chair, CIBIO/InBIO, University of Porto, Campus Agrário de Vairão, 4485-601, Vairão, Portugal
| |
Collapse
|
54
|
Canham CD, Murphy L. The demography of tree species response to climate: sapling and canopy tree survival. Ecosphere 2017. [DOI: 10.1002/ecs2.1701] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Charles D. Canham
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| | - Lora Murphy
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| |
Collapse
|
55
|
Colangelo M, Camarero JJ, Borghetti M, Gazol A, Gentilesca T, Ripullone F. Size Matters a Lot: Drought-Affected Italian Oaks Are Smaller and Show Lower Growth Prior to Tree Death. FRONTIERS IN PLANT SCIENCE 2017; 8:135. [PMID: 28270816 PMCID: PMC5318376 DOI: 10.3389/fpls.2017.00135] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/23/2017] [Indexed: 05/10/2023]
Abstract
Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees.
Collapse
Affiliation(s)
- Michele Colangelo
- School of Agricultural Forest Food and Environmental Sciences, University of BasilicataPotenza, Italy
| | - Jesús J. Camarero
- Pyrenean Institute of Ecology – Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Marco Borghetti
- School of Agricultural Forest Food and Environmental Sciences, University of BasilicataPotenza, Italy
| | - Antonio Gazol
- Pyrenean Institute of Ecology – Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Tiziana Gentilesca
- School of Agricultural Forest Food and Environmental Sciences, University of BasilicataPotenza, Italy
| | - Francesco Ripullone
- School of Agricultural Forest Food and Environmental Sciences, University of BasilicataPotenza, Italy
| |
Collapse
|
56
|
Young DJN, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM. Long‐term climate and competition explain forest mortality patterns under extreme drought. Ecol Lett 2016; 20:78-86. [DOI: 10.1111/ele.12711] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/22/2016] [Accepted: 11/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Derek J. N. Young
- Graduate Group in Ecology and Department of Plant Sciences University of California‐Davis Davis, CA, USA
| | - Jens T. Stevens
- John Muir Institute of the Environment University of California‐Davis Davis, CA, USA
| | - J. Mason Earles
- School of Forestry and Environmental Studies Yale University New Haven, CT, USA
| | - Jeffrey Moore
- USDA Forest Service Pacific Southwest Region Davis, CA, USA
| | - Adam Ellis
- USDA Forest Service Pacific Southwest Region Davis, CA, USA
| | - Amy L. Jirka
- USDA Forest Service Pacific Southwest Region Davis, CA, USA
| | - Andrew M. Latimer
- Department of Plant Sciences University of California‐Davis Davis, CA, USA
| |
Collapse
|
57
|
Gonzalez‐Akre E, Meakem V, Eng C, Tepley AJ, Bourg NA, McShea W, Davies SJ, Anderson‐Teixeira K. Patterns of tree mortality in a temperate deciduous forest derived from a large forest dynamics plot. Ecosphere 2016. [DOI: 10.1002/ecs2.1595] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Erika Gonzalez‐Akre
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal Virginia 22630 USA
| | - Victoria Meakem
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal Virginia 22630 USA
| | - Cheng‐Yin Eng
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal Virginia 22630 USA
| | - Alan J. Tepley
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal Virginia 22630 USA
| | - Norman A. Bourg
- U.S. Geological Survey National Research Program – Eastern Branch Reston Virginia 20192 USA
| | - William McShea
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal Virginia 22630 USA
| | - Stuart J. Davies
- Center for Tropical Forest Science Smithsonian Tropical Research Institute Panama City 9100 Panama
- Smithsonian National Museum of Natural History Washington D.C. 20013 USA
| | - Kristina Anderson‐Teixeira
- Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal Virginia 22630 USA
- Center for Tropical Forest Science Smithsonian Tropical Research Institute Panama City 9100 Panama
| |
Collapse
|
58
|
Vayreda J, Martinez-Vilalta J, Gracia M, Canadell JG, Retana J. Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. GLOBAL CHANGE BIOLOGY 2016; 22:3984-3995. [PMID: 27286408 DOI: 10.1111/gcb.13394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/11/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Over the past century, major shifts in the geographic distribution of tree species have occurred in response to changes in land use and climate. We analyse species distribution and abundance from about 33 000 forest inventory plots in Spain sampled twice over a period of 10-12 years. We show a dominance of range contraction (extinction), and demographic decline over range expansion (colonization), with seven of 11 species exhibiting extinction downhill of their distribution. Contrary to expectations, these dynamics are not always consistent with climate warming over the study period, but result from legacies in forest structure due to past land use change and fire occurrence. We find that these changes have led to the expansion of broadleaf species (i.e. family Fagaceae) over areas formerly dominated by conifer species (i.e. family Pinaceae), due to the greater capacity of the former to respond to most disturbances and their higher competitive ability. This recent and rapid transition from conifers to broadleaves has important implications in forest dynamics and ecosystem services they provide. The finding raises the question as to whether the increasing dominance of relatively drought-sensitive broadleaf species will diminish resilience of Mediterranean forests to very likely drier conditions in the future.
Collapse
Affiliation(s)
- Jordi Vayreda
- CREAF, Cerdanyola del Vallès, 08193, Spain
- Univ Autònoma Barcelona, Cerdanyola del Vallés, 08193, Spain
| | - Jordi Martinez-Vilalta
- CREAF, Cerdanyola del Vallès, 08193, Spain
- Univ Autònoma Barcelona, Cerdanyola del Vallés, 08193, Spain
| | | | - Josep G Canadell
- Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT, 2601, Australia
| | - Javier Retana
- CREAF, Cerdanyola del Vallès, 08193, Spain
- Univ Autònoma Barcelona, Cerdanyola del Vallés, 08193, Spain
| |
Collapse
|
59
|
Vizcaíno-Palomar N, Ibáñez I, González-Martínez SC, Zavala MA, Alía R. Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients. Ecol Evol 2016; 6:7561-7573. [PMID: 31110659 PMCID: PMC6512899 DOI: 10.1002/ece3.2153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/22/2016] [Accepted: 03/20/2016] [Indexed: 02/01/2023] Open
Abstract
Plant species aboveground allometry can be viewed as a functional trait that reflects the evolutionary trade-off between above- and belowground resources. In forest trees, allometry is related to productivity and resilience in different environments, and it is tightly connected with a compromise between efficiency-safety and competitive ability. A better understanding on how this trait varies within and across species is critical to determine the potential of a species/population to perform along environmental gradients. We followed a hierarchical framework to assess tree height-diameter allometry variation within and across four common European Pinus species. Tree height-diameter allometry variation was a function of solely genetic components -approximated by either population effects or clinal geographic responses of the population's site of origin- and differential genetic plastic responses -approximated by the interaction between populations and two climatic variables of the growing sites (temperature and precipitation)-. Our results suggest that, at the species level, climate of the growing sites set the tree height-diameter allometry of xeric and mesic species (Pinus halepensis, P. pinaster and P. nigra) apart from the boreal species (P. sylvestris), suggesting a weak signal of their phylogenies in the tree height-diameter allometry variation. Moreover, accounting for interpopulation variability within species for the four pine species aided to: (1) detect genetic differences among populations in allometry variation, which in P. nigra and P. pinaster were linked to gene pools -genetic diversity measurements-; (2) reveal the presence of differential genetic variation in plastic responses along two climatic gradients in tree allometry variation. In P. sylvestris and P. nigra, genetic variation was the result of adaptive patterns to climate, while in P. pinaster and P. halepensis, this signal was either weaker or absent, respectively; and (3) detect local adaptation in the exponent of the tree height-diameter allometry relationship in two of the four species (P. sylvestris and P. nigra), as it was a function of populations' latitude and altitude variables. Our findings suggest that the four species have been subjected to different historical and climatic constraints that might have driven their aboveground allometry and promoted different life strategies.
Collapse
Affiliation(s)
- Natalia Vizcaíno-Palomar
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Forest Ecology and Restoration Group Department of Life Sciences Universidad de Alcalá Science Building Campus Universitario, 28871 Alcalá de Henares Madrid Spain
| | - Inés Ibáñez
- School of Natural Resources and Environment University of Michigan Ann Arbor Michigan 48109
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Sustainable Forest Management Research Institute University of Valladolid-INIA Avd. Madrid s/n 34004 Palencia Spain.,BIOGECO, INRA University of Bordeaux 33610 Cestas France
| | - Miguel A Zavala
- Forest Ecology and Restoration Group Department of Life Sciences Universidad de Alcalá Science Building Campus Universitario, 28871 Alcalá de Henares Madrid Spain
| | - Ricardo Alía
- Department of Forest Ecology and Genetics Forest Research Centre (INIA) Ctra. A Coruña, km 7.5 28040 Madrid Spain.,Sustainable Forest Management Research Institute University of Valladolid-INIA Avd. Madrid s/n 34004 Palencia Spain
| |
Collapse
|
60
|
Xu GQ, McDowell NG, Li Y. A possible link between life and death of a xeric tree in desert. JOURNAL OF PLANT PHYSIOLOGY 2016; 194:35-44. [PMID: 26968083 DOI: 10.1016/j.jplph.2016.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Understanding the interactions between drought and tree ontogeny or size remains an essential research priority because size-specific mortality patterns have large impacts on ecosystem structure and function, determine forest carbon storage capacity, and are sensitive to climatic change. Here we investigate a xerophytic tree species (Haloxylon ammodendron (C.A. Mey.)) with which the changes in biomass allocation with tree size may play an important role in size-specific mortality patterns. Size-related changes in biomass allocation, root distribution, plant water status, gas exchange, hydraulic architecture and non-structural carbohydrate reserves of this xerophytic tree species were investigated to assess their potential role in the observed U-shaped mortality pattern. We found that excessively negative water potentials (<-4.7MPa, beyond the P50leaf of -4.1MPa) during prolonged drought in young trees lead to hydraulic failure; while the imbalance of photoassimilate allocation between leaf and root system in larger trees, accompanied with declining C reserves (<2% dry matter across four tissues), might have led to carbon starvation. The drought-resistance strategy of this species is preferential biomass allocation to the roots to improve water capture. In young trees, the drought-resistance strategy is not well developed, and hydraulic failure appears to be the dominant driver of mortality during drought. With old trees, excess root growth at the expense of leaf area may lead to carbon starvation during prolonged drought. Our results suggest that the drought-resistance strategy of this xeric tree is closely linked to its life and death: well-developed drought-resistance strategy means life, while underdeveloped or overdeveloped drought-resistance strategy means death.
Collapse
Affiliation(s)
- Gui-Qing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Nate G McDowell
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China.
| |
Collapse
|
61
|
Stand Composition, Tree Proximity and Size Have Minimal Effects on Leaf Function of Coexisting Aspen and Subalpine Fir. PLoS One 2016; 11:e0154395. [PMID: 27124496 PMCID: PMC4849632 DOI: 10.1371/journal.pone.0154395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/11/2016] [Indexed: 11/28/2022] Open
Abstract
Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen’s storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.
Collapse
|
62
|
Coudel M, Aubert PM, Aderghal M, Hély C. Pastoral and woodcutting activities drive Cedrus atlantica Mediterranean forest structure in the Moroccan Middle Atlas. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:574-586. [PMID: 27209796 DOI: 10.1890/14-2393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Human activities are historical ecological drivers, and we need to better understand their effects on ecosystems. In particular, they have been very important in the shaping of the Mediterranean biodiversity hotspot. Researchers and managers nonetheless lack knowledge concerning the impacts of their combinations and their current intensity on the structure of forest ecosystems of the southern part of the Mediterranean basin. In this study, we have develped a new methodology in order to understand the impacts of combined pastoral and woodcutting activities on the forest structure of the still ill-described but ecologically and economically important Moroccan Middle Atlas cedar forests. In a 40 000 ha forest, we chose 103 sites and sampled human activities through proxies and forest structures through circumference and vertical structures. A typology of sites yielded four human activity types: dominant pastoral activities, dominant oak cutting or cedar cutting activities, and an intermediate mid-disturbance type. This typology did not depend on altitude or substrate, confirming that the ecosystem structures linked to the different types depend more on human activities than on main environmental parameters. Pastoral activities modified forests the most, converting them to parklands with reduced canopies and low dynamics but high tree maturation. Woodcutting activities induced gap dynamics, favoring Cedrus atlantica in favorable environmental conditions and Quercus ilex otherwise, while they affected vertical structure depending on the local environment and competition for light and soil resources. Moderately disturbed stands showed forest maturation with low competition for light. Unlike previous studies, we found no evidence of a general degradation of cedar forests due to local human activities. However, cedar logging has reduced standing basal area regionally and one third of the sites may have vulnerable cedar populations due to pastoral activities and to unfavorable environmental conditions. These results can direct future research and management needs for a better protection of Mediterranean forests and parklands and their biodiversity, although to be effective such efforts must also partner with sociogeographical studies.
Collapse
|
63
|
Modelling the effect of climate-induced changes in recruitment and juvenile growth on mixed-forest dynamics: The case of montane–subalpine Pyrenean ecotones. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
64
|
Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015. [DOI: 10.1890/es15-00203.1] [Citation(s) in RCA: 1345] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
65
|
Long-term Wood Production in Water-Limited Forests: Evaluating Potential CO2 Fertilization Along with Historical Confounding Factors. Ecosystems 2015. [DOI: 10.1007/s10021-015-9882-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Aubry-Kientz M, Rossi V, Boreux JJ, Hérault B. A joint individual-based model coupling growth and mortality reveals that tree vigor is a key component of tropical forest dynamics. Ecol Evol 2015; 5:2457-65. [PMID: 26120434 PMCID: PMC4475377 DOI: 10.1002/ece3.1532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 11/22/2022] Open
Abstract
Tree vigor is often used as a covariate when tree mortality is predicted from tree growth in tropical forest dynamic models, but it is rarely explicitly accounted for in a coherent modeling framework. We quantify tree vigor at the individual tree level, based on the difference between expected and observed growth. The available methods to join nonlinear tree growth and mortality processes are not commonly used by forest ecologists so that we develop an inference methodology based on an MCMC approach, allowing us to sample the parameters of the growth and mortality model according to their posterior distribution using the joint model likelihood. We apply our framework to a set of data on the 20-year dynamics of a forest in Paracou, French Guiana, taking advantage of functional trait-based growth and mortality models already developed independently. Our results showed that growth and mortality are intimately linked and that the vigor estimator is an essential predictor of mortality, highlighting that trees growing more than expected have a far lower probability of dying. Our joint model methodology is sufficiently generic to be used to join two longitudinal and punctual linked processes and thus may be applied to a wide range of growth and mortality models. In the context of global changes, such joint models are urgently needed in tropical forests to analyze, and then predict, the effects of the ongoing changes on the tree dynamics in hyperdiverse tropical forests.
Collapse
Affiliation(s)
- Mélaine Aubry-Kientz
- UMR 'Ecologie des Forêts de Guyane', Université des Antilles et de la Guyane Campus agronomique de Kourou, Kourou, France
| | - Vivien Rossi
- UMR 'Ecologie des Forêts de Guyane', CIRAD Campus agronomique de Kourou, Kourou, France ; UPR Bsef, CIRAD Montpellier, France ; UMMISCO (UMI 209), Université de Yaoundé I BP337, Yaoundé, Cameroun
| | - Jean-Jacques Boreux
- Département des Sciences et Gestion de l'environnement, Université de Liège Arlon, Belgium
| | - Bruno Hérault
- UMR 'Ecologie des Forêts de Guyane', CIRAD Campus agronomique de Kourou, Kourou, France
| |
Collapse
|
67
|
Stand competition determines how different tree species will cope with a warming climate. PLoS One 2015; 10:e0122255. [PMID: 25826446 PMCID: PMC4380403 DOI: 10.1371/journal.pone.0122255] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
Plant-plant interactions influence how forests cope with climate and contribute to modulate species response to future climate scenarios. We analysed the functional relationships between growth, climate and competition for Pinus sylvestris, Quercus pyrenaica and Quercus faginea to investigate how stand competition modifies forest sensitivity to climate and simulated how annual growth rates of these species with different drought tolerance would change throughout the 21st century. Dendroecological data from stands subjected to thinning were modelled using a novel multiplicative nonlinear approach to overcome biases related to the general assumption of a linear relationship between covariates and to better mimic the biological relationships involved. Growth always decreased exponentially with increasing competition, which explained more growth variability than climate in Q. faginea and P. sylvestris. The effect of precipitation was asymptotic in all cases, while the relationship between growth and temperature reached an optimum after which growth declined with warmer temperatures. Our growth projections indicate that the less drought-tolerant P. sylvestris would be more negatively affected by climate change than the studied sub-Mediterranean oaks. Q. faginea and P. sylvestris mean growth would decrease under all the climate change scenarios assessed. However, P. sylvestris growth would decline regardless of the competition level, whereas this decrease would be offset by reduced competition in Q. faginea. Conversely, Q. pyrenaica growth would remain similar to current rates, except for the warmest scenario. Our models shed light on the nature of the species-specific interaction between climate and competition and yield important implications for management. Assuming that individual growth is directly related to tree performance, trees under low competition would better withstand the warmer conditions predicted under climate change scenarios but in a variable manner depending on the species. Thinning following an exponential rule may be desirable to ensure long-term conservation of high-density Mediterranean woodlands, particularly in drought-limited sites.
Collapse
|
68
|
Ibáñez B, Gómez-Aparicio L, Stoll P, Ávila JM, Pérez-Ramos IM, Marañón T. A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PLoS One 2015; 10:e0117827. [PMID: 25706723 PMCID: PMC4338116 DOI: 10.1371/journal.pone.0117827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/31/2014] [Indexed: 11/22/2022] Open
Abstract
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species' relative abundance and canopy trees' health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.
Collapse
Affiliation(s)
- Beatriz Ibáñez
- Instituto de Recursos Naturales y Agrobiología (IRNAS, CSIC), PO Box 1052, Sevilla 41080, Spain
| | - Lorena Gómez-Aparicio
- Instituto de Recursos Naturales y Agrobiología (IRNAS, CSIC), PO Box 1052, Sevilla 41080, Spain
| | - Peter Stoll
- Institute for Environmental Sciences, Section Conservation Biology, University of Basel, St. Johanns-Vorstadt 10, CH-4056 Basel, Switzerland
| | - José M. Ávila
- Instituto de Recursos Naturales y Agrobiología (IRNAS, CSIC), PO Box 1052, Sevilla 41080, Spain
| | - Ignacio M. Pérez-Ramos
- Instituto de Recursos Naturales y Agrobiología (IRNAS, CSIC), PO Box 1052, Sevilla 41080, Spain
| | - Teodoro Marañón
- Instituto de Recursos Naturales y Agrobiología (IRNAS, CSIC), PO Box 1052, Sevilla 41080, Spain
| |
Collapse
|
69
|
Law BE. Regional analysis of drought and heat impacts on forests: current and future science directions. GLOBAL CHANGE BIOLOGY 2014; 20:3595-3599. [PMID: 24909650 DOI: 10.1111/gcb.12651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 06/03/2023]
Abstract
Accurate assessments of forest response to current and future climate and human actions are needed at regional scales. Predicting future impacts on forests will require improved analysis of species-level adaptation, resilience, and vulnerability to mortality. Land system models can be enhanced by creating trait-based groupings of species that better represent climate sensitivity, such as risk of hydraulic failure from drought. This emphasizes the need for more coordinated in situ and remote sensing observations to track changes in ecosystem function, and to improve model inputs, spatio-temporal diagnosis, and predictions of future conditions, including implications of actions to mitigate climate change.
Collapse
Affiliation(s)
- Beverly E Law
- Oregon State University, 328 Richardson Hall, Corvallis, OR, 97331-5752, USA
| |
Collapse
|
70
|
Valladares F, Matesanz S, Guilhaumon F, Araújo MB, Balaguer L, Benito-Garzón M, Cornwell W, Gianoli E, van Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 2014; 17:1351-64. [PMID: 25205436 DOI: 10.1111/ele.12348] [Citation(s) in RCA: 514] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/05/2014] [Accepted: 07/30/2014] [Indexed: 12/01/2022]
Abstract
Species are the unit of analysis in many global change and conservation biology studies; however, species are not uniform entities but are composed of different, sometimes locally adapted, populations differing in plasticity. We examined how intraspecific variation in thermal niches and phenotypic plasticity will affect species distributions in a warming climate. We first developed a conceptual model linking plasticity and niche breadth, providing five alternative intraspecific scenarios that are consistent with existing literature. Secondly, we used ecological niche-modeling techniques to quantify the impact of each intraspecific scenario on the distribution of a virtual species across a geographically realistic setting. Finally, we performed an analogous modeling exercise using real data on the climatic niches of different tree provenances. We show that when population differentiation is accounted for and dispersal is restricted, forecasts of species range shifts under climate change are even more pessimistic than those using the conventional assumption of homogeneously high plasticity across a species' range. Suitable population-level data are not available for most species so identifying general patterns of population differentiation could fill this gap. However, the literature review revealed contrasting patterns among species, urging greater levels of integration among empirical, modeling and theoretical research on intraspecific phenotypic variation.
Collapse
Affiliation(s)
- Fernando Valladares
- LINCGlobal, Department of Biogeography and Global Change, National Museum of Natural History, MNCN, CSIC, Serrano 115 bis, 28006, Madrid, Spain; Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, 28933, Móstoles, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Guillemot J, Delpierre N, Vallet P, François C, Martin-StPaul NK, Soudani K, Nicolas M, Badeau V, Dufrêne E. Assessing the effects of management on forest growth across France: insights from a new functional-structural model. ANNALS OF BOTANY 2014; 114:779-93. [PMID: 24769539 PMCID: PMC4217684 DOI: 10.1093/aob/mcu059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional-structural model is presented and is used to assess the effects of management on forest functioning at a national scale. METHODS The stand process-based model (PBM) CASTANEA was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled CASTANEA-SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth. KEY RESULTS The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the CASTANEA PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale. CONCLUSIONS This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield.
Collapse
Affiliation(s)
- Joannès Guillemot
- Université Paris-Sud, Laboratoire Ecologie, Systématique et Evolution, UMR8079, F-91405 Orsay, France
- For correspondence. E-mail
| | - Nicolas Delpierre
- Université Paris-Sud, Laboratoire Ecologie, Systématique et Evolution, UMR8079, F-91405 Orsay, France
| | - Patrick Vallet
- Irstea, Unité de recherche ‘Ecosystèmes forestiers’, F-45290 Nogent-sur-Vernisson, France
| | - Christophe François
- CNRS, Laboratoire Ecologie, Systématique et Evolution, UMR8079, F-91405 Orsay, France
| | | | - Kamel Soudani
- Université Paris-Sud, Laboratoire Ecologie, Systématique et Evolution, UMR8079, F-91405 Orsay, France
| | | | - Vincent Badeau
- INRA, Unité de recherche ‘Ecologie et Ecophysiologie forestières’, UMR1137, F-54280 Champenoux, France
| | - Eric Dufrêne
- CNRS, Laboratoire Ecologie, Systématique et Evolution, UMR8079, F-91405 Orsay, France
| |
Collapse
|
72
|
Ruiz-Benito P, Madrigal-González J, Ratcliffe S, Coomes DA, Kändler G, Lehtonen A, Wirth C, Zavala MA. Stand Structure and Recent Climate Change Constrain Stand Basal Area Change in European Forests: A Comparison Across Boreal, Temperate, and Mediterranean Biomes. Ecosystems 2014. [DOI: 10.1007/s10021-014-9806-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
73
|
Picard N, Liang J. Matrix models for size-structured populations: unrealistic fast growth or simply diffusion? PLoS One 2014; 9:e98254. [PMID: 24905941 PMCID: PMC4048208 DOI: 10.1371/journal.pone.0098254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/29/2014] [Indexed: 12/02/2022] Open
Abstract
Matrix population models are widely used to study population dynamics but have been criticized because their outputs are sensitive to the dimension of the matrix (or, equivalently, to the class width). This sensitivity is concerning for the population growth rate (λ) because this is an intrinsic characteristic of the population that should not depend on the model specification. It has been suggested that the sensitivity of λ to matrix dimension was linked to the existence of fast pathways (i.e. the fraction of individuals that systematically move up a class), whose proportion increases when class width increases. We showed that for matrix population models with growth transition only from class i to class i + 1, λ was independent of the class width when the mortality and the recruitment rates were constant, irrespective of the growth rate. We also showed that if there were indeed fast pathways, there were also in about the same proportion slow pathways (i.e. the fraction of individuals that systematically remained in the same class), and that they jointly act as a diffusion process (where diffusion here is the movement in size of an individual whose size increments are random according to a normal distribution with mean zero). For 53 tree species from a tropical rain forest in the Central African Republic, the diffusion resulting from common matrix dimensions was much stronger than would be realistic. Yet, the sensitivity of λ to matrix dimension for a class width in the range 1-10 cm was small, much smaller than the sampling uncertainty on the value of λ. Moreover, λ could either increase or decrease when class width increased depending on the species. Overall, even if the class width should be kept small enough to limit diffusion, it had little impact on the estimate of λ for tree species.
Collapse
Affiliation(s)
- Nicolas Picard
- UPR Biens et services des écosystèmes forestiers tropicaux (BSEF), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Montpellier, France
| | - Jingjing Liang
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
74
|
Clark JS, Bell DM, Kwit MC, Zhu K. Competition-interaction landscapes for the joint response of forests to climate change. GLOBAL CHANGE BIOLOGY 2014; 20:1979-1991. [PMID: 24932467 DOI: 10.1111/gcb.12425] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.
Collapse
|
75
|
Macalady AK, Bugmann H. Growth-mortality relationships in piñon pine (Pinus edulis) during severe droughts of the past century: shifting processes in space and time. PLoS One 2014; 9:e92770. [PMID: 24786646 PMCID: PMC4008371 DOI: 10.1371/journal.pone.0092770] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/25/2014] [Indexed: 01/06/2023] Open
Abstract
The processes leading to drought-associated tree mortality are poorly understood, particularly long-term predisposing factors, memory effects, and variability in mortality processes and thresholds in space and time. We use tree rings from four sites to investigate Pinus edulis mortality during two drought periods in the southwestern USA. We draw on recent sampling and archived collections to (1) analyze P. edulis growth patterns and mortality during the 1950s and 2000s droughts; (2) determine the influence of climate and competition on growth in trees that died and survived; and (3) derive regression models of growth-mortality risk and evaluate their performance across space and time. Recent growth was 53% higher in surviving vs. dying trees, with some sites exhibiting decades-long growth divergences associated with previous drought. Differential growth response to climate partly explained growth differences between live and dead trees, with responses wet/cool conditions most influencing eventual tree status. Competition constrained tree growth, and reduced trees' ability to respond to favorable climate. The best predictors in growth-mortality models included long-term (15-30 year) average growth rate combined with a metric of growth variability and the number of abrupt growth increases over 15 and 10 years, respectively. The most parsimonious models had high discriminatory power (ROC>0.84) and correctly classified ∼ 70% of trees, suggesting that aspects of tree growth, especially over decades, can be powerful predictors of widespread drought-associated die-off. However, model discrimination varied across sites and drought events. Weaker growth-mortality relationships and higher growth at lower survival probabilities for some sites during the 2000s event suggest a shift in mortality processes from longer-term growth-related constraints to shorter-term processes, such as rapid metabolic decline even in vigorous trees due to acute drought stress, and/or increases in the attack rate of both chronically stressed and more vigorous trees by bark beetles.
Collapse
Affiliation(s)
- Alison K. Macalady
- University of Arizona, School of Geography and Development and Laboratory of Tree-Ring Research, Tucson, Arizona, United States of America
| | - Harald Bugmann
- Forest Ecology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
76
|
Carnicer J, Barbeta A, Sperlich D, Coll M, Peñuelas J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. FRONTIERS IN PLANT SCIENCE 2013; 4:409. [PMID: 24146668 PMCID: PMC3797994 DOI: 10.3389/fpls.2013.00409] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/26/2013] [Indexed: 05/18/2023]
Abstract
Recent large-scale studies of tree growth in the Iberian Peninsula reported contrasting positive and negative effects of temperature in Mediterranean angiosperms and conifers. Here we review the different hypotheses that may explain these trends and propose that the observed contrasting responses of tree growth to temperature in this region could be associated with a continuum of trait differences between angiosperms and conifers. Angiosperm and conifer trees differ in the effects of phenology in their productivity, in their growth allometry, and in their sensitivity to competition. Moreover, angiosperms and conifers significantly differ in hydraulic safety margins, sensitivity of stomatal conductance to vapor-pressure deficit (VPD), xylem recovery capacity or the rate of carbon transfer. These differences could be explained by key features of the xylem such as non-structural carbohydrate content (NSC), wood parenchymal fraction or wood capacitance. We suggest that the reviewed trait differences define two contrasting ecophysiological strategies that may determine qualitatively different growth responses to increased temperature and drought. Improved reciprocal common garden experiments along altitudinal or latitudinal gradients would be key to quantify the relative importance of the different hypotheses reviewed. Finally, we show that warming impacts in this area occur in an ecological context characterized by the advance of forest succession and increased dominance of angiosperm trees over extensive areas. In this context, we examined the empirical relationships between the responses of tree growth to temperature and hydraulic safety margins in angiosperm and coniferous trees. Our findings suggest a future scenario in Mediterranean forests characterized by contrasting demographic responses in conifer and angiosperm trees to both temperature and forest succession, with increased dominance of angiosperm trees, and particularly negative impacts in pines.
Collapse
Affiliation(s)
- Jofre Carnicer
- Community and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies, University of GroningenGroningen, Netherlands
- CREAFBarcelona, Spain
- Global Ecology Unit, Consejo Superior de Investigaciones Científicas, CREAF-CEAB-CSIC-UABBarcelona, Spain
| | - Adrià Barbeta
- CREAFBarcelona, Spain
- Global Ecology Unit, Consejo Superior de Investigaciones Científicas, CREAF-CEAB-CSIC-UABBarcelona, Spain
| | - Dominik Sperlich
- CREAFBarcelona, Spain
- Global Ecology Unit, Consejo Superior de Investigaciones Científicas, CREAF-CEAB-CSIC-UABBarcelona, Spain
- Department of Ecology, University of BarcelonaBarcelona, Spain
| | - Marta Coll
- CREAFBarcelona, Spain
- Global Ecology Unit, Consejo Superior de Investigaciones Científicas, CREAF-CEAB-CSIC-UABBarcelona, Spain
| | - Josep Peñuelas
- CREAFBarcelona, Spain
- Global Ecology Unit, Consejo Superior de Investigaciones Científicas, CREAF-CEAB-CSIC-UABBarcelona, Spain
| |
Collapse
|