51
|
Duc NTM, Abozaid AAF, Van Truong L, Hung NB, Linh DK, Dung NH, Voong TP, Huy NT. COVID-19 outbreak after 100 days without community transmission: Epidemiological analysis of factors associated with death. Heliyon 2023; 9:e12941. [PMID: 36644677 PMCID: PMC9832690 DOI: 10.1016/j.heliyon.2023.e12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Background Outbreak of SARS-CoV-2 pandemic has caused millions of deaths and lifelong consequences since December 2019. We attempted to evaluate the incidence, distribution, and risk factors associated with death after applying the social distance strategy to the second wave of SARS-CoV-2 in the Danang outbreak in Vietnam. Methods We retrospectively reviewed the online the Danang Hospital reports, gathering the epidemiological history of confirmed SARS-CoV-2 patients. We then conducted a descriptive analysis of Fisher's Phi Coefficient and Cramer's, along with multiple logistic regression models to test the effects of symptomatology and control measures performed by Vietnamese government. The last report we examined on August 29, 2020. Results A total of 389 SARS-CoV-2 confirmed cases were related to the Danang outbreak are included in our analysis with a mean age of 47.1 (SD = 18.4), involving 154 men and 235 women, with 34 cases of death and 355 were alive. The study showed significant results related to age, quarantine measures, previous negative SARS-CoV-2 test, and a range of symptoms, including shortness of breath and myalgia (p-value <0.05). Our multiple-variable analysis suggested the significant risk of death was related to age, severe symptomology, undetected SARS-CoV-2 test results, and prior quarantined SARS-CoV-2 history. Conclusions Vietnamese authorities had implemented successful quarantine practices to control the SARS-CoV-2 outbreaks. However, this virus has shown dynamic spread beyond the ability of the country to control its transmission. Adequate screening, social distancing, and adequate care of elderly and healthcare workers can lower the risk of future outbreaks.
Collapse
Affiliation(s)
- Nguyen Tran Minh Duc
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | | | - Le Van Truong
- Traditional Medicine Hospital, Ministry of the Public Security, Hanoi, Viet Nam
| | - Nguyen Bao Hung
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Dao Khanh Linh
- Faculty of Medicine, Haiphong University of Medicine and Pharmacy, Hai Phong City, Viet Nam
| | - Nguyen Hoang Dung
- Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | | | - Nguyen Tien Huy
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki City, Japan,Corresponding author.
| |
Collapse
|
52
|
Rojas-García M, Vázquez B, Torres-Poveda K, Madrid-Marina V. Lethality risk markers by sex and age-group for COVID-19 in Mexico: a cross-sectional study based on machine learning approach. BMC Infect Dis 2023; 23:18. [PMID: 36631853 PMCID: PMC9832420 DOI: 10.1186/s12879-022-07951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Mexico ranks fifth worldwide in the number of deaths due to COVID-19. Identifying risk markers through easily accessible clinical data could help in the initial triage of COVID-19 patients and anticipate a fatal outcome, especially in the most socioeconomically disadvantaged regions. This study aims to identify markers that increase lethality risk in patients diagnosed with COVID-19, based on machine learning (ML) methods. Markers were differentiated by sex and age-group. METHODS A total of 11,564 cases of COVID-19 in Mexico were extracted from the Epidemiological Surveillance System for Viral Respiratory Disease. Four ML classification methods were trained to predict lethality, and an interpretability approach was used to identify those markers. RESULTS Models based on Extreme Gradient Boosting (XGBoost) yielded the best performance in a test set. This model achieved a sensitivity of 0.91, a specificity of 0.69, a positive predictive value of 0.344, and a negative predictive value of 0.965. For female patients, the leading markers are diabetes and arthralgia. For males, the main markers are chronic kidney disease (CKD) and chest pain. Dyspnea, hypertension, and polypnea increased the risk of death in both sexes. CONCLUSIONS ML-based models using an interpretability approach successfully identified risk markers for lethality by sex and age. Our results indicate that age is the strongest demographic factor for a fatal outcome, while all other markers were consistent with previous clinical trials conducted in a Mexican population. The markers identified here could be used as an initial triage, especially in geographic areas with limited resources.
Collapse
Affiliation(s)
- Mariano Rojas-García
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca, 62100, Mexico
| | - Blanca Vázquez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Kirvis Torres-Poveda
- CONACyT-Instituto Nacional de Salud Pública, Av. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Mexico.
| | - Vicente Madrid-Marina
- Center for Research on Infectious Diseases, Instituto Nacional de Salud Pública, Cuernavaca, 62100, Mexico.
| |
Collapse
|
53
|
Souissi A, Dergaa I, Romdhani M, Ghram A, Irandoust K, Chamari K, Ben Saad H. Can melatonin reduce the severity of post-COVID-19 syndrome? EXCLI JOURNAL 2023; 22:173-187. [PMID: 36998709 PMCID: PMC10043401 DOI: 10.17179/excli2023-5864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 04/01/2023]
Abstract
This short review aimed at (i) providing an update on the health benefits associated with melatonin supplementation, while (ii) considering future potential research directions concerning melatonin supplementation use relative to Coronavirus disease of 2019 (COVID-19). A narrative review of the literature was undertaken to ascertain the effect of exogenous melatonin administration on humans. Night-time melatonin administration has a positive impact on human physiology and mental health. Indeed, melatonin (i) modulates the circadian components of the sleep-wake cycle; (ii) improves sleep efficiency and mood status; (iii) improves insulin sensitivity; and (iv) reduces inflammatory markers and oxidative stress. Melatonin has also remarkable neuroprotective and cardioprotective effects and may therefore prevent deterioration caused by COVID-19. We suggest that melatonin could be used as a potential therapy in the post-COVID-19 syndrome, and therefore call for action the research community to investigate on the potential use of exogenous melatonin to enhance the quality of life in patients with post-COVID-19 syndrome. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
- Amine Souissi
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
- *To whom correspondence should be addressed: Amine Souissi, Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie, E-mail:
| | - Ismail Dergaa
- Primary Health Care Corporation (PHCC), Doha, P.O. Box 26555, Qatar
| | - Mohamed Romdhani
- Research Unit: Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis, Tunisia
- Motricité-Interactions-Performance, MIP, UR4334, Le Mans Université, Le Mans, France
| | - Amine Ghram
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Khadijeh Irandoust
- Department of Sport Sciences, Imam Khomeini International University, Qazvin, Iran
| | - Karim Chamari
- Aspetar, Orthopedic and Sports Medicine Hospital, FIFA Medical Center of Excellence, Doha, Qatar
| | - Helmi Ben Saad
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| |
Collapse
|
54
|
Said KB, Alsolami A, Alreshidi FS, Fathuddin A, Alshammari F, Alrashid F, Aljadani A, Aboras R, Alreshidi F, Alghozwi MH, Alshammari SF, Alharbi NF, On behalf of the Ha’il COM Research Unit Group. Profiles of Independent-Comorbidity Groups in Senior COVID-19 Patients Reveal Low Fatality Associated with Standard Care and Low-Dose Hydroxychloroquine over Antivirals. J Multidiscip Healthc 2023; 16:1215-1229. [PMID: 37153358 PMCID: PMC10162097 DOI: 10.2147/jmdh.s403700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction The lack of feasible therapies and comorbidities aggravate the COVID-19 case-fatality rate (CFR). However, reports examining CFR associations with diabetes, concomitant cardiovascular diseases, chronic kidney disease, and chronic liver disease (CLD) are limited. More studies assessing hydroxychloroquine (Hcq) and antivirals are needed. Purpose To examine associations of COVID-19 CFR in comorbid patient groups each with single comorbidities and after treatment with Hcq, favipiravir, and dexamethasone (Dex), either alone or in combination versus standard care. Methods Using statistical analysis, we descriptively determined these associations among 750 COVID-19 patient groups during the last quarter of 2021. Results A diabetes comorbidity (40%, n=299) showed twice the fatality (CFR 14%) of the others (CFR 7%; P=0.001). Hypertension (Htn) was the second-commonest comorbidity (29.5%, n=221), with similar CFR to diabetes (15% and 7% for Htn and non-Htn, respectively), but with higher significance (P=0.0006167). Although only 4% (n=30) heart failure (HF) was reported, the CFR (40%) was much higher than in those without it (8%). A similar rate (4%) for chronic kidney disease was reported, with CFRs of 33% and 9% among those with and without it, respectively (P=0.00048). Ischemic heart disease was 11% (n=74), followed by chronic liver disease (0.4%) and history of smoking (1%); however, these were not significant due to the sample sizes. Treatment indicated standard care and Hcq alone or in combination were superior (CFR of 4% and 0.5%, respectively) compared to favipiravir (25%) or Dex (38.5%) independently or in combination (35.4%). Furthermore, Hcq performed well (CFR 9%) when combined with Dex (9%; P=4.28-26). Conclusion The dominance of diabetes and other comorbidities with significant association with CFR implied existence of a common virulence mechanism. The superiority of low-dose Hcq and standard care over antivirals warrants further studies.
Collapse
Affiliation(s)
- Kamaleldin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
- Genomics, Bioinformatics and Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence: Kamaleldin B Said, Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia, Tel +966500771459, Email
| | - Ahmed Alsolami
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Fayez Saud Alreshidi
- Deparmtent of Family, Community Medicine, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Anas Fathuddin
- Department of Plastic Surgery, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Fawwaz Alshammari
- Department of Dermatology, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Fauwaz Alrashid
- Department of Surgery, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Ahmed Aljadani
- Department of Internal Medicine, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Rana Aboras
- Deparmtent of Family, Community Medicine, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Fatmah Alreshidi
- Deparmtent of Family, Community Medicine, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Mohammed H Alghozwi
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Suliman F Alshammari
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | - Nawaf F Alharbi
- Department of Pathology and Microbiology, College of Medicine, University of Ha’il, Ha’il, 55476, Saudi Arabia
| | | |
Collapse
|
55
|
Srinivasagam M, Shanmugam R. A retrospective study on prevalence and profile of reverse transcriptase polymerase chain reaction positive severe acute respiratory syndrome corona virus 2 samples tested in a tertiary care hospital, South India. APOLLO MEDICINE 2023. [DOI: 10.4103/am.am_131_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
56
|
Arish M, Qian W, Narasimhan H, Sun J. COVID-19 immunopathology: From acute diseases to chronic sequelae. J Med Virol 2023; 95:e28122. [PMID: 36056655 PMCID: PMC9537925 DOI: 10.1002/jmv.28122] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/17/2023]
Abstract
The clinical manifestation of coronavirus disease 2019 (COVID-19) mainly targets the lung as a primary affected organ, which is also a critical site of immune cell activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, recent reports also suggest the involvement of extrapulmonary tissues in COVID-19 pathology. The interplay of both innate and adaptive immune responses is key to COVID-19 management. As a result, a robust innate immune response provides the first line of defense, concomitantly, adaptive immunity neutralizes the infection and builds memory for long-term protection. However, dysregulated immunity, both innate and adaptive, can skew towards immunopathology both in acute and chronic cases. Here we have summarized some of the recent findings that provide critical insight into the immunopathology caused by SARS-CoV-2, in acute and post-acute cases. Finally, we further discuss some of the immunomodulatory drugs in preclinical and clinical trials for dampening the immunopathology caused by COVID-19.
Collapse
Affiliation(s)
- Mohd Arish
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Qian
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
57
|
Yang F, Zhang X, Zhang Z, Lu H, Li J, Bai N, Geng N. Efficacy and safety of Qi and Blood Tonic Chinese Medicines in the treatment of COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32136. [PMID: 36626419 PMCID: PMC9750632 DOI: 10.1097/md.0000000000032136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Coronavirus disease in 2019 (COVID-19) is a sudden public event affecting all human beings, with the rapid transmission, extensive groups affected, many complications, and high mortality. Traditional Chinese Medicine has a long history of preventing and treating infectious diseases, and numerous studies have shown that Traditional Chinese Medicine, especially herbal medicine, has a positive effect on the prevention, treatment, and post-healing recovery of this COVID-19, and herbal medicines to supplement qi and blood often occupy a certain proportion of it. However, there is no relevant meta-analysis to date. Therefore, this study aims to evaluate the efficacy and safety of qi and blood tonic herbal medicines in the treatment of COVID-19 through Systematic Review and meta-analysis to provide a reference basis for widespread clinical application. METHODS We will search from the following databases for the period from the time of database construction to March 1st, 2023. The English databases include: PubMed, MEDLINE, EMBASE, Cochrane library, WOS, Google Scholar, and CENTRAL; The Chinese databases include: China National Knowledge Infrastructure, China Biomedical Literature Database, Technology Journal Database, and Wanfang. Randomized controlled trials in English or Chinese that include Chinese herbal medicines for tonifying Qi and Blood in the treatment of patients with COVID-19 will be included. Data were independently screened and collected by 2 investigators. The risk of bias for each trial was assessed using the Cochrane Risk of Bias Tool 2.0. RevMan 5.3 software was used for the meta-analysis of the data. Primary outcome indicators included cure, mortality, and exacerbation rates (change in disease severity category, patient admission to ICU, etc.). Secondary outcome indicators included recovery rate or duration of major symptoms (e.g., fever, cough, fatigue, and weakness, etc.), rate or duration of nucleic acid conversion for severe acute respiratory syndrome coronavirus-2, improvement or recovery of chest CT performance, length of hospital stay, and other adverse events. RESULTS This protocol adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses-P guidelines to ensure clarity and completeness of reporting in all phases of the systematic review. CONCLUSION This study will provide evidence regarding the efficacy and safety of Qi and Blood Tonic Chinese Medicines for the treatment of COVID-19. PROSPERO REGISTRATION NUMBER CRD42022361822 (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022361822).
Collapse
Affiliation(s)
- Feifei Yang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaosi Zhang
- Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhe Zhang
- Department of Traditional Chinese Medicine, affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hao Lu
- Tianshui Hospital of Traditional Chinese Medicine, Tianshui, China
| | - Jiawei Li
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ning Bai
- Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Naizhi Geng
- First Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
58
|
Biering SB, Gomes de Sousa FT, Tjang LV, Pahmeier F, Zhu C, Ruan R, Blanc SF, Patel TS, Worthington CM, Glasner DR, Castillo-Rojas B, Servellita V, Lo NTN, Wong MP, Warnes CM, Sandoval DR, Clausen TM, Santos YA, Fox DM, Ortega V, Näär AM, Baric RS, Stanley SA, Aguilar HC, Esko JD, Chiu CY, Pak JE, Beatty PR, Harris E. SARS-CoV-2 Spike triggers barrier dysfunction and vascular leak via integrins and TGF-β signaling. Nat Commun 2022; 13:7630. [PMID: 36494335 PMCID: PMC9734751 DOI: 10.1038/s41467-022-34910-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Notably, we show that SARS-CoV-2 infection caused leak in vivo, which was reduced by inhibiting integrins. Our findings offer mechanistic insight into SARS-CoV-2-triggered vascular leak, providing a starting point for development of therapies targeting COVID-19.
Collapse
Affiliation(s)
- Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| | | | - Laurentia V Tjang
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Felix Pahmeier
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Chi Zhu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Richard Ruan
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sophie F Blanc
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Trishna S Patel
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Dustin R Glasner
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Bryan Castillo-Rojas
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Nicholas T N Lo
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Marcus P Wong
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Colin M Warnes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Yale A Santos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
| | - Douglas M Fox
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Victoria Ortega
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Anders M Näär
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah A Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA
| | - Charles Y Chiu
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John E Pak
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P Robert Beatty
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
59
|
Clemente-Suárez VJ, Bustamante-Sanchez Á, Tornero-Aguilera JF, Ruisoto P, Mielgo-Ayuso J. Inflammation in COVID-19 and the Effects of Non-Pharmacological Interventions during the Pandemic: A Review. Int J Mol Sci 2022; 23:15584. [PMID: 36555231 PMCID: PMC9779440 DOI: 10.3390/ijms232415584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic that hit the health systems worldwide hard, causing a collapse of healthcare systems. One of the main problems of this new virus is the high inflammatory response it provokes, which is the cause of much of the symptoms. Different pharmacological approaches tried to stop the advance of the pandemic, but it seems that only vaccines are the solution. In this line, different nonpharmacological approaches have been made in order to improve symptomatology, contagion, and spread of COVID-19, the principal factors being the physical activity, nutrition, physiotherapy, psychology, and life patterns. The SARS-CoV-2 virus produces a disproportionate inflammatory response in the organism of the guest and causes complications in this that can end the life of the patient. It has been possible to see how different nonpharmacological interventions based on physical activity, nutritional, psychological, and physical therapy, and lifestyle changes can be functional tools to treat this inflammation. Thus, in the present review, we aim to provide an overview of the role of inflammation in COVID-19 and the nonpharmacological interventions related to it.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Research Center in Applied Combat (CESCA), 45007 Toledo, Spain
| | | | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Research Center in Applied Combat (CESCA), 45007 Toledo, Spain
| | - Pablo Ruisoto
- Department of Health Sciences, Public University of Navarre, 31006 Pamplona, Spain
| | - Juan Mielgo-Ayuso
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
60
|
Saha L, Vij S, Rawat K. Liver injury induced by COVID 19 treatment - what do we know? World J Gastroenterol 2022; 28:6314-6327. [PMID: 36533104 PMCID: PMC9753058 DOI: 10.3748/wjg.v28.i45.6314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The severity of coronavirus disease 2019 (COVID-19) may be correlated with the risk of liver injury development. An increasing number of studies indicate that degrees of hepatotoxicity have been associated with using some medications in the management of COVID-19 patients. However, limited studies have systematically investigated the evidence of drug-induced liver injury (DILI) in COVID-19 patients. An increasing number of studies indicate that degrees of hepatotoxicity have been associated with using some of these medications in the management of COVID-19 patients. Significantly, it was relieved after the cessation of these agents. However, to our knowledge, no studies have systematically investigated the evidence of DILI in COVID-19 patients. In this review, we discussed the association between hepatotoxicity in COVID-19 patients and the drugs used in these patients and possible mechanisms of hepatotoxicity. The currently available evidence on the association of different therapeutic agents with hepatotoxicity in COVID-19 patient was systematically reviewed.
Collapse
Affiliation(s)
- Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Soumya Vij
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
61
|
Elghannam MT, Hassanien MH, Ameen YA, ELattar GM, ELRay AA, Turky EA, ELTalkawy MD. COVID-19 and liver diseases. EGYPTIAN LIVER JOURNAL 2022; 12:43. [PMID: 35880136 PMCID: PMC9301896 DOI: 10.1186/s43066-022-00202-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus causes an outbreak of viral pneumonia that spread throughout the world. Liver injury is becoming more widely recognized as a component of the clinical picture of COVID-19 infection. Hepatitis with serum ALT elevation has been reported in up to half of patients. Patients with CLD were at a higher risk of decompensation with liver failure, hospitalization, and mortality. The percentage of acute liver injury (ALI) varied from 5 to 28%. COVID-19 hinders HCV elimination by 2030. It is recommended to continue treatment of chronic HCV and chronic HBV if already receiving treatment. Consider using antiviral therapy to prevent viral flare-ups in patients with occult or resolved HBV and COVID-19 who are receiving immunosuppressive agents. Patients with AIH do not have an increased risk of adverse outcomes even in high-risk areas. There is an association between MAFLD and disease progression. Patients with any type of cancer are at a higher risk of infection and are more likely to develop more severe clinical outcomes. Most societies advise against immunosuppressant modifications in patients with mild COVID-19, whereas in rare cases such as severe lymphopenia, worsening pneumonia, or bacterial or fungal superinfection, reduction or discontinuation of antiproliferative agents and lymphocyte-depleting therapies has been suggested.
Collapse
|
62
|
Cheng ZS. Editorial: Genome-wide association studies of COVID-19 among diverse human populations. Front Genet 2022; 13:1088026. [PMID: 36531227 PMCID: PMC9753975 DOI: 10.3389/fgene.2022.1088026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 01/02/2025] Open
Affiliation(s)
- Zhong-Shan Cheng
- St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
63
|
Iheanacho CO, Enechukwu OH. COVID-19-associated liver injury, role of drug therapy and management: a review. EGYPTIAN LIVER JOURNAL 2022; 12:66. [PMID: 36466933 DOI: 10.1186/s43066-022-00230-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
AbstractThe ongoing COVID-19 pandemic is known to affect several body organs, including the liver. This results from several factors such as direct effect of SARS-CoV-2 on the liver, side effects of drug therapy and pre-existing liver diseases. Drug-induced liver injury can result from a range of drugs used in the treatment of COVID-19 such as antiviral drugs, anti-inflammatory drugs, antibiotics, herbal medications and vaccines. Metabolism of most drugs occurs in the liver, and this leaves the liver at risk of medication-induced liver damage. Being among pathologies from the disease, COVID-19 liver injury presents with abnormally high liver-related enzymes, such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphate (ALP), and gamma-glutamyl transferase. It is reversible, generally not severe and occurs more mildly in children. However, COVID-19-associated liver injury is worsened by chronic liver diseases and vice versa. There is a high risk of abnormal ALT and AST, in-hospital liver injury and prolonged SARS-CoV-2 shedding in COVID-19 patients with previously existing metabolic-associated fatty liver disease. COVID-19-associated liver injury also appears to be severe and significantly associated with life-threatening COVID-19 and mortality in persons with a history of liver transplant. Where necessary, only supportive management is usually indicated. This paper evaluates the aetiology, clinical and laboratory features, occurrence and management of COVID-19-associated liver injury. It also elaborated on the role of drug therapy in the development of COVID-19 liver injury.
Collapse
|
64
|
Abolmaaty A, Amin DH, Abd El-Kader RMM, ELsayed AF, Soliman BSM, Elbahnasawy AS, Sitohy M. Consolidating food safety measures against COVID-19. J Egypt Public Health Assoc 2022; 97:21. [PMID: 36319882 PMCID: PMC9626693 DOI: 10.1186/s42506-022-00112-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/08/2022] [Indexed: 11/05/2022]
Abstract
Background The world is facing an extraordinarily unprecedented threat from the COVID-19 pandemic triggered by the SARS-CoV-2 virus. Global life has turned upside down, and that several countries closed their borders, simultaneously with the blockage of life cycle as a result of the shutdown of the majority of workplaces except the food stores and some few industries. Main body In this review, we are casting light on the nature of COVID-19 infection and spread, the persistence of SARS-CoV-2 virus in food products, and revealing the threats arising from the transmission of COVID-19 in food environment between stakeholders and even customers. Furthermore, we are exploring and identifying some practical aspects that must be followed to minimize infection and maintain a safe food environment. We also present and discuss some World Health Organization (WHO) guidelines-based regulations in food safety codes, destined to sustain the health safety of all professionals working in the food industry under this current pandemic. Conclusion The information compiled in this manuscript is supporting and consolidating the safety attributes in food environment, for a prospective positive impact on consumer confidence in food safety and the citizens’ public health in society. Some research is suggested on evaluating the use and potentiality of native and chemical modified basic proteins as possible practices aiming at protecting food from bacterial and viral contamination including COVID-19.
Collapse
Affiliation(s)
- Assem Abolmaaty
- Department of Food Science, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Dina H Amin
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 1566, Egypt.
| | - Reham M M Abd El-Kader
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Alaa F ELsayed
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 1566, Egypt
| | - Basma S M Soliman
- Department of Biochemistry and Nutrition, National Food Safety Authority, Cairo, Egypt
| | - Amr S Elbahnasawy
- Department of Bioecology, Hygiene and Public Health, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Nutrition and Food Sciences, National Research Centre, Giza, Egypt
| | - Mahmoud Sitohy
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
65
|
Liakina V, Stundiene I, Milaknyte G, Bytautiene R, Reivytyte R, Puronaite R, Urbanoviciute G, Kazenaite E. Effects of COVID-19 on the liver: The experience of a single center. World J Gastroenterol 2022; 28:5735-5749. [PMID: 36338891 PMCID: PMC9627423 DOI: 10.3748/wjg.v28.i39.5735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/12/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) was perhaps the most severe global health crisis in living memory. Alongside respiratory symptoms, elevated liver enzymes, abnormal liver function, and even acute liver failure were reported in patients suffering from severe acute respiratory disease coronavirus 2 pneumonia. However, the precise triggers of these forms of liver damage and how they affect the course and outcomes of COVID-19 itself remain unclear. AIM To analyze the impact of liver enzyme abnormalities on the severity and outcomes of COVID-19 in hospitalized patients. METHODS In this study, 684 depersonalized medical records from patients hospitalized with COVID-19 during the 2020-2021 period were analyzed. COVID-19 was diagnosed according to the guidelines of the National Institutes of Health (2021). Patients were assigned to two groups: those with elevated liver enzymes (Group 1: 603 patients), where at least one out of four liver enzymes were elevated (following the norm of hospital laboratory tests: alanine aminotransferase (ALT) ≥ 40, aspartate aminotransferase (AST) ≥ 40, gamma-glutamyl transferase ≥ 36, or alkaline phosphatase ≥ 150) at any point of hospitalization, from admission to discharge; and the control group (Group 2: 81 patients), with normal liver enzymes during hospitalization. COVID-19 severity was assessed according to the interim World Health Organization guidance (2022). Data on viral pneumonia complications, laboratory tests, and underlying diseases were also collected and analyzed. RESULTS In total, 603 (88.2%) patients produced abnormal liver test results. ALT and AST levels were elevated by a factor of less than 3 in 54.9% and 74.8% of cases with increased enzyme levels, respectively. Patients in Group 1 had almost double the chance of bacterial viral pneumonia complications [odds ratio (OR) = 1.73, P = 0.0217], required oxygen supply more often, and displayed higher biochemical inflammation indices than those in Group 2. No differences in other COVID-19 complications or underlying diseases were observed between groups. Preexisting hepatitis of a different etiology was rarely documented (in only 3.5% of patients), and had no impact on the severity of COVID-19. Only 5 (0.73%) patients experienced acute liver failure, 4 of whom died. Overall, the majority of the deceased patients (17 out of 20) had elevated liver enzymes, and most were male. All deceased patients had at least one underlying disease or combination thereof, and the deceased suffered significantly more often from heart diseases, hypertension, and urinary tract infections than those who made recoveries. Alongside male gender (OR = 1.72, P = 0.0161) and older age (OR = 1.02, P = 0.0234), diabetes (OR = 3.22, P = 0.0016) and hyperlipidemia (OR = 2.67, P = 0.0238), but not obesity, were confirmed as independent factors associated with more a severe COVID-19 infection in our cohort. CONCLUSION In our study, the presence of liver impairment allows us to predict a more severe inflammation with a higher risk of bacterial complication and worse outcomes of COVID-19. Therefore, patients with severe disease forms should have their liver tests monitored regularly and their results should be considered when selecting treatment to avoid further liver damage or even insufficiency.
Collapse
Affiliation(s)
- Valentina Liakina
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, VILNIUS TECH, Vilnius 10223, Lithuania
| | - Ieva Stundiene
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Gabriele Milaknyte
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Ramune Bytautiene
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Rosita Reivytyte
- Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| | - Roma Puronaite
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics, Vilnius University, Vilnius 01513, Lithuania
| | | | - Edita Kazenaite
- Centre of Hepatology, Gastroenterology and Dietetics, Clinic of Gastroenterology, Nephrourology and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius 01513, Lithuania
| |
Collapse
|
66
|
Wu HHL, Athwal VS, Kalra PA, Chinnadurai R. COVID-19 and hepatorenal syndrome. World J Gastroenterol 2022; 28:5666-5678. [PMID: 36338894 PMCID: PMC9627428 DOI: 10.3748/wjg.v28.i39.5666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/21/2022] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious disease which emerged into a global pandemic. Although it primarily causes respiratory symptoms for affected patients, COVID-19 was shown to have multi-organ manifestations. Elevated liver enzymes appear to be commonly observed during the course of COVID-19, and there have been numerous reports of liver injury secondary to COVID-19 infection. It has been established that patients with pre-existing chronic liver disease (CLD) are more likely to have poorer outcomes following COVID-19 infection compared to those without CLD. Co-morbidities such as diabetes, hypertension, obesity, cardiovascular and chronic kidney disease frequently co-exist in individuals living with CLD, and a substantial population may also live with some degree of frailty. The mechanisms of how COVID-19 induces liver injury have been postulated. Hepatorenal syndrome (HRS) is the occurrence of kidney dysfunction in patients with severe CLD/fulminant liver failure in the absence of another identifiable cause, and is usually a marker of severe decompensated liver disease. Select reports of HRS following acute COVID-19 infection have been presented, although the risk factors and pathophysiological mechanisms leading to HRS in COVID-19 infection or following COVID-19 treatment remain largely unestablished due to the relative lack and novelty of published data. Evidence discussing the management of HRS in high-dependency care and intensive care contexts is only emerging. In this article, we provide an overview on the speculative pathophysiological mechanisms of COVID-19 induced HRS and propose strategies for clinical diagnosis and management to optimize outcomes in this scenario.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney 2065, New South Wales, Australia
| | - Varinder S Athwal
- Faculty of Biology, Medicine & Health (Division of Diabetes, Metabolism & Gastroenterology), The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Philip A Kalra
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, United Kingdom
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, United Kingdom
| |
Collapse
|
67
|
Wang X, Rimal S, Tantray I, Geng J, Bhurtel S, Khaket TP, Li W, Han Z, Lu B. Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1. Proc Natl Acad Sci U S A 2022; 119:e2202322119. [PMID: 36170200 PMCID: PMC9586304 DOI: 10.1073/pnas.2202322119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Suman Rimal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ishaq Tantray
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Ji Geng
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Sunil Bhurtel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Tejinder Pal Khaket
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Wen Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94350
- Programs of Neuroscience and Cancer Biology, Stanford University School of Medicine, Stanford, CA 94350
| |
Collapse
|
68
|
Hasan A, Al-Ozairi E, Hassan NYM, Ali S, Ahmad R, Al-Shatti N, Alshemmari S, Al-Mulla F. Fatal COVID-19 is Associated with Reduced HLA-DR, CD123 or CD11c Expression on Circulating Dendritic Cells. J Inflamm Res 2022; 15:5665-5675. [PMID: 36238761 PMCID: PMC9553279 DOI: 10.2147/jir.s360207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Abstract
Purpose Severe coronavirus disease 2019 (COVID-19) is linked to insufficient control of viral replication and excessive inflammation driven by an unbalanced immune response. Plasmacytoid dendritic cells (pDCs) are specialized in the rapid production of interferons in response to viral infections, and can also prime and activate T-cells. Conventional DCs (cDCs) are critical for the elimination of viral infections owing to their specialized ability to prime and activate T cells. We assessed the frequency and phenotype of pDCs and cDCs in survivors and non-survivors of COVID-19. Patients and methods Patients with COVID-19 were enrolled, and 22 were included in this study. Peripheral whole blood was obtained during the 2nd week of illness, stained with antibodies specific for lineage markers, human leukocyte antigen-DR isotype (HLA-DR), CD11c, and CD123, and analyzed by flow cytometry. Patients were followed-up during hospital admission and grouped into survivors (n=17) and non-survivors (n=5) of COVID-19. Results The ratio of pDCs to pre-cDCs was significantly lower (P=0.0005) in non-survivors compared to survivors. The frequency of pDCs was significantly higher than cDC2-like cells (P=0.0002) and pre-cDCs (P<0.0001) in survivors but not in non-survivors. HLA-DR expression level on pDCs and cDC2-like cells was lower in non-survivors compared to survivors (P=0.02 and P=0.058, respectively), and HLA-DR was inversely correlated with disease severity rating (pDCs: r= –0.47, P=0.027; cDC2-like cells: r= –0.45, P=0.037). CD123 expression level on pDCs was significantly lower (P=0.038) in non-survivors compared to survivors, and CD123 was inversely correlated with disease severity rating (r=–0.5, P=0.016). CD11c expression level on cDC2-like cells was significantly lower (P=0.03) in non-survivors compared to survivors, and CD11c was inversely correlated with disease severity rating (r=–0.47, P=0.025). Conclusion A lower frequency of pDCs compared to other circulating DCs, and lower expression levels of HLA-DR, CD123 or CD11c on DCs is associated with fatal COVID-19.
Collapse
Affiliation(s)
- Amal Hasan
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait,Correspondence: Amal Hasan, Department of Immunology and Microbiology; Dasman Diabetes Institute, Dasman, Kuwait, Tel +965 2224 2999 Ext. 4312, Fax +965 2249 2406, Email
| | - Ebaa Al-Ozairi
- Clinical Research Unit, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait,Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Nosiba Y M Hassan
- Department of Internal Medicine, Jaber Al-Ahmad Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Shamsha Ali
- Special Services Facility, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Nada Al-Shatti
- Immunology & HLA Laboratory, Kuwait Cancer Control Center, Ministry of Health, Kuwait City, Kuwait
| | - Salem Alshemmari
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,Department of Hematology, Kuwait Cancer Control Center, Ministry of Health, Kuwait City, Kuwit
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| |
Collapse
|
69
|
Tan Y, Lu S, Wang B, Duan X, Zhang Y, Peng X, Li H, Lin A, Zhan Z, Liu X. Single-cell transcriptome atlas reveals protective characteristics of COVID-19 mRNA vaccine. J Med Virol 2022; 95:e28161. [PMID: 36124363 PMCID: PMC9538852 DOI: 10.1002/jmv.28161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Messenger RNA (mRNA) vaccines are promising alternatives to conventional vaccines in many aspects. We previously developed a lipopolyplex (LPP)-based mRNA vaccine (SW0123) that demonstrated robust immunogenicity and strong protective capacity against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in mice and rhesus macaques. However, the immune profiles and mechanisms of pulmonary protection induced by SW0123 remain unclear. Through high-resolution single-cell analysis, we found that SW0123 vaccination effectively suppressed SARS-CoV-2-induced inflammatory responses by inhibiting the recruitment of proinflammatory macrophages and increasing the frequency of polymorphonuclear myeloid-derived suppressor cells. In addition, the apoptotic process in both lung epithelial and endothelial cells was significantly inhibited, which was proposed to be one major mechanism contributing to vaccine-induced lung protection. Cell-cell interaction in the lung compartment was also altered by vaccination. These data collectively unravel the mechanisms by which the SW0123 protects against lung damage caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yong Tan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina,Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuaiyao Lu
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | - Bo Wang
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xuewen Duan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yunkai Zhang
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina,National Key Laboratory of Medical ImmunologyNaval Medical UniversityShanghaiChina
| | - Xiaozhong Peng
- National Kunming High‐level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeYunnanChina
| | | | - Ang Lin
- Vaccine Center, School of Basic Medicine and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Zhenzhen Zhan
- Research Center for Translational Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina,Department of Liver Surgery, Shanghai Institute of TransplantationRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xingguang Liu
- Department of Pathogen BiologyNaval Medical UniversityShanghaiChina,National Key Laboratory of Medical ImmunologyNaval Medical UniversityShanghaiChina
| |
Collapse
|
70
|
Krishnan RA, Ravindran RM, Vincy VS, Arun P, Shinu KS, Jithesh V, Varma RP. Analysis of daily COVID-19 death bulletin data during the first two waves of the COVID-19 pandemic in Thiruvananthapuram district, Kerala, India. J Family Med Prim Care 2022; 11:6190-6196. [PMID: 36618211 PMCID: PMC9810952 DOI: 10.4103/jfmpc.jfmpc_382_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022] Open
Abstract
Context Coronavirus disease 2019 (COVID-19) mortality trends can help discern the pattern of outbreak evolution and systemic responses. Aim This study aimed to explore patterns of COVID-19 deaths in Thiruvananthapuram district from 31 March 2020 to 31 December 2021. Setting and Design Secondary data analysis of COVID-19 deaths in Thiruvananthapuram district was performed. Materials and Methods Mortality data were obtained from the district COVID-19 control room, and deaths in the first and second waves of COVID-19 were compared. Statistical Analysis We summarised data as proportions and medians with the inter-quartile range (IQR) and performed Chi-square tests to make comparisons wherever applicable. Results As on 31 December 2021, 4587 COVID-19 deaths were reported in Thiruvananthapuram district, with a case fatality rate of 0.91%. We observed high mortality among older persons (66.7%) and men (56.6%). The leading cause of death was bronchopneumonia (60.6%). The majority (88.5%) had co-morbidities, commonly diabetes mellitus (54.9%). The median interval from diagnosis to hospitalisation was 4 days (IQR 2-7), and that from hospitalisation to death was 2 days (IQR 0-6). The deaths reported during the second wave were four times higher than those of the first wave with a higher proportion of deaths in the absence of co-morbidities (p < 0.001). The majority of the deceased were unvaccinated. Ecological analysis with vaccine coverage data indicated 5.4 times higher mortality among unvaccinated than those who received two vaccine doses. Conclusions The presence of co-morbidities, an unvaccinated status, and delay in hospitalisation were important reasons for COVID-19 deaths. Primary level health providers can potentially help sustaining vaccination, expeditious referral, and monitoring of COVID-19 patients.
Collapse
Affiliation(s)
- Retnakala Anjali Krishnan
- Research Officer, State Health Systems Resource Centre – Kerala (SHSRC-K), Thiruvananthapuram, Kerala, India
| | - Rekha M. Ravindran
- Senior Research Officer, State Health Systems Resource Centre – Kerala (SHSRC-K), Thiruvananthapuram, Kerala, India,Department of Health and Family Welfare, Government of Kerala, Thiruvananthapuram, Kerala, India,Member, Health Action by People, Thiruvananthapuram, Kerala, India
| | - V. S. Vincy
- Department of Health and Family Welfare, Government of Kerala, Thiruvananthapuram, Kerala, India,Nodal Officer, Data Management and Analysis, COVID-19 War Room, Collectorate of Thiruvananthapuram, Kerala, India
| | - P. Arun
- Department of Health and Family Welfare, Government of Kerala, Thiruvananthapuram, Kerala, India,Nodal Officer, COVID-19 Death Reporting Team, COVID-19 Control Room, District Medical Office, Thiruvananthapuram, Kerala, India
| | - K. S. Shinu
- Deputy Director, Medical, Thiruvananthapuram, Kerala, India
| | - V. Jithesh
- Department of Health and Family Welfare, Government of Kerala, Thiruvananthapuram, Kerala, India,Executive Director, State Health Systems Resource Centre, Kerala, India
| | - Ravi P. Varma
- Member, Health Action by People, Thiruvananthapuram, Kerala, India,Additional Professor, Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, and Health Action by People, Thiruvananthapuram, Kerala, India,Address for correspondence: Dr. Ravi P. Varma, Additional Professor, Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum - 695 011, Kerala, India. E-mail:
| |
Collapse
|
71
|
Goel A, Raizada A, Agrawal A, Bansal K, Uniyal S, Prasad P, Yadav A, Tyagi A, Rautela RS. Correlates of In-Hospital COVID-19 Deaths: A Competing Risks Survival Time Analysis of Retrospective Mortality Data. Disaster Med Public Health Prep 2022; 16:1889-1896. [PMID: 33762056 PMCID: PMC8129688 DOI: 10.1017/dmp.2021.85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Several aspects of the coronavirus disease 2019 (COVID-19) pandemic remain ambiguous, including its transmission, severity, geographic, and racial differences in mortality. These variations merit elaboration of local patterns to inform wider national policies. METHODS In a retrospective analysis, data of patients treated at a dedicated COVID hospital with moderate and severe illness during 8 wk of the pandemic were reviewed with attention to mortality in a competing risks framework. RESULTS A total of 1147 patients were hospitalized, and 312 (27.2%) died in hospital. Those who died were older (56.5 vs 47.6 y; P < 0.0001). Of these, 885 (77.2%) had tested positive on reverse transcriptase polymerase chain reaction (RT-PCR), with 219 (24.2%) deaths (incidence rate, 1.9 per 100 person-days). Median time from onset of symptoms to death was 11 days. A competing risks analysis for in-hospital death revealed an adjusted cause-specific hazard ratio of 1.4 for each decade increase in age. CONCLUSIONS This retrospective analysis provides broad patterns of disease presentation and mortality. Even COVID test-negative patients will receive treatment at dedicated facilities, and 33% presenting cases may die within the first 72 h, most with comorbid illness. This should be considered while planning distribution of services for effective health-care delivery.
Collapse
Affiliation(s)
- Ashish Goel
- Department of Medicine, UCMS and GTB Hospital, Delhi
- Corresponding author: Ashish Goel,
| | | | - Ananya Agrawal
- Hamdard Institute of Medical Sciences and Research, New Delhi, India
| | | | | | - Pratima Prasad
- Department of Pedodontics and Preventive Dentistry, UCMS and GTB Hospital, Delhi, India
| | - Anil Yadav
- Department of Medicine, UCMS and GTB Hospital, Delhi
| | - Asha Tyagi
- Department of Anesthesia, UCMS and GTB Hospital, Delhi, India
| | - RS Rautela
- Department of Anesthesia, UCMS and GTB Hospital, Delhi, India
| |
Collapse
|
72
|
Jain P, Agarwal N, Saxena V, Srivastav S, Solanki H. Mortality in patients with Coronavirus disease 2019 (COVID- 19) and its clinicoradiological and laboratory correlates: A retrospective study. J Family Med Prim Care 2022; 11:6197-6203. [PMID: 36618193 PMCID: PMC9810907 DOI: 10.4103/jfmpc.jfmpc_364_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022] Open
Abstract
Aim To delineate and analyze the mortality from COVID -19 in our institute during the devastating second wave of pandemic. Settings and Design A retrospective cohort analysis. Methods and Materials A comprehensive mortality analysis of 142 laboratory-confirmed severe acute respiratory syndrome coronavirus 2-infected deceased patients from our hospital's medical records was done. These patients presented with severe disease at the time of admission and were managed in intensive care units. Statistical Analysis Used Statistical Package for Social Sciences software, IBM manufacturer, Chicago, USA, version 21.0 was used. Results The number of deceased males (82, 62.6%) was higher than females (53, 37.3%). Median age of deceased patient was 57 (44.25-69.75) years. Most frequent comorbidities were diabetes mellitus (42, 29.6%) and hypertension (41, 28.9%). Most common symptoms being shortness of breath (137, 96.5%), fever (94, 66.2%) and cough (73, 51.4%). Median peripheral capillary oxygen saturation (SpO2) at time of admission was 86% (77.25-90). Median time interval from symptom onset to admission in hospital was 3 (2.25-5) days. Neutrophil lymphocyte ratio was more than 5 in 117 (90.7%) patients. Complications seen were acute respiratory distress syndrome in 82.3%, acute liver injury in 58.4%, acute kidney injury in 26.7%, sepsis in 13.3% and acute cardiac injury in 12% patients. The median high-resolution computed tomography score was 20 (17-22). Conclusions Male and elderly patients with underlying comorbidities had poorer outcome and involvement of multiple organ systems was common. A short time interval between symptom onset and admission/mortality, particularly encountered was worrisome.
Collapse
Affiliation(s)
- Payal Jain
- Department of Internal Medicine, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | - Neema Agarwal
- Department of Radio Diagnosis, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | - Vikas Saxena
- Department of Orthopedics, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | - Saurabh Srivastav
- Department of Internal Medicine, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| | - Hariom Solanki
- Department of Community Medicine, Government Institute of Medical Sciences, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
73
|
The JAK1/2 Inhibitor Baricitinib Mitigates the Spike-Induced Inflammatory Response of Immune and Endothelial Cells In Vitro. Biomedicines 2022; 10:biomedicines10092324. [PMID: 36140425 PMCID: PMC9496399 DOI: 10.3390/biomedicines10092324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to examine the effect of the JAK-STAT inhibitor baricitinib on the inflammatory response of human monocyte-derived macrophages (MDM) and endothelial cells upon exposure to the spike S1 protein from SARS-CoV-2. The effect of the drug has been evaluated on the release of cytokines and chemokines from spike-treated MDM, as well as on the activation of endothelial cells (HUVECs) after exposure to conditioned medium collected from spike-activated MDM. Results obtained indicate that, in MDM, baricitinib prevents the S1-dependent phosphorylation of STAT1 and STAT3, along with the induction of IP-10- and MCP-1 secretion; the release of IL-6 and TNFα is also reduced, while all other mediators tested (IL-1β, IL-8, RANTES, MIP-1α and MIP-1β) are not modified. Baricitinib is, instead, poorly effective on endothelial activation when HUVECs are exposed to supernatants from S1-activated macrophages; the induction of VCAM-1, indeed, is not affected by the drug, while that of ICAM-1 is only poorly inhibited. The drug, however, also exerts protective effects on the endothelium by limiting the expression of pro-inflammatory mediators, specifically IL-6, RANTES and IP-10. No effect of baricitinib has been observed on IL-8 synthesis and, consistently, on neutrophils chemiotaxis. Our in vitro findings reveal that the efficacy of baricitinib is limited, with effects mainly focused on the inhibition of the IL-6-mediated inflammatory loop.
Collapse
|
74
|
Ioannou P, Spentzouri D, Konidaki M, Papapanagiotou M, Tzalis S, Akoumianakis I, Filippatos TD, Panagiotakis S, Kofteridis DP. COVID-19 in Older Individuals Requiring Hospitalization. Infect Dis Rep 2022; 14:686-693. [PMID: 36136824 PMCID: PMC9498435 DOI: 10.3390/idr14050074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/08/2023] Open
Abstract
Older individuals have an increased risk for severe coronavirus disease 2019 (COVID-19) and a higher risk for complications and death. The aim of this study was to investigate the clinical characteristics of older patients admitted with COVID-19 and describe their outcomes. This was a retrospective cohort study of patients older than 65 years admitted to the COVID-19 Department of the University Hospital of Heraklion. Data recorded and evaluated included age, gender, Infectious Diseases Society of America (IDSA) severity score, Charlson comorbidity index (CCI), high-flow nasal oxygen (HFNO) use, admission to the Intensive Care Unit (ICU), laboratory exams, treatment administered, and outcome. In total, 224 patients were evaluated in the present study. The median age was 75 years and 105 (46.9%) were female. In 50 patients (22.7%), HFNO was used and 23 (10.3%) were admitted to the ICU. Mortality was 13.4% (30 patients). Patients that died had higher age, were more likely to be male, had an IDSA severity score of 3, had prior HFNO use, had been admitted to the ICU, and were also more likely to have a higher white blood cell (WBC) count, CRP, ferritin, procalcitonin, d-dimers, and troponin. A multivariate logistic regression analysis identified age and the need for HFNO use to be independently positively associated with mortality. To conclude, COVID-19 carries significant mortality in hospitalized older patients, which increases with age, while the need for HFNO also increased the likelihood of worse outcomes. Clinicians caring for patients with COVID-19 should bear in mind these two factors. Future studies could elaborate on the effect of new variants on the dynamics of mortality in older patients.
Collapse
|
75
|
Liu ZM, Yang MH, Yu K, Lian ZX, Deng SL. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front Pharmacol 2022; 13:989664. [PMID: 36188605 PMCID: PMC9518217 DOI: 10.3389/fphar.2022.989664] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Hui Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| |
Collapse
|
76
|
Alavian SE, Mofidi M, Shahabipour F. Effect of COVID-19 on Serum Activity of Liver Enzymes: Is This Associated with Severity and Mortality Rate? IBNOSINA JOURNAL OF MEDICINE AND BIOMEDICAL SCIENCES 2022. [DOI: 10.1055/s-0042-1759739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Introduction Coronavirus disease 2019 (COVID-19) is a viral infection caused by a novel coronavirus known as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease raises an enormous public health challenge for the international community. Liver enzymes have been reported to be frequently elevated in hospitalized patients with severe COVID-19 disease.
Materials and Methods This article is a narrative review of abnormal liver tests and liver injury as a manifestation of progression to severe pneumonia. We collected data from the PubMed database (National Library of Medicine, Bethesda, Maryland, United States). We used the search term “abnormal liver test” and relevant records were measured. The review article was organized thematically.
Results This narrative review aims to summarize the available clinical data on abnormal liver enzymes in coronavirus infection and its association with the risk of mortality, severer pneumonia, and systemic inflammation. Some clinical studies refer to abnormal liver tests and liver injury as a manifestation of progression to severe pneumonia. Recent research verified the relationship between hepatic liver enzyme activities and liver damage in patients with COVID-19, which suggested that it might reflect the infection severity and the mortality risk. Thus, this review investigated the correlation between liver serum enzymes level and the severity of COVID-19 patients, by reviewing investigating the relationship between the illness severity in COVID-19 patients with abnormal liver tests, liver pathology, and markers of inflammation.
Conclusion In the current pandemic of SARS-CoV-2, abnormalities of liver enzyme tests were commonly observed in patients with COVID-19. However, because of multiorgan damages that observed in COVID-19 patients, various issues should be considered such as the pathology and pathophysiology of the liver tissue, especially on the activation process of the immune response and cytokine storm to prevent the severity of the disease.
Collapse
Affiliation(s)
- Seyed Ehsan Alavian
- Middle East Liver Disease (MELD) Virology Laboratory, MELD Center, Tehran, Iran
| | - Mohammad Mofidi
- Department of Laboratory Science, Faculty of Paramedical, Golestan University of Medical Science, Gorgan, Iran
| | - Fahimeh Shahabipour
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Skin Research Center, Shahid Beheshti of Medical Science, Tehran, Iran
| |
Collapse
|
77
|
Noviardi H, Iswantini D, Mulijani S, Wahyudi ST, Khusniati T. Anti-inflammatory and Immunostimulant Therapy with Lactobacillus fermentum and Lactobacillus plantarum in COVID-19: A Literature Review. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i3.3367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammatory diseases are diseases characterized by inflammatory symptoms. Acute inflammatory disease can cause dysregulation of the inflammatory immune response, thereby inhibiting the development of protective immunity against infection. Among the acute inflammatory disease is COVID-19. The initial viral infection causes the antigen-presenting cells to detect the virus through a phagocytosis mechanism in the form of macrophage and dendritic cells. Lactobacillus fermentum and L. plantarum are gram-positive bacteria potentially serving as immunomodulators caused by inflammation and immune system response. Short-chain fatty acids (SCFA) produced by Lactobacillus can induce immune response through tolerogenic dendritic cells. This probiotic bacterium can induce the production of different cytokines or chemokines. Following the results of in vitro and in vivo tests, L. fermentum and L. plantarum can induce IL-10 release to activate regulatory T-cell and inhibit tumor necrosis factor-α (TNF-α) binding activity of nuclear factor kappa B (NF-κB). Literature review showed that dysregulation of inflammatory immune response disorders due to inflammatory disease could be treated using probiotic bacteria L. fermentum and L. plantarum. Therefore, it is necessary to conduct further studies on the potential of indigenous Indonesian strains of these two bacteria as anti-inflammatory and immunostimulants.
Collapse
Affiliation(s)
| | | | | | | | - Tatik Khusniati
- National Research and Innovation Agency Republic of Indonesia
| |
Collapse
|
78
|
Yang CW, Chen RD, Zhu QR, Han SJ, Kuang MJ. Efficacy of umbilical cord mesenchymal stromal cells for COVID-19: A systematic review and meta-analysis. Front Immunol 2022; 13:923286. [PMID: 36105796 PMCID: PMC9467457 DOI: 10.3389/fimmu.2022.923286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives A major challenge for COVID-19 therapy is dysregulated immune response associated with the disease. Umbilical cord mesenchymal stromal cells (UC-MSCs) may be a promising candidate for COVID-19 treatment owing to their immunomodulatory and anti-inflammatory functions. Therefore, this study aimed to evaluate the effectiveness of UC-MSCs inpatients with COVID-19. Method Medline, Embase, PubMed, Cochrane Library, and Web of Science databases were searched to collect clinical trials concerning UC-MSCs for the treatment of COVID-19. After literature screening, quality assessment, and data extraction, a systematic review and meta-analysis of the included study were performed. Results This systematic review and meta-analysis were prospectively registered on PROSPERO, and the registration number is CRD42022304061. After screening, 10 studies involving 293 patients with COVID-19 were eventually included. Our meta-analysis results showed that UC-MSCs can reduce mortality (relative risk [RR] =0.60, 95% confidence interval [CI]: [0.38, 0.95], P=0.03) in COVID-19 patients. No significant correlation was observed between adverse events and UC-MSC treatment (RR=0.85, 95% CI: [0.65, 1.10], P=0.22; RR=1.00, 95%CI: [0.64, 1.58], P=1.00). In addition, treatment with UC-MSCs was found to suppress inflammation and improve pulmonary symptoms. Conclusions UC-MSCs hold promise as a safe and effective treatment for COVID-19. Systematic Review Registartion PROSPERO, identifier CRD42022304061.
Collapse
Affiliation(s)
- Cong-wen Yang
- Department of Neurosurgery, Weifang Medical University, Weifang, China
| | - Ru-dong Chen
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qing-run Zhu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shi-jie Han
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ming-jie Kuang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
79
|
Govender M, Hopkins FR, Göransson R, Svanberg C, Shankar EM, Hjorth M, Nilsdotter-Augustinsson Å, Sjöwall J, Nyström S, Larsson M. T cell perturbations persist for at least 6 months following hospitalization for COVID-19. Front Immunol 2022; 13:931039. [PMID: 36003367 PMCID: PMC9393525 DOI: 10.3389/fimmu.2022.931039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is being extensively studied, and much remains unknown regarding the long-term consequences of the disease on immune cells. The different arms of the immune system are interlinked, with humoral responses and the production of high-affinity antibodies being largely dependent on T cell immunity. Here, we longitudinally explored the effect COVID-19 has on T cell populations and the virus-specific T cells, as well as neutralizing antibody responses, for 6-7 months following hospitalization. The CD8+ TEMRA and exhausted CD57+ CD8+ T cells were markedly affected with elevated levels that lasted long into convalescence. Further, markers associated with T cell activation were upregulated at inclusion, and in the case of CD69+ CD4+ T cells this lasted all through the study duration. The levels of T cells expressing negative immune checkpoint molecules were increased in COVID-19 patients and sustained for a prolonged duration following recovery. Within 2-3 weeks after symptom onset, all COVID-19 patients developed anti-nucleocapsid IgG and spike-neutralizing IgG as well as SARS-CoV-2-specific T cell responses. In addition, we found alterations in follicular T helper (TFH) cell populations, such as enhanced TFH-TH2 following recovery from COVID-19. Our study revealed significant and long-term alterations in T cell populations and key events associated with COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Melissa Govender
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Francis R. Hopkins
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Robin Göransson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Maria Hjorth
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johanna Sjöwall
- Divison of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
80
|
Krishnan A, Muthusamy S, Fernandez FB, Kasoju N. Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Management of COVID19-Associated Lung Injury: A Review on Publications, Clinical Trials and Patent Landscape. Tissue Eng Regen Med 2022; 19:659-673. [PMID: 35384633 PMCID: PMC8985390 DOI: 10.1007/s13770-022-00441-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
The unprecedented COVID-19 pandemic situation forced the scientific community to explore all the possibilities from various fields, and so far we have seen a lot of surprises, eureka moments and disappointments. One of the approaches from the cellular therapists was exploiting the immunomodulatory and regenerative potential of mesenchymal stromal cells (MSCs), more so of MSC-derived extracellular vesicles (EVs)-particularly exosomes, in order to alleviate the cytokine storm and regenerate the damaged lung tissues. Unlike MSCs, the EVs are easier to store, deliver, and are previously shown to be as effective as MSCs, yet less immunogenic. These features attracted the attention of many and thus led to a tremendous increase in publications, clinical trials and patent applications. This review presents the current landscape of the field and highlights some interesting findings on MSC-derived EVs in the context of COVID-19, including in silico, in vitro, in vivo and case reports. The data strongly suggests the potential of MSC-derived EVs as a therapeutic regime for the management of acute lung injury and associated complications in COVID-19 and beyond.
Collapse
Affiliation(s)
- Anand Krishnan
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Senthilkumar Muthusamy
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Francis B Fernandez
- Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India
| | - Naresh Kasoju
- Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, 695012, Kerala, India.
| |
Collapse
|
81
|
Abdelhamid AG, Faraone JN, Evans JP, Liu SL, Yousef AE. SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens 2022; 11:837. [PMID: 36014958 PMCID: PMC9415055 DOI: 10.3390/pathogens11080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of the causative agents emerge in a manner remarkably similar to what was observed recently with SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to specific receptors on the host cell's membrane and develop host adaptation mechanisms. Mechanisms such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolution of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details (e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current review compares several key aspects of these two pathogenic agents, including the underlying mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host immune responses. We ask what can be learned from the emergence of both infectious agents in order to alleviate future outbreaks or pandemics.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Julia N. Faraone
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
82
|
Thomas MR, Scully M. Clinical features of thrombosis and bleeding in COVID-19. Blood 2022; 140:184-195. [PMID: 35452509 PMCID: PMC9040438 DOI: 10.1182/blood.2021012247] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Infection with the SARS-CoV-2 virus, resulting in COVID-19 disease, has presented a unique scenario associated with high rates of thrombosis. The risk of venous thrombosis is some three- to sixfold higher than for patients admitted to a hospital for other indications, and for patients who have thrombosis, mortality appears to increase. Thrombosis may be a presenting feature of COVID-19. Pulmonary thrombi are the most frequent events, some related to deep vein thrombosis, but also to in situ microvascular and macrovascular thrombosis. Other venous thromboses include catheter- and circuit-associated in patients requiring hemofiltration and extracorporeal membrane oxygenation. Arterial thrombosis is less commonly documented, with 3% of patients in intensive care units having major arterial strokes and up to 9% having myocardial infarction, both of which are most likely multifactorial. Risk factors for thrombosis above those already documented in hospital settings include duration of COVID-19 symptoms before admission to the hospital. Laboratory parameters associated with higher risk of thrombosis include higher D-dimer, low fibrinogen, and low lymphocyte count, with higher factor VIII and von Willebrand factor levels indicative of more severe COVID-19 infection. All patients should receive thromboprophylaxis when admitted with COVID-19 infection, but the dose and length of treatment are still debated. Thrombosis continues to be treated according to standard VTE guidelines, but adjustments may be needed depending on other factors relevant to the patient's admission.
Collapse
Affiliation(s)
- Mari R Thomas
- Department of Haematology, University College London Hospital (UCLH), London, United Kingdom; and
- Cardiometabolic Programme, National Institute for Health and Care Research (NIHR), UCLH, University College London Biomedical Research Centre (BRC), London, United Kingdom
| | - Marie Scully
- Department of Haematology, University College London Hospital (UCLH), London, United Kingdom; and
- Cardiometabolic Programme, National Institute for Health and Care Research (NIHR), UCLH, University College London Biomedical Research Centre (BRC), London, United Kingdom
| |
Collapse
|
83
|
Metabolite, protein, and tissue dysfunction associated with COVID-19 disease severity. Sci Rep 2022; 12:12204. [PMID: 35842456 PMCID: PMC9288092 DOI: 10.1038/s41598-022-16396-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/08/2022] [Indexed: 01/09/2023] Open
Abstract
Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.
Collapse
|
84
|
Zhang Y, Zhang H, Li S, Huang K, Jiang L, Wang Y. Metformin Alleviates LPS-Induced Acute Lung Injury by Regulating the SIRT1/NF-κB/NLRP3 Pathway and Inhibiting Endothelial Cell Pyroptosis. Front Pharmacol 2022; 13:801337. [PMID: 35910360 PMCID: PMC9334876 DOI: 10.3389/fphar.2022.801337] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS), a devastating complication of numerous conditions, is often associated with high mortality. It is well known that endothelial cell (EC) damage and inflammation are vital processes in the pathogenesis of ARDS. Nevertheless, the mechanisms of EC damage are largely unknown. In the present study, we investigated the role of pyroptosis in the initiation of ARDS and demonstrated that endothelial pyroptosis might play a pivotal role in the pathophysiology of ARDS. Metformin, an antidiabetic drug, exhibited a protective effect in lipopolysaccharide (LPS)-induced lung injury, and we hypothesized that metformin alleviated LPS-induced lung injury via inhibiting ECs pyroptosis. In vivo, male ICR mice were intratracheally injected with LPS, and metformin was previously administered intraperitoneally. Morphological properties of lung tissues were detected. We showed that metformin inhibited NLRP3 inflammasome activation and NLRP3-stimulated pyroptosis induction, as shown by decreased levels of cleaved caspase-1, N-terminal fragment of GSDMD, and protein contents of IL-1β in lung tissues of mice exposed to LPS. LPS-induced expression of vascular adhesion molecules was also reduced after the treatment with metformin. In vitro, exposure of pulmonary ECs to LPS resulted in increased expression of NLRP3 and pyroptosis-associated indicators. By inhibiting the expression of NLRP3 with NLRP3 inhibitor MCC950, pyroptosis-related markers and vascular adhesion molecules were ameliorated. Moreover, metformin treatment significantly inhibited the NF-κB signaling pathway and increased the expression of sirtuin 1 (SIRT1) both in LPS-stimulated lung tissues and pulmonary ECs. Administration of the selective SIRT1 inhibitor nicotinamide significantly reversed the protective effect of metformin against endothelial pyroptosis and lung injury in LPS-treated ECs and LPS-induced acute lung injury (ALI). Thus, these findings demonstrated that metformin alleviated LPS-induced ALI by inhibiting NF-κB-NLRP3–mediated ECs pyroptosis, possibly by upregulating the expression of SIRT1.
Collapse
Affiliation(s)
| | | | | | | | - Lai Jiang
- *Correspondence: Yan Wang, ; Lai Jiang,
| | - Yan Wang
- *Correspondence: Yan Wang, ; Lai Jiang,
| |
Collapse
|
85
|
Nuñez E, Orera I, Carmona-Rodríguez L, Paño JR, Vázquez J, Corrales FJ. Mapping the Serum Proteome of COVID-19 Patients; Guidance for Severity Assessment. Biomedicines 2022; 10:1690. [PMID: 35884998 PMCID: PMC9313396 DOI: 10.3390/biomedicines10071690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose outbreak in 2019 led to an ongoing pandemic with devastating consequences for the global economy and human health. According to the World Health Organization, COVID-19 has affected more than 481 million people worldwide, with 6 million confirmed deaths. The joint efforts of the scientific community have undoubtedly increased the pace of production of COVID-19 vaccines, but there is still so much uncharted ground to cover regarding the mechanisms of SARS-CoV-2 infection, replication and host response. These issues can be approached by proteomics with unprecedented capacity paving the way for the development of more efficient strategies for patient care. In this study, we present a deep proteome analysis that has been performed on a cohort of 72 COVID-19 patients aiming to identify serum proteins assessing the dynamics of the disease at different age ranges. A panel of 53 proteins that participate in several functions such as acute-phase response and inflammation, blood coagulation, cell adhesion, complement cascade, endocytosis, immune response, oxidative stress and tissue injury, have been correlated with patient severity, suggesting a molecular basis for their clinical stratification. Eighteen protein candidates were further validated by targeted proteomics in an independent cohort of 84 patients including a group of individuals that had satisfactorily resolved SARS-CoV-2 infection. Remarkably, all protein alterations were normalized 100 days after leaving the hospital, which further supports the reliability of the selected proteins as hallmarks of COVID-19 progression and grading. The optimized protein panel may prove its value for optimal severity assessment as well as in the follow up of COVID-19 patients.
Collapse
Affiliation(s)
- Estefanía Nuñez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiovascular Proteomics Laboratory, Centro Nacional de Enfermedades Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain;
| | | | - José Ramón Paño
- Division of Infectious Diseases, Hospital Clínico Universitario, IIS Aragón, Ciberinfec, 50009 Zaragoza, Spain;
| | - Jesús Vázquez
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain;
- Cardiovascular Proteomics Laboratory, Centro Nacional de Enfermedades Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Fernando J. Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain;
| |
Collapse
|
86
|
Wang W, Chen J, Yu X, Lan HY. Signaling mechanisms of SARS-CoV-2 Nucleocapsid protein in viral infection, cell death and inflammation. Int J Biol Sci 2022; 18:4704-4713. [PMID: 35874957 PMCID: PMC9305276 DOI: 10.7150/ijbs.72663] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/22/2022] [Indexed: 12/15/2022] Open
Abstract
COVID-19 which is caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2) has posed a worldwide pandemic and a major global public health threat. SARS-CoV-2 Nucleocapsid (N) protein plays a critical role in multiple steps of the viral life cycle and participates in viral replication, transcription, and assembly. The primary roles of N protein are to assemble with genomic RNA into the viral RNA-protein (vRNP) complex and to localize to the replication transcription complexes (RTCs) to enhance viral replication and transcription. N protein can also undergo liquid-liquid phase separation (LLPS) with viral genome RNA and inhibit stress granules to facilitate viral replication and assembly. Besides the function in viral life cycle, N protein can bind GSDMD to antagonize pyroptosis but promotes cell death via the Smad3-dependent G1 cell cycle arrest mechanism. In innate immune system, N protein inhibits IFN-β production and RNAi pathway for virus survival. However, it can induce expression of proinflammatory cytokines by activating NF-κB signaling and NLRP3 inflammasome, resulting in cytokine storms. In this review article, we are focusing on the signaling mechanisms of SARS-CoV-2 N protein in viral replication, cell death and inflammation.
Collapse
Affiliation(s)
- Wenbiao Wang
- Medical Research Center and Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junzhe Chen
- Department of Nephrology, The Third Affiliated hospital, Southern Medical University, Guangzhou, China
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xueqing Yu
- Medical Research Center and Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The Chinese University of Hong Kong-Guangdong Academy of Sciences/Guangdong Provincial People's Hospital Joint Research Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
87
|
A computational evaluation of FDA medicines’ ability to inhibit hypoxia-inducible factor prolyl hydroxylase-2 (PHD-2) for acute respiratory distress syndrome. Struct Chem 2022; 33:1391-1407. [PMID: 35855326 PMCID: PMC9282623 DOI: 10.1007/s11224-022-02012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
COVID-19 infection is associated with a significant fatality rate in individuals suffering from severe acute respiratory distress syndrome (ARDS). Among the several possibilities, inhibition of hypoxia-inducible factor prolyl hydroxylase-2 or prolyl hydroxylase domain-containing protein 2 (PHD2) in a hypoxia-independent way is a prospective therapeutic target for the treatment of ARDS. Vadadustat, Roxadustat, Daprodustat, Desidustat, and Enarudustat are the available clinical trial inhibitors. This study is proposed to focus on the repurposing of FDA-approved drugs as effective PHD2 inhibitors. This computational study utilises e-pharmacophore hypothesis generation from the native ligand–protein complex (PDB ID: 5OX6) based on XP visualiser information. The hypothesis containing five essential features (AAANR) was incorporated for FDA database screening, followed by Glide XP molecular docking and Prime MM-GBSA binding free energy calculations. Top scored ligands were investigated and Fenbufen was identified as an effective PHD-2 inhibitor by comparing with the native co-crystal ligand (Vadadustat). The manual lead optimisation of the Fenbufen structure was adopted to improve inhibitory potency, by increasing the binding affinity and protein–ligand stability. The newly designed compounds B and C showed additional binding interactions, excellent docking scores, binding free energy, and an acceptable range of ADME properties. Also, Fenbufen and compound C owned preferable protein–ligand stability during MD simulation when compared with the co-crystallised clinical trial ligand. Based on our findings, we deduce that Fenbufen can be proposed as an effective repurposable candidate as its structural modification showed a remarkable improvement in PHD2 inhibition.
Collapse
|
88
|
Mehta Y, Paul R, Rabbani R, Acharya SP, Withanaarachchi UK. Sepsis Management in Southeast Asia: A Review and Clinical Experience. J Clin Med 2022; 11:3635. [PMID: 35806919 PMCID: PMC9267826 DOI: 10.3390/jcm11133635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a life-threatening condition that causes a global health burden associated with high mortality and morbidity. Often life-threatening, sepsis can be caused by bacteria, viruses, parasites or fungi. Sepsis management primarily focuses on source control and early broad-spectrum antibiotics, plus organ function support. Comprehensive changes in the way we manage sepsis patients include early identification, infective focus identification and immediate treatment with antimicrobial therapy, appropriate supportive care and hemodynamic optimization. Despite all efforts of clinical and experimental research over thirty years, the capacity to positively influence the outcome of the disease remains limited. This can be due to limited studies available on sepsis in developing countries, especially in Southeast Asia. This review summarizes the progress made in the diagnosis and time associated with sepsis, colistin resistance and chloramphenicol boon, antibiotic abuse, resource constraints and association of sepsis with COVID-19 in Southeast Asia. A personalized approach and innovative therapeutic alternatives such as CytoSorb® are highlighted as potential options for the treatment of patients with sepsis in Southeast Asia.
Collapse
Affiliation(s)
- Yatin Mehta
- Institute of Critical Care and Anesthesiology, Medanta the Medicity, Sector-38, Gurugram 22001, India
| | - Rajib Paul
- Internal Medicine, Apollo Hospitals, Road Number 72, Jubilee Hills, Hyderabad 500033, India;
| | - Raihan Rabbani
- Critical Care & Internal Medicine, Square Hospitals Ltd., 18 Bir Uttam Qazi NuruzzamanSarak West, Panthapath, Dhaka 1205, Bangladesh;
| | - Subhash Prasad Acharya
- Critical Care Medicine, Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 44618, Nepal;
| | | |
Collapse
|
89
|
Abstract
At the end of 2019, an outbreak of a severe respiratory disease occurred in Wuhan China, and an increase in cases of unknown pneumonia was alerted. In January 2020, a new coronavirus named SARS-CoV-2 was identified as the cause. The virus spreads primarily through the respiratory tract, and lymphopenia and cytokine storms have been observed in severely ill patients. This suggests the existence of an immune dysregulation as an accompanying event during a serious illness caused by this virus. Natural killer (NK) cells are innate immune responders, critical for virus shedding and immunomodulation. Despite its importance in viral infections, the contribution of NK cells in the fight against SARS-CoV-2 has yet to be deciphered. Different studies in patients with COVID-19 suggest a significant reduction in the number and function of NK cells due to their exhaustion. In this review, we summarize the current understanding of how NK cells respond to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Janet Gallardo-Zapata
- Laboratorio de investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gomez, Mexico City, Mexico.,Posgrado de Doctorado en Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gomez, Mexico City, Mexico
| |
Collapse
|
90
|
Küçükceran K, Ayrancı MK, Dündar ZD, Keklik Mİ, Vatansev H. The Role of NEWS2 + Lactate + D-Dimer in Predicting Intensive Care Unit Admission and In-Hospital Mortality of COVID-19 Patients. J Acute Med 2022; 12:60-70. [PMID: 35860710 PMCID: PMC9283119 DOI: 10.6705/j.jacme.202206_12(2).0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 06/15/2023]
Abstract
Background We investigated the parameters of National Early Warning Score 2 (NEWS2) + lactate + D-dimer in predicting the intensive care unit (ICU) admission and in-hospital mortality in patients hospitalized with COVID-19. Methods Patients, who applied to the emergency department of a tertiary university hospital and were taken to the COVID-19 zone with suspected COVID-19 between March 2020 and June 2020, were retrospectively examined. In this study, 244 patients, who were hospitalized and had positive polymerase chain reaction test results, were included. NEWS2, lactate, and D-dimer levels of the patients were recorded. Patients were grouped by the states of in-hospital mortality and ICU admission. Results Of 244 patients who were included in the study, 122 (50%) were male, while their mean age was 53.76 ± 17.36 years. 28 (11.5%) patients were admitted to the ICU, while in-hospital mortality was seen in 14 (5.7%) patients. The levels of D-dimer, NEWS2, NEWS2 + lactate, NEWS2 + D-dimer, NEWS2 + lactate + D-dimer were statistically significantly higher in patients with in-hospital mortality and admitted to ICU ( p < 0.05). The area under the curve (AUC) values of D-dimer, lactate, NEWS2, NEWS2 + lactate, NEWS2 + D-dimer, NEWS2 + lactate + D-dimer in predicting ICU admission were as 0.745 (0.658-0.832), 0.589 (0.469-0.710), 0.760 (0.675-0.845), 0.774 (0.690-0.859), 0.776 (0.692-0.860), and 0.778 (0.694-0.862), respectively; while the AUC values of these parameters in predicting in-hospital mortality were found to be as 0.768 (0.671-0.865), 0.695 (0.563-0.827), 0.735 (0.634-0.836), 0.757 (0.647-0.867), 0.752 (0.656-0.848), and 0.764 (0.655-0.873), respectively. Conclusions Compared to using the NEWS2 value alone, a combination of NEWS2, lactate, and D-dimer was found to be more valuable in predicting in-hospital mortality and ICU admission.
Collapse
Affiliation(s)
- Kadir Küçükceran
- Necmettin Erbakan University Emergency Department Meram School of Medicine, Konya Turkey
| | - Mustafa Kürşat Ayrancı
- Necmettin Erbakan University Emergency Department Meram School of Medicine, Konya Turkey
| | - Zerrin Defne Dündar
- Necmettin Erbakan University Emergency Department Meram School of Medicine, Konya Turkey
| | - Muhammed İdris Keklik
- Necmettin Erbakan University Emergency Department Meram School of Medicine, Konya Turkey
| | - Hülya Vatansev
- Necmettin Erbakan University Department of Chest Disease Meram School of Medicine, Konya Turkey
| |
Collapse
|
91
|
Caufriez A, Tabernilla A, Van Campenhout R, Cooreman A, Leroy K, Sanz Serrano J, Kadam P, dos Santos Rodrigues B, Lamouroux A, Ballet S, Vinken M. Effects of Drugs Formerly Suggested for COVID-19 Repurposing on Pannexin1 Channels. Int J Mol Sci 2022; 23:ijms23105664. [PMID: 35628472 PMCID: PMC9146942 DOI: 10.3390/ijms23105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Although many efforts have been made to elucidate the pathogenesis of COVID-19, the underlying mechanisms are yet to be fully uncovered. However, it is known that a dysfunctional immune response and the accompanying uncontrollable inflammation lead to troublesome outcomes in COVID-19 patients. Pannexin1 channels are put forward as interesting drug targets for the treatment of COVID-19 due to their key role in inflammation and their link to other viral infections. In the present study, we selected a panel of drugs previously tested in clinical trials as potential candidates for the treatment of COVID-19 early on in the pandemic, including hydroxychloroquine, chloroquine, azithromycin, dexamethasone, ribavirin, remdesivir, favipiravir, lopinavir, and ritonavir. The effect of the drugs on pannexin1 channels was assessed at a functional level by means of measurement of extracellular ATP release. Immunoblot analysis and real-time quantitative reversetranscription polymerase chain reaction analysis were used to study the potential of the drugs to alter pannexin1 protein and mRNA expression levels, respectively. Favipiravir, hydroxychloroquine, lopinavir, and the combination of lopinavir with ritonavir were found to inhibit pannexin1 channel activity without affecting pannexin1 protein or mRNA levels. Thusthree new inhibitors of pannexin1 channels were identified that, though currently not being used anymore for the treatment of COVID-19 patients, could be potential drug candidates for other pannexin1-related diseases.
Collapse
Affiliation(s)
- Anne Caufriez
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Andrés Tabernilla
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Raf Van Campenhout
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Axelle Cooreman
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Julen Sanz Serrano
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Prashant Kadam
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Bruna dos Santos Rodrigues
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
| | - Arthur Lamouroux
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Steven Ballet
- Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (A.L.); (S.B.)
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.C.); (A.T.); (R.V.C.); (A.C.); (K.L.); (J.S.S.); (P.K.); (B.d.S.R.)
- Correspondence: ; Tel.: +32-2477-4587
| |
Collapse
|
92
|
Hernández-Ochoa B, Ortega-Cuellar D, González-Valdez A, Cárdenas-Rodríguez N, Mendoza-Torreblanca JG, Contreras-García IJ, Pichardo-Macías LA, Bandala C, Gómez-Manzo S. COVID-19 in G6PD-deficient patients, oxidative stress, and neuropathology. Curr Top Med Chem 2022; 22:1307-1325. [PMID: 35578850 DOI: 10.2174/1568026622666220516111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme that regulates energy metabolism mainly through the pentose phosphate pathway (PPP). It is well known that this enzyme participates in the antioxidant/oxidant balance via the synthesis of energy-rich molecules: nicotinamide adenine dinucleotide phosphate reduced (NADPH), the reduced form of flavin adenine dinucleotide (FADH) and glutathione (GSH), controlling reactive oxygen species generation. Coronavirus disease 19 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a public health problem which has caused approximately 4.5 million deaths since December 2019. In relation to the role of G6PD in COVID-19 development, it is known from the existing literature that G6PD-deficient patients infected with SARS-CoV-2 are more susceptible to thrombosis and hemolysis, suggesting that G6PD deficiency facilitates infection by SARS-CoV-2. In relation to G6PD and neuropathology, it has been observed that deficiency of this enzyme is also present with an increase in oxidative markers. In relation to the role of G6PD and the neurological manifestations of COVID-19, it has been reported that the enzymatic deficiency in patients infected with SARS-CoV-2 exacerbates the disease, and, in some clinical reports, an increase in hemolysis and thrombosis was observed when patients were treated with hydroxychloroquine (OH-CQ), a drug with oxidative properties. In the present work, we summarize the evidence of the role of G6PD in COVID-19 and its possible role in the generation of oxidative stress and glucose metabolism deficits and inflammation present in this respiratory disease and its progression including neurological manifestations.
Collapse
Affiliation(s)
- Beatriz Hernández-Ochoa
- Laboratorio de Inmunoquímica, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City, 06720, Mexico
| | - Daniel Ortega-Cuellar
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Noemí Cárdenas-Rodríguez
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| | | | | | - Luz Adriana Pichardo-Macías
- Departamento de Fisiología, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, 07738, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, 04530, Mexico
| |
Collapse
|
93
|
Mahmood Edan L, Samein LH, Salih KS. Prognostic Value of C-Reactive Protein and Platelet Lymphocyte Ratio in Coronavirus Disease 19. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The coronavirus (SARS-CoV-2) that causes Coronavirus disease 19 (COVID-19) has recently emerged as a cause of severe infection in a considerable percentage of infected persons. Predicting the risk factors for severe disease can greatly help manage critical cases and save lives. This study aimed to assess the prognostic value of the platelet-lymphocyte ratio (PLR) and C-reactive protein (CRP) in patients with COVID-19. This cross-sectional study enrolled 160 confirmed cases with COVID-19 by real-time polymerase chain reaction. Demographic data (age, gender, smoking status, body mass index (BMI)) and comorbidity were collected through direct interviews. Laboratory investigations, including total leukocyte count, absolute neutrophil, lymphocyte, platelet count, serum level of C-reactive protein, and hemoglobin, were obtained from the patient's records. The platelets-lymphocyte ratio was calculated by dividing absolute platelet count by absolute lymphocyte count. According to their outcome, patients were categorized into two groups: those discharged well and those who required intensive care unit (ICU) admission. Out of 160 included patients, 32 (20%) needed ICU admission due to the deterioration of their status. Age (64.28±13.08 years versus 57.43±13.15 years), hypertension (40.63% versus 20.31%) absolute neutrophil count (median = 12.9×103/ml, range 3.83-22.8×103/ml versus median=6×103/ml, range 2.17-22.8×103/ml) and PLR ((median= 257.27, range= 62.72-1072 versus median= 191.54, range= 17.85-919.12) were significantly higher in patients required ICU admission than those discharged well, and associated significantly with the severity of the disease. Advanced age, hypertension, neutrophilia, and PLR at admission are predictors of severity and need for ICU admission in patients with COVID-19. PLR is an inexpensive, easy-to-be-calculated parameter that can be used routinely to predict the severity of COVID-19.
Keywords. COVID-19, intensive care unit, platelet-lymphocyte ratio
Collapse
Affiliation(s)
| | - Laith H. Samein
- College of pharmacy / The University of Mashreq, Baghdad-Iraq
| | | |
Collapse
|
94
|
Coccia M. COVID-19 pandemic over 2020 (withlockdowns) and 2021 (with vaccinations): similar effects for seasonality and environmental factors. ENVIRONMENTAL RESEARCH 2022; 208:112711. [PMID: 35033552 PMCID: PMC8757643 DOI: 10.1016/j.envres.2022.112711] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/19/2023]
Abstract
How is the dynamics of Coronavirus Disease 2019 (COVID-19) in 2020 with an health policy of full lockdowns and in 2021 with a vast campaign of vaccinations? The present study confronts this question here by developing a comparative analysis of the effects of COVID-19 pandemic between April-September 2020 (based upon strong control measures) and April-September 2021 (focused on health policy of vaccinations) in Italy, which was one of the first European countries to experience in 2020 high numbers of COVID-19 related infected individuals and deaths and in 2021 Italy has a high share of people fully vaccinated against COVID-19 (>89% of population aged over 12 years in January 2022). Results suggest that over the period under study, the arithmetic mean of confirmed cases, hospitalizations of people and admissions to Intensive Care Units (ICUs) in 2020 and 2021 is significantly equal (p-value<0.01), except fatality rate. Results suggest in December 2021 lower hospitalizations, admissions to ICUs, and fatality rate of COVID-19 than December 2020, though confirmed cases and mortality rates are in 2021 higher than 2020, and likely converging trends in the first quarter of 2022. These findings reveal that COVID-19 pandemic is driven by seasonality and environmental factors that reduce the negative effects in summer period, regardless control measures and/or vaccination campaigns. These findings here can be of benefit to design health policy responses of crisis management considering the growth of COVID-19 pandemic in winter months having reduced temperatures and low solar radiations ( COVID-19 has a behaviour of influenza-like illness). Hence, findings here suggest that strategies of prevention and control of infectious diseases similar to COVID-19 should be set up in summer months and fully implemented during low-solar-irradiation periods (autumn and winter period).
Collapse
Affiliation(s)
- Mario Coccia
- CNR, National Research Council of Italy - Via Real Collegio, n. 30 (Collegio Carlo Alberto), 10024, Moncalieri (TO), Italy.
| |
Collapse
|
95
|
The Role of Zinc and Copper in Platelet Activation and Pathophysiological Thrombus Formation in Patients with Pulmonary Embolism in the Course of SARS-CoV-2 Infection. BIOLOGY 2022; 11:biology11050752. [PMID: 35625480 PMCID: PMC9138256 DOI: 10.3390/biology11050752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 01/09/2023]
Abstract
To date, many studies have proved that COVID-19 increases the incidence of thrombus formation and coagulopathies but the exact mechanism behind such a disease outcome is not well known. In this review we collect the information and discuss the pathophysiology of thrombus formation in patients with pulmonary embolism in the course of COVID-19 disease and the role of zinc and copper in the process. Supplementation of zinc and copper may be beneficial for COVID-19 patients due to its anti-inflammatory and anti-oxidative properties. On the other hand, excess of those microelements in the organism may be harmful, that is why marking the level of those micronutrients should be done at first. We also propose further investigation of diagnostic and therapeutic options of zinc and copper in course of COVID-19 thrombus formation to their potential in patient care, with particular emphasis on the dosage and the duration of their misbalance.
Collapse
|
96
|
Hatamabadi H, Sabaghian T, Sadeghi A, Heidari K, Safavi-Naini SAA, Looha MA, Taraghikhah N, Khalili S, Karrabi K, Saffarian A, Shahsavan S, Majlesi H, Allahgholipour Komleh A, Hatari S, Zameni N, Ilkhani S, Hajimirzaei SM, Ghaffari A, Fallah MM, Kalantar R, Naderi N, Bahmaei P, Asadimanesh N, Esbati R, Yazdani O, Shojaeian F, Azizan Z, Ebrahimi N, Jafarzade F, Soheili A, Gholampoor F, Namazi N, Solhpour A, Jamialahamdi T, Pourhoseingholi MA, Sahebkar A. Epidemiology of COVID-19 in Tehran, Iran: A Cohort Study of Clinical Profile, Risk Factors, and Outcomes. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2350063. [PMID: 35592525 PMCID: PMC9113873 DOI: 10.1155/2022/2350063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND The outbreak of coronavirus disease 2019 (COVID-19) dates back to December 2019 in China. Iran has been among the most prone countries to the virus. The aim of this study was to report demographics, clinical data, and their association with death and CFR. METHODS This observational cohort study was performed from 20th March 2020 to 18th March 2021 in three tertiary educational hospitals in Tehran, Iran. All patients were admitted based on the WHO, CDC, and Iran's National Guidelines. Their information was recorded in their medical files. Multivariable analysis was performed to assess demographics, clinical profile, outcomes of disease, and finding the predictors of death due to COVID-19. RESULTS Of all 5318 participants, the median age was 60.0 years, and 57.2% of patients were male. The most significant comorbidities were hypertension and diabetes mellitus. Cough, dyspnea, and fever were the most dominant symptoms. Results showed that ICU admission, elderly age, decreased consciousness, low BMI, HTN, IHD, CVA, dialysis, intubation, Alzheimer disease, blood injection, injection of platelets or FFP, and high number of comorbidities were associated with a higher risk of death related to COVID-19. The trend of CFR was increasing (WPC: 1.86) during weeks 25 to 51. CONCLUSIONS Accurate detection of predictors of poor outcomes helps healthcare providers in stratifying patients, based on their risk factors and healthcare requirements to improve their survival chance.
Collapse
Affiliation(s)
- Hamidreza Hatamabadi
- Department of Emergency Medicine, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Sabaghian
- Chronic Kidney Disease Research Center (CKDRC), Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamran Heidari
- Skull Base Research Center, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Azizmohammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Taraghikhah
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shayesteh Khalili
- Department of Internal Medicine, School of Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keivan Karrabi
- Department of Emergency Medicine, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Saffarian
- Department of Internal Medicine, Loghman Hakim Hospital, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Shahsavan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Majlesi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Allahgholipour Komleh
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Hatari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nadia Zameni
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aydin Ghaffari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reyhaneh Kalantar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Naderi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parnian Bahmaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Asadimanesh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Esbati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shojaeian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Azizan
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Jafarzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirali Soheili
- Students Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gholampoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negarsadat Namazi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Solhpour
- University of Florida, Department of Anesthesiology, USA
| | - Tannaz Jamialahamdi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohamad Amin Pourhoseingholi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
97
|
Yang Z, Liu Y, Wang L, Lin S, Dai X, Yan H, Ge Z, Ren Q, Wang H, Zhu F, Wang S. Traditional Chinese medicine against COVID-19: Role of the gut microbiota. Biomed Pharmacother 2022; 149:112787. [PMID: 35279010 PMCID: PMC8901378 DOI: 10.1016/j.biopha.2022.112787] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and it has become a public health concern worldwide. In addition to respiratory symptoms, some COVID‑19 patients also show various gastrointestinal symptoms and even consider gastrointestinal symptoms to be the first manifestation. A large amount of evidence has shown that SARS-CoV-2 infection could disrupt the gut microbiota balance, and disorders of the gut microbiota could aggravate the condition of COVID-19 patients. Therefore, maintaining the gut microbiota balance is expected to become a potential new therapeutic target for treating COVID-19. Traditional Chinese medicine (TCM) has significant effects in all stages of the prevention and treatment of COVID-19. It can adjust the gut microbiota and is an ideal intestinal microecological regulator. This review summarizes the advantages and clinical efficacy of TCM in the treatment of COVID-19 and expounds on the relationship between TCM and the gut microbiota, the relationship between COVID-19 and the gut microbiota, the mechanism of gut microbiota disorders induced by SARS-CoV-2, the relationship between cytokine storms and the gut microbiota, and the role and mechanism of TCM in preventing and treating COVID-19 by regulating the gut microbiota to provide new research ideas for TCM in the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Zhihua Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yangxi Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Shanshan Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Xiangdong Dai
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haifeng Yan
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450000, China
| | - Zhao Ge
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Qiuan Ren
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Hui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Feng Zhu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuping Wang
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin 300162, China.
| |
Collapse
|
98
|
Singh S, Singh K. Blood Urea Nitrogen/Albumin Ratio and Mortality Risk in Patients with COVID-19. Indian J Crit Care Med 2022; 26:626-631. [PMID: 35719434 PMCID: PMC9160634 DOI: 10.5005/jp-journals-10071-24150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction We researched blood urea nitrogen (BUN), albumin and their ratio (BAR), and compared them with C-reactive protein (CRP), D-dimer, and computed tomography severity scores (CT-SS), to predict in-hospital mortality. Methods One-hundred and thirty-one coronavirus disease-2019 (COVID-19) confirmed patients brought to the emergency department (ED) were dispensed to the survivor or non-survivor group, in light of in-hospital mortality. Information on age, gender, complaints, comorbidities, laboratory parameters, and outcome were gathered from the patient's record files. Results The median BUN, mean total protein, mean albumin, median BAR, median creatinine, median CRP, and median D-dimer were recorded. CT-SS were utilized in categorizing the patient as mild, moderate, and severe. In-hospital mortality occurred in 42 (32.06%) patients (non-survivor group) and did not occur in 89 (67.94%) patients (survivor group). The median BUN (mg/dL) and BAR (mg/gm) values were significantly raised in the non-survivor group than in the survivor group [BUN: 23.48 (7.51–62.75) and 20.66 (4.07–74.67), respectively (p = 0.009); BAR: 8.33 mg/g (2.07–21.86) and 6.11 mg/g (1.26–23.33); (p = 0.0003)]. The mean albumin levels (gm/dL) in the non-survivor group were significantly lower than in the survivor group [2.96 ± 0.35 and 3.27 ± 0.35, respectively (p <0.0001)]. Albumin with an odd's ratio of 6.14 performed the best in predicting in-hospital mortality, followed by D-dimer (4.98). BAR and CRP had similar outcome of 3.75; BUN showed an OR of 3.13 at the selected cutoff value. Conclusion The BUN, albumin, and BAR were found to be dependable predictors of in-hospital mortality in COVID-19 patients, with albumin (hypoalbuminemia) performing even better. How to cite this article Singh S, Singh K. Blood Urea Nitrogen/Albumin Ratio and Mortality Risk in Patients with COVID-19. Indian J Crit Care Med 2022;26(5):626–631.
Collapse
Affiliation(s)
- Swarnima Singh
- Department of Biochemistry, Netaji Subhas Medical College and Hospital, Patna, Bihar, India
- Swarnima Singh, Department of Biochemistry, Netaji Subhas Medical College and Hospital, Patna, Bihar, India, e-mail:
| | - Kunal Singh
- Department of Anaesthesiology, AIIMS Patna, Patna, Bihar, India
| |
Collapse
|
99
|
Keerthi BY, Saritha K, Shah C, Thomas V, Cheryala V. Immediate and antecedent causes of mortality in hospitalised Indian patients with COVID-19. Bioinformation 2022; 18:402-410. [PMID: 36909696 PMCID: PMC9997491 DOI: 10.6026/97320630018402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
It is of interest to assess the immediate and antecedent causes of mortality amongst adult COVID-19 infected patients with or without comorbidities admitted in an exclusive COVID-19 hospital was conducted the between August 2020 to May 2021. The immediate and antecedent causes were collected from the medical certificate of cause of death (MCCD). Remaining data was extracted from the hospital's record. ICMR protocol was used to grade severity of illness at admission into mild, moderate and severe categories. Clinical status during hospitalisation and most recent radiographic and laboratory data were used to assess disease progression and outcome. This study includes data from 571 people, who died at our centre between August 2020 and May 2021. Patients registered without any co-morbidity were 146 with mean age of 57.53 years; (33/146) were females and (110/46) males. Hypertension (274, 47.99%) was found in a moderately large number of patients followed by diabetes (225, 39.4%) and anaemia (199, 34.6%). Increase in risk of mortality of COVID-19 was found maximum in patients with acute respiratory distress syndrome (72.33%), followed by secondary infections (6.83%). Mortality recorded in this study was mainly in males of older age (50 years and above) with at least one co-morbidity. Anaemia was also prevalent amongst these patients and considered as an independent factor for mortality. Hence, recording of comorbidities and haemoglobin levels may help as a guideline to develop risk stratification and management of patients with COVID-19 to reduce overall mortality.
Collapse
Affiliation(s)
- BY Keerthi
- Department of General Medicine, Telangana Institute of Medical Sciences and Research, Gachibowli, Hyderabad, India, 500032
| | - K Saritha
- Department of Family Medicine, Telangana Institute of Medical Sciences and Research, Gachibowli, Hyderabad, India, 500032
| | - Chirali Shah
- Department of Pulmonary Medicine, Telangana Institute of Medical Sciences and Research, Gachibowli, Hyderabad, India, 500032
| | - Vimala Thomas
- Department of Preventive and Social Medicine, Telangana Institute of Medical Sciences and Research, Gachibowli, Hyderabad, India, 500032
| | - Vikram Cheryala
- Department of Family Medicine, Telangana Institute of Medical Sciences and Research, Gachibowli, Hyderabad, India, 500032
| |
Collapse
|
100
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|