51
|
Hu TH, Rosli N, Mohamad DSA, Kadir KA, Ching ZH, Chai YH, Ideris NN, Ting LSC, Dihom AA, Kong SL, Wong EKY, Sia JEH, Ti T, Chai IPF, Tang WY, Hii KC, Divis PCS, Davis TME, Daneshvar C, Singh B. A comparison of the clinical, laboratory and epidemiological features of two divergent subpopulations of Plasmodium knowlesi. Sci Rep 2021; 11:20117. [PMID: 34635723 PMCID: PMC8505493 DOI: 10.1038/s41598-021-99644-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 11/25/2022] Open
Abstract
Plasmodium knowlesi, a simian malaria parasite responsible for all recent indigenous cases of malaria in Malaysia, infects humans throughout Southeast Asia. There are two genetically distinct subpopulations of Plasmodium knowlesi in Malaysian Borneo, one associated with long-tailed macaques (termed cluster 1) and the other with pig-tailed macaques (cluster 2). A prospective study was conducted to determine whether there were any between-subpopulation differences in clinical and laboratory features, as well as in epidemiological characteristics. Over 2 years, 420 adults admitted to Kapit Hospital, Malaysian Borneo with knowlesi malaria were studied. Infections with each subpopulation resulted in mostly uncomplicated malaria. Severe disease was observed in 35/298 (11.7%) of single cluster 1 and 8/115 (7.0%) of single cluster 2 infections (p = 0.208). There was no clinically significant difference in outcome between the two subpopulations. Cluster 1 infections were more likely to be associated with peri-domestic activities while cluster 2 were associated with interior forest activities consistent with the preferred habitats of the respective macaque hosts. Infections with both P. knowlesi subpopulations cause a wide spectrum of disease including potentially life-threatening complications, with no implications for differential patient management.
Collapse
Affiliation(s)
- Ting Huey Hu
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Nawal Rosli
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Dayang S A Mohamad
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Khamisah A Kadir
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | | | | | | | | | | | | | | | | | - Tiana Ti
- Kapit Hospital, Kapit, Sarawak, Malaysia
| | | | | | | | - Paul C S Divis
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Timothy M E Davis
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.,University of Western Australia, Medical School, Fremantle, WA, Australia
| | - Cyrus Daneshvar
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.,Department of Respiratory Medicine, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia.
| |
Collapse
|
52
|
Cuenca PR, Key S, Jumail A, Surendra H, Ferguson HM, Drakeley CJ, Fornace K. Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes. ADVANCES IN PARASITOLOGY 2021; 113:225-286. [PMID: 34620384 DOI: 10.1016/bs.apar.2021.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within the past two decades, incidence of human cases of the zoonotic malaria Plasmodium knowlesi has increased markedly. P. knowlesi is now the most common cause of human malaria in Malaysia and threatens to undermine malaria control programmes across Southeast Asia. The emergence of zoonotic malaria corresponds to a period of rapid deforestation within this region. These environmental changes impact the distribution and behaviour of the simian hosts, mosquito vector species and human populations, creating new opportunities for P. knowlesi transmission. Here, we review how landscape changes can drive zoonotic disease emergence, examine the extent and causes of these changes across Southeast and identify how these mechanisms may be impacting P. knowlesi dynamics. We review the current spatial epidemiology of reported P. knowlesi infections in people and assess how these demographic and environmental changes may lead to changes in transmission patterns. Finally, we identify opportunities to improve P. knowlesi surveillance and develop targeted ecological interventions within these landscapes.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
53
|
Barber BE, Grigg MJ, Cooper DJ, van Schalkwyk DA, William T, Rajahram GS, Anstey NM. Clinical management of Plasmodium knowlesi malaria. ADVANCES IN PARASITOLOGY 2021; 113:45-76. [PMID: 34620385 DOI: 10.1016/bs.apar.2021.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The zoonotic parasite Plasmodium knowlesi has emerged as an important cause of human malaria in parts of Southeast Asia. The parasite is indistinguishable by microscopy from the more benign P. malariae, but can result in high parasitaemias with multiorgan failure, and deaths have been reported. Recognition of severe knowlesi malaria, and prompt initiation of effective therapy is therefore essential to prevent adverse outcomes. Here we review all studies reporting treatment of uncomplicated and severe knowlesi malaria. We report that although chloroquine is effective for the treatment of uncomplicated knowlesi malaria, artemisinin combination treatment is associated with faster parasite clearance times and lower rates of anaemia during follow-up, and should be considered the treatment of choice, particularly given the risk of administering chloroquine to drug-resistant P. vivax or P. falciparum misdiagnosed as P. knowlesi malaria in co-endemic areas. For severe knowlesi malaria, intravenous artesunate has been shown to be highly effective and associated with reduced case-fatality rates, and should be commenced without delay. Regular paracetamol may also be considered for patients with severe knowlesi malaria or for those with acute kidney injury, to attenuate the renal damage resulting from haemolysis-induced lipid peroxidation.
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Daniel J Cooper
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Medicine, University of Cambridge School of Medicine, Cambridge, United Kingdom
| | | | - Timothy William
- Gleneagles Medical Centre, Kota Kinabalu, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia
| | - Giri S Rajahram
- Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia; Queen Elizabeth Hospital 2, Kota Kinabalu, Malaysia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
54
|
Vythilingam I, Chua TH, Liew JWK, Manin BO, Ferguson HM. The vectors of Plasmodium knowlesi and other simian malarias Southeast Asia: challenges in malaria elimination. ADVANCES IN PARASITOLOGY 2021; 113:131-189. [PMID: 34620382 DOI: 10.1016/bs.apar.2021.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Plasmodium knowlesi, a simian malaria parasite of great public health concern has been reported from most countries in Southeast Asia and exported to various countries around the world. Currently P. knowlesi is the predominant species infecting humans in Malaysia. Besides this species, other simian malaria parasites such as P. cynomolgi and P. inui are also infecting humans in the region. The vectors of P. knowlesi and other Asian simian malarias belong to the Leucosphyrus Group of Anopheles mosquitoes which are generally forest dwelling species. Continual deforestation has resulted in these species moving into forest fringes, farms, plantations and human settlements along with their macaque hosts. Limited studies have shown that mosquito vectors are attracted to both humans and macaque hosts, preferring to bite outdoors and in the early part of the night. We here review the current status of simian malaria vectors and their parasites, knowledge of vector competence from experimental infections and discuss possible vector control measures. The challenges encountered in simian malaria elimination are also discussed. We highlight key knowledge gaps on vector distribution and ecology that may impede effective control strategies.
Collapse
Affiliation(s)
- Indra Vythilingam
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tock Hing Chua
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia.
| | - Jonathan Wee Kent Liew
- Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia; Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Benny O Manin
- Department of Pathobiology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
55
|
Knowlesi malaria: Human risk factors, clinical spectrum, and pathophysiology. ADVANCES IN PARASITOLOGY 2021; 113:1-43. [PMID: 34620381 DOI: 10.1016/bs.apar.2021.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasmodium knowlesi is endemic across Southeast Asia, and is the commonest cause of zoonotic malaria. The spectrum of clinical disease from P. knowlesi infection ranges from asymptomatic infection, through to severe malaria and death. Over 90% of clinical disease occurs in adults, mostly living in forest edge areas undergoing intensive land use change. With a 24-h asexual life cycle in humans, high parasite counts are possible, but most clinical cases of knowlesi malaria are uncomplicated with low parasitaemia. In co-endemic areas, median parasitaemia in knowlesi malaria is lower than that seen in vivax and falciparum malaria, suggesting a lower fever threshold. Severe malaria occurs in 6-9% of symptomatic adults. Manifestations of severe malaria from P. knowlesi are similar to those seen with falciparum malaria, with the notable absence of coma. Age, parasitaemia, cardiovascular comorbidities and delayed diagnosis are risk factors for severe disease and death, which are only seen in adults. Thrombocytopenia is near-universal in adults, likely related to platelet-red cell binding and clearance. Mechanisms underlying the microvascular sludging seen in fatal disease in non-natural primate hosts and the microvascular accumulation of parasites in fatal human disease are not clear. Marked reductions in deformability of both infected and uninfected red blood cells are associated with disease severity in both humans and other non-natural primate hosts, likely contributing to impaired microvascular perfusion and organ dysfunction. Endothelial activation, endothelial dysfunction, glycocalyx degradation and haemolysis are also associated with, and likely contribute to, severe disease and organ dysfunction, particularly acute kidney injury.
Collapse
|
56
|
Grigg MJ, Lubis IN, Tetteh KKA, Barber BE, William T, Rajahram GS, Tan AF, Sutherland CJ, Noviyanti R, Drakeley CJ, Britton S, Anstey NM. Plasmodium knowlesi detection methods for human infections-Diagnosis and surveillance. ADVANCES IN PARASITOLOGY 2021; 113:77-130. [PMID: 34620386 DOI: 10.1016/bs.apar.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Within the overlapping geographical ranges of P. knowlesi monkey hosts and vectors in Southeast Asia, an estimated 1.5 billion people are considered at risk of infection. P. knowlesi can cause severe disease and death, the latter associated with delayed treatment occurring from misdiagnosis. Although microscopy is a sufficiently sensitive first-line tool for P. knowlesi detection for most low-level symptomatic infections, misdiagnosis as other Plasmodium species is common, and the majority of asymptomatic infections remain undetected. Current point-of-care rapid diagnostic tests demonstrate insufficient sensitivity and poor specificity for differentiating P. knowlesi from other Plasmodium species. Molecular tools including nested, real-time, and single-step PCR, and loop-mediated isothermal amplification (LAMP), are sensitive for P. knowlesi detection. However, higher cost and inability to provide the timely point-of-care diagnosis needed to guide appropriate clinical management has limited their routine use in most endemic clinical settings. P. knowlesi is likely underdiagnosed across the region, and improved diagnostic and surveillance tools are required. Reference laboratory molecular testing of malaria cases for both zoonotic and non-zoonotic Plasmodium species needs to be more widely implemented by National Malaria Control Programs across Southeast Asia to accurately identify the burden of zoonotic malaria and more precisely monitor the success of human-only malaria elimination programs. The implementation of specific serological tools for P. knowlesi would assist in determining the prevalence and distribution of asymptomatic and submicroscopic infections, the absence of transmission in certain areas, and associations with underlying land use change for future spatially targeted interventions.
Collapse
Affiliation(s)
- Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia.
| | - Inke N Lubis
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Kevin K A Tetteh
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bridget E Barber
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia; Gleneagles Medical Centre, Kota Kinabalu, Malaysia
| | - Giri S Rajahram
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia; Queen Elizabeth Hospital 2, Kota Kinabalu, Malaysia
| | - Angelica F Tan
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Colin J Sutherland
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sumudu Britton
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
57
|
Molecular epidemiology and population genomics of Plasmodium knowlesi. ADVANCES IN PARASITOLOGY 2021; 113:191-223. [PMID: 34620383 DOI: 10.1016/bs.apar.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular epidemiology has been central to uncovering P. knowlesi as an important cause of human malaria in Southeast Asia, and to understanding the complex nature of this zoonosis. Species-specific parasite detection and characterization of sequences were vital to show that P. knowlesi was distinct from the human parasite species that had been presumed to cause all malaria. With established sensitive and specific molecular detection tools, surveys subsequently indicated the distribution of P. knowlesi infections in humans, wild primate reservoir host species, and mosquito vector species. The importance of studying P. knowlesi genetic polymorphism was indicated initially by analysing a few nuclear gene loci as well as the mitochondrial genome, and subsequently by multi-locus microsatellite analyses and whole-genome sequencing. Different human infections generally have unrelated P. knowlesi genotypes, acquired from the diverse local parasite reservoirs in macaques. However, individual human infections are usually less genetically complex than those of wild macaques which experience more frequent superinfection with different P. knowlesi genotypes. Multi-locus analyses have revealed deep population subdivisions within P. knowlesi, which are structured both geographically and in relation to different macaque reservoir host species. Simplified genotypic discrimination assays now enable efficient large-scale surveillance of the sympatric P. knowlesi subpopulations within Malaysian Borneo. The whole-genome sequence analyses have also identified loci under recent positive natural selection in the P. knowlesi genome, with evidence that different loci are affected in different populations. These provide a foundation to understand recent adaptation of the zoonotic parasite populations, and to track and interpret future changes as they emerge.
Collapse
|
58
|
Liew JWK, Bukhari FDM, Jeyaprakasam NK, Phang WK, Vythilingam I, Lau YL. Natural Plasmodium inui Infections in Humans and Anopheles cracens Mosquito, Malaysia. Emerg Infect Dis 2021; 27:2700-2703. [PMID: 34545786 PMCID: PMC8462313 DOI: 10.3201/eid2710.210412] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We detected 2 natural, asymptomatic Plasmodium inui monoinfections in humans in Malaysia by using nested PCR on concentrated high-volume blood samples. We found a P. inui-positive Anopheles cracens mosquito in the same site as the human infections. Investigators should use ultrasensitive detection methods to identify simian malaria parasite transmission in humans.
Collapse
|
59
|
Chin AZ, Avoi R, Atil A, Awang Lukman K, Syed Abdul Rahim SS, Ibrahim MY, Ahmed K, Jeffree MS. Risk factor of plasmodium knowlesi infection in Sabah Borneo Malaysia, 2020: A population-based case-control study. PLoS One 2021; 16:e0257104. [PMID: 34506556 PMCID: PMC8432820 DOI: 10.1371/journal.pone.0257104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In the Malaysian state of Sabah, P. knowlesi notifications increased from 2% (59/2,741) of total malaria notifications in 2004 to 98% (2030/2,078) in 2017. There was a gap regarding P. knowlesi acquisition risk factors related to practice specifically in working age group. The main objective of this study was to identify the risk factors for acquiring P. knowlesi infection in Sabah among the working age group. METHODS AND METHODS This retrospective population-based case-control study was conducted in Ranau district to assess sociodemographic, behavioural and medical history risk factors using a pretested questionnaire. The data were entered and analyzed using IBM SPSS version 23. Bivariate analysis was conducted using binary logistic regression whereas multivariate analysis was conducted using multivariable logistic regression. We set a statistical significance at p-value less than or equal to 0.05. RESULTS A total of 266 cases and 532 controls were included in the study. Male gender (AOR = 2.71; 95% CI: 1.63-4.50), spending overnight in forest (AOR = 1.92; 95% CI: 1.20-3.06), not using mosquito repellent (AOR = 2.49; 95% CI: 1.36-4.56) and history of previous malaria infection (AOR = 49.34; 95% CI: 39.09-78.32) were found to be independent predictors of P. knowlesi infection. CONCLUSIONS This study showed the need to strengthen the strategies in preventing and controlling P. knowlesi infection specifically in changing the practice of spending overnight in forest and increasing the usage of personal mosquito repellent.
Collapse
Affiliation(s)
- Abraham Zefong Chin
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Richard Avoi
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Azman Atil
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Medicine, Department of Community Health, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Khamisah Awang Lukman
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Syed Sharizman Syed Abdul Rahim
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Yusof Ibrahim
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Faculty of Medicine and Health Sciences, Department of Pathology and Microbiology, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mohammad Saffree Jeffree
- Faculty of Medicine and Health Sciences, Department of Public Health Medicine, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
60
|
Vijayaraghavan G, Tate V, Gadre V, Trivedy C. The role of religion in One Health. Lessons from the Hanuman langur (Semnopithecus entellus) and other human-non-human primate interactions. Am J Primatol 2021; 84:e23322. [PMID: 34411317 DOI: 10.1002/ajp.23322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Being revered as deities in some religions of the world, non-human primates (NHPs) often share the same space as humans. Such coexistence and interactions with humans, especially around places of worship, have been known to cause significant changes to the behavior and diet of the NHPs in India. Moreover, the interface may also create an opportunity for zoonotic spillover, similar to the majority of newly emerging or re-emerging infections that are found to originate from animal sources. These include the SARS COV-2 virus responsible for the current COVID-19 pandemic; a catastrophic "One Health" crisis; that has highlighted the interconnections between the health of humans, animals, and the environment. Religious beliefs could potentially influence perceptions, actions, and subsequent One Health outcomes resulting from human-animal interaction, which could impact human and animal welfare. Greater insight in this area could provide a better understanding of the complex relationships between humans and NHPs; that may play an important role in mitigating conflict as well as the spillover of zoonotic disease at the human-NHP interface.
Collapse
Affiliation(s)
- Gargi Vijayaraghavan
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Vijay Tate
- Health Division, Wildlife Conservation Trust, Mumbai, India
| | - Vishal Gadre
- Health Division, Wildlife Conservation Trust, Mumbai, India
| | - Chetan Trivedy
- Health Division, Wildlife Conservation Trust, Mumbai, India.,Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, UK.,Department of Emergency Medicine, University Hospitals Sussex, NHS Foundation Trust, Brighton, UK
| |
Collapse
|
61
|
Sugiarto SR, Singh B, Page-Sharp M, Davis WA, Salman S, Hii KC, Davis TME. The pharmacokinetic properties of artemether and lumefantrine in Malaysian patients with Plasmodium knowlesi malaria. Br J Clin Pharmacol 2021; 88:691-701. [PMID: 34296469 DOI: 10.1111/bcp.15001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim of this study was to assess the pharmacokinetic properties of artemether, lumefantrine and their active metabolites in Plasmodium knowlesi malaria. METHODS Malaysian adults presenting with uncomplicated P. knowlesi infections received six doses of artemether (1.7 mg/kg) plus lumefantrine (10 mg/kg) over 3 days. Venous blood and dried blood spot (DBS) samples were taken at predetermined time-points over 28 days. Plasma and DBS artemether, dihydroartemisinin, lumefantrine and desbutyl-lumefantrine were measured using liquid chromatography-mass spectrometry. Multi-compartmental population pharmacokinetic models were developed using plasma with or without DBS drug concentrations. RESULTS Forty-one participants (mean age 45 years, 66% males) were recruited. Artemether-lumefantrine treatment was well tolerated and parasite clearance was prompt. Plasma and DBS lumefantrine concentrations were in close agreement and were used together in pharmacokinetic modelling, but only plasma concentrations of the other analytes were used because of poor correlation with DBS levels. The areas under the concentration-time curve (AUC0-∞ ) for artemether, dihydroartemisinin and lumefantrine (medians 1626, 1881 and 625 098 μg.h/L, respectively) were similar to those reported in previous pharmacokinetic studies in adults and children. There was evidence of auto-induction of artemether metabolism (mean increase in clearance relative to bioavailability 25.2% for each subsequent dose). The lumefantrine terminal elimination half-life (median 9.5 days) was longer than reported in healthy volunteers and adults with falciparum malaria. CONCLUSION The disposition of artemether, dihydroartemisinin and lumefantrine in knowlesi malaria largely parallels that in other human malarias. DBS lumefantrine concentrations can be used in pharmacokinetic studies but DBS technology is currently unreliable for the other analytes.
Collapse
Affiliation(s)
- Sri Riyati Sugiarto
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Balbir Singh
- Universiti Malaysia Sarawak (UNIMAS) Malaria Research Centre, Kota Samarahan, Sarawak, Malaysia
| | - Madhu Page-Sharp
- School of Pharmacy, Curtin University of Technology, Bentley, Australia
| | - Wendy A Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| | - Sam Salman
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia.,Clinical Pharmacology and Toxicology, PathWest, Nedlands, Western Australia, Australia.,Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia
| | | | - Timothy M E Davis
- University of Western Australia, Medical School, Fremantle Hospital, Fremantle, Western Australia, Australia
| |
Collapse
|
62
|
Malijan RPB, Mechan F, Braganza JC, Valle KMR, Salazar FV, Torno MM, Aure WE, Bacay BA, Espino FE, Torr SJ, Fornace KM, Drakeley C, Ferguson HM. The seasonal dynamics and biting behavior of potential Anopheles vectors of Plasmodium knowlesi in Palawan, Philippines. Parasit Vectors 2021; 14:357. [PMID: 34233742 PMCID: PMC8261946 DOI: 10.1186/s13071-021-04853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A small number of human cases of the zoonotic malaria Plasmodium knowlesi have been reported in Palawan Island, the Philippines. Identification of potential vector species and their bionomics is crucial for understanding human exposure risk in this setting. Here, we combined longitudinal surveillance with a trap-evaluation study to address knowledge gaps about the ecology and potential for zoonotic spillover of this macaque malaria in Palawan Island. METHODS The abundance, diversity and biting behavior of human-biting Anopheles mosquitoes were assessed through monthly outdoor human landing catches (HLC) in three ecotypes representing different land use (forest edge, forest and agricultural area) across 8 months. Additionally, the host preference and biting activity of potential Anopheles vectors were assessed through comparison of their abundance and capture time in traps baited with humans (HLC, human-baited electrocuting net-HEN) or macaques (monkey-baited trap-MBT, monkey-baited electrocuting net-MEN). All female Anopheles mosquitoes were tested for the presence of Plasmodium parasites by PCR. RESULTS Previously incriminated vectors Anopheles balabacensis and An. flavirostris accounted for > 95% of anophelines caught in longitudinal surveillance. However, human biting densities were relatively low (An. balabacensis: 0.34-1.20 per night, An. flavirostris: 0-2 bites per night). Biting densities of An. balabacensis were highest in the forest edge, while An. flavirostris was most abundant in the agricultural area. The abundance of An. balabacensis and An. flavirostris was significantly higher in HLC than in MBT. None of the 357 female Anopheles mosquitoes tested for Plasmodium infection were positive. CONCLUSIONS The relatively low density and lack of malaria infection in Anopheles mosquitoes sampled here indicates that exposure to P. knowlesi in this setting is considerably lower than in neighboring countries (i.e. Malaysia), where it is now the primary cause of malaria in humans. Although anophelines had lower abundance in MBTs than in HLCs, An. balabacensis and An. flavirostris were caught by both methods, suggesting they could act as bridge vectors between humans and macaques. These species bite primarily outdoors during the early evening, confirming that insecticide-treated nets are unlikely to provide protection against P. knowlesi vectors.
Collapse
Affiliation(s)
- Richard Paul B Malijan
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Frank Mechan
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5Q4, UK
| | - Jessie C Braganza
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Kristelle Mae R Valle
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Ferdinand V Salazar
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Majhalia M Torno
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines.,Taxonomy & Pesticide Efficacy Branch, Vector Biology & Control Division, Environment Health Institute, National Environment Agency, Ministry of Sustainability and the Environment, 11 Biopolis Way, Singapore, 138667, Singapore
| | - Wilfredo E Aure
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Brian A Bacay
- Department of Medical Entomology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Metro Manila, Philippines
| | - Fe Esperanza Espino
- Department of Parasitology, Research Institute for Tropical Medicine, Alabang, 1781, Muntinlupa City, Ma, Metro Manila, Philippines
| | - Stephen J Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5Q4, UK
| | - Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London, WC1E 7HT, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, London, WC1E 7HT, UK
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
63
|
Boualam MA, Pradines B, Drancourt M, Barbieri R. Malaria in Europe: A Historical Perspective. Front Med (Lausanne) 2021; 8:691095. [PMID: 34277665 PMCID: PMC8277918 DOI: 10.3389/fmed.2021.691095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Endemic malaria, which claimed 229 million new cases and 409,000 deaths in 2019 mainly in Africa, was eradicated from Europe by the mid-20th century. Historical descriptions of intermittent tertian and quartan fever reported in texts of Hippocrates in Greece and Celsus in Italy suggest malaria. A few paleomicrobiology investigations have confirmed the presence of malarial parasite Plasmodium falciparum in 1st, 2nd, and 5th century infected individuals in diverse regions of Italy, and Plasmodium sp. later in Bavaria. The causative Plasmodium pathogens, discovered in the 19th century in Algeria, were controversially used as therapeutic agents in the European pharmacopeia more than two centuries after effective quinine-based treatments had been introduced in Europe. How Europe managed to eradicate malaria and what the history of malaria was in Europe are of medical interest, and this review traces research pathways for a renewed understanding of malaria eradication in Europe through combined historical and paleomicrobiological investigations.
Collapse
Affiliation(s)
- Mahmoud A. Boualam
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- IHU Méditerranée Infection, Marseille, France
- Unité parasitologie et entomologie, Département microbiologie et maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France
- Centre national de référence du paludisme, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rémi Barbieri
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
64
|
Carrillo Bilbao GA, Navarro JC, Garigliany MM, Martin-Solano S, Minda E, Benítez-Ortiz W, Saegerman C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens 2021; 10:791. [PMID: 34206700 PMCID: PMC8308908 DOI: 10.3390/pathogens10070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Malaria is a disease caused by hemoparasites of the Plasmodium genus. Non-human primates (NHP) are hosts of Plasmodium sp. around the world. Several studies have demonstrated that Plasmodium sp. emerged from Africa. However, little information is currently available about Plasmodium falciparum in the neotropical NHP and even less in Ecuador. Indeed, the objective of our study was to identify by molecular phylogenetic analyses the Plasmodium species associated with NHP from the Western Amazon region of Ecuador, and to design a molecular taxonomy protocol to use in the NHP disease ecology. Methods: We extracted DNA from faecal samples (n = 26) from nine species of captive (n = 19) and free-ranging (n = 7) NHP, collected from 2011 to 2019 in the Western Amazon region of Ecuador. Results: Using a pan-Plasmodium PCR, we obtained one positive sample from an adult female Leontocebus lagonotus. A maximum likelihood phylogenetic analysis showed that this sequence unequivocally clustered with Plasmodium falciparum. Conclusions: The identification of Plasmodium sp. in NHP of the Ecuadorian Amazon would be essential to identify their role as potential zoonotic reservoirs, and it is also important to identify their origin in wildlife and their transmission in captive NHP.
Collapse
Affiliation(s)
- Gabriel Alberto Carrillo Bilbao
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | - Juan-Carlos Navarro
- Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170107, Ecuador;
| | - Mutien-Marie Garigliany
- Department of Pathology, Fundamental and Applied Research for Animal and Health (FARAH) Center, Liège University, B-4000 Liège, Belgium;
- Department of Animal Pathology, Liège University, B-4000 Liège, Belgium
| | - Sarah Martin-Solano
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Elizabeth Minda
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Washington Benítez-Ortiz
- Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador; (G.A.C.B.); (S.M.-S.); (E.M.); (W.B.-O.)
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
65
|
Divis PCS, Hu TH, Kadir KA, Mohammad DSA, Hii KC, Daneshvar C, Conway DJ, Singh B. Efficient Surveillance of Plasmodium knowlesi Genetic Subpopulations, Malaysian Borneo, 2000-2018. Emerg Infect Dis 2021; 26:1392-1398. [PMID: 32568035 PMCID: PMC7323547 DOI: 10.3201/eid2607.190924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Population genetic analysis revealed that Plasmodium knowlesi infections in Malaysian Borneo are caused by 2 divergent parasites associated with long-tailed (cluster 1) and pig-tailed (cluster 2) macaques. Because the transmission ecology is likely to differ for each macaque species, we developed a simple genotyping PCR to efficiently distinguish between and survey the 2 parasite subpopulations. This assay confirmed differences in the relative proportions in areas of Kapit division of Sarawak state, consistent with multilocus microsatellite analyses. Analyses of 1,204 human infections at Kapit Hospital showed that cluster 1 caused approximately two thirds of cases with no significant temporal changes from 2000 to 2018. We observed an apparent increase in overall numbers in the most recent 2 years studied, driven mainly by increased cluster 1 parasite infections. Continued monitoring of the frequency of different parasite subpopulations and correlation with environmental alterations are necessary to determine whether the epidemiology will change substantially.
Collapse
|
66
|
Raja TN, Hu TH, Kadir KA, Mohamad DSA, Rosli N, Wong LL, Hii KC, Simon Divis PC, Singh B. Naturally Acquired Human Plasmodium cynomolgi and P. knowlesi Infections, Malaysian Borneo. Emerg Infect Dis 2021; 26:1801-1809. [PMID: 32687020 PMCID: PMC7392409 DOI: 10.3201/eid2608.200343] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To monitor the incidence of Plasmodium knowlesi infections and determine whether other simian malaria parasites are being transmitted to humans, we examined 1,047 blood samples from patients with malaria at Kapit Hospital in Kapit, Malaysia, during June 24, 2013–December 31, 2017. Using nested PCR assays, we found 845 (80.6%) patients had either P. knowlesi monoinfection (n = 815) or co-infection with other Plasmodium species (n = 30). We noted the annual number of these zoonotic infections increased greatly in 2017 (n = 284). We identified 6 patients, 17–65 years of age, with P. cynomolgi and P. knowlesi co-infections, confirmed by phylogenetic analyses of the Plasmodium cytochrome c oxidase subunit 1 gene sequences. P. knowlesi continues to be a public health concern in the Kapit Division of Sarawak, Malaysian Borneo. In addition, another simian malaria parasite, P. cynomolgi, also is an emerging cause of malaria in humans.
Collapse
|
67
|
Hocking SE, Divis PCS, Kadir KA, Singh B, Conway DJ. Population Genomic Structure and Recent Evolution of Plasmodium knowlesi, Peninsular Malaysia. Emerg Infect Dis 2021; 26:1749-1758. [PMID: 32687018 PMCID: PMC7392424 DOI: 10.3201/eid2608.190864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most malaria in Malaysia is caused by Plasmodium knowlesi parasites through zoonotic infection from macaque reservoir hosts. We obtained genome sequences from 28 clinical infections in Peninsular Malaysia to clarify the emerging parasite population structure and test for evidence of recent adaptation. The parasites all belonged to a major genetic population of P. knowlesi (cluster 3) with high genomewide divergence from populations occurring in Borneo (clusters 1 and 2). We also observed unexpected local genetic subdivision; most parasites belonged to 2 subpopulations sharing a high level of diversity except at particular genomic regions, the largest being a region of chromosome 12, which showed evidence of recent directional selection. Surprisingly, we observed a third subpopulation comprising P. knowlesi infections that were almost identical to each other throughout much of the genome, indicating separately maintained transmission and recent genetic isolation. Each subpopulation could evolve and present a broader health challenge in Asia.
Collapse
|
68
|
New vectors that are early feeders for Plasmodium knowlesi and other simian malaria parasites in Sarawak, Malaysian Borneo. Sci Rep 2021; 11:7739. [PMID: 33833272 PMCID: PMC8032675 DOI: 10.1038/s41598-021-86107-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Plasmodium knowlesi is the main cause of malaria in Sarawak, where studies on vectors of P. knowlesi have been conducted in only two districts. Anopheles balabacensis and An. donaldi were incriminated as vectors in Lawas and An. latens in Kapit. We studied a third location in Sarawak, Betong, where of 2169 mosquitoes collected over 36 days using human-landing catches, 169 (7.8%) were Anopheles spp. PCR and phylogenetic analyses identified P. knowlesi and/or P. cynomolgi, P. fieldi, P. inui, P. coatneyi and possibly novel Plasmodium spp. in salivary glands of An. latens and An. introlatus from the Leucosphyrus Group and in An. collessi and An. roperi from the Umbrosus Group. Phylogenetic analyses of cytochrome oxidase subunit I sequences indicated three P. knowlesi-positive An. introlatus had been misidentified morphologically as An. latens, while An. collessi and An. roperi could not be delineated using the region sequenced. Almost all vectors from the Leucosphyrus Group were biting after 1800 h but those belonging to the Umbrosus Group were also biting between 0700 and 1100 h. Our study incriminated new vectors of knowlesi malaria in Sarawak and underscores the importance of including entomological studies during the daytime to obtain a comprehensive understanding of the transmission dynamics of malaria.
Collapse
|
69
|
Jeyaprakasam NK, Pramasivan S, Liew JWK, Van Low L, Wan-Sulaiman WY, Ngui R, Jelip J, Vythilingam I. Evaluation of Mosquito Magnet and other collection tools for Anopheles mosquito vectors of simian malaria. Parasit Vectors 2021; 14:184. [PMID: 33794965 PMCID: PMC8015311 DOI: 10.1186/s13071-021-04689-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Vector surveillance is essential in determining the geographical distribution of mosquito vectors and understanding the dynamics of malaria transmission. With the elimination of human malaria cases, knowlesi malaria cases in humans are increasing in Malaysia. This necessitates intensive vector studies using safer trapping methods which are both field efficient and able to attract the local vector populations. Thus, this study evaluated the potential of Mosquito Magnet as a collection tool for Anopheles mosquito vectors of simian malaria along with other known collection methods. Methods A randomized 4 × 4 Latin square designed experiment was conducted to compare the efficiency of the Mosquito Magnet against three other common trapping methods: human landing catch (HLC), CDC light trap and human baited trap (HBT). The experiment was conducted over six replicates where sampling within each replicate was carried out for 4 consecutive nights. An additional 4 nights of sampling was used to further evaluate the Mosquito Magnet against the “gold standard” HLC. The abundance of Anopheles sampled by different methods was compared and evaluated with focus on the Anopheles from the Leucosphyrus group, the vectors of knowlesi malaria. Results The Latin square designed experiment showed HLC caught the greatest number of Anopheles mosquitoes (n = 321) compared to the HBT (n = 87), Mosquito Magnet (n = 58) and CDC light trap (n = 13). The GLMM analysis showed that the HLC method caught significantly more Anopheles mosquitoes compared to Mosquito Magnet (P = 0.049). However, there was no significant difference in mean nightly catch of Anopheles mosquitoes between Mosquito Magnet and the other two trapping methods, HBT (P = 0.646) and CDC light traps (P = 0.197). The mean nightly catch for both An. introlatus (9.33 ± 4.341) and An. cracens (4.00 ± 2.273) caught using HLC was higher than that of Mosquito Magnet, though the differences were not statistically significant (P > 0.05). This is in contrast to the mean nightly catch of An. sinensis (15.75 ± 5.640) and An. maculatus (15.78 ± 3.479) where HLC showed significantly more mosquito catches compared to Mosquito Magnet (P < 0.05). Conclusions Mosquito Magnet has a promising ability to catch An. introlatus and An. cracens, the important vectors of knowlesi and other simian malarias in Peninsular Malaysia. The ability of Mosquito Magnet to catch some of the Anopheles mosquito species is comparable to HLC and makes it an ethical and safer alternative. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04689-3.
Collapse
Affiliation(s)
| | - Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lun Van Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Wan-Yusoff Wan-Sulaiman
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jenarun Jelip
- Division of Disease Control, Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
70
|
Kotepui M, Masangkay FR, Kotepui KU, Milanez GDJ. Preliminary review on the prevalence, proportion, geographical distribution, and characteristics of naturally acquired Plasmodium cynomolgi infection in mosquitoes, macaques, and humans: a systematic review and meta-analysis. BMC Infect Dis 2021; 21:259. [PMID: 33711940 PMCID: PMC7953546 DOI: 10.1186/s12879-021-05941-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Plasmodium cynomolgi is a simian malaria parasite that has been reported as a naturally acquired human infection. The present study aims to systematically review reports on naturally acquired P. cynomolgi in humans, mosquitoes, and macaques to provide relevant data for pre-emptive surveillance and preparation in the event of an outbreak of zoonotic malaria in Southeast Asia. METHODS The protocol of the systematic review was registered at PROSPERO with approval ID CRD42020203046. Three databases (Web of Science, Scopus, and MEDLINE) were searched for studies reporting the prevalence of P. cynomolgi infections in Southeast Asian countries between 1946 and 2020. The pooled prevalence or pooled proportion of P. cynomolgi parasitemia in humans, mosquitoes, and macaques was estimated using a random-effects model. Differences in the clinical characteristics of P. cynomolgi infections were also estimated using a random-effects model and presented as pooled odds ratios (ORs) or mean differences (MDs) with 95% confidence intervals (CIs). RESULTS Thirteen studies reporting on the prevalence of naturally acquired P. cynomolgi in humans (3 studies, 21 cases), mosquitoes (3 studies, 28 cases), and macaques (7 studies, 334 cases) were included. The results demonstrated that the pooled proportion of naturally acquired P. cynomolgi in humans was 1% (95% CI, 0.1%, I2, 0%), while the pooled proportion of P. cynomolgi infecting mosquitoes was 18% (95% CI, 10-26%, I2, 32.7%). The pooled prevalence of naturally acquired P. cynomolgi in macaques was 47% (95% CI, 27-67%, I2, 98.3%). Most of the cases of naturally acquired P. cynomolgi in humans were reported in Cambodia (62%) and Malaysia (38%), while cases of P. cynomolgi in macaques were reported in Malaysia (35.4%), Singapore (23.2%), Indonesia (17.3%), Philippines (8.5%), Laos (7.93%), and Cambodia (7.65%). Cases of P. cynomolgi in mosquitoes were reported in Vietnam (76.9%) and Malaysia (23.1%). CONCLUSIONS This study demonstrated the occurrence of naturally acquired P. cynomolgi infection in humans, mosquitoes, and macaques. Further studies of P. cynomolgi in asymptomatic human cases in areas where vectors and natural hosts are endemic are extensively needed if human infections with P. cynomolgi do become public health problems.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Frederick Ramirez Masangkay
- Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Giovanni De Jesus Milanez
- Department of Medical Technology, Institute of Arts and Sciences, Far Eastern University-Manila, Manila, Philippines
| |
Collapse
|
71
|
Fornace KM, Diaz AV, Lines J, Drakeley CJ. Achieving global malaria eradication in changing landscapes. Malar J 2021; 20:69. [PMID: 33530995 PMCID: PMC7856737 DOI: 10.1186/s12936-021-03599-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/20/2021] [Indexed: 11/10/2022] Open
Abstract
Land use and land cover changes, such as deforestation, agricultural expansion and urbanization, are one of the largest anthropogenic environmental changes globally. Recent initiatives to evaluate the feasibility of malaria eradication have highlighted impacts of landscape changes on malaria transmission and the potential of these changes to undermine malaria control and elimination efforts. Multisectoral approaches are needed to detect and minimize negative impacts of land use and land cover changes on malaria transmission while supporting development aiding malaria control, elimination and ultimately eradication. Pathways through which land use and land cover changes disrupt social and ecological systems to increase or decrease malaria risks are outlined, identifying priorities and opportunities for a global malaria eradication campaign. The impacts of land use and land cover changes on malaria transmission are complex and highly context-specific, with effects changing over time and space. Landscape changes are only one element of a complex development process with wider economic and social dimensions affecting human health and wellbeing. While deforestation and other landscape changes threaten to undermine malaria control efforts and have driven the emergence of zoonotic malaria, most of the malaria elimination successes have been underpinned by agricultural development and land management. Malaria eradication is not feasible without addressing these changing risks while, conversely, consideration of malaria impacts in land management decisions has the potential to significantly accelerate progress towards eradication. Multisectoral cooperation and approaches to linking malaria control and environmental science, such as conducting locally relevant ecological monitoring, integrating landscape data into malaria surveillance systems and designing environmental management strategies to reduce malaria burdens, are essential to achieve malaria eradication.
Collapse
Affiliation(s)
- Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK. .,Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK.
| | - Adriana V Diaz
- Pathology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Jo Lines
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.,Centre for Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
72
|
Reyes RA, Fornace KM, Macalinao MLM, Boncayao BL, De La Fuente ES, Sabanal HM, Bareng APN, Medado IAP, Mercado ES, Baquilod MS, Luchavez JS, Hafalla JCR, Drakeley CJ, Espino FEJ. Enhanced Health Facility Surveys to Support Malaria Control and Elimination across Different Transmission Settings in the Philippines. Am J Trop Med Hyg 2021; 104:968-978. [PMID: 33534761 PMCID: PMC7941801 DOI: 10.4269/ajtmh.20-0814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Following substantial progress in malaria control in the Philippines, new surveillance approaches are needed to identify and target residual malaria transmission. This study evaluated an enhanced surveillance approach using rolling cross-sectional surveys of all health facility attendees augmented with molecular diagnostics and geolocation. Facility surveys were carried out in three sites representing different transmission intensities: Morong, Bataan (pre-elimination), Abra de Ilog, Occidental Mindoro (stable medium risk), and Rizal, Palawan (high risk, control). Only one rapid diagnostic test (RDT)–positive infection and no PCR confirmed infections were found in Bataan and Occidental Mindoro, suggesting the absence of transmission. In Palawan, the inclusion of all health facility attendees, regardless of symptoms, and use of molecular diagnostics identified 313 infected individuals in addition to 300 cases identified by routine screening of febrile patients with the RDT or microscopy. Of these, the majority (313/613) were subpatent infections and only detected using molecular methods. Simultaneous collection of GPS coordinates on tablet-based applications allowed real-time mapping of malaria infections. Risk factor analysis showed higher risks in children and indigenous groups, with bed net use having a protective effect. Subpatent infections were more common in men and older age-groups. Overall, malaria risks were not associated with participants’ classification, and some of the non-patient clinic attendees reported febrile illnesses (1.9%, 26/1,369), despite not seeking treatment, highlighting the widespread distribution of infection in communities. Together, these data illustrate the utility of health facility–based surveys to augment surveillance data to increase the probability of detecting infections in the wider community.
Collapse
Affiliation(s)
- Ralph A Reyes
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Kimberly M Fornace
- 2Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Beaulah L Boncayao
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Ellaine S De La Fuente
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hennessey M Sabanal
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Alison Paolo N Bareng
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Inez Andrea P Medado
- 3Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Edelwisa S Mercado
- 3Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Mario S Baquilod
- 4Department of Health, MIMAROPA Center for Health Development, Quirino Memorial Medical Center Compound, Quezon, Philippines
| | - Jennifer S Luchavez
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Julius Clemence R Hafalla
- 2Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris J Drakeley
- 2Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fe Esperanza J Espino
- 1Department of Parasitology, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| |
Collapse
|
73
|
Buery JC, de Alencar FEC, Duarte AMRDC, Loss AC, Vicente CR, Ferreira LM, Fux B, Medeiros MM, Cravo P, Arez AP, Cerutti Junior C. Atlantic Forest Malaria: A Review of More than 20 Years of Epidemiological Investigation. Microorganisms 2021; 9:132. [PMID: 33430150 PMCID: PMC7826787 DOI: 10.3390/microorganisms9010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
In the south and southeast regions of Brazil, cases of malaria occur outside the endemic Amazon region near the Atlantic Forest in some coastal states, where Plasmodium vivax is the recognized parasite. Characteristics of cases and vectors, especially Anopheles (Kerteszia) cruzii, raise the hypothesis of a zoonosis with simians as reservoirs. The present review aims to report on investigations of the disease over a 23-year period. Two main sources have provided epidemiological data: the behavior of Anopheles vectors and the genetic and immunological aspects of Plasmodium spp. obtained from humans, Alouatta simians, and Anopheles spp. mosquitoes. Anopheles (K.) cruzii is the most captured species in the forest canopy and is the recognized vector. The similarity between P. vivax and Plasmodium simium and that between Plasmodium malariae and Plasmodium brasilianum shared between simian and human hosts and the involvement of the same vector in the transmission to both hosts suggest interspecies transfer of the parasites. Finally, recent evidence points to the presence of Plasmodium falciparum in a silent cycle, detected only by molecular methods in asymptomatic individuals and An. (K.) cruzii. In the context of malaria elimination, it is paramount to assemble data about transmission in such non-endemic low-incidence areas.
Collapse
Affiliation(s)
- Julyana Cerqueira Buery
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | | | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, Brazil;
- Superintendência de Controle de Endemias do Estado de São Paulo, São Paulo 01027-000, Brazil
| | - Ana Carolina Loss
- Instituto Nacional da Mata Atlântica, Santa Teresa 29650-000, Brazil;
| | - Creuza Rachel Vicente
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Lucas Mendes Ferreira
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Blima Fux
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Márcia Melo Medeiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Pedro Cravo
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Ana Paula Arez
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Crispim Cerutti Junior
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| |
Collapse
|
74
|
Cooper DJ, Rajahram GS, William T, Jelip J, Mohammad R, Benedict J, Alaza DA, Malacova E, Yeo TW, Grigg MJ, Anstey NM, Barber BE. Plasmodium knowlesi Malaria in Sabah, Malaysia, 2015-2017: Ongoing Increase in Incidence Despite Near-elimination of the Human-only Plasmodium Species. Clin Infect Dis 2021; 70:361-367. [PMID: 30889244 PMCID: PMC7768742 DOI: 10.1093/cid/ciz237] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/18/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Malaysia aims to eliminate malaria by 2020. However, while cases of Plasmodium falciparum and Plasmodium vivax have decreased substantially, the incidence of zoonotic malaria from Plasmodium knowlesi continues to increase, presenting a major challenge to regional malaria control efforts. Here we report incidence of all Plasmodium species in Sabah, including zoonotic P. knowlesi, during 2015-2017. METHODS Microscopy-based malaria notification data and polymerase chain reaction (PCR) results were obtained from the Sabah Department of Health and State Public Health Laboratory, respectively, from January 2015 to December 2017. From January 2016 this was complemented by a statewide prospective hospital surveillance study. Databases were matched, and species was determined by PCR, or microscopy if PCR was not available. RESULTS A total of 3867 malaria cases were recorded between 2015 and 2017, with PCR performed in 93%. Using PCR results, and microscopy if PCR was unavailable, P. knowlesi accounted for 817 (80%), 677 (88%), and 2030 (98%) malaria cases in 2015, 2016, and 2017, respectively. P. falciparum accounted for 110 (11%), 45 (6%), and 23 (1%) cases and P. vivax accounted for 61 (6%), 17 (2%), and 8 (0.4%) cases, respectively. Of those with P. knowlesi, the median age was 35 (interquartile range: 24-47) years, and 85% were male. CONCLUSIONS Malaysia is approaching elimination of the human-only Plasmodium species. However, the ongoing increase in P. knowlesi incidence presents a major challenge to malaria control and warrants increased focus on knowlesi-specific prevention activities. Wider molecular surveillance in surrounding countries is required.
Collapse
Affiliation(s)
- Daniel J Cooper
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Giri S Rajahram
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah.,Clinical Research Centre - Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Ministry of Health, Sabah.,Sabah Department of Health, Kota Kinabalu, Ministry of Health, Sabah
| | | | - Jenarun Jelip
- Malaysian Ministry of Health, Kuala Lumpur, Malaysia
| | - Rashidah Mohammad
- Sabah Department of Health, Kota Kinabalu, Ministry of Health, Sabah
| | - Joseph Benedict
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Danshy A Alaza
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Eva Malacova
- QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| | - Tsin W Yeo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah
| | - Bridget E Barber
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia.,Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah.,QIMR Berghofer Institute of Medical Research, Brisbane, Australia
| |
Collapse
|
75
|
Li MI, Mailepessov D, Vythilingam I, Lee V, Lam P, Ng LC, Tan CH. Prevalence of simian malaria parasites in macaques of Singapore. PLoS Negl Trop Dis 2021; 15:e0009110. [PMID: 33493205 PMCID: PMC7861519 DOI: 10.1371/journal.pntd.0009110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/04/2021] [Accepted: 01/06/2021] [Indexed: 02/04/2023] Open
Abstract
Plasmodium knowlesi is a simian malaria parasite currently recognized as the fifth causative agent of human malaria. Recently, naturally acquired P. cynomolgi infection in humans was also detected in Southeast Asia. The main reservoir of both parasites is the long-tailed and pig-tailed macaques, which are indigenous in this region. Due to increased urbanization and changes in land use, there has been greater proximity and interaction between the long-tailed macaques and the general population in Singapore. As such, this study aims to determine the prevalence of simian malaria parasites in local macaques to assess the risk of zoonosis to the general human population. Screening for the presence of malaria parasites was conducted on blood samples from 660 peridomestic macaques collected between Jan 2008 and Mar 2017, and 379 wild macaques collected between Mar 2009 and Mar 2017, using a Pan-Plasmodium-genus specific PCR. Positive samples were then screened using a simian Plasmodium species-specific nested PCR assay to identify the species of parasites (P. knowlesi, P. coatneyi, P. fieldi, P. cynomolgi, and P. inui) present. All the peridomestic macaques sampled were tested negative for malaria, while 80.5% of the 379 wild macaques were infected. All five simian Plasmodium species were detected; P. cynomolgi being the most prevalent (71.5%), followed by P. knowlesi (47.5%), P. inui (42.0%), P. fieldi (32.5%), and P. coatneyi (28.5%). Co-infection with multiple species of Plasmodium parasites was also observed. The study revealed that Singapore's wild long-tailed macaques are natural hosts of the five simian malaria parasite species, while no malaria was detected in all peridomestic macaques tested. Therefore, the risk of simian malaria transmission to the general human population is concluded to be low. However, this can be better demonstrated with the incrimination of the vectors of simian malaria parasites in Singapore.
Collapse
Affiliation(s)
- Meizhi Irene Li
- Environmental Health Institute, National Environment Agency, Singapore
| | - Diyar Mailepessov
- Environmental Health Institute, National Environment Agency, Singapore
| | - Indra Vythilingam
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Vernon Lee
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Patrick Lam
- Biodefence Centre, Force Medical Protection Command, Headquarters Medical Corps, Singapore Armed Forces, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Cheong Huat Tan
- Environmental Health Institute, National Environment Agency, Singapore
| |
Collapse
|
76
|
Rizwan HM, Abbas H, Sajid MS, Maqbool M, Jones MK, Ullah MI, Ijaz N. Drug Resistance in Protozoal Infections. BIOCHEMISTRY OF DRUG RESISTANCE 2021:95-142. [DOI: 10.1007/978-3-030-76320-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
77
|
Abstract
Plasmodium knowlesi, a simian malaria parasite, has been in the limelight since a large focus of human P. knowlesi infection was reported from Sarawak (Malaysian Borneo) in 2004. Although this infection is transmitted across Southeast Asia, the largest number of cases has been reported from Malaysia. The increasing number of knowlesi malaria cases has been attributed to the use of molecular tools for detection, but environmental changes including deforestation likely play a major role by increasing human exposure to vector mosquitoes, which coexist with the macaque host. In addition, with the reduction in human malaria transmission in Southeast Asia, it is possible that human populations are at a greater risk of P. knowlesi infection due to diminishing cross-species immunity. Furthermore, the possibility of increasing exposure of humans to other simian Plasmodium parasites such as Plasmodium cynomolgi and Plasmodium inui should not be ignored. We here review the current status of these parasites in humans, macaques, and mosquitoes to support necessary reorientation of malaria control and elimination in the affected areas.
Collapse
|
78
|
Chin AZ, Maluda MCM, Jelip J, Jeffree MSB, Culleton R, Ahmed K. Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. J Physiol Anthropol 2020; 39:36. [PMID: 33228775 PMCID: PMC7686722 DOI: 10.1186/s40101-020-00247-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a major public-health problem, with over 40% of the world’s population (more than 3.3 billion people) at risk from the disease. Malaysia has committed to eliminate indigenous human malaria transmission by 2020. The objective of this descriptive study is to understand the epidemiology of malaria in Malaysia from 2000 through 2018 and to highlight the threat posed by zoonotic malaria to the National Malaria Elimination Strategic Plan. Methods Malaria is a notifiable infection in Malaysia. The data used in this study were extracted from the Disease Control Division, Ministry of Health Malaysia, contributed by the hospitals and health clinics throughout Malaysia. The population data used in this study was extracted from the Department of Statistics Malaysia. Data analyses were performed using Microsoft Excel. Data used for mapping are available at EPSG:4326 WGS84 CRS (Coordinate Reference System). Shapefile was obtained from igismap. Mapping and plotting of the map were performed using QGIS. Results Between 2000 and 2007, human malaria contributed 100% of reported malaria and 18–46 deaths per year in Malaysia. Between 2008 and 2017, indigenous malaria cases decreased from 6071 to 85 (98.6% reduction), while during the same period, zoonotic Plasmodium knowlesi cases increased from 376 to 3614 cases (an 861% increase). The year 2018 marked the first year that Malaysia did not report any indigenous cases of malaria caused by human malaria parasites. However, there was an increasing trend of P. knowlesi cases, with a total of 4131 cases reported in that year. Although the increased incidence of P. knowlesi cases can be attributed to various factors including improved diagnostic capacity, reduction in human malaria cases, and increase in awareness of P. knowlesi, more than 50% of P. knowlesi cases were associated with agriculture and plantation activities, with a large remainder proportion linked to forest-related activities. Conclusions Malaysia has entered the elimination phase of malaria control. Zoonotic malaria, however, is increasing exponentially and becoming a significant public health problem. Improved inter-sectoral collaboration is required in order to develop a more integrated effort to control zoonotic malaria. Local political commitment and the provision of technical support from the World Health Organization will help to create focused and concerted efforts towards ensuring the success of the National Malaria Elimination Strategic Plan.
Collapse
Affiliation(s)
- Abraham Zefong Chin
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Marilyn Charlene Montini Maluda
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jenarun Jelip
- Disease Control Division, Ministry of Health, 62590, Putrajaya, Selangor, Malaysia
| | - Muhammad Saffree Bin Jeffree
- Department of Community and Family Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.,Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Richard Culleton
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan
| | - Kamruddin Ahmed
- Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia. .,Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
79
|
Scott J. Proposed Integrated Control of Zoonotic Plasmodium knowlesi in Southeast Asia Using Themes of One Health. Trop Med Infect Dis 2020; 5:E175. [PMID: 33233871 PMCID: PMC7709578 DOI: 10.3390/tropicalmed5040175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 01/28/2023] Open
Abstract
Zoonotic malaria, Plasmodium knowlesi, threatens the global progression of malaria elimination. Southeast Asian regions are fronting increased zoonotic malaria rates despite the control measures currently implemented-conventional measures to control human-malaria neglect P. knowlesi's residual transmission between the natural macaque host and vector. Initiatives to control P. knowlesi should adopt themes of the One Health approach, which details that the management of an infectious disease agent should be scrutinized at the human-animal-ecosystem interface. This review describes factors that have conceivably permitted the emergence and increased transmission rates of P. knowlesi to humans, from the understanding of genetic exchange events between subpopulations of P. knowlesi to the downstream effects of environmental disruption and simian and vector behavioral adaptations. These factors are considered to advise an integrative control strategy that aligns with the One Health approach. It is proposed that surveillance systems address the geographical distribution and transmission clusters of P. knowlesi and enforce ecological regulations that limit forest conversion and promote ecosystem regeneration. Furthermore, combining individual protective measures, mosquito-based feeding trapping tools and biocontrol strategies in synergy with current control methods may reduce mosquito population density or transmission capacity.
Collapse
Affiliation(s)
- Jessica Scott
- College of Public Health and Medical and Veterinary Sciences, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Australia
| |
Collapse
|
80
|
Amir A, Shahari S, Liew JWK, de Silva JR, Khan MB, Lai MY, Snounou G, Abdullah ML, Gani M, Rovie-Ryan JJ, Lau YL. Natural Plasmodium infection in wild macaques of three states in peninsular Malaysia. Acta Trop 2020; 211:105596. [PMID: 32589995 DOI: 10.1016/j.actatropica.2020.105596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 01/28/2023]
Abstract
Zoonotic cases of Plasmodium knowlesi account for most malaria cases in Malaysia, and humans infected with P. cynomolgi, another parasite of macaques have recently been reported in Sarawak. To date the epidemiology of malaria in its natural Macaca reservoir hosts remains little investigated. In this study we surveyed the prevalence of simian malaria in wild macaques of three states in Peninsular Malaysia, namely Pahang, Perak and Johor using blood samples from 103 wild macaques (collected by the Department of Wildlife and National Parks Peninsular Malaysia) subjected to microscopic examination and nested PCR targeting the Plasmodium small subunit ribosomal RNA gene. As expected, PCR analysis yielded significantly higher prevalence (64/103) as compared to microscopic examination (27/103). No relationship between the age and/or sex of the macaques with the parasitaemia and the Plasmodium species infecting the macaques could be identified. Wild macaques in Pahang had the highest prevalence of Plasmodium parasites (89.7%), followed by those of Perak (69.2%) and Johor (28.9%). Plasmodium inui and P. cynomolgi were the two most prevalent species infecting the macaques from all three states. Half of the macaques (33/64) harboured two or more Plasmodium species. These data provide a baseline survey, which should be extended by further longitudinal investigations that should be associated with studies on the bionomics of the anopheline vectors. This information will allow an accurate evaluation of the risk of zoonotic transmission to humans, and to elaborate effective strategies to control simian malaria.
Collapse
Affiliation(s)
- Amirah Amir
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Shahhaziq Shahari
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jeremy Ryan de Silva
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohammad Behram Khan
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Meng Yee Lai
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA) IDMIT Department IBFJ DRF, Fontenay-aux-Roses, France
| | - Mohd Lutfi Abdullah
- National Wildlife Forensic Laboratory, Ex-situ Conservation Division Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Millawati Gani
- National Wildlife Forensic Laboratory, Ex-situ Conservation Division Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Jeffrine J Rovie-Ryan
- National Wildlife Forensic Laboratory, Ex-situ Conservation Division Department of Wildlife and National Parks Peninsular Malaysia, 56100, Kuala Lumpur, Malaysia
| | - Yee-Ling Lau
- Department of Parasitology Faculty of Medicine, University Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
81
|
Chong ETJ, Neoh JWF, Lau TY, Lim YAL, Chai HC, Chua KH, Lee PC. Genetic diversity of circumsporozoite protein in Plasmodium knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Malar J 2020; 19:377. [PMID: 33092594 PMCID: PMC7579551 DOI: 10.1186/s12936-020-03451-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/16/2020] [Indexed: 11/25/2022] Open
Abstract
Background Understanding the genetic diversity of candidate genes for malaria vaccines such as circumsporozoite protein (csp) may enhance the development of vaccines for treating Plasmodium knowlesi. Hence, the aim of this study is to investigate the genetic diversity of non-repeat regions of csp in P. knowlesi from Malaysian Borneo and Peninsular Malaysia. Methods A total of 46 csp genes were subjected to polymerase chain reaction amplification. The genes were obtained from P. knowlesi isolates collected from different divisions of Sabah, Malaysian Borneo, and Peninsular Malaysia. The targeted gene fragments were cloned into a commercial vector and sequenced, and a phylogenetic tree was constructed while incorporating 168 csp sequences retrieved from the GenBank database. The genetic diversity and natural evolution of the csp sequences were analysed using MEGA6 and DnaSP ver. 5.10.01. A genealogical network of the csp haplotypes was generated using NETWORK ver. 4.6.1.3. Results The phylogenetic analysis revealed indistinguishable clusters of P. knowlesi isolates across different geographic regions, including Malaysian Borneo and Peninsular Malaysia. Nucleotide analysis showed that the csp non-repeat regions of zoonotic P. knowlesi isolates obtained in this study underwent purifying selection with population expansion, which was supported by extensive haplotype sharing observed between humans and macaques. Novel variations were observed in the C-terminal non-repeat region of csp. Conclusions The csp non-repeat regions are relatively conserved and there is no distinct cluster of P. knowlesi isolates from Malaysian Borneo and Peninsular Malaysia. Distinctive variation data obtained in the C-terminal non-repeat region of csp could be beneficial for the design and development of vaccines to treat P. knowlesi.
Collapse
Affiliation(s)
- Eric Tzyy Jiann Chong
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Joveen Wan Fen Neoh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Tiek Ying Lau
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Yvonne Ai-Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.,Centre of Excellence for Research in AIDS (CERiA), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ping-Chin Lee
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
82
|
Fungfuang W, Udom C, Tongthainan D, Kadir KA, Singh B. Malaria parasites in macaques in Thailand: stump-tailed macaques (Macaca arctoides) are new natural hosts for Plasmodium knowlesi, Plasmodium inui, Plasmodium coatneyi and Plasmodium fieldi. Malar J 2020; 19:350. [PMID: 33004070 PMCID: PMC7528273 DOI: 10.1186/s12936-020-03424-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Certain species of macaques are natural hosts of Plasmodium knowlesi and Plasmodium cynomolgi, which can both cause malaria in humans, and Plasmodium inui, which can be experimentally transmitted to humans. A significant number of zoonotic malaria cases have been reported in humans throughout Southeast Asia, including Thailand. There have been only two studies undertaken in Thailand to identify malaria parasites in non-human primates in 6 provinces. The objective of this study was to determine the prevalence of P. knowlesi, P. cynomolgi, P. inui, Plasmodium coatneyi and Plasmodium fieldi in non-human primates from 4 new locations in Thailand. Methods A total of 93 blood samples from Macaca fascicularis, Macaca leonina and Macaca arctoides were collected from four locations in Thailand: 32 were captive M. fascicularis from Chachoengsao Province (CHA), 4 were wild M. fascicularis from Ranong Province (RAN), 32 were wild M. arctoides from Prachuap Kiri Khan Province (PRA), and 25 were wild M. leonina from Nakornratchasima Province (NAK). DNA was extracted from these samples and analysed by nested PCR assays to detect Plasmodium, and subsequently to detect P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi. Results Twenty-seven of the 93 (29%) samples were Plasmodium-positive by nested PCR assays. Among wild macaques, all 4 M. fascicularis at RAN were infected with malaria parasites followed by 50% of 32 M. arctoides at PRA and 20% of 25 M. leonina at NAK. Only 2 (6.3%) of the 32 captive M. fascicularis at CHA were malaria-positive. All 5 species of Plasmodium were detected and 16 (59.3%) of the 27 macaques had single infections, 9 had double and 2 had triple infections. The composition of Plasmodium species in macaques at each sampling site was different. Macaca arctoides from PRA were infected with P. knowlesi, P. coatneyi, P. cynomolgi, P. inui and P. fieldi. Conclusions The prevalence and species of Plasmodium varied among the wild and captive macaques, and between macaques at 4 sampling sites in Thailand. Macaca arctoides is a new natural host for P. knowlesi, P. inui, P. coatneyi and P. fieldi.
Collapse
Affiliation(s)
- Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Chanya Udom
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Daraka Tongthainan
- Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Khamisah Abdul Kadir
- Malaria Research Centre, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Balbir Singh
- Malaria Research Centre, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
83
|
New vectors in northern Sarawak, Malaysian Borneo, for the zoonotic malaria parasite, Plasmodium knowlesi. Parasit Vectors 2020; 13:472. [PMID: 32933567 PMCID: PMC7490903 DOI: 10.1186/s13071-020-04345-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 09/05/2020] [Indexed: 11/19/2022] Open
Abstract
Background Plasmodium knowlesi is a significant cause of human malaria in Sarawak, Malaysian Borneo. Only one study has been previously undertaken in Sarawak to identify vectors of P. knowlesi, where Anopheles latens was incriminated as the vector in Kapit, central Sarawak. A study was therefore undertaken to identify malaria vectors in a different location in Sarawak. Methods Mosquitoes found landing on humans and resting on leaves over a 5-day period at two sites in the Lawas District of northern Sarawak were collected and identified. DNA samples extracted from salivary glands of Anopheles mosquitoes were subjected to nested PCR malaria-detection assays. The small subunit ribosomal RNA (SSU rRNA) gene of Plasmodium was sequenced, and the internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the mosquitoes were sequenced from the Plasmodium-positive samples for phylogenetic analysis. Results Totals of 65 anophelines and 127 culicines were collected. By PCR, 6 An. balabacensis and 5 An. donaldi were found to have single P. knowlesi infections while 3 other An. balabacensis had either single, double or triple infections with P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Phylogenetic analysis of the Plasmodium SSU rRNA gene confirmed 3 An. donaldi and 3 An. balabacensis with single P. knowlesi infections, while 3 other An. balabacensis had two or more Plasmodium species of P. inui, P. knowlesi, P. cynomolgi and some species of Plasmodium that could not be conclusively identified. Phylogenies inferred from the ITS2 and/or cox1 sequences of An. balabacensis and An. donaldi indicate that they are genetically indistinguishable from An. balabacensis and An. donaldi, respectively, found in Sabah, Malaysian Borneo. Conclusions Previously An. latens was identified as the vector for P. knowlesi in Kapit, central Sarawak, Malaysian Borneo, and now An. balabacensis and An. donaldi have been incriminated as vectors for zoonotic malaria in Lawas, northern Sarawak. ![]()
Collapse
|
84
|
Brown R, Chua TH, Fornace K, Drakeley C, Vythilingam I, Ferguson HM. Human exposure to zoonotic malaria vectors in village, farm and forest habitats in Sabah, Malaysian Borneo. PLoS Negl Trop Dis 2020; 14:e0008617. [PMID: 32886679 PMCID: PMC7497982 DOI: 10.1371/journal.pntd.0008617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 09/17/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022] Open
Abstract
The zoonotic malaria parasite, Plasmodium knowlesi, is now a substantial public health problem in Malaysian Borneo. Current understanding of P. knowlesi vector bionomics and ecology in Sabah comes from a few studies near the epicentre of human cases in one district, Kudat. These have incriminated Anopheles balabacensis as the primary vector, and suggest that human exposure to vector biting is peri-domestic as well as in forest environments. To address the limited understanding of vector ecology and human exposure risk outside of Kudat, we performed wider scale surveillance across four districts in Sabah with confirmed transmission to investigate spatial heterogeneity in vector abundance, diversity and infection rate. Entomological surveillance was carried out six months after a cross-sectional survey of P. knowlesi prevalence in humans throughout the study area; providing an opportunity to investigate associations between entomological indicators and infection. Human-landing catches were performed in peri-domestic, farm and forest sites in 11 villages (3-4 per district) and paired with estimates of human P. knowlesi exposure based on sero-prevalence. Anopheles balabacensis was present in all districts but only 6/11 villages. The mean density of An. balabacensis was relatively low, but significantly higher in farm (0.094/night) and forest (0.082/night) than peri-domestic areas (0.007/night). Only one An. balabacensis (n = 32) was infected with P. knowlesi. Plasmodium knowlesi sero-positivity in people was not associated with An. balabacensis density at the village-level however post hoc analyses indicated the study had limited power to detect a statistical association due low vector density. Wider scale sampling revealed substantial heterogeneity in vector density and distribution between villages and districts. Vector-habitat associations predicted from this larger-scale surveillance differed from those inferred from smaller-scale studies in Kudat; highlighting the importance of local ecological context. Findings highlight potential trade-offs between maximizing temporal versus spatial breadth when designing entomological surveillance; and provide baseline entomological and epidemiological data to inform future studies of entomological risk factors for human P. knowlesi infection.
Collapse
Affiliation(s)
- Rebecca Brown
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tock H. Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heather M. Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
85
|
Wong ML, Liew JWK, Wong WK, Pramasivan S, Mohamed Hassan N, Wan Sulaiman WY, Jeyaprakasam NK, Leong CS, Low VL, Vythilingam I. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia. Parasit Vectors 2020; 13:414. [PMID: 32787974 PMCID: PMC7425011 DOI: 10.1186/s13071-020-04277-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The endosymbiont bacterium Wolbachia is maternally inherited and naturally infects some filarial nematodes and a diverse range of arthropods, including mosquito vectors responsible for disease transmission in humans. Previously, it has been found infecting most mosquito species but absent in Anopheles and Aedes aegypti. However, recently these two mosquito species were found to be naturally infected with Wolbachia. We report here the extent of Wolbachia infections in field-collected mosquitoes from Malaysia based on PCR amplification of the Wolbachia wsp and 16S rRNA genes. METHODS The prevalence of Wolbachia in Culicinae mosquitoes was assessed via PCR with wsp primers. For some of the mosquitoes, in which the wsp primers failed to amplify a product, Wolbachia screening was performed using nested PCR targeting the 16S rRNA gene. Wolbachia sequences were aligned using Geneious 9.1.6 software, analyzed with BLAST, and the most similar sequences were downloaded. Phylogenetic analyses were carried out with MEGA 7.0 software. Graphs were drawn with GraphPad Prism 8.0 software. RESULTS A total of 217 adult mosquitoes representing 26 mosquito species were screened. Of these, infections with Wolbachia were detected in 4 and 15 mosquito species using wsp and 16S rRNA primers, respectively. To our knowledge, this is the first time Wolbachia was detected using 16S rRNA gene amplification, in some Anopheles species (some infected with Plasmodium), Culex sinensis, Culex vishnui, Culex pseudovishnui, Mansonia bonneae and Mansonia annulifera. Phylogenetic analysis based on wsp revealed Wolbachia from most of the mosquitoes belonged to Wolbachia Supergroup B. Based on 16S rRNA phylogenetic analysis, the Wolbachia strain from Anopheles mosquitoes were more closely related to Wolbachia infecting Anopheles from Africa than from Myanmar. CONCLUSIONS Wolbachia was found infecting Anopheles and other important disease vectors such as Mansonia. Since Wolbachia can affect its host by reducing the life span and provide resistance to pathogen infection, several studies have suggested it as a potential innovative tool for vector/vector-borne disease control. Therefore, it is important to carry out further studies on natural Wolbachia infection in vector mosquitoes' populations as well as their long-term effects in new hosts and pathogen suppression.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai Kit Wong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sandthya Pramasivan
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Wan Yusoff Wan Sulaiman
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Cherng Shii Leong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
86
|
Rei Yan SL, Wakasuqui F, Wrenger C. Point-of-care tests for malaria: speeding up the diagnostics at the bedside and challenges in malaria cases detection. Diagn Microbiol Infect Dis 2020; 98:115122. [PMID: 32711185 DOI: 10.1016/j.diagmicrobio.2020.115122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Malaria remains as one of the major public health problems worldwide. About 228 million cases occurred in 2018 only, with Africa bearing about 93% of the cases. Asymptomatic population carrying the various forms of the parasite Plasmodium in endemic areas plays an important role in the spread of the disease. To tackle this battle, more sensitive and precise detection kits for malaria are crucial to better control the number of new malaria cases. In this review, we not only discuss some of the available approaches to rapidly detect new malaria cases in endemic areas but also shed light on parallel problems that may affect the detection of individuals infected with the parasite, covering kelch 13 mutation, glucose 6-phosphate dehydrogenase deficiency, and hemoglobin disorders. Available approaches for malaria detection covered in this review are focused on point-of-care tests, including portable polymerase chain reaction and aptamers.
Collapse
Affiliation(s)
- Sun L Rei Yan
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Felipe Wakasuqui
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
87
|
Habitat and Seasonality Affect Mosquito Community Composition in the West Region of Cameroon. INSECTS 2020; 11:insects11050312. [PMID: 32429075 PMCID: PMC7291174 DOI: 10.3390/insects11050312] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
To identify potential sylvatic, urban and bridge-vectors that can be involved in current or future virus spillover from wild to more urbanised areas, entomological field surveys were conducted in rural, peri-urban and urban areas spanning the rainy and dry seasons in western Cameroon. A total of 2650 mosquitoes belonging to 37 species and eight genera were collected. Mosquito species richness was significantly influenced by the specific combination of the habitat type and the season. The highest species richness was found in the peri-urban area (S = 30, Chao1 = 121 ± 50.63, ACE = 51.97 ± 3.88) during the dry season (S = 28, Chao1 = 64 ± 25.7, ACE = 38.33 ± 3.1). Aedes (Ae.) africanus and Culex (Cx.) moucheti were only found in the rural and peri-urban areas, while Cx. pipiens s.l. and Ae. aegypti were only found in the urban area. Cx. (Culiciomyia) spp., Cx. duttoni and Ae. albopictus were caught in the three habitat types. Importantly, approximately 52% of the mosquito species collected in this study have been implicated in the transmission of diverse arboviruses. This entomological survey provides a catalogue of the different mosquito species that may be involved in the transmission of arboviruses. Further investigations are needed to study the vectorial capacity of each mosquito species in arbovirus transmission.
Collapse
|
88
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread. ECOHEALTH 2019; 16:594-610. [PMID: 30675676 DOI: 10.1007/s10393-019-01395-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/10/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.
Collapse
Affiliation(s)
- Gael Davidson
- CENRM and School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | | | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
89
|
Stark DJ, Fornace KM, Brock PM, Abidin TR, Gilhooly L, Jalius C, Goossens B, Drakeley CJ, Salgado-Lynn M. Long-Tailed Macaque Response to Deforestation in a Plasmodium knowlesi-Endemic Area. ECOHEALTH 2019; 16:638-646. [PMID: 30927165 PMCID: PMC6910895 DOI: 10.1007/s10393-019-01403-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 06/01/2023]
Abstract
Land-use changes can impact infectious disease transmission by increasing spatial overlap between people and wildlife disease reservoirs. In Malaysian Borneo, increases in human infections by the zoonotic malaria Plasmodium knowlesi are hypothesised to be due to increasing contact between people and macaques due to deforestation. To explore how macaque responses to environmental change impact disease risks, we analysed movement of a GPS-collared long-tailed macaque in a knowlesi-endemic area in Sabah, Malaysia, during a deforestation event. Land-cover maps were derived from satellite-based and aerial remote sensing data and models of macaque occurrence were developed to evaluate how macaque habitat use was influenced by land-use change. During deforestation, changes were observed in macaque troop home range size, movement speeds and use of different habitat types. Results of models were consistent with the hypothesis that macaque ranging behaviour is disturbed by deforestation events but begins to equilibrate after seeking and occupying a new habitat, potentially impacting human disease risks. Further research is required to explore how these changes in macaque movement affect knowlesi epidemiology on a wider spatial scale.
Collapse
Affiliation(s)
- Danica J. Stark
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis Block B Floor 5, 88100 Kota Kinabalu, Sabah Malaysia
| | - Kimberly M. Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Patrick M. Brock
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH UK
| | - Tommy Rowel Abidin
- Infectious Diseases Society Kota Kinabalu- Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Malaysia
| | - Lauren Gilhooly
- Department of Anthropology, Faculty of Social Sciences, University of Western Ontario, Social Science Building, London, N6A 3K7 Canada
| | - Cyrlen Jalius
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis Block B Floor 5, 88100 Kota Kinabalu, Sabah Malaysia
- Wildlife Health, Genetic and Forensic Laboratory, Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah Malaysia
| | - Benoit Goossens
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis Block B Floor 5, 88100 Kota Kinabalu, Sabah Malaysia
- Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah Malaysia
- Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff, CF10 3BA UK
| | - Chris J. Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Milena Salgado-Lynn
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis Block B Floor 5, 88100 Kota Kinabalu, Sabah Malaysia
- Wildlife Health, Genetic and Forensic Laboratory, Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah Malaysia
- Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff, CF10 3BA UK
| |
Collapse
|
90
|
Imwong M, Madmanee W, Suwannasin K, Kunasol C, Peto TJ, Tripura R, von Seidlein L, Nguon C, Davoeung C, Day NPJ, Dondorp AM, White NJ. Asymptomatic Natural Human Infections With the Simian Malaria Parasites Plasmodium cynomolgi and Plasmodium knowlesi. J Infect Dis 2019; 219:695-702. [PMID: 30295822 PMCID: PMC6376906 DOI: 10.1093/infdis/jiy519] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In Southeast Asia, Plasmodium knowlesi, a parasite of long-tailed macaques (Macaca fascicularis), is an important cause of human malaria. Plasmodium cynomolgi also commonly infects these monkeys, but only one naturally acquired symptomatic human case has been reported previously. METHODS Malariometric studies involving 5422 subjects (aged 6 months to 65 years) were conducted in 23 villages in Pailin and Battambang, western Cambodia. Parasite detection and genotyping was conducted on blood samples, using high-volume quantitative PCR (uPCR). RESULTS Asymptomatic malaria parasite infections were detected in 1361 of 14732 samples (9.2%). Asymptomatic infections with nonhuman primate malaria parasites were found in 21 individuals living close to forested areas; P. cynomolgi was found in 11, P. knowlesi was found in 8, and P. vivax and P. cynomolgi were both found in 2. Only 2 subjects were female, and 14 were men aged 20-40 years. Geometric mean parasite densities were 3604 parasites/mL in P. cynomolgi infections and 52488 parasites/mL in P. knowlesi infections. All P. cynomolgi isolates had wild-type dihydrofolate reductase genes, in contrast to the very high prevalence of mutations in the human malaria parasites. Asymptomatic reappearance of P. cynomolgi occurred in 2 subjects 3 months after the first infection. CONCLUSIONS Asymptomatic naturally acquired P. cynomolgi and P. knowlesi infections can both occur in humans. CLINICAL TRIALS REGISTRATION NCT01872702.
Collapse
Affiliation(s)
- Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanassanan Madmanee
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanokon Suwannasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chanon Kunasol
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thomas J Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Lorenz von Seidlein
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Chea Nguon
- National Center for Parasitology, Entomology, and Malaria Control, Phnom Penh
| | | | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
91
|
Fornace KM, Alexander N, Abidin TR, Brock PM, Chua TH, Vythilingam I, Ferguson HM, Manin BO, Wong ML, Ng SH, Cox J, Drakeley C. Local human movement patterns and land use impact exposure to zoonotic malaria in Malaysian Borneo. eLife 2019; 8:47602. [PMID: 31638575 PMCID: PMC6814363 DOI: 10.7554/elife.47602] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/15/2019] [Indexed: 01/02/2023] Open
Abstract
Human movement into insect vector and wildlife reservoir habitats determines zoonotic disease risks; however, few data are available to quantify the impact of land use on pathogen transmission. Here, we utilise GPS tracking devices and novel applications of ecological methods to develop fine-scale models of human space use relative to land cover to assess exposure to the zoonotic malaria Plasmodium knowlesi in Malaysian Borneo. Combining data with spatially explicit models of mosquito biting rates, we demonstrate the role of individual heterogeneities in local space use in disease exposure. At a community level, our data indicate that areas close to both secondary forest and houses have the highest probability of human P. knowlesi exposure, providing quantitative evidence for the importance of ecotones. Despite higher biting rates in forests, incorporating human movement and space use into exposure estimates illustrates the importance of intensified interactions between pathogens, insect vectors and people around habitat edges.
Collapse
Affiliation(s)
- Kimberly M Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centre on Climate Change and Planetary Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Neal Alexander
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tommy R Abidin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Paddy M Brock
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Indra Vythilingam
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Benny O Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Meng L Wong
- Parasitology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sui H Ng
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Jon Cox
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
92
|
Becker DJ, Washburne AD, Faust CL, Mordecai EA, Plowright RK. The problem of scale in the prediction and management of pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190224. [PMID: 31401958 PMCID: PMC6711304 DOI: 10.1098/rstb.2019.0224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 01/28/2023] Open
Abstract
Disease emergence events, epidemics and pandemics all underscore the need to predict zoonotic pathogen spillover. Because cross-species transmission is inherently hierarchical, involving processes that occur at varying levels of biological organization, such predictive efforts can be complicated by the many scales and vastness of data potentially required for forecasting. A wide range of approaches are currently used to forecast spillover risk (e.g. macroecology, pathogen discovery, surveillance of human populations, among others), each of which is bound within particular phylogenetic, spatial and temporal scales of prediction. Here, we contextualize these diverse approaches within their forecasting goals and resulting scales of prediction to illustrate critical areas of conceptual and pragmatic overlap. Specifically, we focus on an ecological perspective to envision a research pipeline that connects these different scales of data and predictions from the aims of discovery to intervention. Pathogen discovery and predictions focused at the phylogenetic scale can first provide coarse and pattern-based guidance for which reservoirs, vectors and pathogens are likely to be involved in spillover, thereby narrowing surveillance targets and where such efforts should be conducted. Next, these predictions can be followed with ecologically driven spatio-temporal studies of reservoirs and vectors to quantify spatio-temporal fluctuations in infection and to mechanistically understand how pathogens circulate and are transmitted to humans. This approach can also help identify general regions and periods for which spillover is most likely. We illustrate this point by highlighting several case studies where long-term, ecologically focused studies (e.g. Lyme disease in the northeast USA, Hendra virus in eastern Australia, Plasmodium knowlesi in Southeast Asia) have facilitated predicting spillover in space and time and facilitated the design of possible intervention strategies. Such studies can in turn help narrow human surveillance efforts and help refine and improve future large-scale, phylogenetic predictions. We conclude by discussing how greater integration and exchange between data and predictions generated across these varying scales could ultimately help generate more actionable forecasts and interventions. This article is part of the theme issue 'Dynamic and integrative approaches to understanding pathogen spillover'.
Collapse
Affiliation(s)
- Daniel J. Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Alex D. Washburne
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Christina L. Faust
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
93
|
Edwards HM, Chinh VD, Le Duy B, Thanh PV, Thang ND, Trang DM, Chavez I, Hii J. Characterising residual malaria transmission in forested areas with low coverage of core vector control in central Viet Nam. Parasit Vectors 2019; 12:454. [PMID: 31533794 PMCID: PMC6751671 DOI: 10.1186/s13071-019-3695-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/31/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Despite great success in significantly reducing the malaria burden in Viet Nam over recent years, the ongoing presence of malaria vectors and Plasmodium infection in remote forest areas and among marginalised groups presents a challenge to reaching elimination and a threat to re-emergence of transmission. Often transmission persists in a population despite high reported coverage of long-lasting insecticidal nets (LLINs), the mainstay control method for malaria. To investigate what factors may contribute to this, a mixed-methods study was conducted in Son Thai commune, a community in south-central Viet Nam that has ongoing malaria cases despite universal LLIN coverage. A cross-sectional behavioural and net-coverage survey was conducted along with observations of net use and entomological collections in the village, farm huts and forest sites used by members of the community. RESULTS Most community members owned a farm hut plot and 71.9% of adults aged 18+ years sometimes slept overnight in the farm hut, while one-third slept overnight in the forest. Ownership and use of nets in the village households was high but in the farm huts and forest was much lower; only 44.4% reported regularly using a bednet in the farm and 12.1% in the forest. No primary anopheline species were captured in the village, but Anopheles dirus (s.l.) (n = 271) and An. maculatus (s.l.) (n = 14) were captured as far as 4.5 km away in farm huts and forest. A high proportion of biting was conducted in the early evening before people were under nets. Entomological inoculation rates (EIR) of An. dirus (s.l.) were 17.8 and 25.3 infectious bites per person per year in the outdoor farm hut sites and forest, respectively, for Plasmodium falciparum and 25.3 in the forest sites for P. vivax. CONCLUSIONS Despite high net coverage in the village, gaps in coverage and access appear in the farm huts and forest where risk of anopheline biting and parasite transmission is much greater. Since subsistence farming and forest activities are integral to these communities, new personal protection methods need to be explored for use in these areas that can ideally engage with the community, be durable, portable and require minimal behavioural change.
Collapse
Affiliation(s)
- Hannah Margaret Edwards
- Malaria Consortium Asia, Room No. 805, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavidhi Road, Bangkok, 10400 Thailand
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Vu Duc Chinh
- National Institute of Malariology, Parasitology and Entomology (NIMPE), 34 Trung Văn, Nam Từ Liêm, Hanoi, Viet Nam
| | - Bui Le Duy
- National Institute of Malariology, Parasitology and Entomology (NIMPE), 34 Trung Văn, Nam Từ Liêm, Hanoi, Viet Nam
| | - Pham Vinh Thanh
- National Institute of Malariology, Parasitology and Entomology (NIMPE), 34 Trung Văn, Nam Từ Liêm, Hanoi, Viet Nam
| | - Ngo Duc Thang
- National Institute of Malariology, Parasitology and Entomology (NIMPE), 34 Trung Văn, Nam Từ Liêm, Hanoi, Viet Nam
| | - Dao Minh Trang
- National Institute of Malariology, Parasitology and Entomology (NIMPE), 34 Trung Văn, Nam Từ Liêm, Hanoi, Viet Nam
| | - Irwin Chavez
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavidhi Road, Bangkok, 10400 Thailand
| | - Jeffrey Hii
- Malaria Consortium Asia, Room No. 805, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajavidhi Road, Bangkok, 10400 Thailand
| |
Collapse
|
94
|
Vector compositions change across forested to deforested ecotones in emerging areas of zoonotic malaria transmission in Malaysia. Sci Rep 2019; 9:13312. [PMID: 31527622 PMCID: PMC6746737 DOI: 10.1038/s41598-019-49842-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/31/2019] [Indexed: 12/29/2022] Open
Abstract
In lowland areas of Malaysia, Plasmodium knowlesi infection is associated with land use change and high proportions of the vector Anopheles balabacensis. We conducted a 15-month study in two Malaysian villages to determine the effect of habitat on vector populations in understudied high-altitude, high-incidence districts. Anopheles mosquitoes were sampled in human settlements, plantations and forest edges, and screened for Plasmodium species by PCR. We report the first An. donaldi positive for P. knowlesi. This potential vector was associated with habitat fragmentation measured as disturbed forest edge:area ratio, while An. balabacensis was not, indicating fragmented land use could favour An. donaldi. Anopheline species richness and diversity decreased from forest edge, to plantation, to human settlement. Greater numbers of An. balabacensis and An. donaldi were found in forest edges compared to human settlements, suggesting exposure to vectors and associated zoonoses may be greater for people entering this habitat.
Collapse
|
95
|
Wilcox JS, Kerschner A, Hollocher H. Indel-informed Bayesian analysis suggests cryptic population structure between Plasmodium knowlesi of humans and long-tailed macaques (Macaca fascicularis) in Malaysian Borneo. INFECTION GENETICS AND EVOLUTION 2019; 75:103994. [PMID: 31421245 DOI: 10.1016/j.meegid.2019.103994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 01/02/2023]
Abstract
Plasmodium knowlesi is an important causative agent of malaria in humans of Southeast Asia. Macaques are natural hosts for this parasite, but little is conclusively known about its patterns of transmission within and between these hosts. Here, we apply a comprehensive phylogenetic approach to test for patterns of cryptic population genetic structure between P. knowlesi isolated from humans and long-tailed macaques from the state of Sarawak in Malaysian Borneo. Our approach differs from previous investigations through our exhaustive use of archival 18S Small Subunit rRNA (18S) gene sequences from Plasmodium and Hepatocystis species, our inclusion of insertion and deletion information during phylogenetic inference, and our application of Bayesian phylogenetic inference to this problem. We report distinct clades of P. knowlesi that predominantly contained sequences from either human or macaque hosts for paralogous A-type and S-type 18S gene loci. We report significant partitioning of sequence distances between host species across both types of loci, and confirmed that sequences of the same locus type showed significantly biased assortment into different clades depending on their host species. Our results support the zoonotic potential of Plasmodium knowlesi, but also suggest that humans may be preferentially infected with certain strains of this parasite. Broadly, such patterns could arise through preferential zoonotic transmission of some parasite lineages or a disposition of parasites to transmit within, rather than between, human and macaque hosts. Available data are insufficient to address these hypotheses. Our results suggest that the epidemiology of P. knowlesi may be more complicated than previously assumed, and highlight the need for renewed and more vigorous explorations of transmission patterns in the fifth human malarial parasite.
Collapse
Affiliation(s)
- JustinJ S Wilcox
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-5688, USA.
| | - Abigail Kerschner
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-5688, USA
| | - Hope Hollocher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-5688, USA
| |
Collapse
|
96
|
Chua TH, Manin BO, Vythilingam I, Fornace K, Drakeley CJ. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasit Vectors 2019; 12:364. [PMID: 31345256 PMCID: PMC6659233 DOI: 10.1186/s13071-019-3627-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We investigated the effect of five common habitat types on the diversity and abundance of Anopheles spp. and on the biting rate and time of Anopheles balabacensis (currently the only known vector for Plasmodium knowlesi in Sabah) at Paradason village, Kudat, Sabah. The habitats were forest edge, playground area, longhouse, oil palm plantation and shrub-bushes area. Sampling of Anopheles was done monthly using the human landing catch method in all habitat types for 14 months (October 2013 to December 2014, excluding June 2014). The Anopheles species were morphologically identified and subjected to PCR assay for the detection of Plasmodium parasites. Generalised linear mixed models (GLMM) were applied to test the variation in abundance and biting rates of An. balabacensis in different habitat types. RESULTS A total of 1599 Anopheles specimens were collected in the village, of which about 90% were An. balabacensis. Anopheles balabacensis was present throughout the year and was the dominant Anopheles species in all habitat types. The shrub bushes habitat had the highest Anopheles species diversity while forest edge had the greatest number of Anopheles individuals caught. GLMM analysis indicated that An. balabacensis abundance was not affected by the type of habitats, and it was more active during the early and late night compared to predawn and dawn. PCR assay showed that 1.61% of the tested An. balabacensis were positive for malaria parasites, most of which were caught in oil palm estates and infected with one to two Plasmodium species. CONCLUSIONS The identification of infected vectors in a range of habitats, including agricultural and farming areas, illustrates the potential for humans to be exposed to P. knowlesi outside forested areas. This finding contributes to a growing body of evidence implicating environmental changes due to deforestation, expansion of agricultural and farming areas, and development of human settlements near to forest fringes in the emergence of P. knowlesi in Sabah.
Collapse
Affiliation(s)
- Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
| | - Benny O Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
97
|
Saleh Huddin A, Md Yusuf N, Razak MRMA, Ogu Salim N, Hisam S. Genetic diversity of Plasmodium knowlesi among human and long-tailed macaque populations in Peninsular Malaysia: The utility of microsatellite markers. INFECTION GENETICS AND EVOLUTION 2019; 75:103952. [PMID: 31279818 DOI: 10.1016/j.meegid.2019.103952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 11/16/2022]
Abstract
It has been discovered that Plasmodium knowlesi (P. knowlesi) is transmitted from macaque to man. Thus, the aim of the present study was to determine P. knowlesi genetic diversity in both human (n = 147) and long-tailed macaque (n = 26) samples from high- and low-endemicity localities. Genotyping was performed using seven neutral microsatellite loci markers. The size of the alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (HE), linkage disequilibrium (LD), and genetic differentiation (FST) were determined. In highly endemic P. knowlesi localities, the MOI for human and long-tailed macaque isolates was 1.04 and 1.15, respectively, while the Na was 11.14 and 7.86, respectively. Based on the allele frequency distribution for all loci, and with FST < 0.1, no genetic differentiation was seen between human and long-tailed macaque. In localities characterised by lower P. knowlesi endemicity, the MOI for human and long-tailed macaque isolates was 1.05 and 1.11, respectively, while the Na was 6.14 and 2.71, respectively. Further molecular analysis of the allele frequencies indicated that there was a significant genetic differentiation in human P. knowlesi isolates as compared to long-tailed macaque isolates, with a very low fixation index (FST = 0.016, p < .05) based on multiple loci analysis. Our results further indicate that, in Peninsular Malaysia, humans are mostly affected by P. knowlesi of a single genotype, while long-tailed macaque tend to acquire polyclonal infections, which supports the assumption that there is a higher rate of transmission among long-tailed macaque. Understanding the genetic diversity of P. knowlesi isolates can provide invaluable information for characterising patterns of the population structure and the migration rate of P. knowlesi in peninsular Malaysia.
Collapse
Affiliation(s)
- Afiqah Saleh Huddin
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - NoorAzian Md Yusuf
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia.
| | | | - Nurhainis Ogu Salim
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Shamilah Hisam
- Parasitology Unit, Infectious Disease Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| |
Collapse
|
98
|
Gamalo LE, Dimalibot J, Kadir KA, Singh B, Paller VG. Plasmodium knowlesi and other malaria parasites in long-tailed macaques from the Philippines. Malar J 2019; 18:147. [PMID: 31014342 PMCID: PMC6480513 DOI: 10.1186/s12936-019-2780-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/13/2019] [Indexed: 01/17/2023] Open
Abstract
Background Macaca fascicularis (long-tailed macaque) is the most widespread species of macaque in Southeast Asia and the only species of monkey found naturally in the Philippines. The species is the natural host for the zoonotic malaria species, Plasmodium knowlesi and Plasmodium cynomolgi and for the potentially zoonotic species, Plasmodium inui. Moreover, other Plasmodium species such as Plasmodium coatneyi and Plasmodium fieldi are also natural parasites of M. fascicularis. The aims of this study were to identify and determine the prevalence of Plasmodium species infecting wild and captive long-tailed macaques from the Philippines. Methods A total of 95 blood samples from long-tailed macaques in the Philippines were collected from three locations; 30 were from captive macaques at the National Wildlife Rescue and Rehabilitation Center (NWRRC) in Luzon, 25 were from captive macaques at the Palawan Wildlife Rescue and Conservation Center (PWRCC) in Palawan and 40 were from wild macaques from Puerto Princesa Subterranean River National Park (PPSRNP) in Palawan. The Plasmodium spp. infecting the macaques were identified using nested PCR assays on DNA extracted from these blood samples. Results All 40 of the wild macaques from PPSRNP in Palawan and 5 of 25 captive macaques from PWRCC in Palawan were Plasmodium-positive; while none of the 30 captive macaques from the NWRRC in Luzon had any malaria parasites. Overall, P. inui was the most prevalent malaria parasite (44.2%), followed by P. fieldi (41.1%), P. cynomolgi (23.2%), P. coatneyi (21.1%), and P. knowlesi (19%). Mixed species infections were also observed in 39 of the 45 Plasmodium-positive macaques. There was a significant difference in the prevalence of P. knowlesi among the troops of wild macaques from PPSRNP. Conclusion Wild long-tailed macaques from the island of Palawan, the Philippines are infected with P. knowlesi, P. inui, P. coatneyi, P. fieldi and P. cynomolgi. The prevalence of these Plasmodium spp. varied among the sites of collection and among troops of wild macaques at one site. The presence of these simian Plasmodium parasites, especially P. knowlesi and P. cynomolgi in the long-tailed macaques in Palawan presents risks for zoonotic transmission in the area.
Collapse
Affiliation(s)
- Lief Erikson Gamalo
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los, Baños, 4031, Los Baños, Laguna, Philippines.,Department of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Mintal, 8000, Davao City, Philippines
| | - Judeline Dimalibot
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los, Baños, 4031, Los Baños, Laguna, Philippines
| | - Khamisah Abdul Kadir
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Balbir Singh
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Vachel Gay Paller
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los, Baños, 4031, Los Baños, Laguna, Philippines.
| |
Collapse
|
99
|
Wong ML, Ahmed MA, Sulaiman WYW, Manin BO, Leong CS, Quan FS, Chua TH, Drakeley C, Snounou G, Vythilingam I. Genetic diversity of zoonotic malaria parasites from mosquito vector and vertebrate hosts. INFECTION GENETICS AND EVOLUTION 2019; 73:26-32. [PMID: 30999059 DOI: 10.1016/j.meegid.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/29/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022]
Abstract
We explored and constructed haplotype network for simian malaria species: Plasmodium knowlesi, P. cynomolgi and P. inui aiming to understand the transmission dynamics between mosquitoes, humans and macaques. Mosquitoes were collected from villages in an area where zoonotic malaria is prevalent. PCR analysis confirmed Anopheles balabacensis as the main vector for macaque parasites, moreover nearly 60% of the mosquitoes harboured more than one Plasmodium species. Fragments of the A-type small subunit ribosomal RNA (SS rRNA) amplified from salivary gland sporozoites, and equivalent sequences obtained from GenBank were used to construct haplotype networks. The patterns were consistent with the presence of geographically distinct populations for P. inui and P. cynomolgi, and with three discrete P. knowlesi populations. This study provides a preliminary snapshot of the structure of these populations, that was insufficient to answer our aim. Thus, collection of parasites from their various hosts and over time, associated with a systematic analysis of a set of genetical loci is strongly advocated in order to obtain a clear picture of the parasite population and the flow between different hosts. This is important to devise measures that will minimise the risk of transmission to humans, because zoonotic malaria impedes malaria elimination.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; Tropical Infectious Diseases Research & Education Centre (TIDREC), Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Md Atique Ahmed
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wan Yusoff Wan Sulaiman
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Benny O Manin
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Cherng Shii Leong
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Georges Snounou
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
100
|
Parker DM. Humans, macaques, and malaria parasites in a shared and changing landscape. Lancet Planet Health 2019; 3:e157-e158. [PMID: 31029227 DOI: 10.1016/s2542-5196(19)30061-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Daniel M Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, CA 92697-3957, USA.
| |
Collapse
|