51
|
Full F, Ensser A. Early Nuclear Events after Herpesviral Infection. J Clin Med 2019; 8:jcm8091408. [PMID: 31500286 PMCID: PMC6780142 DOI: 10.3390/jcm8091408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
Herpesviruses are important pathogens that can cause significant morbidity and mortality in the human population. Herpesviruses have a double-stranded DNA genome, and viral genome replication takes place inside the nucleus. Upon entering the nucleus, herpesviruses have to overcome the obstacle of cellular proteins in order to enable viral gene expression and genome replication. In this review, we want to highlight cellular proteins that sense incoming viral genomes of the DNA-damage repair (DDR) pathway and of PML-nuclear bodies (PML-NBs) that all can act as antiviral restriction factors within the first hours after the viral genome is released into the nucleus. We show the function and significance of both nuclear DNA sensors, the DDR and PML-NBs, and demonstrate for three human herpesviruses of the alpha-, beta- and gamma-subfamilies, HSV-1, HCMV and KSHV respectively, how viral tegument proteins antagonize these pathways.
Collapse
Affiliation(s)
- Florian Full
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany.
| |
Collapse
|
52
|
Marshall EE, Malouli D, Hansen SG, Gilbride RM, Hughes CM, Ventura AB, Ainslie E, Selseth AN, Ford JC, Burke D, Kreklywich CN, Womack J, Legasse AW, Axthelm MK, Kahl C, Streblow D, Edlefsen PT, Picker LJ, Früh K. Enhancing safety of cytomegalovirus-based vaccine vectors by engaging host intrinsic immunity. Sci Transl Med 2019; 11:eaaw2603. [PMID: 31316006 PMCID: PMC6830438 DOI: 10.1126/scitranslmed.aaw2603] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/14/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
Rhesus cytomegalovirus (RhCMV)-based vaccines maintain effector memory T cell responses (TEM) that protect ~50% of rhesus monkeys (RMs) challenged with simian immunodeficiency virus (SIV). Because human CMV (HCMV) causes disease in immunodeficient subjects, clinical translation will depend upon attenuation strategies that reduce pathogenic potential without sacrificing CMV's unique immunological properties. We demonstrate that "intrinsic" immunity can be used to attenuate strain 68-1 RhCMV vectors without impairment of immunogenicity. The tegument proteins pp71 and UL35 encoded by UL82 and UL35 of HCMV counteract cell-intrinsic restriction via degradation of host transcriptional repressors. When the corresponding RhCMV genes, Rh110 and Rh59, were deleted from 68-1 RhCMV (ΔRh110 and ΔRh59), we observed only a modest growth defect in vitro, but in vivo, these modified vectors manifested little to no amplification at the injection site and dissemination to distant sites, in contrast to parental 68-1 RhCMV. ΔRh110 was not shed at any time after infection and was not transmitted to naïve hosts either by close contact (mother to infant) or by leukocyte transfusion. In contrast, ΔRh59 was both shed and transmitted by leukocyte transfusion, indicating less effective attenuation than pp71 deletion. The T cell immunogenicity of ΔRh110 was essentially identical to 68-1 RhCMV with respect to magnitude, TEM phenotype, epitope targeting, and durability. Thus, pp71 deletion preserves CMV vector immunogenicity while stringently limiting vector spread, making pp71 deletion an attractive attenuation strategy for HCMV vectors.
Collapse
Affiliation(s)
- Emily E Marshall
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Emily Ainslie
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Andrea N Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - David Burke
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Craig N Kreklywich
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jennie Womack
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Alfred W Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Christoph Kahl
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Daniel Streblow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
53
|
Wei SC, Tsai CH, Hsu WT, Chao YC. Baculovirus IE2 Interacts with Viral DNA through Daxx To Generate an Organized Nuclear Body Structure for Gene Activation in Vero Cells. J Virol 2019; 93:e00149-19. [PMID: 30728268 PMCID: PMC6450129 DOI: 10.1128/jvi.00149-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
Upon virus infection of a cell, the uncoated DNA is usually blocked by the host intrinsic immune system inside the nucleus. Although it is crucial for the virus to counteract the host intrinsic immune system and access its genome, little is known about how viruses can knock down host restriction and identify their blocked genomes for later viral gene activation and replication. We found that upon baculovirus transduction into Vero E6 cells, the invading viral DNA is trapped by the cellular death domain-associated protein (Daxx) and histone H3.3 in the nucleus, resulting in gene inactivation. IE2, a baculovirus transactivator, targets host Daxx through IE2 SUMO-interacting motifs (SIMs) to indirectly access viral DNA and forms unique nuclear body structures, which we term clathrate cage-like apparatus (CCLAs), at the early transduction stage. At the later transduction stage, CCLAs gradually enlarge, and IE2 continues to closely interact with viral DNA but no longer associates with Daxx. The association with Daxx is essential for IE2 CCLA formation, and the enlarged CCLAs are capable of transactivating viral but not chromosomal DNA of Vero E6 cells. Our study reveals that baculovirus IE2 counteracts the cellular intrinsic immune system by specifically targeting Daxx and H3.3 to associate with viral DNA indirectly and efficiently. IE2 then utilizes this association with viral DNA to establish a unique CCLA cellular nanomachinery, which is visible under light microscopy as an enclosed environment for proper viral gene expression.IMPORTANCE The major breakthrough of this work is that viral protein IE2 localizes and transactivates its own viral DNA through a most unlikely route, i.e., host proteins Daxx and H3.3, which are designed to efficiently restrict viral DNA from expression. By interacting with these host intrinsic immune factors, IE2 can thus target the viral DNA and then form a unique spherical nuclear body, which we name the CCLA, to enclose the viral DNA and necessary factors to assist in high-level transactivation. Our study represents one of the most complete investigations of nuclear body formation. In addition, so far only RNA or protein molecules have been reported as potential nucleators for initiating nuclear body formation; our study may represent the first example showing that DNA can be a nucleator for a new class of nuclear body formation.
Collapse
Affiliation(s)
- Sung-Chan Wei
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Chih-Hsuan Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center and Academia Sinica, Taipei, Taiwan, Republic of China
| | - Wei-Ting Hsu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Chan Chao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center and Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan, Republic of China
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
54
|
Rhesus Macaque Rhadinovirus Encodes a Viral Interferon Regulatory Factor To Disrupt Promyelocytic Leukemia Nuclear Bodies and Antagonize Type I Interferon Signaling. J Virol 2019; 93:JVI.02147-18. [PMID: 30626678 DOI: 10.1128/jvi.02147-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022] Open
Abstract
Interferon (IFN) production and the subsequent induction of IFN-stimulated genes (ISGs) are highly effective innate strategies utilized by cells to protect against invading pathogens, including viruses. Critical components involved in this innate process are promyelocytic leukemia nuclear bodies (PML-NBs), which are subnuclear structures required for the development of a robust IFN response. As such, PML-NBs serve as an important hurdle for viruses to overcome to successfully establish an infection. Both Kaposi's sarcoma-associated herpesvirus (KSHV) and the closely related rhesus macaque rhadinovirus (RRV) are unique for encoding viral homologs of IFN regulatory factors (termed vIRFs) that can manipulate the host immune response by multiple mechanisms. All four KSHV vIRFs inhibit the induction of IFN, while vIRF1 and vIRF2 can inhibit ISG induction downstream of the IFN receptor. Less is known about the RRV vIRFs. RRV vIRF R6 can inhibit the induction of IFN by IRF3; however, it is not known whether any RRV vIRFs inhibit ISG induction following IFN receptor signaling. In our present study, we demonstrate that the RRV vIRF R12 aids viral replication in the presence of the type I IFN response. This is achieved in part through the disruption of PML-NBs and the inhibition of robust ISG transcription.IMPORTANCE KSHV and RRV encode a unique set of homologs of cellular IFN regulatory factors, termed vIRFs, which are hypothesized to help these viruses evade the innate immune response and establish infections in their respective hosts. Our work elucidates the role of one RRV vIRF, R12, and demonstrates that RRV can dampen the type I IFN response downstream of IFN signaling, which would be important for establishing a successful infection in vivo.
Collapse
|
55
|
Majerciak V, Yang W, Zheng J, Zhu J, Zheng ZM. A Genome-Wide Epstein-Barr Virus Polyadenylation Map and Its Antisense RNA to EBNA. J Virol 2019; 93:e01593-18. [PMID: 30355690 PMCID: PMC6321932 DOI: 10.1128/jvi.01593-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen associated with Burkitt's lymphoma and nasopharyngeal carcinoma. Although the EBV genome harbors more than a hundred genes, a full transcription map with EBV polyadenylation profiles remains unknown. To elucidate the 3' ends of all EBV transcripts genome-wide, we performed the first comprehensive analysis of viral polyadenylation sites (pA sites) using our previously reported polyadenylation sequencing (PA-seq) technology. We identified that EBV utilizes a total of 62 pA sites in JSC-1, 60 in Raji, and 53 in Akata cells for the expression of EBV genes from both plus and minus DNA strands; 42 of these pA sites are commonly used in all three cell lines. The majority of identified pA sites were mapped to the intergenic regions downstream of previously annotated EBV open reading frames (ORFs) and viral promoters. pA sites lacking an association with any known EBV genes were also identified, mostly for the minus DNA strand within the EBNA locus, a major locus responsible for maintenance of viral latency and cell transformation. The expression of these novel antisense transcripts to EBNA were verified by 3' rapid amplification of cDNA ends (RACE) and Northern blot analyses in several EBV-positive (EBV+) cell lines. In contrast to EBNA RNA expressed during latency, expression of EBNA-antisense transcripts, which is restricted in latent cells, can be significantly induced by viral lytic infection, suggesting potential regulation of viral gene expression by EBNA-antisense transcription during lytic EBV infection. Our data provide the first evidence that EBV has an unrecognized mechanism that regulates EBV reactivation from latency.IMPORTANCE Epstein-Barr virus represents an important human pathogen with an etiological role in the development of several cancers. By elucidation of a genome-wide polyadenylation landscape of EBV in JSC-1, Raji, and Akata cells, we have redefined the EBV transcriptome and mapped individual polymerase II (Pol II) transcripts of viral genes to each one of the mapped pA sites at single-nucleotide resolution as well as the depth of expression. By unveiling a new class of viral lytic RNA transcripts antisense to latent EBNAs, we provide a novel mechanism of how EBV might control the expression of viral latent genes and lytic infection. Thus, this report takes another step closer to understanding EBV gene structure and expression and paves a new path for antiviral approaches.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Zheng
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
56
|
Cabral JM, Oh HS, Knipe DM. ATRX promotes maintenance of herpes simplex virus heterochromatin during chromatin stress. eLife 2018; 7:40228. [PMID: 30465651 PMCID: PMC6307862 DOI: 10.7554/elife.40228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms by which mammalian cells recognize and epigenetically restrict viral DNA are not well defined. We used herpes simplex virus with bioorthogonally labeled genomes to detect host factors recruited to viral DNA shortly after its nuclear entry and found that the cellular IFI16, PML, and ATRX proteins colocalized with viral DNA by 15 min post infection. HSV-1 infection of ATRX-depleted fibroblasts resulted in elevated viral mRNA and accelerated viral DNA accumulation. Despite the early association of ATRX with vDNA, we found that initial viral heterochromatin formation is ATRX-independent. However, viral heterochromatin stability required ATRX from 4 to 8 hr post infection. Inhibition of transcription blocked viral chromatin loss in ATRX-knockout cells; thus, ATRX is uniquely required for heterochromatin maintenance during chromatin stress. These results argue that the initial formation and the subsequent maintenance of viral heterochromatin are separable mechanisms, a concept that likely extrapolates to host cell chromatin and viral latency. Cells carefully package their DNA, tightly wrapping the long, stringy molecule around spool-like groups of proteins called histones. However, the genes that are draped around histones are effectively silenced, because they are ‘hidden’ from the molecular actors that read the genetic information to create proteins. A cell can control which of its genes are active by using proteins to move histones on or off specific portions of DNA. For example, a protein known as ATRX associates with a partner to load histones onto precise DNA regions and switch them off. Wrapping DNA around histones can also be a defense mechanism against viruses, which are tiny cellular parasites that hijack the molecular machinery of a cell to create more of themselves. For instance, the herpes simplex virus, which causes cold sores and genital herpes, injects its DNA into a cell where it is used as a template to create new viral particles. By packaging the DNA of the virus around histones, the cell ensures that this foreign genetic information cannot be used to make more invaders. However, the details of this process remain unknown. In particular, it is still unclear what happens immediately after the virus penetrates the nucleus, the compartment that shelters the DNA of the cell. Here, Cabral et al. explored this question by dissecting the role of ATRX in silencing the genetic information of the herpes simplex virus. The viral DNA was labeled while inside the virus itself, and then tracked using microscopy imaging techniques as it made its way into the cell and inside the nucleus. This revealed that, almost immediately after the viral DNA had entered the nucleus, ATRX came in contact with the foreign molecule. One possibility was that ATRX would be responsible for loading certain forms of histones onto the viral DNA. However, after Cabral et al. deleted ATRX from the cell, histones were still present on the genetic information of the virus, but this association was less stable. This indicated that ATRX was only required to keep histones latched onto the viral DNA, but not to load the proteins in the first place. Overall, these results show that using histones to silence viral DNA in done in several steps: first, the foreign genetic material needs to be recognized, then histones have to be attached, and finally molecular actors should be recruited to keep histones onto the DNA. Knowing how cells ward off the herpes simplex virus could help us find ways to ‘boost’ this defense mechanism. Armed with this knowledge, we could also begin to understand why certain people are more likely to be infected by this virus.
Collapse
Affiliation(s)
- Joseph M Cabral
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| | - Hyung Suk Oh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, United States.,Program in Virology, Harvard Medical School, Boston, United States
| |
Collapse
|
57
|
Forrest C, Hislop AD, Rickinson AB, Zuo J. Proteome-wide analysis of CD8+ T cell responses to EBV reveals differences between primary and persistent infection. PLoS Pathog 2018; 14:e1007110. [PMID: 30248160 PMCID: PMC6171963 DOI: 10.1371/journal.ppat.1007110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/04/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Human herpesviruses are antigenically rich agents that induce strong CD8+T cell responses in primary infection yet persist for life, continually challenging T cell memory through recurrent lytic replication and potentially influencing the spectrum of antigen-specific responses. Here we describe the first lytic proteome-wide analysis of CD8+ T cell responses to a gamma1-herpesvirus, Epstein-Barr virus (EBV), and the first such proteome-wide analysis of primary versus memory CD8+ T cell responses to any human herpesvirus. Primary effector preparations were generated directly from activated CD8+ T cells in the blood of infectious mononucleosis (IM) patients by in vitro mitogenic expansion. For memory preparations, EBV-specific cells in the blood of long-term virus carriers were first re-stimulated in vitro by autologous dendritic cells loaded with a lysate of lytically-infected cells, then expanded as for IM cells. Preparations from 7 donors of each type were screened against each of 70 EBV lytic cycle proteins in combination with the donor's individual HLA class I alleles. Multiple reactivities against immediate early (IE), early (E) and late (L) lytic cycle proteins, including many hitherto unrecognised targets, were detected in both contexts. Interestingly however, the two donor cohorts showed a different balance between IE, E and L reactivities. Primary responses targeted IE and a small group of E proteins preferentially, seemingly in line with their better presentation on the infected cell surface before later-expressed viral evasins take full hold. By contrast, target choice equilibrates in virus carriage with responses to key IE and E antigens still present but with responses to a select subset of L proteins now often prominent. We infer that, for EBV at least, long-term virus carriage with its low level virus replication and lytic antigen release is associated with a re-shaping of the virus-specific response.
Collapse
Affiliation(s)
- Calum Forrest
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew D. Hislop
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alan B. Rickinson
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- Institute for Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
58
|
Encyclopedia of EBV-Encoded Lytic Genes: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1045:395-412. [DOI: 10.1007/978-981-10-7230-7_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
59
|
Nanbo A, Noda T, Ohba Y. Epstein-Barr Virus Acquires Its Final Envelope on Intracellular Compartments With Golgi Markers. Front Microbiol 2018; 9:454. [PMID: 29615992 PMCID: PMC5864893 DOI: 10.3389/fmicb.2018.00454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 01/18/2023] Open
Abstract
Herpesvirus subfamilies typically acquire their final envelope in various cytoplasmic compartments such as the trans-Golgi network (TGN), and endosomes prior to their secretion into the extracellular space. However, the sites for the final envelopment of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, are poorly understood. Here, we characterized the sites for the final envelopment of EBV in Burkitt’s lymphoma cell lines induced into the lytic cycle by crosslinking cell surface IgG. Electron microscopy revealed the various stages of maturation and egress of progeny virions including mature EBV in irregular cytoplasmic vesicles. Immunofluorescence staining showed that gp350/220, the major EBV glycoprotein, and the viral capsid antigen, p18, efficiently colocalized with a cis-Golgi marker, GM130. gp350/220 partly colocalized with the TGN, which was distributed in a fragmented and dispersed pattern in the cells induced into the lytic cycle. In contrast, limited colocalization was observed between gp350/220 and endosomal markers, such as a multi-vesicular bodies marker, CD63, a recycling endosome marker, Rab11, and a regulatory secretion vesicles marker, Rab27a. Finally, we observed that treatment of cells with brefeldin A, an inhibitor of vesicle trafficking between the endoplasmic reticulum and Golgi apparatus, resulted in the perinuclear accumulation of gp350/220 and inhibition of its distribution to the plasma membrane. Brefeldin A also inhibited the release of infectious EBV. Taken together, our findings support a model in which EBV acquires its final envelope in intracellular compartments containing markers of Golgi apparatus, providing new insights into how EBV matures.
Collapse
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
60
|
Van Skike ND, Minkah NK, Hogan CH, Wu G, Benziger PT, Oldenburg DG, Kara M, Kim-Holzapfel DM, White DW, Tibbetts SA, French JB, Krug LT. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice. PLoS Pathog 2018; 14:e1006843. [PMID: 29390024 PMCID: PMC5811070 DOI: 10.1371/journal.ppat.1006843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/13/2018] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. Gammaherpesviruses are infectious agents that cause cancer. The study of viral genes unique to this subfamily may offer insight into the strategies that these viruses use to persist in the host and drive disease. The vFGARATs are a family of viral proteins found only in gammaherpesviruses, and are critical for replication in cell culture. Here we report that a rhadinovirus of rodents requires a previously uncharacterized vFGARAT family member, ORF75A, to support viral growth and persistence in mice. In addition, viruses lacking ORF75A are defective in the production of infectious viral particles. Thus, duplications and functional divergence of the various vFGARATs in the rhadinovirus lineage have likely been driven by selective pressures to disseminate within and colonize the host. Identification of the shared host processes that are targeted by the diverse family of vFGARATs may reveal novel targets for therapeutic agents to prevent life-long infections by these oncogenic viruses.
Collapse
Affiliation(s)
- Nick D. Van Skike
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nana K. Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Chad H. Hogan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program of Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Gary Wu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Peter T. Benziger
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Mehmet Kara
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Deborah M. Kim-Holzapfel
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jarrod B. French
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
61
|
Wang M, Wu W, Zhang Y, Yao G, Gu B. Rapamycin enhances lytic replication of Epstein-Barr virus in gastric carcinoma cells by increasing the transcriptional activities of immediate-early lytic promoters. Virus Res 2018; 244:173-180. [PMID: 29169830 DOI: 10.1016/j.virusres.2017.11.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/18/2017] [Accepted: 11/18/2017] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV), a human herpesvirus, is linked to both epithelial and lymphoid malignancies. Induction of EBV reactivation is a potential therapeutic strategy for EBV-associated tumors. In this study, we assessed the effects of rapamycin on EBV reactivation in gastric carcinoma cells. We found that rapamycin upregulated expression of EBV lytic proteins and increased the viral proliferation triggered by the EBV lytic inducer sodium butyrate. Reverse transcription-qPCR, luciferase activity assays, chromatin immunoprecipitation and western blotting were employed to explore the mechanism by which rapamycin promotes EBV reactivation. Our results showed that rapamycin treatment resulted in increased mRNA levels of EBV immediate-early genes. Rapamycin also enhanced the transcriptional activities of the EBV immediate-early lytic promoters Zp and Rp by strengthening Sp1 binding. Repression of the cellular ataxia telangiectasia-mutated/p53 pathway by siRNA-mediated knockdown of the ataxia telangiectasia-mutated gene significantly abrogated virus reactivation by rapamycin/sodium butyrate treatment, indicating that the ataxia telangiectasia-mutated/p53 pathway is involved in rapamycin-promoted EBV reactivation. Taken together, these findings demonstrate that rapamycin might have the potential to enhance the effectiveness of oncolytic viral therapies developed for EBV-associated malignancies.
Collapse
MESH Headings
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Butyric Acid/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Gastric Mucosa/drug effects
- Gastric Mucosa/metabolism
- Gastric Mucosa/virology
- Gene Expression Regulation
- Genes, Reporter
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/metabolism
- Humans
- Immediate-Early Proteins/agonists
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Luciferases/genetics
- Luciferases/metabolism
- Oncolytic Virotherapy/methods
- Promoter Regions, Genetic/drug effects
- Protein Binding
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Sirolimus/pharmacology
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Virus Activation/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China.
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yinfeng Zhang
- Institute for Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Guoliang Yao
- Department of General Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
62
|
Rai TS, Glass M, Cole JJ, Rather MI, Marsden M, Neilson M, Brock C, Humphreys IR, Everett RD, Adams PD. Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity. Nucleic Acids Res 2017; 45:11673-11683. [PMID: 28981850 PMCID: PMC5691367 DOI: 10.1093/nar/gkx771] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
Abstract
The HIRA histone chaperone complex deposits histone H3.3 into nucleosomes in a DNA replication- and sequence-independent manner. As herpesvirus genomes enter the nucleus as naked DNA, we asked whether the HIRA chaperone complex affects herpesvirus infection. After infection of primary cells with HSV or CMV, or transient transfection with naked plasmid DNA, HIRA re-localizes to PML bodies, sites of cellular anti-viral activity. HIRA co-localizes with viral genomes, binds to incoming viral and plasmid DNAs and deposits histone H3.3 onto these. Anti-viral interferons (IFN) specifically induce HIRA/PML co-localization at PML nuclear bodies and HIRA recruitment to IFN target genes, although HIRA is not required for IFN-inducible expression of these genes. HIRA is, however, required for suppression of viral gene expression, virus replication and lytic infection and restricts murine CMV replication in vivo. We propose that the HIRA chaperone complex represses incoming naked viral DNAs through chromatinization as part of intrinsic cellular immunity.
Collapse
Affiliation(s)
- Taranjit Singh Rai
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, Scotland
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Mandy Glass
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, Scotland
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - John J. Cole
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Mohammad I. Rather
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Morgan Marsden
- Cardiff Institute of Infection & Immunity, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | | | - Claire Brock
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Ian R. Humphreys
- Cardiff Institute of Infection & Immunity, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Roger D. Everett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Peter D. Adams
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
63
|
Gammaherpesviral Tegument Proteins, PML-Nuclear Bodies and the Ubiquitin-Proteasome System. Viruses 2017; 9:v9100308. [PMID: 29065450 PMCID: PMC5691659 DOI: 10.3390/v9100308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Gammaherpesviruses like Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) subvert the ubiquitin proteasome system for their own benefit in order to facilitate viral gene expression and replication. In particular, viral tegument proteins that share sequence homology to the formylglycineamide ribonucleotide amidotransferase (FGARAT, or PFAS), an enzyme in the cellular purine biosynthesis, are important for disrupting the intrinsic antiviral response associated with Promyelocytic Leukemia (PML) protein-associated nuclear bodies (PML-NBs) by proteasome-dependent and independent mechanisms. In addition, all herpesviruses encode for a potent ubiquitin protease that can efficiently remove ubiquitin chains from proteins and thereby interfere with several different cellular pathways. In this review, we discuss mechanisms and functional consequences of virus-induced ubiquitination and deubiquitination for early events in gammaherpesviral infection.
Collapse
|
64
|
Wang Z, Deng Z, Tutton S, Lieberman PM. The Telomeric Response to Viral Infection. Viruses 2017; 9:v9080218. [PMID: 28792463 PMCID: PMC5580475 DOI: 10.3390/v9080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.
Collapse
Affiliation(s)
- Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Steve Tutton
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
65
|
Kamranvar SA, Masucci MG. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization. Viruses 2017; 9:v9080217. [PMID: 28792435 PMCID: PMC5580474 DOI: 10.3390/v9080217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.
Collapse
Affiliation(s)
- Siamak A Kamranvar
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
66
|
Zhang K, van Drunen Littel-van den Hurk S. Herpesvirus tegument and immediate early proteins are pioneers in the battle between viral infection and nuclear domain 10-related host defense. Virus Res 2017; 238:40-48. [DOI: 10.1016/j.virusres.2017.05.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023]
|
67
|
Abstract
Epstein-Barr virus (EBV) is a common human herpes virus known to infect the majority of the world population. Infection with EBV is often asymptomatic but can manifest in a range of pathologies from infectious mononucleosis to severe cancers of epithelial and lymphocytic origin. Indeed, in the past decade, EBV has been linked to nearly 10% of all gastric cancers. Furthermore, recent advances in high-throughput next-generation sequencing and the development of humanized mice, which effectively model EBV pathogenesis, have led to a wealth of knowledge pertaining to strain variation and host-pathogen interaction. This review highlights some recent advances in our understanding of EBV biology, focusing on new findings on the early events of infection, the role EBV plays in gastric cancer, new strain variation, and humanized mouse models of EBV infection.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University Medical Center, Durham, NC, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
68
|
Shumilov A, Tsai MH, Schlosser YT, Kratz AS, Bernhardt K, Fink S, Mizani T, Lin X, Jauch A, Mautner J, Kopp-Schneider A, Feederle R, Hoffmann I, Delecluse HJ. Epstein-Barr virus particles induce centrosome amplification and chromosomal instability. Nat Commun 2017; 8:14257. [PMID: 28186092 PMCID: PMC5309802 DOI: 10.1038/ncomms14257] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/13/2016] [Indexed: 12/03/2022] Open
Abstract
Infections with Epstein–Barr virus (EBV) are associated with cancer development, and EBV lytic replication (the process that generates virus progeny) is a strong risk factor for some cancer types. Here we report that EBV infection of B-lymphocytes (in vitro and in a mouse model) leads to an increased rate of centrosome amplification, associated with chromosomal instability. This effect can be reproduced with virus-like particles devoid of EBV DNA, but not with defective virus-like particles that cannot infect host cells. Viral protein BNRF1 induces centrosome amplification, and BNRF1-deficient viruses largely lose this property. These findings identify a new mechanism by which EBV particles can induce chromosomal instability without establishing a chronic infection, thereby conferring a risk for development of tumours that do not necessarily carry the viral genome. Infection with Epstein–Barr virus (EBV) is associated with increased risk of cancer development. Here the authors show that EBV particles, and more specifically the viral protein BNRF1, induce centrosome amplification and chromosomal instability in host cells in the absence of chronic infection.
Collapse
Affiliation(s)
- Anatoliy Shumilov
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Ming-Han Tsai
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Yvonne T Schlosser
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Anne-Sophie Kratz
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Katharina Bernhardt
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Susanne Fink
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Tuba Mizani
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Xiaochen Lin
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Josef Mautner
- Helmholtz Zentrum München, Research Unit Gene Vectors, 81377 Munich, Germany.,Children's Hospital Technische Universität München, 80804 Munich, Germany.,German Center for Infection Research (DZIF), 81377 Munich, Germany
| | | | - Regina Feederle
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Core Facility Monoclonal Antibodies, 81377 Munich, Germany
| | - Ingrid Hoffmann
- German Cancer Research Centre (DKFZ), Unit F045, 69120 Heidelberg, Germany
| | - Henri-Jacques Delecluse
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,German Centre for Infection Research (DZIF), 69120 Heidelberg, Germany
| |
Collapse
|
69
|
Lu Y, Orr A, Everett RD. Stimulation of the Replication of ICP0-Null Mutant Herpes Simplex Virus 1 and pp71-Deficient Human Cytomegalovirus by Epstein-Barr Virus Tegument Protein BNRF1. J Virol 2016; 90:9664-9673. [PMID: 27535048 PMCID: PMC5068519 DOI: 10.1128/jvi.01224-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022] Open
Abstract
It is now well established that several cellular proteins that are components of promyelocytic leukemia nuclear bodies (PML NBs, also known as ND10) have restrictive effects on herpesvirus infections that are countered by viral proteins that are either present in the virion particle or are expressed during the earliest stages of infection. For example, herpes simplex virus 1 (HSV-1) immediate early (IE) protein ICP0 overcomes the restrictive effects of PML-NB components PML, Sp100, hDaxx, and ATRX while human cytomegalovirus (HCMV) IE protein IE1 targets PML and Sp100, and its tegument protein pp71 targets hDaxx and ATRX. The functions of these viral regulatory proteins are in part interchangeable; thus, both IE1 and pp71 stimulate the replication of ICP0-null mutant HSV-1, while ICP0 increases plaque formation by pp71-deficient HCMV. Here, we extend these studies by examining proteins that are expressed by Epstein-Barr virus (EBV). We report that EBV tegument protein BNRF1, discovered by other investigators to target the hDaxx/ATRX complex, increases the replication of both ICP0-null mutant HSV-1 and pp71-deficient HCMV. In addition, EBV protein EBNA-LP, which targets Sp100, also augments ICP0-null mutant HSV-1 replication. The combination of these two EBV regulatory proteins had a greater effect than each one individually. These findings reinforce the concept that disruption of the functions of PML-NB proteins is important for efficient herpesvirus infections. IMPORTANCE Whether a herpesvirus initiates a lytic infection in a host cell or establishes quiescence or latency is influenced by events that occur soon after the viral genome has entered the host cell nucleus. Certain cellular proteins respond in a restrictive manner to the invading pathogen's DNA, while viral functions are expressed that counteract the cell-mediated repression. One aspect of cellular restriction of herpesvirus infections is mediated by components of nuclear structures known as PML nuclear bodies (PML NBs), or ND10. Members of the alpha-, beta-, and gammaherpesvirus families all express proteins that interact with, degrade, or otherwise counteract the inhibitory effects of various PML NB components. Previous work has shown that there is the potential for a functional interchange between the viral proteins expressed by alpha- and betaherpesviruses, despite a lack of obvious sequence similarity. Here, this concept is extended to include a member of the gammaherpesviruses.
Collapse
Affiliation(s)
- Yongxu Lu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Anne Orr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | - Roger D Everett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| |
Collapse
|
70
|
The Role of Nuclear Antiviral Factors against Invading DNA Viruses: The Immediate Fate of Incoming Viral Genomes. Viruses 2016; 8:v8100290. [PMID: 27782081 PMCID: PMC5086622 DOI: 10.3390/v8100290] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
In recent years, it has been suggested that host cells exert intrinsic mechanisms to control nuclear replicating DNA viruses. This cellular response involves nuclear antiviral factors targeting incoming viral genomes. Herpes simplex virus-1 (HSV-1) is the best-studied model in this context, and it was shown that upon nuclear entry HSV-1 genomes are immediately targeted by components of promyelocytic leukemia nuclear bodies (PML-NBs) and the nuclear DNA sensor IFI16 (interferon gamma inducible protein 16). Based on HSV-1 studies, together with limited examples in other viral systems, these phenomena are widely believed to be a common cellular response to incoming viral genomes, although formal evidence for each virus is lacking. Indeed, recent studies suggest that the case may be different for adenovirus infection. Here we summarize the existing experimental evidence for the roles of nuclear antiviral factors against incoming viral genomes to better understand cellular responses on a virus-by-virus basis. We emphasize that cells seem to respond differently to different incoming viral genomes and discuss possible arguments for and against a unifying cellular mechanism targeting the incoming genomes of different virus families.
Collapse
|
71
|
Structural basis underlying viral hijacking of a histone chaperone complex. Nat Commun 2016; 7:12707. [PMID: 27581705 PMCID: PMC5025803 DOI: 10.1038/ncomms12707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/26/2016] [Indexed: 11/08/2022] Open
Abstract
The histone H3.3 chaperone DAXX is implicated in formation of heterochromatin and transcription silencing, especially for newly infecting DNA virus genomes entering the nucleus. Epstein-Barr virus (EBV) can efficiently establish stable latent infection as a chromatinized episome in the nucleus of infected cells. The EBV tegument BNRF1 is a DAXX-interacting protein required for the establishment of selective viral gene expression during latency. Here we report the structure of BNRF1 DAXX-interaction domain (DID) in complex with DAXX histone-binding domain (HBD) and histones H3.3-H4. BNRF1 DID contacts DAXX HBD and histones through non-conserved loops. The BNRF1-DAXX interface is responsible for BNRF1 localization to PML-nuclear bodies typically associated with host-antiviral resistance and transcriptional repression. Paradoxically, the interface is also required for selective transcription activation of viral latent cycle genes required for driving B-cell proliferation. These findings reveal molecular details of virus reprogramming of an antiviral histone chaperone to promote viral latency and cellular immortalization. The Epstein-Barr virus tegument protein BNRF1 is required for the establishment of selective viral gene expression during latency and interacts with the histone chaperone DAXX. Here the authors provide structural insight into how BNRF1 hijacks the DAXX-histone H3.3-H4 complex.
Collapse
|
72
|
Abstract
Research in the last 2 decades has demonstrated that a specific organelle of the cell nucleus, termed PML nuclear body (PML-NB) or nuclear domain 10 (ND10), is frequently modified during viral infection. This correlates with antagonization of a direct repressive function of individual PML-NB components, such as the PML, hDaxx, Sp100, or ATRX protein, that are able to act as cellular restriction factors. Recent studies now reveal an emerging role of PML-NBs as coregulatory structures of both type I and type II interferon responses. This emphasizes that targeting of PML-NBs by viral regulatory proteins has evolved as a strategy to compromise intrinsic antiviral defense and innate immune responses.
Collapse
|
73
|
Tan CSE, Lawler C, May JS, Belz GT, Stevenson PG. Type I Interferons Direct Gammaherpesvirus Host Colonization. PLoS Pathog 2016; 12:e1005654. [PMID: 27223694 PMCID: PMC4880296 DOI: 10.1371/journal.ppat.1005654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Gamma-herpesviruses colonise lymphocytes. Murid Herpesvirus-4 (MuHV-4) infects B cells via epithelial to myeloid to lymphoid transfer. This indirect route entails exposure to host defences, and type I interferons (IFN-I) limit infection while viral evasion promotes it. To understand how IFN-I and its evasion both control infection outcomes, we used Mx1-cre mice to tag floxed viral genomes in IFN-I responding cells. Epithelial-derived MuHV-4 showed low IFN-I exposure, and neither disrupting viral evasion nor blocking IFN-I signalling markedly affected acute viral replication in the lungs. Maximising IFN-I induction with poly(I:C) increased virus tagging in lung macrophages, but the tagged virus spread poorly. Lymphoid-derived MuHV-4 showed contrastingly high IFN-I exposure. This occurred mainly in B cells. IFN-I induction increased tagging without reducing viral loads; disrupting viral evasion caused marked attenuation; and blocking IFN-I signalling opened up new lytic spread between macrophages. Thus, the impact of IFN-I on viral replication was strongly cell type-dependent: epithelial infection induced little response; IFN-I largely suppressed macrophage infection; and viral evasion allowed passage through B cells despite IFN-I responses. As a result, IFN-I and its evasion promoted a switch in infection from acutely lytic in myeloid cells to chronically latent in B cells. Murine cytomegalovirus also showed a capacity to pass through IFN-I-responding cells, arguing that this is a core feature of herpesvirus host colonization.
Collapse
Affiliation(s)
- Cindy S. E. Tan
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gabrielle T. Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Parkville, Melbourne, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
74
|
Abstract
Protein deamidation has been considered a nonenzymatic process associated with protein functional decay or "aging." Recent studies implicate protein deamidation in regulating signal transduction in fundamental biological processes, such as innate immune responses. Work investigating gammaherpesviruses and bacterial pathogens indicates that microbial pathogens deploy deamidases or enzyme-deficient homologues (pseudoenzymes) to induce deamidation of key signaling components and evade host immune responses. Here, we review studies on protein deamidation in innate immune signaling and present several imminent questions concerning the roles of protein deamidation in infection and immunity.
Collapse
|
75
|
Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Promotes EBV Reactivation through Activation of the p38 Mitogen-Activated Protein Kinase. J Virol 2015; 90:1129-38. [PMID: 26559845 DOI: 10.1128/jvi.01410-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus associated with both B cell and epithelial cell malignancies. EBV infection of B cells triggers activation of several signaling pathways that are critical for cell survival, virus latency, and growth transformation. To identify EBV proteins important for regulating cell signaling, we used a proteomic approach to screen viral proteins for AP-1 and NF-κB promoter activity in AP-1- and NF-κB-luciferase reporter assays. We found that EBV BGLF2 activated AP-1 but not NF-κB reporter activity. Expression of EBV BGLF2 in cells activated p38 and c-Jun N-terminal kinase (JNK), both of which are important for mitogen-activated protein kinase (MAPK) signaling. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of BGLF2 to activate JNK and p38. Expression of BGLF2 enhanced BZLF1 expression in latently EBV-infected lymphoblastoid cell lines, and knockdown of BGLF2 reduced EBV reactivation induced by IgG cross-linking. Expression of BGLF2 induced BZLF1 expression and virus production in EBV-infected gastric carcinoma cells. BGLF2 enhanced BZLF1 expression and EBV production by activating p38; chemical inhibition of p38 and MAPK/ERK kinases 1 and 2 (MEK1/2) reduced expression of BZLF1 and virus production induced by BGLF2. In summary, the EBV tegument protein BGLF2, which is delivered to the cell at the onset of virus infection, activates the AP-1 pathway and enhances EBV reactivation and virus production. IMPORTANCE Epstein-Barr virus (EBV) is associated with both B cell and epithelial cell malignancies, and the virus activates multiple signaling pathways important for its persistence in latently infected cells. We identified a viral tegument protein, BGLF2, which activates members of the mitogen-activated protein kinase signaling pathway. Expression of BGLF2 increased expression of EBV BZLF1, which activates a switch from latent to lytic virus infection, and increased production of EBV. Inhibition of BGFL2 expression or inhibition of p38/MAPK, which is activated by BGLF2, reduced virus reactivation from latency. These results indicate that a viral tegument protein which is delivered to cells upon infection activates signaling pathways to enhance virus production and facilitate virus reactivation from latency.
Collapse
|
76
|
Knockout of Epstein-Barr virus BPLF1 retards B-cell transformation and lymphoma formation in humanized mice. mBio 2015; 6:e01574-15. [PMID: 26489865 PMCID: PMC4620474 DOI: 10.1128/mbio.01574-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BPLF1 of Epstein-Barr virus (EBV) is classified as a late lytic cycle protein but is also found in the viral tegument, suggesting its potential involvement at both initial and late stages of viral infection. BPLF1 possesses both deubiquitinating and deneddylating activity located in its N-terminal domain and is involved in processes that affect viral infectivity, viral DNA replication, DNA repair, and immune evasion. A recently constructed EBV BPLF1-knockout (KO) virus was used in conjunction with a humanized mouse model that can be infected with EBV, enabling the first characterization of BPLF1 function in vivo. Results demonstrate that the BPLF1-knockout virus is approximately 90% less infectious than wild-type (WT) virus. Transformation of human B cells, a hallmark of EBV infection, was delayed and reduced with BPLF1-knockout virus. Humanized mice infected with EBV BPLF1-knockout virus showed less weight loss and survived longer than mice infected with equivalent infectious units of WT virus. Additionally, splenic tumors formed in 100% of mice infected with WT EBV but in only 25% of mice infected with BPLF1-KO virus. Morphological features of spleens containing tumors were similar to those in EBV-induced posttransplant lymphoproliferative disease (PTLD) and were almost identical to cases seen in human diffuse large B-cell lymphoma. The presence of EBV genomes was detected in all mice that developed tumors. The results implicate BPLF1 in human B-cell transformation and tumor formation in humanized mice. Epstein-Barr virus infects approximately 90% of the world’s population and is the causative agent of infectious mononucleosis. EBV also causes aggressive lymphomas in individuals with acquired and innate immune disorders and is strongly associated with diffuse large B-cell lymphomas, classical Hodgkin lymphoma, Burkitt lymphoma, and nasopharyngeal carcinoma (NPC). Typically, EBV initially infects epithelial cells in the oropharynx, followed by a lifelong persistent latent infection in B-cells, which may develop into lymphomas in immunocompromised individuals. This work is the first of its kind in evaluating the effects of EBV’s BPLF1 in terms of pathogenesis and lymphomagenesis in humanized mice and implicates BPLF1 in B-cell transformation and tumor development. Currently, there is no efficacious treatment for EBV, and therapeutic targeting of BPLF1 may lead to a new path to treatment for immunocompromised individuals or transplant recipients infected with EBV.
Collapse
|
77
|
De Leo A, Colavita F, Ciccosanti F, Fimia GM, Lieberman PM, Mattia E. Inhibition of autophagy in EBV-positive Burkitt's lymphoma cells enhances EBV lytic genes expression and replication. Cell Death Dis 2015; 6:e1876. [PMID: 26335716 PMCID: PMC4650432 DOI: 10.1038/cddis.2015.156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/26/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
Autophagy, an important degradation system involved in maintaining cellular homeostasis, serves also to eliminate pathogens and process their fragments for presentation to the immune system. Several viruses have been shown to interact with the host autophagic machinery to suppress or make use of this cellular catabolic pathway to enhance their survival and replication. Epstein Barr virus (EBV) is a γ-herpes virus associated with a number of malignancies of epithelial and lymphoid origin in which establishes a predominantly latent infection. Latent EBV can periodically reactivate to produce infectious particles that allow the virus to spread and can lead to the death of the infected cell. In this study, we analyzed the relationship between autophagy and EBV reactivation in Burkitt's lymphoma cells. By monitoring autophagy markers and EBV lytic genes expression, we demonstrate that autophagy is enhanced in the early phases of EBV lytic activation but decreases thereafter concomitantly with increased levels of EBV lytic proteins. In a cell line defective for late antigens expression, we found an inverse correlation between EBV early antigens expression and autophagosomes formation, suggesting that early after activation, the virus is able to suppress autophagy. We report here for the first time that inhibition of autophagy by Bafilomycin A1 or shRNA knockdown of Beclin1 gene, highly incremented EBV lytic genes expression as well as intracellular viral DNA and viral progeny yield. Taken together, these findings indicate that EBV activation induces the autophagic response, which is soon inhibited by the expression of EBV early lytic products. Moreover, our findings open the possibility that pharmacological inhibitors of autophagy may be used to enhance oncolytic viral therapy of EBV-related lymphomas.
Collapse
Affiliation(s)
- A De Leo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - F Colavita
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - F Ciccosanti
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy
| | - G M Fimia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, 00149 Rome, Italy.,Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| | | | - E Mattia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
78
|
Tsai K, Messick TE, Lieberman PM. Disruption of host antiviral resistances by gammaherpesvirus tegument proteins with homology to the FGARAT purine biosynthesis enzyme. Curr Opin Virol 2015; 14:30-40. [PMID: 26256000 DOI: 10.1016/j.coviro.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/08/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022]
Abstract
All known gammaherpesviruses encode at least one conserved tegument protein that contains sequence homology to the cellular purine biosynthesis enzyme: phosphoribosylformylglycineamide amidotransferase (FGARAT, or PFAS). While no enzymatic activity have been found on these viral FGARAT-homology proteins (vFGARAT), they are important for disarming host intrinsic antiviral machinery. Most vFGARAT proteins disrupt the intrinsic antiviral response-associated cellular subnuclear structure: ProMyelocytic Leukemia (PML) associated nuclear body (PML-NB). vFGARATs from different viruses target different components of PML-NB to prevent cellular repression of viral infection. In addition, vFGARATs of rhadinoviruses were recently found to oligomerize with the cellular FGARAT to deamidate RIG-I and repress inflammatory cytokine production. In this review we discuss the diverse mechanisms of antiviral response disruption by gammaherpesvirus vFGARATs and the significance of the enzyme homology domain.
Collapse
Affiliation(s)
- Kevin Tsai
- The Wistar Institute, Philadelphia, PA 19104, United States; Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Troy E Messick
- The Wistar Institute, Philadelphia, PA 19104, United States
| | | |
Collapse
|
79
|
Qi L, Xiang Z. Molecular cloning and expression analysis of an apoptosis-associated gene Daxx from zebrafish, Danio rerio. FISH & SHELLFISH IMMUNOLOGY 2015; 45:59-66. [PMID: 25862973 DOI: 10.1016/j.fsi.2015.03.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
The death domain-associated protein Daxx exerts many functions including the induction and inhibition of apoptosis, regulation of chromatin remodeling and gene transcription. In this report, we have cloned and characterized a Daxx ortholog from the zebrafish, Danio rerio. The bioinformatics analysis results indicated that the open reading frame (ORF) of zebrafish Daxx is 2,151bp long and encodes a putative protein of 716 amino acids containing Daxx domain. Though quantitative PCR analyses, Daxx mRNA was detected in embryonic development from 6 h to 120 h and in all 11 selected zebrafish tissues, and the expression of Daxx was increased first and then decreased during megalocytivirus infectious spleen and kidney necrosis virus (ISKNV) infection. Fluorescence microscopy indicated that the full-length protein was located in the nuclei of the tested Hela cells uniformly but punctiform distribution in HEK293T. In the luciferase report assays, the GAL4-Daxx fusion protein inhibited the transcriptional activity of L8G5-Luc reporter gene showed that Daxx might act as a transcriptional repressor, following the over-expression in HEK293T, the activation of NF-κB-Luc and p53/p21-Luc reporter genes were repressed by the protein. These results suggested that Daxx might play definite role in apoptosis and innate immunity in zebrafish.
Collapse
Affiliation(s)
- Lin Qi
- Railway Police College, 31 Agricultural Road, Zhengzhou 450053, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
80
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
81
|
Viral reprogramming of the Daxx histone H3.3 chaperone during early Epstein-Barr virus infection. J Virol 2014; 88:14350-63. [PMID: 25275136 DOI: 10.1128/jvi.01895-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Host chromatin assembly can function as a barrier to viral infection. Epstein-Barr virus (EBV) establishes latent infection as chromatin-assembled episomes in which all but a few viral genes are transcriptionally silent. The factors that control chromatin assembly and guide transcription regulation during the establishment of latency are not well understood. Here, we demonstrate that the EBV tegument protein BNRF1 binds the histone H3.3 chaperone Daxx to modulate histone mobility and chromatin assembly on the EBV genome during the early stages of primary infection. We demonstrate that BNRF1 substitutes for the repressive cochaperone ATRX to form a ternary complex of BNRF1-Daxx-H3.3-H4, using coimmunoprecipitation and size-exclusion chromatography with highly purified components. FRAP (fluorescence recovery after photobleaching) assays were used to demonstrate that BNRF1 promotes global mobilization of cellular histone H3.3. Mutation of putative nucleotide binding motifs on BNRF1 attenuates the displacement of ATRX from Daxx. We also show by immunofluorescence combined with fluorescence in situ hybridization that BNRF1 is important for the dissociation of ATRX and Daxx from nuclear bodies during de novo infection of primary B lymphocytes. Virion-delivered BNRF1 suppresses Daxx-ATRX-mediated H3.3 loading on viral chromatin as measured by chromatin immunoprecipitation assays and enhances viral gene expression during early infection. We propose that EBV tegument protein BNRF1 replaces ATRX to reprogram Daxx-mediated H3.3 loading, in turn generating chromatin suitable for latent gene expression. IMPORTANCE Epstein-Barr Virus (EBV) is a human herpesvirus that efficiently establishes latent infection in primary B lymphocytes. Cellular chromatin assembly plays an important role in regulating the establishment of EBV latency. We show that the EBV tegument protein BNRF1 functions to regulate chromatin assembly on the viral genome during early infection. BNRF1 alters the host cellular chromatin assembly to prevent antiviral repressive chromatin and establish chromatin structure permissive for viral gene expression and the establishment of latent infection.
Collapse
|
82
|
Abstract
Viruses must interact with their hosts in order to replicate; these interactions often provoke the evolutionarily conserved response to DNA damage, known as the DNA damage response (DDR). The DDR can be activated by incoming viral DNA, during the integration of retroviruses, or in response to the aberrant DNA structures generated upon replication of DNA viruses. Furthermore, DNA and RNA viral proteins can induce the DDR by promoting inappropriate S phase entry, by modifying cellular DDR factors directly, or by unintentionally targeting host DNA. The DDR may be antiviral, although viruses often require proximal DDR activation of repair and recombination factors to facilitate replication as well as downstream DDR signaling suppression to ensure cell survival. An unintended consequence of DDR attenuation during infection is the long-term survival and proliferation of precancerous cells. Therefore, the molecular basis for DDR activation and attenuation by viruses remains an important area of study that will likely provide key insights into how viruses have evolved with their hosts.
Collapse
Affiliation(s)
- Micah A Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, North Carolina 27710;
| |
Collapse
|
83
|
Netsawang J, Panaampon J, Khunchai S, Kooptiwut S, Nagila A, Puttikhunt C, Yenchitsomanus PT, Limjindaporn T. Dengue virus disrupts Daxx and NF-κB interaction to induce CD137-mediated apoptosis. Biochem Biophys Res Commun 2014; 450:1485-91. [PMID: 25019989 DOI: 10.1016/j.bbrc.2014.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Dengue virus (DENV) is a positive-strand RNA virus of the Flavivirus family with 4 different serotypes. Clinical manifestations of DENV infection include dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Following DENV infection, apoptosis of hepatic cells is observed both in vitro and in vivo. However, the molecular mechanisms revealing how viral components affect cellular apoptosis remain unclear. In the present study, the role of death domain-associated protein 6 (Daxx) in DENV-mediated apoptosis was characterized by RNA interference and overexpression studies, and the anti-apoptotic function of Daxx during DENV infection was identified. Furthermore, the viral component, DENV capsid protein (DENV C), interacted with Daxx to disrupt interaction between Daxx and NF-κB. The liberated NF-κB activated the promoter of CD137, which is a member of the TNF family, and is previously shown to induce apoptosis during DENV infection. In summary, DENV C disrupts Daxx and NF-κB interaction to induce CD137-mediated apoptosis during DENV infection.
Collapse
Affiliation(s)
- Janjuree Netsawang
- Faculty of Medical Technology, Rangsit University, Phathum Thani, Thailand
| | - Jutatip Panaampon
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sasiprapa Khunchai
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Amar Nagila
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thawornchai Limjindaporn
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
84
|
Minkah N, Chavez K, Shah P, Maccarthy T, Chen H, Landau N, Krug LT. Host restriction of murine gammaherpesvirus 68 replication by human APOBEC3 cytidine deaminases but not murine APOBEC3. Virology 2014; 454-455:215-26. [PMID: 24725948 PMCID: PMC4036618 DOI: 10.1016/j.virol.2014.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/27/2013] [Accepted: 02/20/2014] [Indexed: 11/28/2022]
Abstract
Humans encode seven APOBEC3 (A3A-A3H) cytidine deaminase proteins that differ in their expression profiles, preferred nucleotide recognition sequence and capacity for restriction of RNA and DNA viruses. We identified APOBEC3 hotspots in numerous herpesvirus genomes. To determine the impact of host APOBEC3 on herpesvirus biology in vivo, we examined whether murine APOBEC3 (mA3) restricts murine gammaherpesvirus 68 (MHV68). Viral replication was impaired by several human APOBEC3 proteins, but not mA3, upon transfection of the viral genome. The restriction was abrogated upon mutation of the A3A and A3B active sites. Interestingly, virus restriction by A3A, A3B, A3C, and A3DE was lost if the infectious DNA was delivered by the virion. MHV68 pathogenesis, including lung replication and splenic latency, was not altered in mice lacking mA3. We infer that mA3 does not restrict wild type MHV68 and restriction by human A3s may be limited in the herpesvirus replication process.
Collapse
Affiliation(s)
- Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kevin Chavez
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Parth Shah
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Thomas Maccarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hui Chen
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA; Infectious Disease Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Nathaniel Landau
- Department of Microbiology, NYU Langone Medical Center, New York, NY 10016, USA; Infectious Disease Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
85
|
Zeng Z, Huang H, Huang L, Sun M, Yan Q, Song Y, Wei F, Bo H, Gong Z, Zeng Y, Li Q, Zhang W, Li X, Xiang B, Li X, Li Y, Xiong W, Li G. Regulation network and expression profiles of Epstein-Barr virus-encoded microRNAs and their potential target host genes in nasopharyngeal carcinomas. SCIENCE CHINA-LIFE SCIENCES 2014; 57:315-326. [PMID: 24532457 DOI: 10.1007/s11427-013-4577-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 10/25/2013] [Indexed: 12/11/2022]
Abstract
Epstein-Barr virus (EBV) is associated with nasopharyngeal carcinoma (NPC) tumorigenesis. However, the mechanism(s) connecting EBV infection and NPC remain unclear. Recently, a new class of EBV microRNAs (miRNAs) has been described. To determine how EBV miRNAs control the expression of host genes, and to understand their potential role in NPC tumorigenesis, we profiled the expression of 44 mature EBV miRNAs and potential host genes in NPC and non-tumor nasopharyngeal epithelial tissues. We found that 40 EBV miRNAs from the BART transcript were highly expressed in NPC. Analysis of potential BART miRNA target genes revealed that 3140 genes and several important pathways might be involved in the carcinogenesis of NPC. A total of 105 genes with potential EBV miRNA binding sites were significantly downregulated, suggesting that EBV miRNAs may regulate these genes and contribute to NPC carcinogenesis. An EBV miRNA and host gene regulation network was generated to provide useful clues for validating of EBV miRNA functions in NPC tumorigenesis.
Collapse
Affiliation(s)
- ZhaoYang Zeng
- Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, 410013, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - HongBin Huang
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.,Key Laboratory of Information System Engineering, National University of Defense Technology, Changsha, 410073, China
| | - LiLi Huang
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - MengXi Sun
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - QiJia Yan
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - YaLi Song
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Fang Wei
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Hao Bo
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - ZhaoJian Gong
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yong Zeng
- Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qiao Li
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - WenLing Zhang
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - XiaYu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Bo Xiang
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - XiaoLing Li
- Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yong Li
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Wei Xiong
- Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, 410013, China. .,Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - GuiYuan Li
- Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, 410013, China. .,Key Laboratory of Carcinogenesis of Ministry of Health, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
86
|
Full F, Jungnickl D, Reuter N, Bogner E, Brulois K, Scholz B, Stürzl M, Myoung J, Jung JU, Stamminger T, Ensser A. Kaposi's sarcoma associated herpesvirus tegument protein ORF75 is essential for viral lytic replication and plays a critical role in the antagonization of ND10-instituted intrinsic immunity. PLoS Pathog 2014; 10:e1003863. [PMID: 24453968 PMCID: PMC3894210 DOI: 10.1371/journal.ppat.1003863] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023] Open
Abstract
Nuclear domain 10 (ND10) components are restriction factors that inhibit herpesviral replication. Effector proteins of different herpesviruses can antagonize this restriction by a variety of strategies, including degradation or relocalization of ND10 proteins. We investigated the interplay of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) infection and cellular defense by nuclear domain 10 (ND10) components. Knock-down experiments in primary human cells show that KSHV-infection is restricted by the ND10 components PML and Sp100, but not by ATRX. After KSHV infection, ATRX is efficiently depleted and Daxx is dispersed from ND10, indicating that these two ND10 components can be antagonized by KSHV. We then identified the ORF75 tegument protein of KSHV as the viral factor that induces the disappearance of ATRX and relocalization of Daxx. ORF75 belongs to a viral protein family (viral FGARATs) that has homologous proteins in all gamma-herpesviruses. Isolated expression of ORF75 in primary cells induces a relocalization of PML and dispersal of Sp100, indicating that this viral effector protein is able to influence multiple ND10 components. Moreover, by constructing a KSHV mutant harboring a stop codon at the beginning of ORF75, we could demonstrate that ORF75 is absolutely essential for viral replication and the initiation of viral immediate-early gene expression. Using recombinant viruses either carrying Flag- or YFP-tagged variants of ORF75, we could further corroborate the role of ORF75 in the antagonization of ND10-mediated intrinsic immunity, and show that it is independent of the PML antagonist vIRF3. Members of the viral FGARAT family target different ND10 components, suggesting that the ND10 targets of viral FGARAT proteins have diversified during evolution. We assume that overcoming ND10 intrinsic defense constitutes a critical event in the replication of all herpesviruses; on the other hand, restriction of herpesviral replication by ND10 components may also promote latency as the default outcome of infection.
Collapse
Affiliation(s)
- Florian Full
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Doris Jungnickl
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reuter
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Bogner
- Institut für Medizinische Virologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Brigitte Scholz
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jinjong Myoung
- Novartis Institutes for Biomedical Research, Emeryville, California, United States of America
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Thomas Stamminger
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
87
|
Abstract
The ORF75c tegument protein of murine gammaherpesvirus 68 (MHV68) promotes the degradation of the antiviral promyelocytic leukemia (PML) protein. Surprisingly, MHV68 expressing a degradation-deficient ORF75c replicated in cell culture and in mice similar to the wild-type virus. However, in cells infected with this mutant virus, PML formed novel track-like structures that are induced by ORF61, the viral ribonucleotide reductase large subunit. These findings may explain why ORF75c mutant viruses unable to degrade PML had no demonstrable phenotype after infection.
Collapse
|
88
|
Abstract
Viruses employ a variety of strategies to usurp and control cellular activities through the orchestrated recruitment of macromolecules to specific cytoplasmic or nuclear compartments. Formation of such specialized virus-induced cellular microenvironments, which have been termed viroplasms, virus factories, or virus replication centers, complexes, or compartments, depends on molecular interactions between viral and cellular factors that participate in viral genome expression and replication and are in some cases associated with sites of virion assembly. These virus-induced compartments function not only to recruit and concentrate factors required for essential steps of the viral replication cycle but also to control the cellular mechanisms of antiviral defense. In this review, we summarize characteristic features of viral replication compartments from different virus families and discuss similarities in the viral and cellular activities that are associated with their assembly and the functions they facilitate for viral replication.
Collapse
|
89
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
90
|
Abbott RJM, Quinn LL, Leese AM, Scholes HM, Pachnio A, Rickinson AB. CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. THE JOURNAL OF IMMUNOLOGY 2013; 191:5398-409. [PMID: 24146041 DOI: 10.4049/jimmunol.1301629] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
EBV elicits primary CD8(+) T cell responses that, by T cell cloning from infectious mononucleosis (IM) patients, appear skewed toward immediate early (IE) and some early (E) lytic cycle proteins, with late (L) proteins rarely targeted. However, L Ag-specific responses have been detected regularly in polyclonal T cell cultures from long-term virus carriers. To resolve this apparent difference between responses to primary and persistent infection, 13 long-term carriers were screened in ex vivo IFN-γ ELISPOT assays using peptides spanning the two IE, six representative E, and seven representative L proteins. This revealed memory CD8 responses to 44 new lytic cycle epitopes that straddle all three protein classes but, in terms of both frequency and size, maintain the IE > E > L hierarchy of immunodominance. Having identified the HLA restriction of 10 (including 7 L) new epitopes using memory CD8(+) T cell clones, we looked in HLA-matched IM patients and found such reactivities but typically at low levels, explaining why they had gone undetected in the original IM clonal screens. Wherever tested, all CD8(+) T cell clones against these novel lytic cycle epitopes recognized lytically infected cells naturally expressing their target Ag. Surprisingly, however, clones against the most frequently recognized L Ag, the BNRF1 tegument protein, also recognized latently infected, growth-transformed cells. We infer that BNRF1 is also a latent Ag that could be targeted in T cell therapy of EBV-driven B-lymphoproliferative disease.
Collapse
Affiliation(s)
- Rachel J M Abbott
- School of Cancer Sciences and Medical Research Council Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | |
Collapse
|
91
|
Rivera-Molina YA, Martínez FP, Tang Q. Nuclear domain 10 of the viral aspect. World J Virol 2013; 2:110-122. [PMID: 24255882 PMCID: PMC3832855 DOI: 10.5501/wjv.v2.i3.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/31/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023] Open
Abstract
Nuclear domain 10 (ND10) are spherical bodies distributed throughout the nucleoplasm and measuring around 0.2-1.0 μm. First observed under an electron microscope, they were originally described as dense bodies found in the nucleus. They are known by a number of other names, including Promyelocytic Leukemia bodies (PML bodies), Kremer bodies, and PML oncogenic domains. ND10 are frequently associated with Cajal bodies and cleavage bodies. It has been suggested that they play a role in regulating gene transcription. ND10 were originally characterized using human autoantisera, which recognizes Speckled Protein of 100 kDa, from patients with primary biliary cirrhosis. At the immunohistochemical level, ND10 appear as nuclear punctate structures, with 10 indicating the approximate number of dots per nucleus observed. ND10 do not colocalize with kinetochores, centromeres, sites of mRNA processing, or chromosomes. Resistance of ND10 antigens to nuclease digestion and salt extraction suggest that ND10 are associated with the nuclear matrix. They are often identified by immunofluorescent assay using specific antibodies against PML, Death domain-associated protein, nuclear dot protein (NDP55), and so on. The role of ND10 has long been the subject of investigation, with the specific connection of ND10 and viral infection having been a particular focus for almost 20 years. This review summarizes the relationship of ND10 and viral infection. Some future study directions are also discussed.
Collapse
|
92
|
Tso KKY, Yip KYL, Mak CKY, Chung GTY, Lee SD, Cheung ST, To KF, Lo KW. Complete genomic sequence of Epstein-Barr virus in nasopharyngeal carcinoma cell line C666-1. Infect Agent Cancer 2013; 8:29. [PMID: 23915735 PMCID: PMC3734220 DOI: 10.1186/1750-9378-8-29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Nasopharyngeal carcinoma is a distinct type of head and neck cancer which is consistently associated with Epstein-Barr virus (EBV). The C666-1 cell line is the only in vitro native EBV-infected NPC cell model commonly used for study of the viral-host interaction. Nevertheless, the complete EBV genome sequence in this in vitro EBV-infected NPC model has not been characterized. Objective To determine the complete EBV genome sequence in C666-1 cells. Methods The C666-1 genome was sequenced by 100-bases pair-end massive parallel sequencing. Bioinformatics analysis was performed to extract the EBV sequences and construct an EBV consensus sequence map. PCR amplification and Sanger DNA sequencing were used for sequence validation and gap filling. A phylogenetic analysis of EBV strain in C666-1 cells and other reported EBV strains was performed. Results A 171,317 bp complete EBV genome of C666-1 was successfully constructed (GenBank accession number: KC617875). Phylogenetic analysis of EBV genome in C666-1 revealed that the C666-1 EBV strain is closely related to the reported strains in NPC primary tumors. Conclusion C666-1 contains a representative NPC-associated EBV genome and might serve as an important model for studying the roles or function of viral proteins in NPC tumorigenesis.
Collapse
Affiliation(s)
- Ken Kai-Yuen Tso
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Yuk-Lap Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cathy Ka-Yan Mak
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sau-Dan Lee
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Siu-Tim Cheung
- Department of Surgery, University of Hong Kong, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.,Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
93
|
Abstract
PML nuclear bodies and their associated functions are part of an intrinsic cellular mechanism aimed at maintaining transcriptional control over viral gene expression and preventing replication of invading viruses. To overcome these barriers, many viruses express early nonstructural, multifunctional proteins to support the viral replication cycle or modulate host immune responses. Virion proteins constituting the invading particle are traditionally investigated for their role in transport during entry or egress and in the assembly of new virions. The additional functions of virion proteins have largely been ignored, in contrast to those of their nonstructural counterparts. A number of recent reports suggest that several virion proteins may also play vital roles in gene activation processes, in particular by counteracting intrinsic immune mechanisms mediated by the PML nuclear body-associated cellular factors Daxx, ATRX, and Sp100. These virion proteins share several features with their more potent nonstructural counterparts, and they may serve to bridge the gap in the early phase of an infection until immediate early viral gene expression is established. In this review, we discuss how virion proteins are an integral part of gene regulation among several viral families and to what extent structural proteins of incoming virions may contribute to species barrier, latency, and oncogenesis.
Collapse
|
94
|
Salomoni P. The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture. Front Oncol 2013; 3:152. [PMID: 23760585 PMCID: PMC3675705 DOI: 10.3389/fonc.2013.00152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
The promyelocytic leukemia (PML) protein has been implicated in regulation of multiple key cellular functions, from transcription to calcium homeostasis. PML pleiotropic role is in part related to its ability to localize to both the nucleus and cytoplasm. In the nucleus, PML is known to regulate gene transcription, a role linked to its ability to associate with transcription factors as well as chromatin-remodelers. A new twist came from the discovery that the PML-interacting protein death-associated protein 6 (DAXX) acts as chaperone for the histone H3.3 variant. H3.3 is found enriched at active genes, centromeric heterochromatin, and telomeres, and has been proposed to act as important carrier of epigenetic information. Our recent work has implicated DAXX in regulation of H3.3 loading and transcription in the central nervous system (CNS). Remarkably, driver mutations in H3.3 and/or its loading machinery have been identified in brain cancer, thus suggesting a role for altered H3.3 function/deposition in CNS tumorigenesis. Aberrant H3.3 deposition may also play a role in leukemia pathogenesis, given DAXX role in PML-RARα-driven transformation and the identification of a DAXX missense mutation in acute myeloid leukemia. This review aims to critically discuss the existing literature and propose new avenues for investigation.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute , University College London, London , UK
| |
Collapse
|
95
|
Sewatanon J, Ling PD. Murine gammaherpesvirus 68 ORF75c contains ubiquitin E3 ligase activity and requires PML SUMOylation but not other known cellular PML regulators, CK2 and E6AP, to mediate PML degradation. Virology 2013; 440:140-9. [PMID: 23541081 PMCID: PMC4012299 DOI: 10.1016/j.virol.2013.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 02/15/2013] [Indexed: 01/30/2023]
Abstract
All gammaherpsviruses encode at least one gene related to the cellular formylglycinamide ribonucleotide amidotransferase (FGARAT) enzyme but their biological roles are relatively unknown. The murine gammaherpesvirus 68 (MHV68) vFGARAT, ORF75c, mediates a proteasome-dependent degradation of the antiviral promyelocytic leukemia (PML) protein by an unknown mechanism, which is addressed in this study. We found that ORF75c interacts weakly with PML and SUMO-modified forms of PML are important for its degradation by ORF75c. ORF75c-mediated PML degradation was not dependent on two known cellular regulators of PML stability, Casein kinase II (CK2) and human papilloma virus E6-associated protein (E6AP). Finally, ORF75c had self-ubiquitination activity in vitro and its expression increased levels of ubiquitinated PML in transfected cells. Taken together, the evidence accumulated in this study provides new insights into the function of a vFGARAT and is consistent with a model in which ORF75c could mediate direct ubiquitination of PML resulting in its degradation by the proteasome.
Collapse
Affiliation(s)
- Jaturong Sewatanon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA 77030
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand 10700
| | - Paul D. Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA 77030
| |
Collapse
|
96
|
Reeves M, Sinclair J. Regulation of human cytomegalovirus transcription in latency: beyond the major immediate-early promoter. Viruses 2013; 5:1395-413. [PMID: 23736881 PMCID: PMC3717713 DOI: 10.3390/v5061395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/24/2013] [Accepted: 05/27/2013] [Indexed: 01/04/2023] Open
Abstract
Lytic infection of differentiated cell types with human cytomegalovirus (HCMV) results in the temporal expression of between 170–200 open reading frames (ORFs). A number of studies have demonstrated the temporal regulation of these ORFs and that this is orchestrated by both viral and cellular mechanisms associated with the co-ordinated recruitment of transcription complexes and, more recently, higher order chromatin structure. Importantly, HCMV, like all herpes viruses, establishes a lifelong latent infection of the host—one major site of latency being the undifferentiated haematopoietic progenitor cells resident in the bone marrow. Crucially, the establishment of latency is concomitant with the recruitment of cellular enzymes that promote extensive methylation of histones bound to the major immediate early promoter. As such, the repressive chromatin structure formed at the major immediate early promoter (MIEP) elicits inhibition of IE gene expression and is a major factor involved in maintenance of HCMV latency. However, it is becoming increasingly clear that a distinct subset of viral genes is also expressed during latency. In this review, we will discuss the mechanisms that control the expression of these latency-associated transcripts and illustrate that regulation of these latency-associated promoters is also subject to chromatin mediated regulation and that the instructive observations previously reported regarding the negative regulation of the MIEP during latency are paralleled in the regulation of latent gene expression.
Collapse
Affiliation(s)
- Matthew Reeves
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | | |
Collapse
|
97
|
Newhart A, Negorev DG, Rafalska-Metcalf IU, Yang T, Maul GG, Janicki SM. Sp100A promotes chromatin decondensation at a cytomegalovirus-promoter-regulated transcription site. Mol Biol Cell 2013; 24:1454-68. [PMID: 23485562 PMCID: PMC3639056 DOI: 10.1091/mbc.e12-09-0669] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs)/nuclear domain 10s (ND10s) are nuclear structures that contain many transcriptional and chromatin regulatory factors. One of these, Sp100, is expressed from a single-copy gene and spliced into four isoforms (A, B, C, and HMG), which differentially regulate transcription. Here we evaluate Sp100 function in single cells using an inducible cytomegalovirus-promoter-regulated transgene, visualized as a chromatinized transcription site. Sp100A is the isoform most strongly recruited to the transgene array, and it significantly increases chromatin decondensation. However, Sp100A cannot overcome Daxx- and α-thalassemia mental retardation, X-linked (ATRX)-mediated transcriptional repression, which indicates that PML-NB/ND10 factors function within a regulatory hierarchy. Sp100A increases and Sp100B, which contains a SAND domain, decreases acetyl-lysine regulatory factor levels at activated sites, suggesting that Sp100 isoforms differentially regulate transcription by modulating lysine acetylation. In contrast to Daxx, ATRX, and PML, Sp100 is recruited to activated arrays in cells expressing the herpes simplex virus type 1 E3 ubiquitin ligase, ICP0, which degrades all Sp100 isoforms except unsumoylated Sp100A. The recruitment Sp100A(K297R), which cannot be sumoylated, further suggests that sumoylation plays an important role in regulating Sp100 isoform levels at transcription sites. This study provides insight into the ways in which viruses may modulate Sp100 to promote their replication cycles.
Collapse
Affiliation(s)
- Alyshia Newhart
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, 19104
| | - Dmitri G. Negorev
- Gene Expression and Regulation Program, Wistar Institute, Philadelphia, PA, 19104
| | | | - Tian Yang
- Roy and Diana Vagelos Scholars Program in Molecular Life Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerd G. Maul
- Gene Expression and Regulation Program, Wistar Institute, Philadelphia, PA, 19104
| | - Susan M. Janicki
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, 19104
| |
Collapse
|
98
|
Halder UC, Bhowmick R, Roy Mukherjee T, Nayak MK, Chawla-Sarkar M. Phosphorylation drives an apoptotic protein to activate antiapoptotic genes: paradigm of influenza A matrix 1 protein function. J Biol Chem 2013; 288:14554-14568. [PMID: 23548901 DOI: 10.1074/jbc.m112.447086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During infection, viral proteins target cellular pathways that regulate cellular innate immune responses and cell death. We demonstrate that influenza A virus matrix 1 protein (M1), an established proapoptotic protein, activates nuclear factor-κB member RelB-mediated survival genes (cIAP1, cIAP2, and cFLIP), a function that is linked with its nuclear translocation during early infection. Death domain-associated protein 6 (Daxx) is a transcription co-repressor of the RelB-responsive gene promoters. During influenza virus infection M1 binds to and stabilizes Daxx protein by preventing its ubiquitination and proteasomal degradation. Binding of M1 with Daxx through its Daxx binding motif prevents binding of RelB and Daxx, resulting in up-regulation of survival genes. This interaction also prevents promoter recruitment of DNA methyltransferases (Dnmt1 and Dnmt3a) and lowers CpG methylation of the survival gene promoters, leading to the activation of these genes. Thus, M1 prevents repressional function of Daxx during infection, thereby exerting a survival role. In addition to its nuclear localization signal, translocation of M1 to the nucleus depends on cellular kinase-mediated phosphorylation as the protein kinase C inhibitor calphostin C effectively down-regulates virus replication. The study reconciles the ambiguity of dual antagonistic function of viral protein and potentiates a possible target to limit virus infection.
Collapse
Affiliation(s)
- Umesh Chandra Halder
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Tapasi Roy Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, India
| | - Mukti Kant Nayak
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T. Road, Scheme-XM, Beliaghata, Kolkata 700010, India.
| |
Collapse
|
99
|
Shalginskikh N, Poleshko A, Skalka AM, Katz RA. Retroviral DNA methylation and epigenetic repression are mediated by the antiviral host protein Daxx. J Virol 2013; 87:2137-50. [PMID: 23221555 PMCID: PMC3571491 DOI: 10.1128/jvi.02026-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 11/28/2012] [Indexed: 12/23/2022] Open
Abstract
Integrated retroviral DNA is subject to epigenetic transcriptional silencing at different frequencies. This process is mediated by repressive DNA methylation and histone modifications on viral chromatin. However, the detailed mechanisms by which retroviral silencing is initiated and maintained are not well understood. Using a model system in which avian sarcoma virus (ASV) DNA is epigenetically repressed in mammalian cells, we previously found that a cellular scaffolding protein, Daxx, acts as an antiretroviral factor that promotes epigenetic repression through recruitment of histone deacetylases (HDACs). Here we show that human Daxx protein levels are increased in response to retroviral infection and that Daxx acts at the time of infection to initiate epigenetic repression. Consistent with a rapid and active antiviral epigenetic response, we found that repressive histone marks and long terminal repeat (LTR) DNA methylation could be detected within 12 h to 3 days postinfection, respectively. Daxx was also found to be required for long-term ASV silencing maintenance and full viral DNA methylation, and it was physically associated with both viral DNA and DNA methyltransferases (DNMTs). These findings support a model in which incoming retroviral protein-DNA complexes are detected by Daxx, and the integrated provirus is rapidly chromatinized and repressed by DNA methylation and histone modification as part of an antiviral response. These results uncover a possible direct and active antiviral mechanism by which DNMTs can be recruited to retroviral DNA.
Collapse
Affiliation(s)
- Natalia Shalginskikh
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
100
|
Glass M, Everett RD. Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 2013; 87:2174-85. [PMID: 23221561 PMCID: PMC3571464 DOI: 10.1128/jvi.02950-12] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/28/2012] [Indexed: 01/12/2023] Open
Abstract
Upon the entry of the viral genome into the nucleus, herpes simplex virus type 1 (HSV-1) gene expression is rapidly repressed by constitutively expressed cellular proteins. This intrinsic antiviral defense is normally counteracted by ICP0, which allows virus infection to proceed efficiently. Replication of ICP0-null mutant HSV-1, however, is severely repressed by mechanisms that are conferred, at least in part, by nuclear domain 10 (ND10) components, including hDaxx, the promyelocytic leukemia (PML) protein, and Sp100. To investigate if these ND10 components repress viral gene expression in a cooperative manner, we simultaneously depleted host cells for hDaxx, PML, and Sp100 by multiple short hairpin RNA (shRNA) knockdown from a single lentivirus vector. We found that replication and gene expression of ICP0-null mutant HSV-1 were cooperatively repressed by hDaxx, PML, and Sp100 immediately upon infection, and all stages of virus replication were inhibited. Plaque-forming efficiency was enhanced at least 50-fold in the triple-depleted cells, a much larger increase than achieved by depletion of any single ND10 protein. Similar effects were also observed during infection of triple-depleted cells with human cytomegalovirus (HCMV). Moreover, using a cell culture model of quiescent infection, we found that triple depletion resulted in a much larger number of viral genomes escaping repression. However, triple depletion was unable to fully overcome the ICP0-null phenotype, implying the presence of additional repressive host factors, possibly components of the SUMO modification or DNA repair pathways. We conclude that several ND10 components cooperate in an additive manner to regulate HSV-1 and HCMV infection.
Collapse
Affiliation(s)
- Mandy Glass
- MRC-University of Glasgow Centre for Virus Research, Glasgow, Scotland, United Kingdom
| | | |
Collapse
|