51
|
Ma Y, Zhang Y, Zhu L. Role of neutrophils in acute viral infection. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1186-1196. [PMID: 34472718 PMCID: PMC8589350 DOI: 10.1002/iid3.500] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022]
Abstract
Neutrophils play multiple roles in acute viral infections. They restrict viral replication and diffusion through phagocytosis, degranulation, respiratory burst, secretion of cytokines, and the release of neutrophil extracellular traps, as well as, activate the adaptive immune response. However, the overactivation of neutrophils may cause tissue damage and lead to poor outcomes. Additionally, some characteristics and functions of neutrophils, such as cell number, lifespan, and antiviral capability, can be influenced while eliminating viruses. This review provides a general description of the protective and pathological roles of neutrophils in acute viral infection.
Collapse
Affiliation(s)
- Yuan Ma
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yue Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
52
|
Vadakedath S, Kandi V, Mohapatra RK, Pinnelli VBK, Yegurla RR, Shahapur PR, Godishala V, Natesan S, Vora KS, Sharun K, Tiwari R, Bilal M, Dhama K. Immunological aspects and gender bias during respiratory viral infections including novel Coronavirus disease-19 (COVID-19): A scoping review. J Med Virol 2021; 93:5295-5309. [PMID: 33990972 PMCID: PMC8242919 DOI: 10.1002/jmv.27081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
The human immune system is not adequately equipped to eliminate new microbes and could result in serious damage on first exposure. This is primarily attributed to the exaggerated immune response (inflammatory disease), which may prove detrimental to the host, as evidenced by SARS-CoV-2 infection. From the experiences of Novel Coronavirus Disease-19 to date, male patients are likely to suffer from high-intensity inflammation and disease severity than the female population. Hormones are considered the significant pillars of sex differences responsible for the discrepancy in immune response exhibited by males and females. Females appear to be better equipped to counter invading respiratory viral pathogens, including the novel SARS-CoV-2, than males. It can be hypothesized that females are more shielded from disease severity, probably owing to the diverse action/influence of estrogen and other sex hormones on both cellular (thymus-derived T lymphocytes) and humoral immunity (antibodies).
Collapse
Affiliation(s)
- Sabitha Vadakedath
- Department of BiochemistryPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | | | - Venkata B. K. Pinnelli
- Department of BiochemistryVydehi Institute of Medical Sciences and Research CentreBangaloreKarnatakaIndia
| | | | | | - Vikram Godishala
- Department of BiotechnologyGanapthi Degree CollegeParakalTelanganaIndia
| | - Senthilkumar Natesan
- Department of Infectious DiseasesIndian Institute of Public Health GandhinagarGanghinagarGujaratIndia
| | - Kranti S. Vora
- Department of Infectious DiseasesIndian Institute of Public Health GandhinagarGanghinagarGujaratIndia
| | - Khan Sharun
- Division of SurgeryICAR‐Indian Veterinary Research InstituteBareillyUttar PradeshIndia
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and ImmunologyCollege of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU)MathuraIndia
| | - Muhammad Bilal
- School of Life Science and Food EngineeringHuaiyin Institute of TechnologyHuaianChina
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteBareillyUttar PradeshIndia
| |
Collapse
|
53
|
Ma H, Liu J, Li Z, Xiong H, Zhang Y, Song Y, Lai J. Expression profile analysis reveals hub genes that are associated with immune system dysregulation in primary myelofibrosis. ACTA ACUST UNITED AC 2021; 26:478-490. [PMID: 34238135 DOI: 10.1080/16078454.2021.1945237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTION Primary myelofibrosis (PMF) is a familiar chronic myeloproliferative disease with an unfavorable prognosis. The effect of infection on the prognosis of patients with PMF is crucial. Immune system dysregulation plays a central role in the pathophysiology of PMF. To date, very little research has been conducted on the molecular mechanism of immune compromise in patients with PMF. METHODS To explore potential candidate genes, microarray datasets GSE61629 and 26049 were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between PMF patients and normal individuals were evaluated, gene function was measured and a series of hub genes were identified. Several significant immune cells were selected via cell type enrichment analysis. The correlation between hub genes and significant immune cells was determined. RESULTS A total of 282 DEGs were found, involving 217 upregulated genes and 65 downregulated genes. Several immune cells were found to be reduced in PMF, such as CD4+ T cells, CD4+ Tems, CD4+ memory T cells. Gene Ontology (GO) enrichment analysis of DEGs reflected that most biological processes were associated with immune processes. Six hub genes, namely, HP, MPO, MMP9, EPB42, SLC4A1, and ALAS2, were identified, and correlation analysis revealed that these hub genes have a negative correlation with immune cell abundance. CONCLUSIONS Taken together, the gene expression profile of whole blood cells in PMF patients indicated a battery of immune events, and the DEGs and hub genes might contribute to immune system dysregulation.
Collapse
Affiliation(s)
- Haotian Ma
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jincen Liu
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zilong Li
- College of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huaye Xiong
- College of Resources and Environment, Southwest University, Chongqing, People's Republic of China
| | - Yulei Zhang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yanping Song
- Institute of Hematology, Central Hospital of Xi'an, Xi'an, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
54
|
Rawat S, Vrati S, Banerjee A. Neutrophils at the crossroads of acute viral infections and severity. Mol Aspects Med 2021; 81:100996. [PMID: 34284874 PMCID: PMC8286244 DOI: 10.1016/j.mam.2021.100996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils are versatile immune effector cells essential for mounting a first-line defense against invading pathogens. However, uncontrolled activation can lead to severe life-threatening complications. Neutrophils exist as a heterogeneous population, and their interaction with pathogens and other immune cells may shape the outcome of the host immune response. Diverse classes of viruses, including the recently identified novel SARS-CoV-2, have shown to alter the various aspects of neutrophil biology, offering possibilities for selective intervention. Here, we review heterogeneity within the neutrophil population, highlighting the functional consequences of circulating phenotypes and their critical involvement in exaggerating protective and pathological immune responses against the viruses. We discuss the recent findings of neutrophil extracellular traps (NETs) in COVID-19 pathology and cover other viruses, where neutrophil biology and NETs are crucial for developing disease severity. In the end, we have also pointed out the areas where neutrophil-mediated responses can be finely tuned to outline opportunities for therapeutic manipulation in controlling inflammation against viral infection.
Collapse
Affiliation(s)
- Surender Rawat
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Banerjee
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
55
|
Zhang M, Bai X, Cao W, Ji J, Wang L, Yang Y, Yang H. The Influence of Corticosteroids, Immunosuppressants and Biologics on Patients With Inflammatory Bowel Diseases, Psoriasis and Rheumatic Diseases in the Era of COVID-19: A Review of Current Evidence. Front Immunol 2021; 12:677957. [PMID: 34335579 PMCID: PMC8317986 DOI: 10.3389/fimmu.2021.677957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with inflammatory bowel disease, psoriasis or other rheumatic diseases treated with corticosteroids, immunomodulators and biologics might face additional risk during COVID-19 epidemic due to their immunocompromised status. However, there was still no unanimous opinion on the use of these therapy during COVID-19 epidemic. Current studies suggested that systemic corticosteroids might increase the risk of hospitalization, as well as risks of ventilation, ICU, and death among patients with immune-mediated inflammatory diseases. Anti-TNF agent was associated with lower rate of hospitalization, as well as lower risks of ventilation, ICU, and death. No significant changes in rates of hospitalization, ventilation, ICU and mortality were observed in patients treated with immunomodulators or biologics apart from anti-TNF agents. The underlying mechanism of these results might be related to pathway of antiviral immune response and cytokine storm induced by SARS-COV-2 infection. Decision on the use of corticosteroids, immunomodulators and biologics should be made after weighing the benefits and potential risks based on individual patients.
Collapse
Affiliation(s)
- Mengyuan Zhang
- School of Medicine, Peking Union Medical College (PUMC), PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junyi Ji
- School of Medicine, Tsinghua University, Beijing, China
| | - Luo Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Yang Yang
- Department of Pharmacy, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
56
|
Wang H, Aloe C, McQualter J, Papanicolaou A, Vlahos R, Wilson N, Bozinovski S. G-CSFR antagonism reduces mucosal injury and airways fibrosis in a virus-dependent model of severe asthma. Br J Pharmacol 2021; 178:1869-1885. [PMID: 33609280 DOI: 10.1111/bph.15415] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a chronic disease that displays heterogeneous clinical and molecular features. A phenotypic subset of late-onset severe asthmatics has debilitating fixed airflow obstruction, increased neutrophilic inflammation and a history of pneumonia. Influenza A virus (IAV) is an important viral cause of pneumonia and asthmatics are frequently hospitalised during IAV epidemics. This study aims to determine whether antagonising granulocyte colony stimulating factor receptor (G-CSFR) prevents pneumonia-associated severe asthma. EXPERIMENTAL APPROACH Mice were sensitised to house dust mite (HDM) to establish allergic airway inflammation and subsequently infected with IAV (HKx31/H3N2 subtype). A neutralising monoclonal antibody against G-CSFR was therapeutically administered. KEY RESULTS In IAV-infected mice with prior HDM sensitisation, a significant increase in airway fibrotic remodelling and airways hyper-reactivity was observed. A mixed granulocytic inflammatory profile consisting of neutrophils, macrophages and eosinophils was prominent and at a molecular level, G-CSF expression was significantly increased in HDMIAV-treated mice. Blockage of G-CSFR reduced neutrophilic inflammation in the bronchoalveolar and lungs by over 80% in HDMIAV-treated mice without altering viral clearance. Markers of NETosis (dsDNA and myeloperoxidase in bronchoalveolar), tissue injury (LDH activity in bronchoalveolar) and oedema (total bronchoalveolar-fluid protein) were also significantly reduced with anti-G-CSFR treatment. In addition, anti-G-CSFR antagonism significantly reduced bronchoalveolar gelatinase activity, active TFGβ lung levels, collagen lung expression, airways fibrosis and airways hyper-reactivity in HDMIAV-treated mice. CONCLUSIONS AND IMPLICATIONS We have shown that antagonising G-CSFR-dependent neutrophilic inflammation reduced pathological disruption of the mucosal barrier and airways fibrosis in an IAV-induced severe asthma model.
Collapse
Affiliation(s)
- Hao Wang
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Christian Aloe
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Angelica Papanicolaou
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
57
|
Pedrina J, Stambas J. Targeting the Host Response: Can We Manipulate Extracellular Matrix Metalloproteinase Activity to Improve Influenza Virus Infection Outcomes? Front Mol Biosci 2021; 8:703456. [PMID: 34291090 PMCID: PMC8287203 DOI: 10.3389/fmolb.2021.703456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022] Open
Abstract
Each year, hundreds of thousands of individuals succumb to influenza virus infection and its associated complications. Several preventative and therapeutic options may be applied in order to preserve life. These traditional approaches include administration of seasonal influenza vaccines, pharmacological interventions in the form of antiviral drug therapy and supportive clinical approaches including mechanical ventilation and extracorporeal membrane oxygenation. While these measures have shown varying degrees of success, antiviral therapies and vaccination are constrained due to ongoing antigenic drift. Moreover, clinical approaches can also be associated with complications and drawbacks. These factors have led to the exploration and development of more sophisticated and nuanced therapeutic approaches involving host proteins. Advances in immunotherapy in the cancer field or administration of steroids following virus infection have highlighted the therapeutic potential of targeting host immune responses. We have now reached a point where we can consider the contribution of other “non-traditional” host components such as the extracellular matrix in immunity. Herein, we will review current, established therapeutic interventions and consider novel therapeutic approaches involving the extracellular matrix.
Collapse
Affiliation(s)
- Jess Pedrina
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - John Stambas
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
58
|
Johansson C, Kirsebom FCM. Neutrophils in respiratory viral infections. Mucosal Immunol 2021; 14:815-827. [PMID: 33758367 PMCID: PMC7985581 DOI: 10.1038/s41385-021-00397-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/04/2023]
Abstract
Viral respiratory infections are a common cause of severe disease, especially in infants, people who are immunocompromised, and in the elderly. Neutrophils, an important innate immune cell, infiltrate the lungs rapidly after an inflammatory insult. The most well-characterized effector mechanisms by which neutrophils contribute to host defense are largely extracellular and the involvement of neutrophils in protection from numerous bacterial and fungal infections is well established. However, the role of neutrophils in responses to viruses, which replicate intracellularly, has been less studied. It remains unclear whether and, by which underlying immunological mechanisms, neutrophils contribute to viral control or confer protection against an intracellular pathogen. Furthermore, neutrophils need to be tightly regulated to avoid bystander damage to host tissues. This is especially relevant in the lung where damage to delicate alveolar structures can compromise gas exchange with life-threatening consequences. It is inherently less clear how neutrophils can contribute to host immunity to viruses without causing immunopathology and/or exacerbating disease severity. In this review, we summarize and discuss the current understanding of how neutrophils in the lung direct immune responses to viruses, control viral replication and spread, and cause pathology during respiratory viral infections.
Collapse
Affiliation(s)
- Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | |
Collapse
|
59
|
Flerlage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherry S. Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol 2021; 19:425-441. [PMID: 33824495 PMCID: PMC8023351 DOI: 10.1038/s41579-021-00542-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 01/31/2023]
Abstract
Influenza viruses cause annual epidemics and occasional pandemics of respiratory tract infections that produce a wide spectrum of clinical disease severity in humans. The novel betacoronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in December 2019 and has since caused a pandemic. Both viral and host factors determine the extent and severity of virus-induced lung damage. The host's response to viral infection is necessary for viral clearance but may be deleterious and contribute to severe disease phenotypes. Similarly, tissue repair mechanisms are required for recovery from infection across the spectrum of disease severity; however, dysregulated repair responses may lead to chronic lung dysfunction. Understanding of the mechanisms of immunopathology and tissue repair following viral lower respiratory tract infection may broaden treatment options. In this Review, we discuss the pathogenesis, the contribution of the host response to severe clinical phenotypes and highlight early and late epithelial repair mechanisms following influenza virus infection, each of which has been well characterized. Although we are still learning about SARS-CoV-2 and its disease manifestations in humans, throughout the Review we discuss what is known about SARS-CoV-2 in the context of this broad knowledge of influenza virus, highlighting the similarities and differences between the respiratory viruses.
Collapse
Affiliation(s)
- Tim Flerlage
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
60
|
Neutrophil, Extracellular Matrix Components, and Their Interlinked Action in Promoting Secondary Pathogenesis After Spinal Cord Injury. Mol Neurobiol 2021; 58:4652-4665. [PMID: 34159551 DOI: 10.1007/s12035-021-02443-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Secondary pathogenesis following primary mechanical damage to the spinal cord is believed to be the ultimate reason for the limitation of currently available therapies. Precisely, the complex cascade of secondary events-mediated scar formation is the sole hurdle in the recovery process due to its inhibitory effect on axonal regeneration, plasticity, and remyelination. Neutrophils initiate this secondary injury along with other extracellular matrix components such as matrix metalloproteinase (MMPs), and chondroitin sulfate proteoglycans (CSPGs). Together, they mediate inflammation, necrosis, apoptosis, lesion, and scar formation at the injury site. Activated neutrophil releases several proteases, cytokines, and chemokines that cause complete tissue destruction. Thus, neutrophil activation and infiltration in the acute phase of injury act as a roadmap for inducing tissue destruction. MMPs, are extracellular proteolytic enzymes that degrade the ECM proteins, increases vascular permeability, and are predominantly released by neutrophils. These MMPs, in turn, cleave NG2 proteoglycan, a subtype of CSPG, into the active form. This active or shed form is involved in both the fibrotic as well as glial scar formation. Since neutrophils and ECM components are closely associated with each other in pathological conditions. Herein, we emphasize the interaction of neutrophils and their influence on ECM protein expression during the acute and chronic phases to identify a promising targets for designing a therapeutic approach in spinal cord injury.
Collapse
|
61
|
Stegelmeier AA, Darzianiazizi M, Hanada K, Sharif S, Wootton SK, Bridle BW, Karimi K. Type I Interferon-Mediated Regulation of Antiviral Capabilities of Neutrophils. Int J Mol Sci 2021; 22:4726. [PMID: 33946935 PMCID: PMC8125486 DOI: 10.3390/ijms22094726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Interferons (IFNs) are induced by viruses and are the main regulators of the host antiviral response. They balance tissue tolerance and immune resistance against viral challenges. Like all cells in the human body, neutrophils possess the receptors for IFNs and contribute to antiviral host defense. To combat viruses, neutrophils utilize various mechanisms, such as viral sensing, neutrophil extracellular trap formation, and antigen presentation. These mechanisms have also been linked to tissue damage during viral infection and inflammation. In this review, we presented evidence that a complex cross-regulatory talk between IFNs and neutrophils initiates appropriate antiviral immune responses and regulates them to minimize tissue damage. We also explored recent exciting research elucidating the interactions between IFNs, neutrophils, and severe acute respiratory syndrome-coronavirus-2, as an example of neutrophil and IFN cross-regulatory talk. Dissecting the IFN-neutrophil paradigm is needed for well-balanced antiviral therapeutics and development of novel treatments against many major epidemic or pandemic viral infections, including the ongoing pandemic of the coronavirus disease that emerged in 2019.
Collapse
Affiliation(s)
| | | | | | | | | | - Byram W. Bridle
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| | - Khalil Karimi
- Correspondence: (B.W.B.); (K.K.); Tel.: +1-(519)-824-4120 (ext. 54657) (B.W.B.); +1-(519)-824-4120 (ext. 54668) (K.K.)
| |
Collapse
|
62
|
Petito E, Falcinelli E, Paliani U, Cesari E, Vaudo G, Sebastiano M, Cerotto V, Guglielmini G, Gori F, Malvestiti M, Becattini C, Paciullo F, De Robertis E, Bury L, Lazzarini T, Gresele P. Association of Neutrophil Activation, More Than Platelet Activation, With Thrombotic Complications in Coronavirus Disease 2019. J Infect Dis 2021; 223:933-944. [PMID: 33280009 PMCID: PMC7798977 DOI: 10.1093/infdis/jiaa756] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 infection is associated with hypercoagulability, which predisposes to venous thromboembolism (VTE). We analyzed platelet and neutrophil activation in patients with coronavirus disease 2019 (COVID-19) and their association with VTE. METHODS Hospitalized patients with COVID-19 and age- and sex-matched healthy controls were studied. Platelet and leukocyte activation, neutrophil extracellular traps (NETs), and matrix metalloproteinase 9, a neutrophil-released enzyme, were measured. Four patients were restudied after recovery. The activating effect of plasma from patients with COVID-19 on control platelets and leukocytes and the inhibiting activity of common antithrombotic agents on it were studied. RESULTS A total of 36 patients with COVID-19 and 31 healthy controls were studied; VTE developed in 8 of 36 patients with COVID-19 (22.2%). Platelets and neutrophils were activated in patients with COVID-19. NET, but not platelet activation, biomarkers correlated with disease severity and were associated with thrombosis. Plasmatic matrix metalloproteinase 9 was significantly increased in patients with COVID-19. Platelet and neutrophil activation markers, but less so NETs, normalized after recovery. In vitro, plasma from patients with COVID-19 triggered platelet and neutrophil activation and NET formation, the latter blocked by therapeutic-dose low-molecular-weight heparin, but not by aspirin or dypiridamole. CONCLUSIONS Platelet and neutrophil activation are key features of patients with COVID-19. NET biomarkers may help to predict clinical worsening and VTE and may guide low-molecular-weight heparin treatment.
Collapse
Affiliation(s)
- Eleonora Petito
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Ugo Paliani
- Division of Internal Medicine, ASL 1 Umbria, Città di Castello, Italy
| | - Enrica Cesari
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Gaetano Vaudo
- Unit of Internal Medicine, Terni University Hospital, Terni, Italy
| | - Manuela Sebastiano
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Vittorio Cerotto
- Section of Anesthesia, Intensive Care and Pain Medicine, Department of Emergency and Urgency, Città di Castello Hospital, Città di Castello, Italy
| | - Giuseppe Guglielmini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Fabio Gori
- Section of Anesthesia, Intensive Care, and Pain Medicine, Azienda Ospedaliera-Universitaria Santa Maria della Misericordia, Perugia, Italy
| | - Marco Malvestiti
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Cecilia Becattini
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Francesco Paciullo
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Edoardo De Robertis
- Department of Surgical and Biomedical Sciences, Division of Anaesthesia, Analgesia, and Intensive Care, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Teseo Lazzarini
- Section of Anesthesia and Intensive Care, Presidio Alto Chiascio, USL Umbria 1, Gubbio, Italy
| | - Paolo Gresele
- Department of Medicine and Surgery, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
63
|
Quitadamo PA, Comegna L, Cristalli P. Anti-Infective, Anti-Inflammatory, and Immunomodulatory Properties of Breast Milk Factors for the Protection of Infants in the Pandemic From COVID-19. Front Public Health 2021; 8:589736. [PMID: 33738273 PMCID: PMC7960784 DOI: 10.3389/fpubh.2020.589736] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
COVID-19 pandemic since the end of 2019 spreads worldwide, counting millions of victims. The viral invasion, systemic inflammation, and consequent organ failure are the gravest features of coronavirus disease 2019 (COVID-19), and they are associated with a high mortality rate. The aim of this study is to evaluate the role of breast milk in the COVID-19 pandemic, analyzing its antiviral, anti-inflammatory, and immunoregulatory effects due to its bioactive components, so numerous and important for the protection of infants. The study tried to demonstrate that all the components of human milk are capable of performing functions on all the pathogenic events recognized and described in COVID-19 disease. Those human milk factors are well-tolerated and practically free of side effects, so breast milk should become a research topic to discover therapies even in this epidemic. In the first part, the mechanisms of protection and defense of the breast milk elements will be delineated; in the second section, it will describe the human milk effects in viral infections and it will be hypothesized how the known mechanisms could act in COVID infection.
Collapse
Affiliation(s)
- Pasqua Anna Quitadamo
- NICU “Casa Sollievo della Sofferenza” Foundation, Scientific Research and Care Institute, San Giovanni Rotondo, Italy
| | | | | |
Collapse
|
64
|
Alon R, Sportiello M, Kozlovski S, Kumar A, Reilly EC, Zarbock A, Garbi N, Topham DJ. Leukocyte trafficking to the lungs and beyond: lessons from influenza for COVID-19. Nat Rev Immunol 2021; 21:49-64. [PMID: 33214719 PMCID: PMC7675406 DOI: 10.1038/s41577-020-00470-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Understanding of the fundamental processes underlying the versatile clinical manifestations of COVID-19 is incomplete without comprehension of how different immune cells are recruited to various compartments of virus-infected lungs, and how this recruitment differs among individuals with different levels of disease severity. As in other respiratory infections, leukocyte recruitment to the respiratory system in people with COVID-19 is orchestrated by specific leukocyte trafficking molecules, and when uncontrolled and excessive it results in various pathological complications, both in the lungs and in other organs. In the absence of experimental data from physiologically relevant animal models, our knowledge of the trafficking signals displayed by distinct vascular beds and epithelial cell layers in response to infection by SARS-CoV-2 is still incomplete. However, SARS-CoV-2 and influenza virus elicit partially conserved inflammatory responses in the different respiratory epithelial cells encountered early in infection and may trigger partially overlapping combinations of trafficking signals in nearby blood vessels. Here, we review the molecular signals orchestrating leukocyte trafficking to airway and lung compartments during primary pneumotropic influenza virus infections and discuss potential similarities to distinct courses of primary SARS-CoV-2 infections. We also discuss how an imbalance in vascular activation by leukocytes outside the airways and lungs may contribute to extrapulmonary inflammatory complications in subsets of patients with COVID-19. These multiple molecular pathways are potential targets for therapeutic interventions in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel.
| | - Mike Sportiello
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stav Kozlovski
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ashwin Kumar
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Emma C Reilly
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexander Zarbock
- Department of Cellular Immunology, Institute of Experimental Immunology Medical Faculty, University of Bonn, Bonn, Germany
| | - Natalio Garbi
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - David J Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
65
|
Smith DJ, Ellis PR, Turner AM. Exacerbations of Lung Disease in Alpha-1 Antitrypsin Deficiency. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2021; 8:162-176. [PMID: 33238089 PMCID: PMC8047608 DOI: 10.15326/jcopdf.2020.0173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/13/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) is an important risk factor for development of chronic obstructive pulmonary disease (COPD). Patients with AATD classically develop a different pattern of lung disease from those with usual COPD, decline faster and exhibit a range of differences in pathogenesis, all of which may be relevant to phenotype and/or impact of exacerbations. There are a number of definitions of exacerbation, with the main features being worsening of symptoms over at least 2 days, which may be associated with a change in treatment. In this article we review the literature surrounding exacerbations in AATD, focusing, in particular, on ways in which they may differ from such events in usual COPD, and the potential impact on clinical management.
Collapse
Affiliation(s)
- Daniel J. Smith
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Paul R. Ellis
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Alice M. Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, United Kingdom
- University Hospitals Birmingham, United Kingdom
| |
Collapse
|
66
|
Nanocapsules containing Saussurea lappa essential oil: Formulation, characterization, antidiabetic, anti-cholinesterase and anti-inflammatory potentials. Int J Pharm 2020; 593:120138. [PMID: 33278497 DOI: 10.1016/j.ijpharm.2020.120138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
Plant-based remedies have been widely used for the management of variable diseases due to their safety and less side effects. In the present study, we investigated Saussurea lappa CB. Clarke. (SL) given its largely reported medicinal effects. Specifically, our objective was to provide an insight into a new polymethyl methacrylate based nanocapsules as carriers of SL essential oil and characterize their biologic functions. The nanoparticles were prepared by nanoprecipitation technique, characterized and analyzed for their cytotoxicity, anti-inflammatory, anti-Alzheimer and antidiabetic effects. The results revealed that the developed nanoparticles had a diameter around 145 nm, a polydispersity index of 0.18 and a zeta potential equal to +45 mV and they did not show any cytotoxicity at 25 μg·mL-1. The results also showed an anti-inflammatory activity (reduction in metalloprotease MMP-9 enzyme activity and RNA expression of inflammatory cytokines: TNF-α, GM-CSF and IL1β), a high anti-Alzheimer's effect (IC50 around 25.0 and 14.9 μg·mL-1 against acetylcholinesterase and butyrylcholinesterase, respectively), and a strong antidiabetic effect (IC50 were equal to 22.9 and 75.8 μg·mL-1 against α-amylase and α-glucosidase, respectively). Further studies are required including the in vivo studies (e.g., preclinical), the pharmacokinetic properties, the bioavailability and the underlying associated metabolic pathways.
Collapse
|
67
|
Gerber A, Goldklang M, Stearns K, Ma X, Xiao R, Zelonina T, D'Armiento J. Attenuation of pulmonary injury by an inhaled MMP inhibitor in the endotoxin lung injury model. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1036-L1047. [PMID: 33026238 DOI: 10.1152/ajplung.00420.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by pulmonary edema and poor gas exchange resulting from severe inflammatory lung injury. Neutrophilic infiltration and increased pulmonary vascular permeability are hallmarks of early ARDS and precipitate a self-perpetuating cascade of inflammatory signaling. The biochemical processes initiating these events remain unclear. Typically associated with extracellular matrix degradation, recent data suggest matrix metalloproteinases (MMPs) are regulators of pulmonary inflammation. To demonstrate that inhalation of a broad MMP inhibitor attenuates LPS induced pulmonary inflammation. Nebulized CGS27023AM (CGS) was administered to LPS-injured mice. Pulmonary CGS levels were examined by mass spectroscopy. Inflammatory scoring of hematoxylin-eosin sections, examination of vascular integrity via lung wet/dry and bronchoalveolar lvage/serum FITC-albumin ratios were performed. Cleaved caspase-3 levels were also assessed. Differential cell counts and pulse-chase labeling were utilized to determine the effects of CGS on neutrophil migration. The effects of CGS on human neutrophil migration and viability were examined using Boyden chambers and MTT assays. Nebulization successfully delivered CGS to the lungs. Treatment decreased pulmonary inflammatory scores, edema, and apoptosis in LPS treated animals. Neutrophil chemotaxis was reduced by CGS treatment, with inhalation causing significant reductions in both the total number and newly produced bromodeoxyuridine-positive cells infiltrating the lung. Mechanistic studies on cells isolated from humans demonstrate that CGS-treated neutrophils exhibit decreased chemotaxis. The protective effect observed following treatment with a nonspecific MMP inhibitor indicates that one or more MMPs mediate the development of pulmonary edema and neutrophil infiltration in response to LPS injury. In accordance with this, inhaled MMP inhibitors warrant further study as a potential new therapeutic avenue for treatment of acute lung injury.
Collapse
Affiliation(s)
- Adam Gerber
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Monica Goldklang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Kyle Stearns
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Xinran Ma
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Tina Zelonina
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Jeanine D'Armiento
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
68
|
Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Taruya A, Furuta M, Mukaida N, Kondo T. Prevention of CaCl 2-induced aortic inflammation and subsequent aneurysm formation by the CCL3-CCR5 axis. Nat Commun 2020; 11:5994. [PMID: 33239616 PMCID: PMC7688638 DOI: 10.1038/s41467-020-19763-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/29/2020] [Indexed: 11/27/2022] Open
Abstract
Inflammatory mediators such as cytokines and chemokines are crucially involved in the development of abdominal aortic aneurysm (AAA). Here we report that CaCl2 application into abdominal aorta induces AAA with intra-aortic infiltration of macrophages as well as enhanced expression of chemokine (C-C motif) ligand 3 (CCL3) and MMP-9. Moreover, infiltrating macrophages express C-C chemokine receptor 5 (CCR5, a specific receptor for CCL3) and MMP-9. Both Ccl3-/- mice and Ccr5-/- but not Ccr1-/- mice exhibit exaggerated CaCl2-inducced AAA with augmented macrophage infiltration and MMP-9 expression. Similar observations are also obtained on an angiotensin II-induced AAA model. Immunoneutralization of CCL3 mimics the phenotypes observed in CaCl2-treated Ccl3-/- mice. On the contrary, CCL3 treatment attenuates CaCl2-induced AAA in both wild-type and Ccl3-/- mice. Consistently, we find that the CCL3-CCR5 axis suppresses PMA-induced enhancement of MMP-9 expression in macrophages. Thus, CCL3 can be effective to prevent the development of CaCl2-induced AAA by suppressing MMP-9 expression.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Anti-Inflammatory Agents/metabolism
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/immunology
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/pathology
- Calcium Chloride/toxicity
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Disease Models, Animal
- Humans
- Inflammation Mediators/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Knockout
- Receptors, CCR1/genetics
- Receptors, CCR1/metabolism
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Specific Pathogen-Free Organisms
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Machi Furuta
- Department of Clinical Laboratory Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
69
|
Exuberant fibroblast activity compromises lung function via ADAMTS4. Nature 2020; 587:466-471. [PMID: 33116313 DOI: 10.1038/s41586-020-2877-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.
Collapse
|
70
|
The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability. Mediators Inflamm 2020; 2020:3872367. [PMID: 33082709 PMCID: PMC7557896 DOI: 10.1155/2020/3872367] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) belongs to the MMP family and has been widely investigated. Excessive MMP-9 expression can enhance extracellular matrix degradation and promote plaque instability. Studies have demonstrated that MMP-9 levels are higher in vulnerable plaques than in stable plaques. Additionally, several human studies have demonstrated that MMP-9 may be a predictor of atherosclerotic plaque instability and a risk factor for future adverse cardiovascular and cerebrovascular events. MMP-9 deficiency or blocking MMP-9 expression can inhibit plaque inflammation and prevent atherosclerotic plaque instability. All of these results suggest that MMP-9 may be a useful predictive biomarker for vulnerable atherosclerotic plaques, as well as a therapeutic target for preventing atherosclerotic plaque instability. In this review, we describe the structure, function, and regulation of MMP-9. We also discuss the role of MMP-9 in predicting and preventing atherosclerotic plaque instability.
Collapse
|
71
|
Ishida Y, Kuninaka Y, Yamamoto Y, Nosaka M, Kimura A, Furukawa F, Mukaida N, Kondo T. Pivotal Involvement of the CX3CL1-CX3CR1 Axis for the Recruitment of M2 Tumor-Associated Macrophages in Skin Carcinogenesis. J Invest Dermatol 2020; 140:1951-1961.e6. [PMID: 32179066 DOI: 10.1016/j.jid.2020.02.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 12/19/2022]
Abstract
We previously revealed the crucial roles of a chemokine, CX3CL1, and its receptor, CX3CR1, in skin wound healing. Although repeated wounds frequently develop into skin cancer, the roles of CX3CL1 in skin carcinogenesis remain elusive. Here, we proved that CX3CL1 protein expression and CX3CR1+ macrophages were observed in human skin cancer tissues. Similarly, we observed the enhancement of CX3CL1 expression and the abundant accumulation of CX3CR1+ tumor-associated macrophages with M2-like phenotypes in the skin carcinogenesis process induced by the combined treatment with 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate. In this mouse skin carcinogenesis process, CX3CR1+ tumor-associated macrophages exhibited M2-like phenotypes with the expression of Wnt3a and angiogenic molecules including VEGF and matrix metalloproteinase 9. Compared with wild-type mice, CX3CR1-deficient mice showed fewer numbers of skin tumors with a lower incidence. Concomitantly, M2-macrophage numbers and neovascularization were reduced with the depressed expression of angiogenic factors and Wnt3a. Thus, the CX3CL1-CX3CR1 axis can crucially contribute to skin carcinogenesis by regulating the accumulation and functions of tumor-associated macrophages. Thus, this axis can be a good target for preventing and/or treating skin cancers.
Collapse
Affiliation(s)
- Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuki Yamamoto
- Department of Dermatology, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
72
|
Fine N, Tasevski N, McCulloch CA, Tenenbaum HC, Glogauer M. The Neutrophil: Constant Defender and First Responder. Front Immunol 2020; 11:571085. [PMID: 33072112 PMCID: PMC7541934 DOI: 10.3389/fimmu.2020.571085] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
The role of polymorphonuclear neutrophils (PMNs) in biology is often recognized during pathogenesis associated with PMN hyper- or hypo-functionality in various disease states. However, in the vast majority of cases, PMNs contribute to resilience and tissue homeostasis, with continuous PMN-mediated actions required for the maintenance of health, particularly in mucosal tissues. PMNs are extraordinarily well-adapted to respond to and diminish the damaging effects of a vast repertoire of infectious agents and injurious processes that are encountered throughout life. The commensal biofilm, a symbiotic polymicrobial ecosystem that lines the mucosal surfaces, is the first line of defense against pathogenic strains that might otherwise dominate, and is therefore of critical importance for health. PMNs regularly interact with the commensal flora at the mucosal tissues in health and limit their growth without developing an overt inflammatory reaction to them. These PMNs exhibit what is called a para-inflammatory phenotype, and have reduced inflammatory output. When biofilm growth and makeup are disrupted (i.e., dysbiosis), clinical symptoms associated with acute and chronic inflammatory responses to these changes may include pain, erythema and swelling. However, in most cases, these responses indicate that the immune system is functioning properly to re-establish homeostasis and protect the status quo. Defects in this healthy everyday function occur as a result of PMN subversion by pathological microbial strains, genetic defects or crosstalk with other chronic inflammatory conditions, including cancer and rheumatic disease, and this can provide some avenues for therapeutic targeting of PMN function. In other cases, targeting PMN functions could worsen the disease state. Certain PMN-mediated responses to pathogens, for example Neutrophil Extracellular Traps (NETs), might lead to undesirable symptoms such as pain or swelling and tissue damage/fibrosis. Despite collateral damage, these PMN responses limit pathogen dissemination and more severe damage that would otherwise occur. New data suggests the existence of unique PMN subsets, commonly associated with functional diversification in response to particular inflammatory challenges. PMN-directed therapeutic approaches depend on a greater understanding of this diversity. Here we outline the current understanding of PMNs in health and disease, with an emphasis on the positive manifestations of tissue and organ-protective PMN-mediated inflammation.
Collapse
Affiliation(s)
- Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Nikola Tasevski
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Howard C Tenenbaum
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for Advanced Dental Research and Care, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
73
|
Xu P, Gärtner F, Gihring A, Liu C, Burster T, Wabitsch M, Knippschild U, Paschke S. Influence of obesity on remodeling of lung tissue and organization of extracellular matrix after blunt thorax trauma. Respir Res 2020; 21:238. [PMID: 32943048 PMCID: PMC7496205 DOI: 10.1186/s12931-020-01502-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Previously, it has been shown that obesity is a risk factor for recovery, regeneration, and tissue repair after blunt trauma and can affect the rate of muscle recovery and collagen deposition after trauma. To date, lung tissue regeneration and extracellular matrix regulation in obese mice after injury has not been investigated in detail yet. Methods This study uses an established blunt thorax trauma model to analyze morphological changes and alterations on gene and protein level in lean or obese (diet-induced obesity for 16 ± 1 week) male C57BL/6 J mice at various time-points after trauma induction (1 h, 6 h, 24 h, 72 h and 192 h). Results Morphological analysis after injury showed lung parenchyma damage at early time-points in both lean and obese mice. At later time-points a better regenerative capacity of lean mice was observed, since obese animals still exhibited alveoli collapse, wall thickness as well as remaining filled alveoli structures. Although lean mice showed significantly increased collagen and fibronectin gene levels, analysis of collagen deposition showed no difference based on colorimetric quantification of collagen and visual assessment of Sirius red staining. When investigating the organization of the ECM on gene level, a decreased response of obese mice after trauma regarding extracellular matrix composition and organization was detectable. Differences in the lung tissue between the diets regarding early responding MMPs (MMP8/9) and late responding MMPs (MMP2) could be observed on gene and protein level. Obese mice show differences in regulation of extracellular matrix components compared to normal weight mice, which results in a decreased total MMP activity in obese animals during the whole regeneration phase. Starting at 6 h post traumatic injury, lean mice show a 50% increase in total MMP activity compared to control animals, while MMP activity in obese mice drops to 50%. Conclusions In conclusion, abnormal regulation of the levels of extracellular matrix genes in the lung may contribute to an aberrant regeneration after trauma induction with a delay of repair and pathological changes of the lung tissue in obese mice.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan, 010000, Republic of Kazakhstan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Hospital for Pediatrics and Adolescent Medicine, Eythstraße 24, 89075, Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Stephan Paschke
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
74
|
Zhang N, Zhu L, Zhang Y, Zhou C, Song R, Yang X, Huang L, Xiong S, Huang X, Xu F, Wang Y, Wan G, Chen Z, Li A, Zhan Q, Zeng H. Circulating Rather Than Alveolar Extracellular Deoxyribonucleic Acid Levels Predict Outcomes in Influenza. J Infect Dis 2020; 222:1145-1154. [PMID: 32436580 DOI: 10.1093/infdis/jiaa241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/05/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND High levels of circulating neutrophil extracellular traps (NETs) are associated with a poor prognosis in influenza A infection. It remains unclear whether NETs in the plasma or bronchoalveolar lavage fluid (BALF) can predict clinical outcomes in influenza. METHODS One hundred eighteen patients who were diagnosed with H1N1 influenza in 2017-2018 were recruited. The NETs were assessed in plasma and BALF samples by quantifying cell-free deoxyribonucleic acid (cfDNA) and protein-DNA complexes. Predictions of severe illness and 60-day mortality were analyzed with receiver operating characteristic curves. RESULTS The NET levels were significantly elevated in the BALF and contributed to the pathology of lungs, yet it was not associated with disease severity or mortality in patients severely infected with H1N1. Plasma NET levels were significantly increased in the patients with severe influenza and positively correlated with the oxygen index and sequential organ failure assessment scores. High levels of plasma cfDNA (>286.6 ng/mL) or histone-bound DNA (>9.4 ng/mL) discriminated severe influenza from mild, and even higher levels of cfDNA (>306.3 ng/mL) or histone-bound DNA (>23.1 ng/mL) predicted fatal outcomes in severely ill patients. CONCLUSIONS The cfDNA and histone-bound DNA in plasma represent early predictive biomarkers for the prognosis of influenza.
Collapse
Affiliation(s)
- Nannan Zhang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yue Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Chun Zhou
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Song
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Yang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Linna Huang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Shuyu Xiong
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Xu Huang
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fei Xu
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Gang Wan
- Statistics Room, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhihai Chen
- The National Clinical Key Department of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Intensive Care Unit, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qingyuan Zhan
- Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
75
|
Gihring A, Gärtner F, Liu C, Hoenicka M, Wabitsch M, Knippschild U, Xu P. Influence of Obesity on the Organization of the Extracellular Matrix and Satellite Cell Functions After Combined Muscle and Thorax Trauma in C57BL/6J Mice. Front Physiol 2020; 11:849. [PMID: 32848828 PMCID: PMC7399228 DOI: 10.3389/fphys.2020.00849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a major factor of health risk in modern society. Next to intricately linked comorbidities like coronary artery disease or diabetes, an influence of obesity on regeneration after muscle injury has been described previously. However, the influence of obesity on tissue regeneration in a combined trauma, merging the more systemic influence of a blunt lung trauma and the local blunt muscle trauma, has not been investigated yet. Therefore, the aim of this study was to investigate the influence of obesity on regeneration in a mouse model that combined both muscle and thorax trauma. Using gene expression analysis, a focus was put on the structure as well as the organization of the extracellular matrix and on functional satellite cell physiology. An increased amount of debris in the lung of obese mice compared to normal weight mice up to 192 h after combined trauma based on visual assessment can be reported which is accompanied by a decreased response of Mmp2 in obese mice. Additionally, a delayed and elongated response of inhibitor genes like Timp1 has been revealed in obese mice. This elongated response to the trauma in obese mice can also be seen in plasma based on increased levels of pro-inflammatory chemo- and cytokines (IL-6, MCP-1, and IL 23) 192 h post trauma. In addition to changes in the lung, morphological analysis of the injured extensor iliotibialis anticus of the left hind leg in lean and diet-induced obese mice revealed deposition of fat in the regenerating muscle in obese animals hindering the structure of a compact muscle. Additionally, decreased activation of satellite cells and changes in organization and build-up of the ECM could be detected, finally leading to a decreased stability of the regenerated muscle in obese mice. Both factors contribute to an attenuated response to the trauma by obese mice which is reflected by a statistically significant decrease in muscle force of obese mice compared to lean mice 192 h post trauma induction.
Collapse
Affiliation(s)
- Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Markus Hoenicka
- Department of Cardio-Thoracic and Vascular Surgery, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
76
|
Leija-Martínez JJ, Huang F, Del-Río-Navarro BE, Sanchéz-Muñoz F, Muñoz-Hernández O, Giacoman-Martínez A, Hall-Mondragon MS, Espinosa-Velazquez D. IL-17A and TNF-α as potential biomarkers for acute respiratory distress syndrome and mortality in patients with obesity and COVID-19. Med Hypotheses 2020; 144:109935. [PMID: 32795834 PMCID: PMC7413092 DOI: 10.1016/j.mehy.2020.109935] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was declared a pandemic and international health emergency by the World Health Organization. Patients with obesity with COVID-19 are 7 times more likely to need invasive mechanical ventilation than are patients without obesity (OR 7.36; 95% CI: 1.63–33.14, p = 0.021). Acute respiratory distress syndrome (ARDS) is one of the main causes of death related to COVID-19 and is triggered by a cytokine storm that damages the respiratory epithelium. Interleukins that cause the chronic low-grade inflammatory state of obesity, such as interleukin (IL)-1β, IL-6, monocyte chemoattractant peptide (MCP)-1, and, in particular, IL-17A and tumour necrosis factor alpha (TNF-α), also play very important roles in lung damage in ARDS. Therefore, obesity is associated with an immune state favourable to a cytokine storm. Our hypothesis is that serum concentrations of TNF-α and IL-17A are more elevated in patients with obesity and COVID-19, and consequently, they have a greater probability of developing ARDS and death. The immunobiology of IL-17A and TNF-α opens a new fascinating field of research for COVID-19.
Collapse
Affiliation(s)
- José J Leija-Martínez
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Fengyang Huang
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico.
| | - Blanca E Del-Río-Navarro
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Fausto Sanchéz-Muñoz
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico; Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City, Mexico
| | - Onofre Muñoz-Hernández
- Universidad Nacional Autónoma de México, Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Mexico City, Mexico
| | - Abraham Giacoman-Martínez
- Hospital Infantil de Mexico Federico Gómez, Research Laboratory of Pharmacology, Mexico City, Mexico
| | - Margareth S Hall-Mondragon
- Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| | - Dario Espinosa-Velazquez
- Hospital Infantil de México Federico Gómez, Department of Pediatric Allergy Clinical Immunology, Mexico City, Mexico
| |
Collapse
|
77
|
Sebina I, Phipps S. The Contribution of Neutrophils to the Pathogenesis of RSV Bronchiolitis. Viruses 2020; 12:E808. [PMID: 32726921 PMCID: PMC7472258 DOI: 10.3390/v12080808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Acute viral bronchiolitis causes significant mortality in the developing world, is the number one cause of infant hospitalisation in the developed world, and is associated with the later development of chronic lung diseases such as asthma. A vaccine against respiratory syncytial virus (RSV), the leading cause of viral bronchiolitis in infancy, remains elusive, and hence new therapeutic modalities are needed to limit disease severity. However, much remains unknown about the underlying pathogenic mechanisms. Neutrophilic inflammation is the predominant phenotype observed in infants with both mild and severe disease, however, a clear understanding of the beneficial and deleterious effects of neutrophils is lacking. In this review, we describe the multifaceted roles of neutrophils in host defence and antiviral immunity, consider their contribution to bronchiolitis pathogenesis, and discuss whether new approaches that target neutrophil effector functions will be suitable for treating severe RSV bronchiolitis.
Collapse
Affiliation(s)
- Ismail Sebina
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Australia;
| | | |
Collapse
|
78
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
79
|
Wieczfinska J, Sitarek P, Kowalczyk T, Pawliczak R. Leonurus sibiricus root extracts decrease airway remodeling markers expression in fibroblasts. Clin Exp Immunol 2020; 202:28-46. [PMID: 32562256 DOI: 10.1111/cei.13481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bronchial asthma is believed to be provoked by the interaction between airway inflammation and remodeling. Airway remodeling is a complex and poorly understood process, and controlling it appears key for halting the progression of asthma and other obstructive lung diseases. Plants synthesize a number of valuable compounds as constitutive products and as secondary metabolites, many of which have curative properties. The aim of this study was to evaluate the anti-remodeling properties of extracts from transformed and transgenic Leonurus sibiricus roots with transformed L. sibiricus roots extract with transcriptional factor AtPAP1 overexpression (AtPAP1). Two fibroblast cell lines, Wistar Institute-38 (WI-38) and human fetal lung fibroblast (HFL1), were incubated with extracts from transformed L. sibiricus roots (TR) and roots with transcriptional factor AtPAP1 over-expression (AtPAP1 TR). Additionally, remodeling conditions were induced in the cultures with rhinovirus 16 (HRV16). The expressions of metalloproteinase 9 (MMP)-9, tissue inhibitor of metalloproteinases 1 (TIMP-1), arginase I and transforming growth factor (TGF)-β were determined by quantitative polymerase chain reaction (qPCR) and immunoblotting methods. AtPAP1 TR decreased arginase I and MMP-9 expression with no effect on TIMP-1 or TGF-β mRNA expression. This extract also inhibited HRV16-induced expression of arginase I, MMP-9 and TGF-β in both cell lines (P < 0·05) Our study shows for the first time to our knowledge, that transformed AtPAP1 TR extract from L. sibiricus root may affect the remodeling process. Its effect can be attributed an increased amount of phenolic acids such as: chlorogenic acid, caffeic acid or ferulic acid and demonstrates the value of biotechnology in medicinal research.
Collapse
Affiliation(s)
- J Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| | - P Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - T Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz, Poland
| | - R Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
80
|
Rahman FA, Angus SA, Stokes K, Karpowicz P, Krause MP. Impaired ECM Remodeling and Macrophage Activity Define Necrosis and Regeneration Following Damage in Aged Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21134575. [PMID: 32605082 PMCID: PMC7369722 DOI: 10.3390/ijms21134575] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/28/2022] Open
Abstract
Regenerative capacity of skeletal muscle declines with age, the cause of which remains largely unknown. We investigated extracellular matrix (ECM) proteins and their regulators during early regeneration timepoints to define a link between aberrant ECM remodeling, and impaired aged muscle regeneration. The regeneration process was compared in young (three month old) and aged (18 month old) C56BL/6J mice at 3, 5, and 7 days following cardiotoxin-induced damage to the tibialis anterior muscle. Immunohistochemical analyses were performed to assess regenerative capacity, ECM remodeling, and the macrophage response in relation to plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-9 (MMP-9), and ECM protein expression. The regeneration process was impaired in aged muscle. Greater intracellular and extramyocellular PAI-1 expression was found in aged muscle. Collagen I was found to accumulate in necrotic regions, while macrophage infiltration was delayed in regenerating regions of aged muscle. Young muscle expressed higher levels of MMP-9 early in the regeneration process that primarily colocalized with macrophages, but this expression was reduced in aged muscle. Our results indicate that ECM remodeling is impaired at early time points following muscle damage, likely a result of elevated expression of the major inhibitor of ECM breakdown, PAI-1, and consequent suppression of the macrophage, MMP-9, and myogenic responses.
Collapse
Affiliation(s)
- Fasih Ahmad Rahman
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
| | - Sarah Anne Angus
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
| | - Kyle Stokes
- Department of Biomedical Sciences, University of Windsor. Windsor, ON N9B 3P4, Canada; (K.S.); (P.K.)
| | - Phillip Karpowicz
- Department of Biomedical Sciences, University of Windsor. Windsor, ON N9B 3P4, Canada; (K.S.); (P.K.)
| | - Matthew Paul Krause
- Department of Kinesiology, University of Windsor. Windsor, ON N9B 3P4, Canada; (F.A.R.); (S.A.A.)
- Correspondence: ; Tel.: +1-519-253-3000
| |
Collapse
|
81
|
Abstract
It has been over 100 years since the 1918 influenza pandemic, one of the most infamous examples of viral immunopathology. Since that time, there has been an inevitable repetition of influenza pandemics every few decades and yearly influenza seasons, which have a significant impact on human health. Recently, noteworthy progress has been made in defining the cellular and molecular mechanisms underlying pathology induced by an exuberant host response to influenza virus infection. Infection with influenza viruses is associated with a wide spectrum of disease, from mild symptoms to severe complications including respiratory failure, and the severity of influenza disease is driven by a complex interplay of viral and host factors. This chapter will discuss mechanisms of infection severity using concepts of disease resistance and tolerance as a framework for understanding the balance between viral clearance and immunopathology. We review mechanistic studies in animal models of infection and correlational studies in humans that have begun to define these factors and discuss promising host therapeutic targets to improve outcomes from severe influenza disease.
Collapse
Affiliation(s)
- David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States; Department of Microbiology, Immunology, and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
82
|
LaRivière WB, Liao S, McMurtry SA, Oshima K, Han X, Zhang F, Yan S, Haeger SM, Ransom M, Bastarache JA, Linhardt RJ, Schmidt EP, Yang Y. Alveolar heparan sulfate shedding impedes recovery from bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1198-L1210. [PMID: 32320623 DOI: 10.1152/ajplung.00063.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pulmonary epithelial glycocalyx, an anionic cell surface layer enriched in glycosaminoglycans such as heparan sulfate and chondroitin sulfate, contributes to the alveolar barrier. Direct injury to the pulmonary epithelium induces shedding of heparan sulfate into the air space; the impact of this shedding on recovery after lung injury is unknown. Using mass spectrometry, we found that heparan sulfate was shed into the air space for up to 3 wk after intratracheal bleomycin-induced lung injury and coincided with induction of matrix metalloproteinases (MMPs), including MMP2. Delayed inhibition of metalloproteinases, beginning 7 days after bleomycin using the nonspecific MMP inhibitor doxycycline, attenuated heparan sulfate shedding and improved lung function, suggesting that heparan sulfate shedding may impair lung recovery. While we also observed an increase in air space heparanase activity after bleomycin, pharmacological and transgenic inhibition of heparanase in vivo failed to attenuate heparan sulfate shedding or protect against bleomycin-induced lung injury. However, experimental augmentation of airway heparanase activity significantly worsened post-bleomycin outcomes, confirming the importance of epithelial glycocalyx integrity to lung recovery. We hypothesized that MMP-associated heparan sulfate shedding contributed to delayed lung recovery, in part, by the release of large, highly sulfated fragments that sequestered lung-reparative growth factors such as hepatocyte growth factor. In vitro, heparan sulfate bound hepatocyte growth factor and attenuated growth factor signaling, suggesting that heparan sulfate shed into the air space after injury may directly impair lung repair. Accordingly, administration of exogenous heparan sulfate to mice after bleomycin injury increased the likelihood of death due to severe lung dysfunction. Together, our findings demonstrate that alveolar epithelial heparan sulfate shedding impedes lung recovery after bleomycin.
Collapse
Affiliation(s)
- W B LaRivière
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S Liao
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S A McMurtry
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - K Oshima
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - X Han
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - F Zhang
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - S Yan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - S M Haeger
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - M Ransom
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - J A Bastarache
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R J Linhardt
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - E P Schmidt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Y Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
83
|
Balachandran S, Rall GF. Benefits and Perils of Necroptosis in Influenza Virus Infection. J Virol 2020; 94:e01101-19. [PMID: 32051270 PMCID: PMC7163144 DOI: 10.1128/jvi.01101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/27/2022] Open
Abstract
Influenza A viruses (IAV) are lytic viruses that have recently been found to activate necroptosis in many of the cell types they infect. Necroptotic cell death is potently immunogenic and limits IAV spread by directly eliminating infected cells and by mobilizing both innate and adaptive immune responses. The benefits of necroptosis to the host, however, may sometimes be outweighed by the potentially deleterious hyperinflammatory consequences of activating this death modality in pulmonary and other tissues.
Collapse
Affiliation(s)
- Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Glenn F Rall
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
84
|
Basak M, Mahata T, Chakraborti S, Kumar P, Bhattacharya B, Bandyopadhyay SK, Das M, Stewart A, Saha S, Maity B. Malabaricone C Attenuates Nonsteroidal Anti-Inflammatory Drug-Induced Gastric Ulceration by Decreasing Oxidative/Nitrative Stress and Inflammation and Promoting Angiogenic Autohealing. Antioxid Redox Signal 2020; 32:766-784. [PMID: 31830804 PMCID: PMC7071091 DOI: 10.1089/ars.2019.7781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: Nonsteroidal anti-inflammatory drugs (NSAIDs), among the most commonly used drugs worldwide, are associated with gastrointestinal (GI) complications that severely limit the clinical utility of this essential class of pain medications. Here, we mechanistically dissect the protective impact of a natural product, malabaricone C (Mal C), on NSAID-induced gastropathy. Results: Mal C dose dependently diminished erosion of the stomach lining and inflammation in mice treated with NSAIDs with the protective impact translating to improvement in survival. By decreasing oxidative and nitrative stress, Mal C treatment prevented NSAID-induced mitochondrial dysfunction and cell death; nuclear factor κ-light-chain enhancer of activated B cell induction, release of proinflammatory cytokines and neutrophil infiltration; and disruptions in the vascular endothelial growth factor/endostatin balance that contributes to mucosal autohealing. Importantly, Mal C failed to impact the therapeutic anti-inflammatory properties of multiple NSAIDs in a model of acute inflammation. In all assays tested, Mal C proved as or more efficacious than the current first-line therapy for NSAID-dependent GI complications, the proton pump inhibitor omeprazole. Innovation: Given that omeprazole-mediated prophylaxis is, itself, associated with a shift in NSAID-driven GI complications from the upper GI to the lower GI system, there is a clear and present need for novel therapeutics aimed at ameliorating NSAID-induced gastropathy. Mal C provided significant protection against NSAID-induced gastric ulcerations impacting multiple critical signaling cascades contributing to inflammation, cell loss, extracellular matrix degradation, and angiogenic autohealing. Conclusion: Thus, Mal C represents a viable lead compound for the development of novel gastroprotective agents.
Collapse
Affiliation(s)
- Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, India
| | - Sreemoyee Chakraborti
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Bolay Bhattacharya
- Department of Pharmacy, Geethanjali College of Pharmacy, Cheeryala, India
| | | | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Lucknow, India
| |
Collapse
|
85
|
Villeret B, Solhonne B, Straube M, Lemaire F, Cazes A, Garcia-Verdugo I, Sallenave JM. Influenza A Virus Pre-Infection Exacerbates Pseudomonas aeruginosa-Mediated Lung Damage Through Increased MMP-9 Expression, Decreased Elafin Production and Tissue Resilience. Front Immunol 2020; 11:117. [PMID: 32117268 PMCID: PMC7031978 DOI: 10.3389/fimmu.2020.00117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Individuals with impaired immune responses, such as ventilated and cystic fibrosis patients are often infected with Pseudomonas aeruginosa (P.a) bacteria, and a co-infection with the Influenza virus (IAV) is often present. It has been known for many years that infection with IAV predisposes the host to secondary bacterial infections (such as Streptococcus pneumoniae or Staphylococcus aureus), and there is an abundance of mechanistic studies, including those studying the role of desensitization of TLR signaling, type I IFN- mediated impairment of neutrophil chemokines and antimicrobial production, attenuation of IL1β production etc., showing this. However, little is known about the mechanistic events underlying the potential deleterious synergy between Influenza and P.a co-infections. We demonstrate here in vitro in epithelial cells and in vivo in three independent models (two involving mice given IAV +/– P.a, and one involving mice given IAV +/– IL-1β) that IAV promotes secondary P.a-mediated lung disease or augmented IL-1β-mediated inflammation. We show that IAV-P.a-mediated deleterious responses includes increased matrix metalloprotease (MMP) activity, and MMP-9 in particular, and that the use of the MMP inhibitor improves lung resilience. Furthermore, we show that IAV post-transcriptionally inhibits the antimicrobial/anti-protease molecule elafin/trappin-2, which we have shown previously to be anti-inflammatory and to protect the host against maladaptive neutrophilic inflammation in P.a infections. Our work highlights the capacity of IAV to promote further P.a-mediated lung damage, not necessarily through its interference with host resistance to the bacterium, but by down-regulating tissue resilience to lung inflammation instead. Our study therefore suggests that restoring tissue resilience in clinical settings where IAV/P.a co-exists could prove a fruitful strategy.
Collapse
Affiliation(s)
- Berengère Villeret
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Brigitte Solhonne
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Marjolène Straube
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Flora Lemaire
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Aurélie Cazes
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France.,Assistance Publique-Hôpitaux de Paris (APHP), Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Ignacio Garcia-Verdugo
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| | - Jean-Michel Sallenave
- Inserm, UMR1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), Université de Paris, Paris, France
| |
Collapse
|
86
|
Zhang H, Liu L, Jiang C, Pan K, Deng J, Wan C. MMP9 protects against LPS-induced inflammation in osteoblasts. Innate Immun 2019; 26:259-269. [PMID: 31726909 PMCID: PMC7251795 DOI: 10.1177/1753425919887236] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The matrix metalloproteinase (MMP) family is widely involved in the destruction
of the pulp and apical tissues in the inflammatory process. MMP9 is closely
related to oral inflammation. Nevertheless, the specific function of MMP9 during
oral inflammation, as well as its mechanism, is not well understood. Our
previous studies found that in experimentally induced apical periodontitis, more
severe inflammation occurred in MMP9 knockout mice compared with the wild type
mice. Moreover, the pathology phenomenon of alveolar bone destruction was even
more evident in MMP9 knockout mice compared with the wild type mice. We proposed
that MMP9 has “anti-inflammatory” properties. We aimed to study the effects of
MMP9 on inflammatory response as well as on bone formation and bone destruction.
We found a specific relationship between MMP9 and inflammation. qRT-PCR and
Western blot revealed that the production of IL-1β, TNF-α, RANK, RANKL, TLR2,
and TLR4 was reduced by MMP9 in LPS-stimulated MC3T3-E1 cells. Meanwhile, the
expressions of OPG and OCN were increased by MMP9 in LPS-stimulated cells. MMP9
plays a protective role in LPS-induced inflammation, thereby providing new clues
to the prevention and treatment of apical periodontitis.
Collapse
Affiliation(s)
- Hongzhe Zhang
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Lingshuang Liu
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Keqing Pan
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Jing Deng
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Chunyan Wan
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| |
Collapse
|
87
|
Liu R, Chen P, Chen L. Single-sample landscape entropy reveals the imminent phase transition during disease progression. Bioinformatics 2019; 36:1522-1532. [DOI: 10.1093/bioinformatics/btz758] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/05/2019] [Accepted: 10/05/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Motivation
The time evolution or dynamic change of many biological systems during disease progression is not always smooth but occasionally abrupt, that is, there is a tipping point during such a process at which the system state shifts from the normal state to a disease state. It is challenging to predict such disease state with the measured omics data, in particular when only a single sample is available.
Results
In this study, we developed a novel approach, i.e. single-sample landscape entropy (SLE) method, to identify the tipping point during disease progression with only one sample data. Specifically, by evaluating the disorder of a network projected from a single-sample data, SLE effectively characterizes the criticality of this single sample network in terms of network entropy, thereby capturing not only the signals of the impending transition but also its leading network, i.e. dynamic network biomarkers. Using this method, we can characterize sample-specific state during disease progression and thus achieve the disease prediction of each individual by only one sample. Our method was validated by successfully identifying the tipping points just before the serious disease symptoms from four real datasets of individuals or subjects, including influenza virus infection, lung cancer metastasis, prostate cancer and acute lung injury.
Availability and implementation
https://github.com/rabbitpei/SLE.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Pei Chen
- School of Mathematics, South China University of Technology, Guangzhou 510640, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
88
|
Hussain MT, Greaves DR, Iqbal AJ. The Impact of Cannabinoid Receptor 2 Deficiency on Neutrophil Recruitment and Inflammation. DNA Cell Biol 2019; 38:1025-1029. [DOI: 10.1089/dna.2019.5024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mohammed Tayab Hussain
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
89
|
Wong JJM, Leong JY, Lee JH, Albani S, Yeo JG. Insights into the immuno-pathogenesis of acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:504. [PMID: 31728357 DOI: 10.21037/atm.2019.09.28] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a clinical syndrome associated with oxygenation failure resulting from a direct pulmonary or indirect systemic insult. It is a complex etiological phenomenon involving an array of immune cells acting in a delicate balance between pathogen clearance and immunopathology. There is emerging evidence of the involvement of different immune cell types in ARDS pathogenesis. This includes polarization of alveolar macrophages (AMs), neutrophil netosis, the pro-inflammatory response of T helper 17 subsets, and the anti-inflammatory and regenerative role of T regulatory cell subsets. Knowledge of these pathogenic mechanisms has led to translational opportunities, for example, research in the use of methylprednisolone, DNAse, aspirin, keratinocyte growth factor and in the development of stem cell therapy for ARDS. Discovering subgroups of patients with ARDS afflicted with homogenous pathologic mechanisms can provide prognostic and/or predictive insight that will enable precision medicine. Lastly, new high dimensional immunomic technologies are promising tools in evaluating the host immune response in ARDS and will be discussed in this review.
Collapse
Affiliation(s)
- Judith Ju Ming Wong
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore.,Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jing Yao Leong
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, Department of Pediatric Subspecialty, KK Women's and Children's Hospital, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| | - Joo Guan Yeo
- Translational Immunology Institute, Singhealth/Duke-NUS Academic Medical Centre, Singapore.,Division of Medicine, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
90
|
The Role of Innate Leukocytes during Influenza Virus Infection. J Immunol Res 2019; 2019:8028725. [PMID: 31612153 PMCID: PMC6757286 DOI: 10.1155/2019/8028725] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza virus infection is a serious threat to humans and animals, with the potential to cause severe pneumonia and death. Annual vaccination strategies are a mainstay to prevent complications related to influenza. However, protection from the emerging subtypes of influenza A viruses (IAV) even in vaccinated individuals is challenging. Innate immune cells are the first cells to respond to IAV infection in the respiratory tract. Virus replication-induced production of cytokines from airway epithelium recruits innate immune cells to the site of infection. These leukocytes, namely, neutrophils, monocytes, macrophages, dendritic cells, eosinophils, natural killer cells, innate lymphoid cells, and γδ T cells, become activated in response to IAV, to contain the virus and protect the airway epithelium while triggering the adaptive arm of the immune system. This review addresses different anti-influenza virus schemes of innate immune cells and how these cells fine-tune the balance between immunoprotection and immunopathology during IAV infection. Detailed understanding on how these innate responders execute anti-influenza activity will help to identify novel therapeutic targets to halt IAV replication and associated immunopathology.
Collapse
|
91
|
Liu C, Oveissi S, Downs R, Kirby J, Nedeva C, Puthalakath H, Faou P, Duan M, Chen W. Semiquantitative Proteomics Enables Mapping of Murine Neutrophil Dynamics following Lethal Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:1064-1075. [PMID: 31308090 DOI: 10.4049/jimmunol.1900337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022]
Abstract
Neutrophils are rapidly deployed innate immune cells, and excessive recruitment is causally associated with influenza-induced pathologic conditions. Despite this, the complete set of influenza lethality-associated neutrophil effector proteins is currently unknown. Whether the expression of these proteins is predetermined during bone marrow (BM) neutrophil maturation or further modulated by tissue compartment transitions has also not been comprehensively characterized at a proteome-wide scale. In this study, we used high-resolution mass spectrometry to map how the proteomes of murine neutrophils change comparatively across BM, blood, and the alveolar airspaces to deploy an influenza lethality-associated response. Following lethal influenza infection, mature neutrophils undergo two infection-dependent and one context-independent compartmental transitions. Translation of type I IFN-stimulated genes is first elevated in the BM, preceding the context-independent downregulation of ribosomal proteins observed in blood neutrophils. Following alveolar airspace infiltration, the bronchoalveolar lavage (BAL) neutrophil proteome is further characterized by a limited increase in type I IFN-stimulated and metal-sequestering proteins as well as a decrease in degranulation-associated proteins. An influenza-selective and dose-dependent increase in antiviral and lipid metabolism-associated proteins was also observed in BAL neutrophils, indicative of a modest capacity for pathogen response tuning. Altogether, our study provides new and comprehensive evidence that the BAL neutrophil proteome is shaped by BM neutrophil maturation as well as subsequent compartmental transitions following lethal influenza infection.
Collapse
Affiliation(s)
- Chuanxin Liu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Sara Oveissi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Rachael Downs
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia; and
| | - Jason Kirby
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Urrbrae, South Australia 5064, Australia
| | - Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Hamsa Puthalakath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Pierre Faou
- La Trobe Comprehensive Proteomics Platform, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia; and
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia;
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia;
| |
Collapse
|
92
|
Zhang F, Hu L, Wu YX, Fan L, Liu WT, Wang J, Sun H, Zhang JS. Doxycycline alleviates paraquat-induced acute lung injury by inhibiting neutrophil-derived matrix metalloproteinase 9. Int Immunopharmacol 2019; 72:243-251. [PMID: 31003001 DOI: 10.1016/j.intimp.2019.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 01/20/2023]
Abstract
Paraquat (PQ), a highly toxic herbicide, selectively accumulates in the lungs and causes pulmonary damage through oxidative and inflammatory processes after intentional or accidental poisoning. The resulting acute lung injury (ALI) is characterized by neutrophil infiltration and extensive inflammation with rapid respiratory failure. However, effective therapies are lacking. We tested the hypothesis that suppressing neutrophil-derived matrix metalloproteinase 9 (MMP9) would ameliorate the inflammatory milieu and alleviate PQ-induced ALI. Lung injury was assessed in mice intratracheally injected with PQ aerosol by measuring the lung static compliance, cell count and neutrophil percentage of the bronchoalveolar lavage fluid (BALF) and lung, alveolar-capillary permeability, and histopathological lung injury scores. MMP9/2 activity was assessed by gelatin zymography, and the location of neutrophils and MMP9 in the lung was evaluated by immunofluorescence costaining. In the neutrophil depletion experiment, mice received anti-Ly6G antibody intraperitoneally; for the MMP inhibition experiment, an MMP inhibitor, doxycycline (DOX), was administered by gavage. In PQ-induced ALI, the activity of neutrophil-derived MMP9 but not MMP2 increased significantly. Neutrophil depletion reduced the inflammatory burden, improved pulmonary edema, and reduced the PQ-induced overexpression of MMP9. Consistently, oral delivery of DOX to mice decreased the overexpression of MMP9 that was activated by PQ and phenocopied the resolution of PQ-induced ALI observed after neutrophil depletion. Taken together, our results show for the first time that DOX is involved in the resolution of PQ-induced ALI via a mechanism involving reducing the activity of neutrophil-derived MMP9. We speculate that DOX may represent a novel therapeutic strategy for PQ-induced ALI.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yu-Xuan Wu
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Fan
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Key Lab of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hao Sun
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jin-Song Zhang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
93
|
Magnen M, Gueugnon F, Petit-Courty A, Baranek T, Sizaret D, Brewah YA, Humbles AA, Si-Tahar M, Courty Y. Tissue kallikrein regulates alveolar macrophage apoptosis early in influenza virus infection. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1127-L1140. [PMID: 30908937 DOI: 10.1152/ajplung.00379.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the Klk1 gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the KLK1 mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.
Collapse
Affiliation(s)
- Melia Magnen
- INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.,Université de Tours , Tours , France
| | - Fabien Gueugnon
- INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.,Université de Tours , Tours , France
| | - Agnès Petit-Courty
- INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.,Université de Tours , Tours , France
| | - Thomas Baranek
- INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.,Université de Tours , Tours , France
| | - Damien Sizaret
- INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.,Université de Tours , Tours , France
| | | | | | - Mustapha Si-Tahar
- INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.,Université de Tours , Tours , France
| | - Yves Courty
- INSERM, U1100-Centre d'Etude des Pathologies Respiratoires , Tours , France.,Université de Tours , Tours , France
| |
Collapse
|
94
|
Kirsebom FCM, Kausar F, Nuriev R, Makris S, Johansson C. Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunol 2019; 12:1244-1255. [PMID: 31358860 PMCID: PMC6778055 DOI: 10.1038/s41385-019-0190-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 02/04/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections, especially in infants. Lung neutrophilia is a hallmark of RSV disease but the mechanism by which neutrophils are recruited and activated is unclear. Here, we investigate the innate immune signaling pathways underlying neutrophil recruitment and activation in RSV-infected mice. We show that MyD88/TRIF signaling is essential for lung neutrophil recruitment while MAVS signaling, leading to type I IFN production, is necessary for neutrophil activation. Consistent with that notion, administration of type I IFNs to the lungs of RSV-infected Mavs-/- mice partially activates lung neutrophils recruited via the MyD88/TRIF pathway. Conversely, lack of neutrophil recruitment to the lungs of RSV-infected Myd88/Trif-/- mice can be corrected by administration of chemoattractants and those neutrophils become fully activated. Interestingly, Myd88/Trif-/- mice did not have increased lung viral loads during RSV infection, suggesting that neutrophils are dispensable for viral control. Thus, two distinct pathogen sensing pathways collaborate for neutrophil recruitment and full activation during RSV infection.
Collapse
Affiliation(s)
- Freja C. M. Kirsebom
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| | - Fahima Kausar
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| | - Rinat Nuriev
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| | - Spyridon Makris
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK ,0000000122478951grid.14105.31Present Address: MRC/UCL Lab for Molecular Cell Biology, London, UK
| | - Cecilia Johansson
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| |
Collapse
|
95
|
Rojas-Quintero J, Wang X, Tipper J, Burkett PR, Zuñiga J, Ashtekar AR, Polverino F, Rout A, Yambayev I, Hernández C, Jimenez L, Ramírez G, Harrod KS, Owen CA. Matrix metalloproteinase-9 deficiency protects mice from severe influenza A viral infection. JCI Insight 2018; 3:99022. [PMID: 30568032 DOI: 10.1172/jci.insight.99022] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9) cleaves various proteins to regulate inflammatory and injury responses. However, MMP-9's activities during influenza A viral (IAV) infections are incompletely understood. Herein, plasma MMP-9 levels were increased in patients with pandemic H1N1 and seasonal IAV infections. MMP-9 lung levels were increased and localized to airway epithelial cells and leukocytes in H1N1-infected WT murine lungs. H1N1-infected Mmp-9-/- mice had lower mortality rates, reduced weight loss, lower lung viral titers, and reduced lung injury, along with lower E-cadherin shedding in bronchoalveolar lavage fluid (BALF) samples than WT mice. H1N1-infected Mmp-9-/- mice had an altered immune response to IAV with lower BALF PMN and macrophage counts, higher Th1-like CD4+ and CD8+ T cell subsets, lower T regulatory cell counts, reduced lung type I interferon levels, and higher lung interferon-γ levels. Mmp-9 bone marrow-chimera studies revealed that Mmp-9 deficiency in lung parenchymal cells protected mice from IAV-induced mortality. H1N1-infected Mmp-9-/- lung epithelial cells had lower viral titers than H1N1-infected WT cells in vitro. Thus, H1N1-infected Mmp-9-/- mice are protected from IAV-induced lung disease due to a more effective adaptive immune response to IAV and reduced epithelial barrier injury due partly to reduced E-cadherin shedding. Thus, we believe that MMP-9 is a novel therapeutic target for IAV infections.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyun Wang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Tipper
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Patrick R Burkett
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Joaquin Zuñiga
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Amit R Ashtekar
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Amit Rout
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Ilyas Yambayev
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Carmen Hernández
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Mexico City, Mexico
| | - Luis Jimenez
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gustavo Ramírez
- Laboratory of Immunobiology and Genetics, and Intensive Care Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular and Translational Biomedicine, School of Medicine, University of Alabama-Birmingham, Birmingham, Alabama, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.,Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
96
|
An Interaction of LPS and RSV Infection in Augmenting the AHR and Airway Inflammation in Mice. Inflammation 2018; 40:1643-1653. [PMID: 28695368 DOI: 10.1007/s10753-017-0604-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection (LRTI) in children under 5 years of age, especially infants with severe bronchiolitis. Our preliminary clinical experiments showed that bacterial colonization was commonly observed in children with virus-induced wheezing, particularly in those with recurrent wheezing, suggesting that bacterial colonization with an accompanying viral infection may contribute to disease severity. In most cases, RSV-infected infants were colonized with pathogenic bacteria (mainly Gram-negative bacteria). LPS is the main component of Gram-negative bacteria and acts as a ligand for Toll-like receptor 4 (TLR4). Relevant studies have reported that the TLR family is crucial in mediating the link between viral components and immunologic responses to infection. Of note, TLR4 activation has been associated with disease severity during RSV infection. In the present study, we identified that LPS aggravated RSV-induced AHR and airway inflammation in BALB/c mice using an RSV coinfection model. We found that the airway inflammatory cells and cytokines present in BALF and TRIF in lung tissue play a role in inducing AHR and airway inflammation upon RSV and bacteria coinfection, which might occur through the TRIF-MMP-9-neutrophil-MMP-9 signalling pathway. These results may aid in the development of novel treatments and improve vaccine design.
Collapse
|
97
|
Guvercin G, Karakus V, Aksit M, Dere Y, Aktar M, Alpay H, Bozkaya G, Tatar E. Matrix metalloproteinase-9, 10, and stress hyperglycaemia in acute kidney injury. Eur J Clin Invest 2018; 48:e12963. [PMID: 29856477 DOI: 10.1111/eci.12963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 05/30/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND This study investigated the effect of matrix metalloproteinase (MMP)-9 and 10, and stress hyperglycaemia on the necessity of emergency renal replacement therapy (RRT) and mortality in nondiabetic geriatric patients with acute kidney injury (AKI). MATERIALS AND METHODS The present observational and longitudinal study included 101 nondiabetic geriatric patients (age >65 years) with AKI. The serum levels of MMP-9 and MMP-10 were evaluated in these patients. Serum glucose level >140 mg/dL at the time of admission was accepted as stress hyperglycaemia. RESULTS The average age of patients was 81 ± 7.1 years. Stress hyperglycaemia was diagnosed in 34.6% of the cases; the majority of these cases were patients with high-serum urea, CRP, and chronic kidney disease. The average levels of MMP-9 and MMP-10 were found to be 199 ± 38 and 16.5 ± 7.5 ng/mL, respectively. Thirty-one cases (30.6%) mortality during hospitalization and 20 cases (20%) underwent emergency RRT. Multiregression analysis showed the serum urea (P < .001) and stress hyperglycaemia (P = .03) to be independently associated with mortality. Also, serum urea (P = .01), potassium level (P = .03), and MMP-10 levels (P = .03) were independently associated with the necessity of the emergency RRT. The MMP-9 levels exhibited no relation with the necessity of emergency RRT and mortality. CONCLUSION Stress hyperglycaemia is a common condition among nondiabetic geriatric patients with AKI and is related to mortality. Serum MMP-10 levels serve as an important predictor of the necessity of emergency RRT in these patients.
Collapse
Affiliation(s)
- Guray Guvercin
- Department of Internal Medicine, Izmir Bozyaka Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Volkan Karakus
- Division of Hematology, Mugla Sitki Kocman University Training and Research Hospital, Mugla, Turkey
| | - Murat Aksit
- Department of Biochemistry, Izmir Bozyaka Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Yelda Dere
- Division of Pathology, Mugla Sitki Kocman University Training and Research Hospital, Mugla, Turkey
| | - Merve Aktar
- Department of Internal Medicine, Izmir Bozyaka Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Hasan Alpay
- Department of Internal Medicine, Izmir Bozyaka Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Giray Bozkaya
- Department of Biochemistry, Izmir Bozyaka Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Erhan Tatar
- Department of Nephrology, Izmir Bozyaka Education and Research Hospital, Health Sciences University, Izmir, Turkey
| |
Collapse
|
98
|
Janciauskiene S, Wrenger S, Immenschuh S, Olejnicka B, Greulich T, Welte T, Chorostowska-Wynimko J. The Multifaceted Effects of Alpha1-Antitrypsin on Neutrophil Functions. Front Pharmacol 2018; 9:341. [PMID: 29719508 PMCID: PMC5914301 DOI: 10.3389/fphar.2018.00341] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/23/2018] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are the predominant immune cells in human blood possessing heterogeneity, plasticity and functional diversity. The activation and recruitment of neutrophils into inflamed tissue in response to stimuli are tightly regulated processes. Alpha1-Antitrypsin (AAT), an acute phase protein, is one of the potent regulators of neutrophil activation via both -protease inhibitory and non-inhibitory functions. This review summarizes our current understanding of the effects of AAT on neutrophils, illustrating the interplay between AAT and the key effector functions of neutrophils.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Sabine Wrenger
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Beata Olejnicka
- Department of Medicine, Trelleborg Hospital, Trelleborg, Sweden
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), University Hospital of Giessen and Marburg, University of Marburg, Marburg, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
99
|
Dai JP, Wang QW, Su Y, Gu LM, Deng HX, Chen XX, Li WZ, Li KS. Oxymatrine Inhibits Influenza A Virus Replication and Inflammation via TLR4, p38 MAPK and NF-κB Pathways. Int J Mol Sci 2018; 19:ijms19040965. [PMID: 29570670 PMCID: PMC5979549 DOI: 10.3390/ijms19040965] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 02/05/2023] Open
Abstract
Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.
Collapse
Affiliation(s)
- Jian-Ping Dai
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Qian-Wen Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Yun Su
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Li-Ming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Hui-Xiong Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Xiao-Xuan Chen
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| | - Wei-Zhong Li
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA.
| | - Kang-Sheng Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
100
|
Grudzinska FS, Sapey E. Friend or foe? The dual role of neutrophils in lung injury and repair. Thorax 2018; 73:305-307. [DOI: 10.1136/thoraxjnl-2017-211253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|