51
|
Guo H, Gibson SA, Ting JPY. Gut microbiota, NLR proteins, and intestinal homeostasis. J Exp Med 2021; 217:152098. [PMID: 32941596 PMCID: PMC7537383 DOI: 10.1084/jem.20181832] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
The gastrointestinal tract harbors a highly complex microbial community, which is referred to as gut microbiota. With increasing evidence suggesting that the imbalance of gut microbiota plays a significant role in the pathogenesis of multiple diseases, interactions between the host immune system and the gut microbiota are now attracting emerging interest. Nucleotide-binding and leucine-rich repeat–containing receptors (NLRs) encompass a large number of innate immune sensors and receptors, which mediate the activation of Caspase-1 and the subsequent release of mature interleukin-1β and interleukin-18. Several family members have been found to restrain rather than activate inflammatory cytokines and immune signaling. NLR family members are central regulators of pathogen recognition, host immunity, and inflammation with utmost importance in human diseases. In this review, we focus on the potential roles played by NLRs in controlling and shaping the microbiota community and discuss how the functional axes interconnecting gut microbiota with NLRs impact the modulation of colitis, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Hao Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sara A Gibson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jenny P Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
52
|
Sena-dos-Santos C, Braga-da-Silva C, Marques D, Azevedo dos Santos Pinheiro J, Ribeiro-dos-Santos Â, Cavalcante GC. Unraveling Cell Death Pathways during Malaria Infection: What Do We Know So Far? Cells 2021; 10:479. [PMID: 33672278 PMCID: PMC7926694 DOI: 10.3390/cells10020479] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a parasitic disease (caused by different Plasmodium species) that affects millions of people worldwide. The lack of effective malaria drugs and a vaccine contributes to this disease, continuing to cause major public health and socioeconomic problems, especially in low-income countries. Cell death is implicated in malaria immune responses by eliminating infected cells, but it can also provoke an intense inflammatory response and lead to severe malaria outcomes. The study of the pathophysiological role of cell death in malaria in mammalians is key to understanding the parasite-host interactions and design prophylactic and therapeutic strategies for malaria. In this work, we review malaria-triggered cell death pathways (apoptosis, autophagy, necrosis, pyroptosis, NETosis, and ferroptosis) and we discuss their potential role in the development of new approaches for human malaria therapies.
Collapse
Affiliation(s)
- Camille Sena-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Cíntia Braga-da-Silva
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Diego Marques
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Jhully Azevedo dos Santos Pinheiro
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
- Programa de Pós-Graduação em Oncologia e Ciências Médicas, Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Belém 66.075-110, Brazil
| | - Giovanna C. Cavalcante
- Programa de Pós-Graduação em Genética e Biologia Molecular, Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém 66.075-110, Brazil; (C.S.-d.-S.); (C.B.-d.-S.); (D.M.); (J.A.d.S.P.); (Â.R.-d.-S.)
| |
Collapse
|
53
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
54
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
55
|
Dos Santos LI, Torres TA, Diniz SQ, Gonçalves R, Caballero-Flores G, Núñez G, Gazzinelli RT, Maloy KJ, Ribeiro do V Antonelli L. Disrupted Iron Metabolism and Mortality during Co-infection with Malaria and an Intestinal Gram-Negative Extracellular Pathogen. Cell Rep 2021; 34:108613. [PMID: 33440153 PMCID: PMC8655499 DOI: 10.1016/j.celrep.2020.108613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022] Open
Abstract
Individuals with malaria exhibit increased morbidity and mortality when infected with Gram-negative (Gr−) bacteria. To explore this experimentally, we performed co-infection of mice with Plasmodium chabaudi and Citrobacter rodentium, an extracellular Gr− bacterial pathogen that infects the large intestine. While single infections are controlled effectively, co-infection results in enhanced virulence that is characterized by prolonged systemic bacterial persistence and high mortality. Mortality in co-infected mice is associated with disrupted iron metabolism, elevated levels of plasma heme, and increased mitochondrial reactive oxygen species (ROS) production by phagocytes. In addition, iron acquisition by the bacterium plays a key role in pathogenesis because co-infection with a mutant C. rodentium strain lacking a critical iron acquisition pathway does not cause mortality. These results indicate that disrupted iron metabolism may drive mortality during co-infection with C. rodentium and P. chabaudi by both altering host immune responses and facilitating bacterial persistence. Co-infection with malaria and a Gram-negative bacterial pathogen leads to high mortality Co-infection leads to elevated plasma heme and systemic bacterial persistence Iron acquisition is critical for bacterial persistence and mortality
Collapse
Affiliation(s)
- Luara Isabela Dos Santos
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil; Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Thais Abdala Torres
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil; Instituto de Ciências Biológicas, Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Suelen Queiroz Diniz
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil; Instituto de Ciências Biológicas, Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ricardo Gonçalves
- Departamento de Patologia Geral, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minhas Gerais, Brazil
| | - Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ricardo Tostes Gazzinelli
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil; Instituto de Ciências Biológicas, Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | - Kevin Joseph Maloy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, Scotland.
| | | |
Collapse
|
56
|
Anemoside B4 Protects against Acute Lung Injury by Attenuating Inflammation through Blocking NLRP3 Inflammasome Activation and TLR4 Dimerization. J Immunol Res 2020; 2020:7502301. [PMID: 33344657 PMCID: PMC7732379 DOI: 10.1155/2020/7502301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
Acute lung injury (ALI) is an acute inflammatory process in the lung parenchyma. Anemoside B4 (B4) was isolated from Pulsatilla, a plant-based drug against inflammation and commonly applied in traditional Chinese medicine. However, the anti-inflammatory effect and the mechanisms of B4 are not clear. In this study, we explored the potential mechanisms and anti-inflammatory activity of B4 both in vitro and in vivo. The results indicated that B4 suppressed the expression of iNOS, COX-2, NLRP3, caspase-1, and IL-1β. The ELISA assay results showed that B4 significantly restrained the release of inflammatory cytokines like TNF-α, IL-6, and IL-1β in macrophage cells. In addition, B4 rescued mitochondrial membrane potential (MMP) loss in (lipopolysaccharide) LPS plus ATP stimulated macrophage cells. Co-IP and molecular docking results illustrated that B4 disrupted the dimerization of TLR4. For in vivo results, B4 exhibited a protective effect on LPS and bleomycin- (BLM-) induced ALI in mice through suppressing the lesions of lung tissues, the release of inflammatory cytokines, and the levels of white blood cells, neutrophils, and lymphoid cells in the blood. Collectively, B4 has a protective effect on ALI via blocking TLR4 dimerization and NLRP3 inflammasome activation, suggesting that B4 is a potential agent for the treatment of ALI.
Collapse
|
57
|
He X, Xia L, Tumas KC, Wu J, Su XZ. Type I Interferons and Malaria: A Double-Edge Sword Against a Complex Parasitic Disease. Front Cell Infect Microbiol 2020; 10:594621. [PMID: 33344264 PMCID: PMC7738626 DOI: 10.3389/fcimb.2020.594621] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Type I interferons (IFN-Is) are important cytokines playing critical roles in various infections, autoimmune diseases, and cancer. Studies have also shown that IFN-Is exhibit 'conflicting' roles in malaria parasite infections. Malaria parasites have a complex life cycle with multiple developing stages in two hosts. Both the liver and blood stages of malaria parasites in a vertebrate host stimulate IFN-I responses. IFN-Is have been shown to inhibit liver and blood stage development, to suppress T cell activation and adaptive immune response, and to promote production of proinflammatory cytokines and chemokines in animal models. Different parasite species or strains trigger distinct IFN-I responses. For example, a Plasmodium yoelii strain can stimulate a strong IFN-I response during early infection, whereas its isogenetic strain does not. Host genetic background also greatly influences IFN-I production during malaria infections. Consequently, the effects of IFN-Is on parasitemia and disease symptoms are highly variable depending on the combination of parasite and host species or strains. Toll-like receptor (TLR) 7, TLR9, melanoma differentiation-associated protein 5 (MDA5), and cyclic GMP-AMP synthase (cGAS) coupled with stimulator of interferon genes (STING) are the major receptors for recognizing parasite nucleic acids (RNA/DNA) to trigger IFN-I responses. IFN-I levels in vivo are tightly regulated, and various novel molecules have been identified to regulate IFN-I responses during malaria infections. Here we review the major findings and progress in ligand recognition, signaling pathways, functions, and regulation of IFN-I responses during malaria infections.
Collapse
Affiliation(s)
- Xiao He
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Lu Xia
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Keyla C. Tumas
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
58
|
Walk J, Keramati F, de Bree LCJ, Arts RJW, Blok B, Netea MG, Stunnenberg HG, Sauerwein RW. Controlled Human Malaria Infection Induces Long-Term Functional Changes in Monocytes. Front Mol Biosci 2020; 7:604553. [PMID: 33324683 PMCID: PMC7726436 DOI: 10.3389/fmolb.2020.604553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Innate immune memory responses (also termed "trained immunity") have been described in monocytes after BCG vaccination and after stimulation in vitro with microbial and endogenous ligands such as LPS, β-glucan, oxidized LDL, and monosodium urate crystals. However, whether clinical infections are also capable of inducing a trained immunity phenotype remained uncertain. We evaluated whether Plasmodium falciparum infection can induce innate immune memory by measuring monocyte-derived cytokine production from five volunteers undergoing Controlled Human Malaria Infection. Monocyte responses followed a biphasic pattern: during acute infection, monocytes produced lower amounts of inflammatory cytokines upon secondary stimulation, but 36 days after malaria infection they produced significantly more IL-6 and TNF-α in response to various stimuli. Furthermore, transcriptomic and epigenomic data analysis revealed a clear reprogramming of monocytes at both timepoints, with long-term changes of H3K4me3 at the promoter regions of inflammatory genes that remain present for several weeks after parasite clearance. These findings demonstrate an epigenetic basis of trained immunity induced by human malaria in vivo.
Collapse
Affiliation(s)
- Jona Walk
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Farid Keramati
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Rob J W Arts
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bas Blok
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
59
|
Guha R, Mathioudaki A, Doumbo S, Doumtabe D, Skinner J, Arora G, Siddiqui S, Li S, Kayentao K, Ongoiba A, Zaugg J, Traore B, Crompton PD. Plasmodium falciparum malaria drives epigenetic reprogramming of human monocytes toward a regulatory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33106806 DOI: 10.1101/2020.10.21.346197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In malaria-naïve children and adults, Plasmodium falciparum -infected red blood cells ( Pf -iRBCs) trigger fever and other symptoms of systemic inflammation. However, in endemic areas where individuals experience repeated Pf infections over many years, the risk of Pf -iRBC-triggered inflammatory symptoms decreases with cumulative Pf exposure. The molecular mechanisms underlying these clinical observations remain unclear. Age-stratified analyses of monocytes collected from uninfected, asymptomatic Malian individuals before the malaria season revealed an inverse relationship between age and Pf -iRBC-inducible inflammatory cytokine (IL-1β, IL-6 and TNF) production, whereas Malian infants and malaria-naïve U.S. adults produced similarly high levels of inflammatory cytokines. Accordingly, monocytes of Malian adults produced more IL-10 and expressed higher levels of the regulatory molecules CD163, CD206, Arginase-1 and TGM2. These observations were recapitulated in an in vitro system of monocyte to macrophage differentiation wherein macrophages re-exposed to Pf -iRBCs exhibited attenuated inflammatory cytokine responses and a corresponding decrease in the epigenetic marker of active gene transcription, H3K4me3, at inflammatory cytokine gene loci. Together these data indicate that Pf induces epigenetic reprogramming of monocytes/macrophages toward a regulatory phenotype that attenuates inflammatory responses during subsequent Pf exposure. These findings also suggest that past malaria exposure could mitigate monocyte-associated immunopathology induced by other pathogens such as SARS-CoV-2. Author Summary The malaria parasite is mosquito-transmitted and causes fever and other inflammatory symptoms while circulating in the bloodstream. However, in regions of high malaria transmission the parasite is less likely to cause fever as children age and enter adulthood, even though adults commonly have malaria parasites in their blood. Monocytes are cells of the innate immune system that secrete molecules that cause fever and inflammation when encountering microorganisms like malaria. Although inflammation is critical to initiating normal immune responses, too much inflammation can harm infected individuals. In Mali, we conducted a study of a malaria-exposed population from infants to adults and found that participants' monocytes produced less inflammation as age increases, whereas monocytes of Malian infants and U.S. adults, who had never been exposed to malaria, both produced high levels of inflammatory molecules. Accordingly, monocytes exposed to malaria in the laboratory became less inflammatory when re-exposed to malaria again later, and these monocytes 'turned down' their inflammatory genes. This study helps us understand how people become immune to inflammatory symptoms of malaria and may also help explain why people in malaria-endemic areas appear to be less susceptible to the harmful effects of inflammation caused by other pathogens such as SARS-CoV-2.
Collapse
|
60
|
Pereira LMN, Assis PA, de Araújo NM, Durso DF, Junqueira C, Ataíde MA, Pereira DB, Lien E, Fitzgerald KA, Zamboni DS, Golenbock DT, Gazzinelli RT. Caspase-8 mediates inflammation and disease in rodent malaria. Nat Commun 2020; 11:4596. [PMID: 32929083 PMCID: PMC7490701 DOI: 10.1038/s41467-020-18295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Earlier studies indicate that either the canonical or non-canonical pathways of inflammasome activation have a limited role on malaria pathogenesis. Here, we report that caspase-8 is a central mediator of systemic inflammation, septic shock in the Plasmodium chabaudi-infected mice and the P. berghei-induced experimental cerebral malaria (ECM). Importantly, our results indicate that the combined deficiencies of caspases-8/1/11 or caspase-8/gasdermin-D (GSDM-D) renders mice impaired to produce both TNFα and IL-1β and highly resistant to lethality in these models, disclosing a complementary, but independent role of caspase-8 and caspases-1/11/GSDM-D in the pathogenesis of malaria. Further, we find that monocytes from malaria patients express active caspases-1, -4 and -8 suggesting that these inflammatory caspases may also play a role in the pathogenesis of human disease. Inflammasome activation plays a role in malaria pathogenesis, but details aren’t well understood. Here, the authors show that caspase-8 is a central mediator of systemic inflammation in rodent malaria and that monocytes from malaria patients express active caspases-1, -4 and -8.
Collapse
Affiliation(s)
- Larissa M N Pereira
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Patrícia A Assis
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Natalia M de Araújo
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle F Durso
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Caroline Junqueira
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil
| | - Marco Antônio Ataíde
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Dhelio B Pereira
- Centro de Pesquisas em Medicina Tropical, FIOCRUZ-RO, Porto Velho, RO, 76812-329, Brazil
| | - Egil Lien
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dario S Zamboni
- Departamento de Biologia Celular Molecular e Bioagentes Patogenicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Douglas T Golenbock
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ricardo T Gazzinelli
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil. .,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. .,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
61
|
Tuladhar S, Kanneganti TD. NLRP12 in innate immunity and inflammation. Mol Aspects Med 2020; 76:100887. [PMID: 32838963 DOI: 10.1016/j.mam.2020.100887] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Nucleotide-binding leucine-rich repeat-containing proteins, or NOD-like receptors (NLRs), are intracellular innate immune sensors that can regulate several signaling pathways, including MyD88- and TRIF-dependent pathways. In addition to these regulatory roles, some NLRs can assemble into multimeric protein complexes known as inflammasomes. NLRP12 is a member of the NLR family that contains an N-terminal pyrin domain, a central nucleotide-binding domain, and a C-terminal leucine-rich repeat. It has been shown to play a role in forming an inflammasome in response to specific infections, and it can also function as a regulator of inflammatory signaling. During Yersinia pestis or Plasmodium chabaudi infection, NLRP12 induces the release of the inflammasome-dependent cytokines IL-1β and IL-18. These NLRP12-dependent cytokines confer protection against severe infections caused by these pathogens. Conversely, during infection with Salmonella enterica serovar Typhimurium, vesicular stomatitis virus, Klebsiella pneumoniae, or Mycobacterium tuberculosis, and in colonic tumorigenesis, NLRP12 acts as a negative regulator of the NFκB and MAPK signaling pathways. NLRP12 also negatively regulates canonical and non-canonical signaling in T cells and causes exacerbated autoimmune diseases. Furthermore, NLRP12 acts as a central component in maintaining intestinal inflammation and gut homeostasis. Therefore, the ability of NLRP12 to function as an inflammasome or as a negative regulator is context-dependent. In this review, we provide an overview of the NLR family members and summarize recent insights into the roles of NLRP12 as an inflammasome and as a negative regulator.
Collapse
Affiliation(s)
- Shraddha Tuladhar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
62
|
Liwinski T, Zheng D, Elinav E. The microbiome and cytosolic innate immune receptors. Immunol Rev 2020; 297:207-224. [PMID: 32658330 DOI: 10.1111/imr.12901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
The discovery of innate immune sensors (pattern recognition receptors, PRRs) has profoundly transformed the notion of innate immunity, in providing a mechanistic basis for host immune interactions with a wealth of environmental signals, leading to a variety of immune-mediated outcomes including instruction and activation of the adaptive immune arm. As part of this growing understanding of host-environmental cross talk, an intimate connection has been unveiled between innate immune sensors and signals perceived from the commensal microbiota, which may be regarded as a hub integrating a variety of environmental cues. Among cytosolic PRRs impacting on host homeostasis by interacting with the commensal microbiota are nucleotide-binding domain, leucine-rich repeat-containing protein receptors (NLRs), together with a number of cytosolic DNA sensors and the family of absent in melanoma (AIM)-like receptors (ALRs). NLR sensors have been a particular focus of research, and some NLRs have emerged as key orchestrators of inflammatory responses and host homeostasis. Some NLRs achieve this through the formation of cytoplasmic multiprotein complexes termed inflammasomes. More recently discovered PRRs include retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), cyclic GMP-AMP synthase (cGAS), and STING. In the present review, they summarize recent advancements in knowledge on structure and function of cytosolic PRRs and their roles in host-microbiota cross talk and immune surveillance. In addition, we discuss their relevance for human health and disease and future therapeutic applications involving modulation of their activation and signaling.
Collapse
Affiliation(s)
- Timur Liwinski
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Danping Zheng
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
63
|
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20:375-388. [PMID: 32132681 PMCID: PMC7186935 DOI: 10.1038/s41577-020-0285-6] [Citation(s) in RCA: 1496] [Impact Index Per Article: 299.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed 'trained immunity', a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define 'trained immunity' as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
- Genetics Section, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Musa M Mhlanga
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andreas Schlitzer
- Myeloid Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
- German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
64
|
McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, Patil TK, Bohannon JK, Sherwood ER, Patil NK. The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Front Immunol 2020; 11:1043. [PMID: 32547553 PMCID: PMC7273750 DOI: 10.3389/fimmu.2020.01043] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Critically ill, severely injured and high-risk surgical patients are vulnerable to secondary infections during hospitalization and after hospital discharge. Studies show that the mitochondrial function and oxidative metabolism of monocytes and macrophages are impaired during sepsis. Alternatively, treatment with microbe-derived ligands, such as monophosphoryl lipid A (MPLA), peptidoglycan, or β-glucan, that interact with toll-like receptors and other pattern recognition receptors on leukocytes induces a state of innate immune memory that confers broad-spectrum resistance to infection with common hospital-acquired pathogens. Priming of macrophages with MPLA, CPG oligodeoxynucleotides (CpG ODN), or β-glucan induces a macrophage metabolic phenotype characterized by mitochondrial biogenesis and increased oxidative metabolism in parallel with increased glycolysis, cell size and granularity, augmented phagocytosis, heightened respiratory burst functions, and more effective killing of microbes. The mitochondrion is a bioenergetic organelle that not only contributes to energy supply, biosynthesis, and cellular redox functions but serves as a platform for regulating innate immunological functions such as production of reactive oxygen species (ROS) and regulatory intermediates. This review will define current knowledge of leukocyte metabolic dysfunction during and after sepsis and trauma. We will further discuss therapeutic strategies that target leukocyte mitochondrial function and might have value in preventing or reversing sepsis- and trauma-induced immune dysfunction.
Collapse
Affiliation(s)
- Margaret A. McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
65
|
Lin Q, Wu L, Ma Z, Chowdhury FA, Mazumder HH, Du W. Persistent DNA damage-induced NLRP12 improves hematopoietic stem cell function. JCI Insight 2020; 5:133365. [PMID: 32434992 DOI: 10.1172/jci.insight.133365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
NOD-like receptor 12 (NLRP12) is a member of the nucleotide-binding domain and leucine-rich repeat containing receptor inflammasome family that plays a central role in innate immunity. We previously showed that DNA damage upregulated NLRP12 in hematopoietic stem cells (HSCs) of mice deficient in the DNA repair gene Fanca. However, the role of NLRP12 in HSC maintenance is not known. Here, we show that persistent DNA damage-induced NLRP12 improves HSC function in both mouse and human models of DNA repair deficiency and aging. Specifically, treatment of Fanca-/- mice with the DNA cross-linker mitomycin C or ionizing radiation induces NLRP12 upregulation in phenotypic HSCs. NLRP12 expression is specifically induced by persistent DNA damage. Functionally, knockdown of NLRP12 exacerbates the repopulation defect of Fanca-/- HSCs. Persistent DNA damage-induced NLRP12 was also observed in the HSCs from aged mice, and depletion of NLRP12 in these aged HSCs compromised their self-renewal and hematopoietic recovery. Consistently, overexpression of NLRP12 substantially improved the long-term repopulating function of Fanca-/- and aged HSCs. Finally, persistent DNA damage-induced NLRP12 maintains the function of HSCs from patients with FA or aged donors. These results reveal a potentially novel role of NLRP12 in HSC maintenance and suggest that NLRP12 targeting has therapeutic potential in DNA repair disorders and aging.
Collapse
Affiliation(s)
- Qiqi Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Limei Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Zhilin Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Fabliha Ahmed Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Habibul Hasan Mazumder
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA
| | - Wei Du
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia, USA.,Alexander B. Osborn Hematopoietic Malignancy and Transplantation Program, West Virginia University Cancer Institute, Morgantown, West Virginia, USA
| |
Collapse
|
66
|
Reis AS, Barboza R, Murillo O, Barateiro A, Peixoto EPM, Lima FA, Gomes VM, Dombrowski JG, Leal VNC, Araujo F, Bandeira CL, Araujo RBD, Neres R, Souza RM, Costa FTM, Pontillo A, Bevilacqua E, Wrenger C, Wunderlich G, Palmisano G, Labriola L, Bortoluci KR, Penha-Gonçalves C, Gonçalves LA, Epiphanio S, Marinho CRF. Inflammasome activation and IL-1 signaling during placental malaria induce poor pregnancy outcomes. SCIENCE ADVANCES 2020; 6:eaax6346. [PMID: 32181339 PMCID: PMC7056302 DOI: 10.1126/sciadv.aax6346] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/11/2019] [Indexed: 05/12/2023]
Abstract
Placental malaria (PM) is associated with severe inflammation leading to abortion, preterm delivery, and intrauterine growth restriction. Innate immunity responses play critical roles, but the mechanisms underlying placental immunopathology are still unclear. Here, we investigated the role of inflammasome activation in PM by scrutinizing human placenta samples from an endemic area and ablating inflammasome components in a PM mouse model. The reduction in birth weight in babies from infected mothers is paralleled by increased placental expression of AIM2 and NLRP3 inflammasomes. Using genetic dissection, we reveal that inflammasome activation pathways are involved in the production and detrimental action of interleukin-1β (IL-1β) in the infected placenta. The IL-1R pharmacological antagonist Anakinra improved pregnancy outcomes by restoring fetal growth and reducing resorption in an experimental model. These findings unveil that IL-1β-mediated signaling is a determinant of PM pathogenesis, suggesting that IL-1R antagonists can improve clinical outcomes of malaria infection in pregnancy.
Collapse
MESH Headings
- Animals
- Caspase 1/genetics
- Caspase 1/immunology
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Female
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Immunologic Factors/pharmacology
- Inflammasomes/drug effects
- Inflammasomes/genetics
- Inflammasomes/immunology
- Interferon-gamma/genetics
- Interferon-gamma/immunology
- Interleukin 1 Receptor Antagonist Protein/pharmacology
- Interleukin-1beta/antagonists & inhibitors
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- Malaria/drug therapy
- Malaria/genetics
- Malaria/immunology
- Malaria/parasitology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Mice
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/immunology
- Plasmodium berghei/immunology
- Plasmodium berghei/pathogenicity
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Pregnancy
- Pregnancy Complications, Parasitic/genetics
- Pregnancy Complications, Parasitic/immunology
- Pregnancy Complications, Parasitic/parasitology
- Pregnancy Complications, Parasitic/prevention & control
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- THP-1 Cells
- Trophoblasts/drug effects
- Trophoblasts/immunology
- Trophoblasts/parasitology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Aramys S. Reis
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Faculdade de Medicina, Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA, Brazil
| | - Renato Barboza
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Oscar Murillo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André Barateiro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erika P. M. Peixoto
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávia A. Lima
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinícius M. Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Jamille G. Dombrowski
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vinícius N. C. Leal
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Franciele Araujo
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carla L. Bandeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rosana B. D. Araujo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Rita Neres
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rodrigo M. Souza
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Centro Multidisciplinar, Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, AC, Brazil
| | - Fabio T. M. Costa
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Alessandra Pontillo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Estela Bevilacqua
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carsten Wrenger
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gerhard Wunderlich
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leticia Labriola
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Karina R. Bortoluci
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | | | - Lígia A. Gonçalves
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Claudio R. F. Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
67
|
Brabin B, Tinto H, Roberts SA. Testing an infection model to explain excess risk of preterm birth with long-term iron supplementation in a malaria endemic area. Malar J 2019; 18:374. [PMID: 31771607 PMCID: PMC6880560 DOI: 10.1186/s12936-019-3013-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background In view of recent evidence from a randomized trial in Burkina Faso that periconceptional iron supplementation substantially increases risk of spontaneous preterm birth (< 37 weeks) in first pregnancies (adjusted relative risk = 2.22; 95% CI 1.39–3.61), explanation is required to understand potential mechanisms, including progesterone mediated responses, linking long-term iron supplementation, malaria and gestational age. Methods The analysis developed a model based on a dual hit inflammatory mechanism arising from simultaneous malaria and gut infections, supported in part by published trial results. This model is developed to understand mechanisms linking iron supplementation, malaria and gestational age. Background literature substantiates synergistic inflammatory effects of these infections where trial data is unavailable. A path modelling exercise assessed direct and indirect paths influencing preterm birth and gestation length. Results A dual hit hypothesis incorporates two main pathways for pro-inflammatory mechanisms, which in this model, interact to increase hepcidin expression. Trial data showed preterm birth was positively associated with C-reactive protein (P = 0.0038) an inflammatory biomarker. The malaria pathway upregulates C-reactive protein and serum hepcidin, thereby reducing iron absorption. The enteric pathway results from unabsorbed gut iron, which induces microbiome changes and pathogenic gut infections, initiating pro-inflammatory events with lipopolysaccharide expression. Data from the trial suggest that raised hepcidin concentration is a mediating catalyst, being inversely associated with shorter gestational age at delivery (P = 0.002) and positively with preterm incidence (P = 0.007). A segmented regression model identified a change-point consisting of two segments before and after a sharp rise in hepcidin concentration. This showed a post change hepcidin elevation in women with increasing C-reactive protein values in late gestation (post-change slope 0.55. 95% CI 0.39–0.92, P < 0.001). Path modelling confirmed seasonal malaria effects on preterm birth, with mediation through C-reactive protein and (non-linear) hepcidin induction. Conclusions Following long-term iron supplementation, dual inflammatory pathways that mediate hepcidin expression and culminate in progesterone withdrawal may account for the reduction in gestational age observed in first pregnancies in this area of high malaria exposure. If correct, this model strongly suggests that in such areas, effective infection control is required prior to iron supplementation to avoid increasing preterm births. Trial registration NCT01210040. Registered with Clinicaltrials.gov on 27th September 2010
Collapse
Affiliation(s)
- Bernard Brabin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK. .,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. .,Global Child Health Group, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | - Halidou Tinto
- Clinical Research Unit of Nanoro (URCN/IRSS), Nanoro, Burkina Faso
| | - Stephen A Roberts
- Centre for Biostatistics, Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
68
|
Antonelli LR, Junqueira C, Vinetz JM, Golenbock DT, Ferreira MU, Gazzinelli RT. The immunology of Plasmodium vivax malaria. Immunol Rev 2019; 293:163-189. [PMID: 31642531 DOI: 10.1111/imr.12816] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Plasmodium vivax infection, the predominant cause of malaria in Asia and Latin America, affects ~14 million individuals annually, with considerable adverse effects on wellbeing and socioeconomic development. A clinical hallmark of Plasmodium infection, the paroxysm, is driven by pyrogenic cytokines produced during the immune response. Here, we review studies on the role of specific immune cell types, cognate innate immune receptors, and inflammatory cytokines on parasite control and disease symptoms. This review also summarizes studies on recurrent infections in individuals living in endemic regions as well as asymptomatic infections, a serious barrier to eliminating this disease. We propose potential mechanisms behind these repeated and subclinical infections, such as poor induction of immunological memory cells and inefficient T effector cells. We address the role of antibody-mediated resistance to P. vivax infection and discuss current progress in vaccine development. Finally, we review immunoregulatory mechanisms, such as inhibitory receptors, T regulatory cells, and the anti-inflammatory cytokine, IL-10, that antagonizes both innate and acquired immune responses, interfering with the development of protective immunity and parasite clearance. These studies provide new insights for the clinical management of symptomatic as well as asymptomatic individuals and the development of an efficacious vaccine for vivax malaria.
Collapse
Affiliation(s)
- Lis R Antonelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Joseph M Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Douglas T Golenbock
- Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marcelo U Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ricardo T Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil.,Division of Infectious Disease and immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, Ribeirão Preto, Brazil
| |
Collapse
|
69
|
Hirako IC, Assis PA, Galvão-Filho B, Luster AD, Antonelli LR, Gazzinelli RT. Monocyte-derived dendritic cells in malaria. Curr Opin Microbiol 2019; 52:139-150. [PMID: 31542508 DOI: 10.1016/j.mib.2019.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/03/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
The pathogenesis of malaria is a multifactorial syndrome associated with a deleterious inflammatory response that is responsible for many of the clinical manifestations. While dendritic cells (DCs) play a critical role in initiating acquired immunity and host resistance to infection, they also play a pathogenic role in inflammatory diseases. In our recent studies, we found in different rodent malaria models that the monocyte-derived DCs (MO-DCs) become, transiently, a main DC population in spleens and inflamed non-lymphoid organs. These studies suggest that acute infection with Plasmodium berghei promotes the differentiation of splenic monocytes into inflammatory monocytes (iMOs) and thereafter into MO-DCs that play a pathogenic role by promoting inflammation and tissue damage. The recruitment of MO-DCs to the lungs and brain are dependent on expression of CCR4 and CCR5, respectively, and expression of respective chemokine ligands in each organ. Once they reach the target organ the MO-DCs produce the CXCR3 ligands (CXCL9 and CXCL10), recruit CD8+ T cells, and produce toxic metabolites that play an important role in the development of experimental cerebral malaria (ECM) and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Isabella C Hirako
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | - Patrícia A Assis
- University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | | | - Andrew D Luster
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lis Rv Antonelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil
| | - Ricardo T Gazzinelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States; Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
70
|
Ty MC, Zuniga M, Götz A, Kayal S, Sahu PK, Mohanty A, Mohanty S, Wassmer SC, Rodriguez A. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol Med 2019; 11:e9903. [PMID: 31265218 PMCID: PMC6685105 DOI: 10.15252/emmm.201809903] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023] Open
Abstract
Malaria is a highly inflammatory disease caused by Plasmodium infection of host erythrocytes. However, the parasite does not induce inflammatory cytokine responses in macrophages in vitro and the source of inflammation in patients remains unclear. Here, we identify oxidative stress, which is common in malaria, as an effective trigger of the inflammatory activation of macrophages. We observed that extracellular reactive oxygen species (ROS) produced by xanthine oxidase (XO), an enzyme upregulated during malaria, induce a strong inflammatory cytokine response in primary human monocyte-derived macrophages. In malaria patients, elevated plasma XO activity correlates with high levels of inflammatory cytokines and with the development of cerebral malaria. We found that incubation of macrophages with plasma from these patients can induce a XO-dependent inflammatory cytokine response, identifying a host factor as a trigger for inflammation in malaria. XO-produced ROS also increase the synthesis of pro-IL-1β, while the parasite activates caspase-1, providing the two necessary signals for the activation of the NLRP3 inflammasome. We propose that XO-produced ROS are a key factor for the trigger of inflammation during malaria.
Collapse
Affiliation(s)
- Maureen C Ty
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| | - Marisol Zuniga
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| | - Anton Götz
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| | - Sriti Kayal
- Department of Biotechnology and Medical EngineeringNational Institute of TechnologyRourkelaOdishaIndia
| | - Praveen K Sahu
- Center for the Study of Complex Malaria in IndiaIspat General HospitalRourkelaOdishaIndia
| | - Akshaya Mohanty
- Infectious Diseases Biology UnitInstitute of Life SciencesBhubaneswarOdishaIndia
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in IndiaIspat General HospitalRourkelaOdishaIndia
| | - Samuel C Wassmer
- Department of Infection BiologyLondon School of Hygiene & Tropical MedicineLondonUK
| | - Ana Rodriguez
- Department of MicrobiologyNew York University School of MedicineNew YorkNYUSA
| |
Collapse
|
71
|
de Menezes MN, Salles ÉM, Vieira F, Amaral EP, Zuzarte-Luís V, Cassado A, Epiphanio S, Alvarez JM, Alves-Filho JC, Mota MM, D'Império-Lima MR. IL-1α promotes liver inflammation and necrosis during blood-stage Plasmodium chabaudi malaria. Sci Rep 2019; 9:7575. [PMID: 31110285 PMCID: PMC6527574 DOI: 10.1038/s41598-019-44125-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Malaria causes hepatic inflammation and damage, which contribute to disease severity. The pro-inflammatory cytokine interleukin (IL)-1α is released by non-hematopoietic or hematopoietic cells during liver injury. This study established the role of IL-1α in the liver pathology caused by blood-stage P. chabaudi malaria. During acute infection, hepatic inflammation and necrosis were accompanied by NLRP3 inflammasome-independent IL-1α production. Systemically, IL-1α deficiency attenuated weight loss and hypothermia but had minor effects on parasitemia control. In the liver, the absence of IL-1α reduced the number of TUNEL+ cells and necrotic lesions. This finding was associated with a lower inflammatory response, including TNF-α production. The main source of IL-1α in the liver of infected mice was inflammatory cells, particularly neutrophils. The implication of IL-1α in liver inflammation and necrosis caused by P. chabaudi infection, as well as in weight loss and hypothermia, opens up new perspectives for improving malaria outcomes by inhibiting IL-1 signaling.
Collapse
Affiliation(s)
| | | | - Flávia Vieira
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Vanessa Zuzarte-Luís
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra Cassado
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - José Maria Alvarez
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria Manuel Mota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
72
|
NLRP12 Regulates Anti-viral RIG-I Activation via Interaction with TRIM25. Cell Host Microbe 2019; 25:602-616.e7. [PMID: 30902577 DOI: 10.1016/j.chom.2019.02.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/12/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Establishing the balance between positive and negative innate immune mechanisms is crucial for maintaining homeostasis. Here we uncover the regulatory crosstalk between two previously unlinked innate immune receptor families: RIG-I, an anti-viral cytosolic receptor activated type I interferon production, and NLR (nucleotide-binding domain, leucine repeat domain-containing protein). We show that NLRP12 dampens RIG-I-mediated immune signaling against RNA viruses by controlling RIG-I's association with its adaptor MAVS. The nucleotide-binding domain of NLRP12 interacts with the ubiquitin ligase TRIM25 to prevent TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. NLRP12 also enhances RNF125-mediated, Lys48-linked degradative ubiquitination of RIG-I. Vesicular stomatitis virus (VSV) infection downregulates NLRP12 expression to allow RIG-I activation. Myeloid-cell-specific Nlrp12-deficient mice display a heightened interferon and TNF response and are more resistant to VSV infection. These results indicate that NLRP12 functions as a checkpoint for anti-viral RIG-I activation.
Collapse
|
73
|
Deng J, Yu XQ, Wang PH. Inflammasome activation and Th17 responses. Mol Immunol 2019; 107:142-164. [PMID: 30739833 DOI: 10.1016/j.molimm.2018.12.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022]
Abstract
Immune sensing of exogenous molecules from microbes (e.g., pathogen-associated molecular patterns) and nonmicrobial molecules (e.g., asbestos, alum, and silica), as well as endogenous damage-associated molecular patterns (e.g., ATP, uric acid crystals, and amyloid A) activates innate immunity by inducing immune-related genes, including proinflammatory cytokines, which further facilitate the development of adaptive immunity. The roles of transcriptional responses downstream of immune sensing have been widely characterized in informing adaptive immunity; however, few studies focus on the effect of post-translational responses on the modulation of adaptive immune responses. Inflammasomes activated by the previously described endo- and exogenous stimuli autocatalytically induce intracellular pro-caspase-1, which cleaves the inactive precursors of interleukin-1β (IL-1β) and IL-18 into bioactive proinflammatory cytokines. IL-1β and IL-18 not only contribute to the host defense against infections by activating phagocytes, such as monocytes, macrophages, dendritic cells, and neutrophils, but also induce T-helper 17 (Th17)- and Th1-mediated adaptive immune responses. In synergy with IL-6 and IL-23, IL-1β activates IL-1 receptor (IL-1R) signaling to drive the differentiation of IL-17-producing Th17 cells, which not only play critical roles in host protective immunity to infections of bacteria, fungi, and certain viruses but also participate in the pathology of inflammatory disorders and tumorigenesis. Consequently, targeting inflammasomes and IL-1/IL-1R signaling may effectively improve the treatment of Th17-associated disorders, such as autoinflammatory diseases and cancers, thereby providing novel insights into drug development.
Collapse
Affiliation(s)
- Jian Deng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiao-Qiang Yu
- School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110-2499, USA
| | - Pei-Hui Wang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China; School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
74
|
Gowda DC, Wu X. Parasite Recognition and Signaling Mechanisms in Innate Immune Responses to Malaria. Front Immunol 2018; 9:3006. [PMID: 30619355 PMCID: PMC6305727 DOI: 10.3389/fimmu.2018.03006] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Malaria caused by the Plasmodium family of parasites, especially P.falciparum and P. vivax, is a major health problem in many countries in the tropical and subtropical regions of the world. The disease presents a wide array of systemic clinical conditions and several life-threatening organ pathologies, including the dreaded cerebral malaria. Like many other infectious diseases, malaria is an inflammatory response-driven disease, and positive outcomes to infection depend on finely tuned regulation of immune responses that efficiently clear parasites and allow protective immunity to develop. Immune responses initiated by the innate immune system in response to parasites play key roles both in protective immunity development and pathogenesis. Initial pro-inflammatory responses are essential for clearing infection by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged pro-inflammatory responses owing to inappropriate cellular programming contribute to disease conditions. A comprehensive knowledge of the molecular and cellular mechanisms that initiate immune responses and how these responses contribute to protective immunity development or pathogenesis is important for developing effective therapeutics and/or a vaccine. Historically, in efforts to develop a vaccine, immunity to malaria was extensively studied in the context of identifying protective humoral responses, targeting proteins involved in parasite invasion or clearance. The innate immune response was thought to be non-specific. However, during the past two decades, there has been a significant progress in understanding the molecular and cellular mechanisms of host-parasite interactions and the associated signaling in immune responses to malaria. Malaria infection occurs at two stages, initially in the liver through the bite of a mosquito, carrying sporozoites, and subsequently, in the blood through the invasion of red blood cells by merozoites released from the infected hepatocytes. Soon after infection, both the liver and blood stage parasites are sensed by various receptors of the host innate immune system resulting in the activation of signaling pathways and production of cytokines and chemokines. These immune responses play crucial roles in clearing parasites and regulating adaptive immunity. Here, we summarize the knowledge on molecular mechanisms that underlie the innate immune responses to malaria infection.
Collapse
Affiliation(s)
- D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Xianzhu Wu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
75
|
Ortega-Pajares A, Rogerson SJ. The Rough Guide to Monocytes in Malaria Infection. Front Immunol 2018; 9:2888. [PMID: 30581439 PMCID: PMC6292935 DOI: 10.3389/fimmu.2018.02888] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
While half of the world's population is at risk of malaria, the most vulnerable are still children under five, pregnant women and returning travelers. Anopheles mosquitoes transmit malaria parasites to the human host; but how Plasmodium interact with the innate immune system remains largely unexplored. The most recent advances prove that monocytes are a key component to control parasite burden and to protect host from disease. Monocytes' protective roles include phagocytosis, cytokine production and antigen presentation. However, monocytes can be involved in pathogenesis and drive inflammation and sequestration of infected red blood cells in organs such as the brain, placenta or lungs by secreting cytokines that upregulate expression of endothelial adhesion receptors. Plasmodium DNA, hemozoin or extracellular vesicles can impair the function of monocytes. With time, reinfections with Plasmodium change the relative proportion of monocyte subsets and their physical properties. These changes relate to clinical outcomes and might constitute informative biomarkers of immunity. More importantly, at the molecular level, transcriptional, metabolic or epigenetic changes can “prime” monocytes to alter their responses in future encounters with Plasmodium. This mechanism, known as trained immunity, challenges the traditional view of monocytes as a component of the immune system that lacks memory. Overall, this rough guide serves as an update reviewing the advances made during the past 5 years on understanding the role of monocytes in innate immunity to malaria.
Collapse
Affiliation(s)
- Amaya Ortega-Pajares
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine at Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
76
|
Yu X, Du Y, Cai C, Cai B, Zhu M, Xing C, Tan P, Lin M, Wu J, Li J, Wang M, Wang HY, Su XZ, Wang RF. Inflammasome activation negatively regulates MyD88-IRF7 type I IFN signaling and anti-malaria immunity. Nat Commun 2018; 9:4964. [PMID: 30470758 PMCID: PMC6251914 DOI: 10.1038/s41467-018-07384-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/25/2018] [Indexed: 11/25/2022] Open
Abstract
The inflammasome plays a critical role in inflammation and immune responses against pathogens. However, whether or how inflammasome activation regulates type I interferon (IFN-I) signaling in the context of malaria infection remain unknown. Here we show mice deficient in inflammasome sensors AIM2, NLRP3 or adaptor Caspase-1 produce high levels of IFN-I cytokines and are resistant to lethal Plasmodium yoelii YM infection. Inactivation of inflammasome signaling reduces interleukin (IL)-1β production, but increases IFN-I production. Mechanistically, we show inflammsome activation enhances IL-1β-mediated MyD88-TRAF3-IRF3 signaling and SOCS1 upregulation. However, SOCS1 inhibits MyD88-IRF7-mediated-IFN-I signaling and cytokine production in plasmacytoid dendritic cells. By contrast, ablation of inflammsome components reduces SOCS1 induction, and relieves its inhibition on MyD88-IRF7-dependent-IFN-I signaling, leading to high levels of IFN-α/β production and host survival. Our study identifies a previously unrecognized role of inflammasome activation in the negative regulation of IFN-I signaling pathways and provides potential targets for developing effective malaria vaccines. The inflammasome is an essential component of inflammatory processes and the host response to infection. Here the authors show that inflammasome activation modulates MyD88-IRF7 type I IFN signalling and anti-malaria immunity.
Collapse
Affiliation(s)
- Xiao Yu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yang Du
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Chunmei Cai
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Zhongshan School of Medicine, Sun Yat-sen University, 510275, Guangzhou, Guangdong, People's Republic of China
| | - Baowei Cai
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Motao Zhu
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Peng Tan
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,Institute of Biosciences and Technology, College of Medicine, Texas A & M University, Houston, TX, 77030, USA
| | - Meng Lin
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA.,School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, Guangdong, People's Republic of China
| | - Jian Wu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jian Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, 361005, Xiamen, Fujian, People's Republic of China
| | - Mingjun Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX, 77030, USA. .,Institute of Biosciences and Technology, College of Medicine, Texas A & M University, Houston, TX, 77030, USA. .,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
77
|
Xia Y, Chen S, Zhu G, Huang R, Yin Y, Ren W. Betaine Inhibits Interleukin-1β Production and Release: Potential Mechanisms. Front Immunol 2018; 9:2670. [PMID: 30515160 PMCID: PMC6255979 DOI: 10.3389/fimmu.2018.02670] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
Betaine is a critical nutrient for mammal health, and has been found to alleviate inflammation by lowering interleukin (IL)-1β secretion; however, the underlying mechanisms by which betaine inhibits IL-1β secretion remain to be uncovered. In this review, we summarize the current understanding about the mechanisms of betaine in IL-1β production and release. For IL-1β production, betaine affects canonical and non-canonical inflammasome-mediated processing of IL-1β through signaling pathways, such as NF-κB, NLRP3 and caspase-8/11. For IL-1β release, betaine inhibits IL-1β release through blocking the exocytosis of IL-1β-containing secretory lysosomes, reducing the shedding of IL-1β-containing plasma membrane microvesicles, suppressing the exocytosis of IL-1β-containing exosomes, and attenuating the passive efflux of IL-1β across hyperpermeable plasma membrane during pyroptotic cell death, which are associated with ERK1/2/PLA2 and caspase-8/A-SMase signaling pathways. Collectively, this review highlights the anti-inflammatory property of betaine by inhibiting the production and release of IL-1β, and indicates the potential application of betaine supplementation as an adjuvant therapy in various inflammatory diseases associating with IL-1β secretion.
Collapse
Affiliation(s)
- Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Shuai Chen
- University of Chinese Academy of Sciences, Beijing, China.,Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruilin Huang
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Academics Working Station at The First Affiliated Hospital, Changsha Medical University, Changsha, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoo Noses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
78
|
Cytosolic Recognition of Microbes and Pathogens: Inflammasomes in Action. Microbiol Mol Biol Rev 2018; 82:82/4/e00015-18. [PMID: 30209070 DOI: 10.1128/mmbr.00015-18] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection is a dynamic biological process underpinned by a complex interplay between the pathogen and the host. Microbes from all domains of life, including bacteria, viruses, fungi, and protozoan parasites, have the capacity to cause infection. Infection is sensed by the host, which often leads to activation of the inflammasome, a cytosolic macromolecular signaling platform that mediates the release of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and cleavage of the pore-forming protein gasdermin D, leading to pyroptosis. Host-mediated sensing of the infection occurs when pathogens inject or carry pathogen-associated molecular patterns (PAMPs) into the cytoplasm or induce damage that causes cytosolic liberation of danger-associated molecular patterns (DAMPs) in the host cell. Recognition of PAMPs and DAMPs by inflammasome sensors, including NLRP1, NLRP3, NLRC4, NAIP, AIM2, and Pyrin, initiates a cascade of events that culminate in inflammation and cell death. However, pathogens can deploy virulence factors capable of minimizing or evading host detection. This review presents a comprehensive overview of the mechanisms of microbe-induced activation of the inflammasome and the functional consequences of inflammasome activation in infectious diseases. We also explore the microbial strategies used in the evasion of inflammasome sensing at the host-microbe interaction interface.
Collapse
|
79
|
The Dual Immunoregulatory function of Nlrp12 in T Cell-Mediated Immune Response: Lessons from Experimental Autoimmune Encephalomyelitis. Cells 2018; 7:cells7090119. [PMID: 30150571 PMCID: PMC6162721 DOI: 10.3390/cells7090119] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Although the etiology of multiple sclerosis (MS) remains enigmatic, the role of T cells is unquestionably central in this pathology. Immune cells respond to pathogens and danger signals via pattern-recognition receptors (PRR). Several reports implicate Nlrp12, an intracellular PRR, in the development of a mouse MS-like disease, called Experimental Autoimmune Encephalomyelitis (EAE). In this study, we used induced and spontaneous models of EAE, as well as in vitro T cell assays, to test the hypothesis that Nlrp12 inhibits Th1 response and prevents T-cell mediated autoimmunity. We found that Nlrp12 plays a protective role in induced EAE by reducing IFNγ/IL-4 ratio in lymph nodes, whereas it potentiates the development of spontaneous EAE (spEAE) in 2D2 T cell receptor (TCR) transgenic mice. Looking into the mechanism of Nlrp12 activity in T cell response, we found that it inhibits T cell proliferation and suppresses Th1 response by reducing IFNγ and IL-2 production. Following TCR activation, Nlrp12 inhibits Akt and NF-κB phosphorylation, while it has no effect on S6 phosphorylation in the mTOR pathway. In conclusion, we propose a model that can explain the dual immunoregulatory function of Nlrp12 in EAE. We also propose a model explaining the molecular mechanism of Nlrp12-dependent regulation of T cell response.
Collapse
|
80
|
Hirako IC, Assis PA, Hojo-Souza NS, Reed G, Nakaya H, Golenbock DT, Coimbra RS, Gazzinelli RT. Daily Rhythms of TNFα Expression and Food Intake Regulate Synchrony of Plasmodium Stages with the Host Circadian Cycle. Cell Host Microbe 2018; 23:796-808.e6. [PMID: 29805094 PMCID: PMC6014587 DOI: 10.1016/j.chom.2018.04.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/14/2018] [Accepted: 04/12/2018] [Indexed: 12/26/2022]
Abstract
The Plasmodium cell cycle, wherein millions of parasites differentiate and proliferate, occurs in synchrony with the vertebrate host's circadian cycle. The underlying mechanisms are unknown. Here we addressed this question in a mouse model of Plasmodium chabaudi infection. Inflammatory gene expression and carbohydrate metabolism are both enhanced in interferon-γ (IFNγ)-primed leukocytes and liver cells from P. chabaudi-infected mice. Tumor necrosis factor α (TNFα) expression oscillates across the host circadian cycle, and increased TNFα correlates with hypoglycemia and a higher frequency of non-replicative ring forms of trophozoites. Conversely, parasites proliferate and acquire biomass during food intake by the host. Importantly, cyclic hypoglycemia is attenuated and synchronization of P. chabaudi stages is disrupted in IFNγ-/-, TNF receptor-/-, or diabetic mice. Hence, the daily rhythm of systemic TNFα production and host food intake set the pace for Plasmodium synchronization with the host's circadian cycle. This mechanism indicates that Plasmodium parasites take advantage of the host's feeding habits.
Collapse
Affiliation(s)
- Isabella Cristina Hirako
- Laboratory of Immunopathology, Fundação Oswaldo Cruz - Minas, Belo Horizonte, Minas Gerais 30190-002, Brazil
- Division of Infectious Diseases and Immunology – University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321, USA
| | - Patrícia Aparecida Assis
- Division of Infectious Diseases and Immunology – University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321, USA
| | - Natália Satchiko Hojo-Souza
- Laboratory of Immunopathology, Fundação Oswaldo Cruz - Minas, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - George Reed
- Division of Preventive and Behavioral Medicine – University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321, USA
| | - Helder Nakaya
- Escola de Ciências Farmacêuticas – Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Douglas Taylor Golenbock
- Laboratory of Immunopathology, Fundação Oswaldo Cruz - Minas, Belo Horizonte, Minas Gerais 30190-002, Brazil
- Division of Infectious Diseases and Immunology – University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321, USA
| | - Roney Santos Coimbra
- Laboratory of Immunopathology, Fundação Oswaldo Cruz - Minas, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Ricardo Tostes Gazzinelli
- Laboratory of Immunopathology, Fundação Oswaldo Cruz - Minas, Belo Horizonte, Minas Gerais 30190-002, Brazil
- Division of Infectious Diseases and Immunology – University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321, USA
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto 14049-900, São Paulo, Brazil
| |
Collapse
|
81
|
Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun 2018; 9:2223. [PMID: 29884801 PMCID: PMC5993818 DOI: 10.1038/s41467-018-04581-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/10/2018] [Indexed: 01/01/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) exerts multiple effects on immune cells, as well as having functions outside the immune system. MIF can promote inflammation through the induction of other cytokines, including TNF, IL-6, and IL-1 family cytokines. Here, we show that inhibition of MIF regulates the release of IL-1α, IL-1β, and IL-18, not by affecting transcription or translation of these cytokines, but via activation of the NLRP3 inflammasome. MIF is required for the interaction between NLRP3 and the intermediate filament protein vimentin, which is critical for NLRP3 activation. Further, we demonstrate that MIF interacts with NLRP3, indicating a role for MIF in inflammasome activation independent of its role as a cytokine. These data advance our understanding of how MIF regulates inflammation and identify it as a factor critical for NLRP3 inflammasome activation. MIF is a cytokine best known for its modulatory effect on expression of proinflammatory cytokines. Here the authors show that MIF facilitates the NLRP3–vimentin interaction, resulting in Nlrp3 inflammasome activation.
Collapse
|
82
|
Abstract
The intestinal tract is a site of intense immune cell activity that is poised to mount an effective response against a pathogen and yet maintain tolerance toward commensal bacteria and innocuous dietary antigens. The role of cell death in gut pathologies is particularly important as the intestinal epithelium undergoes self-renewal every 4-7 days through a continuous process of cell death and cell division. Cell death is also required for removal of infected, damaged, and cancerous cells. Certain forms of cell death trigger inflammation through release of damage-associated molecular patterns. Further, molecules involved in cell death decisions also moonlight as critical nodes in immune signaling. The manner of cell death is, therefore, highly instructive of the immunological consequences that ensue. Perturbations in cell death pathways can impact the regulation of the immune system with deleterious consequences. In this review, we discuss the various forms of cell death with a special emphasis on lytic cell death pathways of pyroptosis and necroptosis and their implications in inflammation and cancer in the gut. Understanding the implications of distinct cell death pathways will help in the development of therapeutic interventions in intestinal pathologies.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
83
|
Kalantari P. The Emerging Role of Pattern Recognition Receptors in the Pathogenesis of Malaria. Vaccines (Basel) 2018; 6:vaccines6010013. [PMID: 29495555 PMCID: PMC5874654 DOI: 10.3390/vaccines6010013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
Despite a global effort to develop an effective vaccine, malaria is still a significant health problem. Much of the pathology of malaria is immune mediated. This suggests that host immune responses have to be finely regulated. The innate immune system initiates and sets the threshold of the acquired immune response and determines the outcome of the disease. Yet, our knowledge of the regulation of innate immune responses during malaria is limited. Theoretically, inadequate activation of the innate immune system could result in unrestrained parasite growth. Conversely, hyperactivation of the innate immune system, is likely to cause excessive production of proinflammatory cytokines and severe pathology. Toll-like receptors (TLRs) have emerged as essential receptors which detect signature molecules and shape the complex host response during malaria infection. This review will highlight the mechanisms by which Plasmodium components are recognized by innate immune receptors with particular emphasis on TLRs. A thorough understanding of the complex roles of TLRs in malaria may allow the delineation of pathological versus protective host responses and enhance the efficacy of anti-malarial treatments and vaccines.
Collapse
Affiliation(s)
- Parisa Kalantari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
84
|
Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, Amselem S, Giurgea I, Karabina SA. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 2018; 187:133-149. [PMID: 29466702 DOI: 10.1016/j.pharmthera.2018.02.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammasomes are intracellular multiprotein signaling complexes, mainly present in myeloid cells. They commonly assemble around a cytoplasmic receptor of the nucleotide-binding leucine-rich repeat containing receptor (NLR) family, although other cytoplasmic receptors like pyrin have been shown to form inflammasomes. The nucleation of the multiprotein scaffolding platform occurs upon detection of a microbial, a danger or a homeostasis pattern by the receptor that will, most commonly, associate with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) through homotypic domain interactions resulting in recruitment of procaspase-1. This will lead to the autoproteolytic activation of caspase-1, which regulates the secretion of proinflammatory IL1β and IL18 cytokines and pyroptosis, a caspase-1-mediated form of cell death. Pyroptosis occurs through cleavage of Gasdermin D, a membrane pore forming protein. Recently, non-canonical inflammasomes have been described, which directly sense intracellular pathogens through caspase-4 and -5 in humans, leading to pyroptosis. Inflammasomes are important in host defense; however, a deregulated activity is associated with a number of inflammatory, immune and metabolic disorders. Furthermore, mutations in inflammasome receptor coding genes are causal for an increasing number of rare autoinflammatory diseases. Biotherapies targeting the products of inflammasome activation as well as molecules that directly or indirectly inhibit inflammasome nucleation and activation are promising therapeutic areas. This review discusses recent advances in inflammasome biology, the molecular pathology of several inflammasomes, and current therapeutic approaches in autoinflammatory diseases and in selected common multifactorial inflammasome-mediated disorders.
Collapse
Affiliation(s)
- Fawaz Awad
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Eman Assrawi
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Camille Louvrier
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Claire Jumeau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Gilles Grateau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Irina Giurgea
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Sonia-Athina Karabina
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| |
Collapse
|
85
|
Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. Modulating inflammation through the negative regulation of NF-κB signaling. J Leukoc Biol 2018; 103:10.1002/JLB.3MIR0817-346RRR. [PMID: 29389019 PMCID: PMC6135699 DOI: 10.1002/jlb.3mir0817-346rrr] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022] Open
Abstract
Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Daniel E. Rothschild
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
| | - Veronica M. Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016
| |
Collapse
|
86
|
Gharagozloo M, Gris KV, Mahvelati T, Amrani A, Lukens JR, Gris D. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis. Front Immunol 2018; 8:2012. [PMID: 29403486 PMCID: PMC5778124 DOI: 10.3389/fimmu.2017.02012] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS.
Collapse
Affiliation(s)
- Marjan Gharagozloo
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Katsiaryna V. Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tara Mahvelati
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Abdelaziz Amrani
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| | - John R. Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Denis Gris
- Program of Immunology, Faculty of Medicine and Health Sciences, Department of Pediatrics, CR-CHUS, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
87
|
A young girl with severe cerebral fungal infection due to card 9 deficiency. Clin Immunol 2018; 191:21-26. [PMID: 29307770 DOI: 10.1016/j.clim.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/02/2017] [Accepted: 01/02/2018] [Indexed: 12/23/2022]
Abstract
Pattern recognition receptors (PRRs), receptors of the innate immune system, are important in interaction with pathogens. Caspase Recruitment Domain-containing protein 9 (CARD9), a member of PRRs, is an intracellular adaptor protein important in fungal defense. CARD9 deficiency causes a rare primary immunodeficiency (PID) characterized by superficial and deep fungal infections. We report a 17year-old female with a homozygous nonsense mutation in CARD9, who presented with severe cerebral fungal infection of the central nervous system. She was also found to have an heterozygous NLRP12 mutation, which may have had add-on effect on the severity of the infection.
Collapse
|
88
|
Ademolue TW, Awandare GA. Evaluating antidisease immunity to malaria and implications for vaccine design. Immunology 2017; 153:423-434. [PMID: 29211303 PMCID: PMC5838420 DOI: 10.1111/imm.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Immunity to malaria could be categorized broadly as antiparasite or antidisease immunity. While most vaccine research efforts have focused on antiparasite immunity, the evidence from endemic populations suggest that antidisease immunity is an important component of natural immunity to malaria. The processes that mediate antidisease immunity have, however, attracted little to no attention, and most interests have been directed towards the antibody responses. This review evaluates the evidence for antidisease immunity in endemic areas and discusses the possible mechanisms responsible for it. Given the key role that inflammation plays in the pathogenesis of malaria, regulation of the inflammatory response appears to be a major mechanism for antidisease immunity in naturally exposed individuals.
Collapse
Affiliation(s)
- Temitope W Ademolue
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Gordon A Awandare
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
89
|
How Inflammasomes Inform Adaptive Immunity. J Mol Biol 2017; 430:217-237. [PMID: 28987733 DOI: 10.1016/j.jmb.2017.09.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
An immune response consists of a finely orchestrated interplay between initial recognition of potential microbial threats by the innate immune system and subsequent licensed adaptive immune neutralization. The initial recognition integrates environmental cues derived from pathogen-associated molecular patterns and cell-intrinsic damage-associated molecular patterns to contextualize the insult and inform a tailored adaptive response via T and B lymphocytes. While there are much data to support the role of transcriptional responses downstream of pattern recognition receptors in informing the adaptive immune response, markedly less attention has been paid to the role of post-translational responses to pathogen-associated molecular pattern and damage-associated molecular pattern recognition by the innate immune system, and how this may influence adaptive immunity. A well-characterized post-translational consequence of pattern recognition receptor signaling is the assembly of a multimeric signaling platform, termed the inflammasome, by members of the nucleotide-binding oligomerization domain (Nod), leucine-rich repeat-containing receptors (NLRs), and pyrin and HIN domain (PYHIN) families. Inflammasomes assemble in response to cytosolic perturbations, such as mitochondrial dysfunction and aberrant ion fluxes in the case of the canonical NLRP3 inflammasome or the presence of bacterial lipopolysaccharides in the case of the non-canonical inflammasome. Assembly of the inflammasome allows for the cleavage and activation of inflammatory caspases. These activated inflammatory caspases in turn cleave pro-form inflammatory cytokines into their mature bioactive species and lead to unconventional protein secretion and lytic cell death. In this review, we discuss evidence for inflammasome-mediated instruction and contextualization of infectious and sterile agents to the adaptive immune system.
Collapse
|
90
|
Quin JE, Bujila I, Chérif M, Sanou GS, Qu Y, Vafa Homann M, Rolicka A, Sirima SB, O'Connell MA, Lennartsson A, Troye-Blomberg M, Nebie I, Östlund Farrants AK. Major transcriptional changes observed in the Fulani, an ethnic group less susceptible to malaria. eLife 2017; 6:29156. [PMID: 28923166 PMCID: PMC5629023 DOI: 10.7554/elife.29156] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Fulani ethnic group has relatively better protection from Plasmodium falciparum malaria, as reflected by fewer symptomatic cases of malaria, lower infection rates, and lower parasite densities compared to sympatric ethnic groups. However, the basis for this lower susceptibility to malaria by the Fulani is unknown. The incidence of classic malaria resistance genes are lower in the Fulani than in other sympatric ethnic populations, and targeted SNP analyses of other candidate genes involved in the immune response to malaria have not been able to account for the observed difference in the Fulani susceptibility to P.falciparum. Therefore, we have performed a pilot study to examine global transcription and DNA methylation patterns in specific immune cell populations in the Fulani to elucidate the mechanisms that confer the lower susceptibility to P.falciparum malaria. When we compared uninfected and infected Fulani individuals, in contrast to uninfected and infected individuals from the sympatric ethnic group Mossi, we observed a key difference: a strong transcriptional response was only detected in the monocyte fraction of the Fulani, where over 1000 genes were significantly differentially expressed upon P.falciparum infection.
Collapse
Affiliation(s)
- Jaclyn E Quin
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ioana Bujila
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mariama Chérif
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso.,Université Polytechnique de Bobo-Dioulasso, Bobo-Dioulasso, Burkina Faso
| | - Guillaume S Sanou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Ying Qu
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Manijeh Vafa Homann
- Unit of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Anna Rolicka
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Marita Troye-Blomberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | |
Collapse
|
91
|
Abstract
The inflammasome is a large multimeric protein complex comprising an effector protein that demonstrates specificity for a variety of activators or ligands; an adaptor molecule; and procaspase-1, which is converted to caspase-1 upon inflammasome activation. Inflammasomes are expressed primarily by myeloid cells and are located within the cell. The macromolecular inflammasome structure can be visualized by cryo-electron microscopy. This complex has been found to play a role in a variety of disease models in mice, and several have been genetically linked to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding domain leucine-rich repeat-containing) or NOD (nucleotide oligomerization domain)-like receptor protein family. However, other effectors have also been described, with the most notable being AIM-2 (absent in melanoma 2), which recognizes DNA to elicit inflammasome function. This review will focus on the role of the inflammasome in myeloid cells and its role in health and disease.
Collapse
|
92
|
Takagi M, Takakubo Y, Pajarinen J, Naganuma Y, Oki H, Maruyama M, Goodman SB. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J Orthop Translat 2017; 10:68-85. [PMID: 29130033 PMCID: PMC5676564 DOI: 10.1016/j.jot.2017.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The innate immune sensors, Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), can recognize not only exogenous pathogen-associated molecular patterns (PAMPs), but also endogenous molecules created upon tissue injury, sterile inflammation, and degeneration. Endogenous ligands are called damage-associated molecular patterns (DAMPs), and include endogenous molecules released from activated and necrotic cells as well as damaged extracellular matrix. TLRs and NLRs can interact with various ligands derived from PAMPs and DAMPs, leading to activation and/or modulation of intracellular signalling pathways. Intensive research on the innate immune sensors, TLRs and NLRs, has brought new insights into the pathogenesis of not only various infectious and rheumatic diseases, but also aseptic foreign body granuloma and septic inflammation of failed total hip replacements (THRs). In this review, recent knowledge is summarized on the innate immune system, including TLRs and NLRs and their danger signals, with special reference to their possible role in the adverse local host response to THRs. Translational potential of this article: A clear understanding of the roles of Toll-like receptors and NOD-like receptors in aseptic and septic loosening of joint replacements will facilitate potential strategies to mitigate these events, thereby extending the longevity of implants in humans.
Collapse
Affiliation(s)
- Michiaki Takagi
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yasushi Naganuma
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Hiroharu Oki
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan
| | - Masahiro Maruyama
- Department of Orthopaedic Surgery, Yamagata University Faculty of Medicine, Yamagata City, Yamagata, Japan.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
93
|
Han NR, Moon PD, Kim NR, Kim HY, Jeong HJ, Kim HM. Schisandra chinensis and Its Main Constituent Schizandrin Attenuate Allergic Reactions by Down-Regulating Caspase-1 in Ovalbumin-Sensitized Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:159-172. [DOI: 10.1142/s0192415x17500112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Schisandra chinensis (SC) and its main constituent, schizandrin (SCH) exhibit anti-inflammatory and anti-allergic activities. Allergic and inflammatory reactions are aggravated via caspase-1 signaling pathway. However, the regulatory effects of SC and SCH on caspase-1 activation have not been clarified yet. In this study, we aimed to clarify the anti-allergic effects of SC and SCH using an ovalbumin (OVA)-sensitized mice and anti-CD3 and anti-CD28 antibodies-stimulated splenocytes. SC or SCH significantly inhibited the levels of immunoglobulin (Ig)E, IgG1, or interleukin (IL)-4 in serum of OVA-sensitized mice. SC or SCH significantly inhibited the levels of IL-6, tumor necrosis factor (TNF)-[Formula: see text], and IL-1[Formula: see text] in spleen of the OVA-sensitized mice. SC or SCH significantly suppressed the expression of caspase-1 and receptor-interacting protein (RIP)-2 in spleen of the OVA-sensitized mice. In activated splenocytes, SC or SCH significantly decreased the expression of caspase-1 and RIP-2 as well as the production of IL-6 and TNF-[Formula: see text]. We suggest that SC and SCH exert an anti-allergic effect by down-regulating caspase-1 signaling.
Collapse
Affiliation(s)
- Na-Ra Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Phil-Dong Moon
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Rae Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Yun Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun-Ja Jeong
- Department of Food Science & Technology and Research Institute for Basic Science, Hoseo University, Chungnam 31499, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
94
|
Linz BML, Neely CJ, Kartchner LB, Mendoza AE, Khoury AL, Truax A, Sempowski G, Eitas T, Brickey J, Ting JPY, Cairns BA, Maile R. Innate Immune Cell Recovery Is Positively Regulated by NLRP12 during Emergency Hematopoiesis. THE JOURNAL OF IMMUNOLOGY 2017; 198:2426-2433. [PMID: 28159904 DOI: 10.4049/jimmunol.1601048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/17/2017] [Indexed: 12/24/2022]
Abstract
With enhanced concerns of terrorist attacks, dual exposure to radiation and thermal combined injury (RCI) has become a real threat with devastating immunosuppression. NLRP12, a member of the NOD-like receptor family, is expressed in myeloid and bone marrow cells and was implicated as a checkpoint regulator of inflammatory cytokines, as well as an inflammasome activator. We show that NLRP12 has a profound impact on hematopoietic recovery during RCI by serving as a checkpoint of TNF signaling and preventing hematopoietic apoptosis. Using a mouse model of RCI, increased NLRP12 expression was detected in target tissues. Nlrp12-/- mice exhibited significantly greater mortality, an inability to fight bacterial infection, heightened levels of proinflammatory cytokines, overt granulocyte/monocyte progenitor cell apoptosis, and failure to reconstitute peripheral myeloid populations. Anti-TNF Ab administration improved peripheral immune recovery. These data suggest that NLRP12 is essential for survival after RCI by regulating myelopoiesis and immune reconstitution.
Collapse
Affiliation(s)
- Brandon M L Linz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Crystal J Neely
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Laurel B Kartchner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - April E Mendoza
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amal L Khoury
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Agnieszka Truax
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | - Timothy Eitas
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Host Defense Discovery Performance Unit, GlaxoSmithKline, Research Triangle Park, NC 27709
| | - June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jenny P Y Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Bruce A Cairns
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert Maile
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
95
|
Jin H, Jin X, Cao B, Wang W. Berberine affects osteosarcoma via downregulating the caspase-1/IL-1β signaling axis. Oncol Rep 2016; 37:729-736. [PMID: 28000894 PMCID: PMC5355653 DOI: 10.3892/or.2016.5327] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma is one of the most devastating cancers with associated poor prognosis. Chronic bone inflammation frequently predisposes to tumorigenesis and progression of osteosarcoma. In the tumor inflammatory microenvironment, caspase-1 and its processed cytokines such as interleukin 1β (IL-1β) play an important role in the occurrence and development of cancer. Berberine is an isoquinoline alkaloid extracted from the dry root of Coptidis Rhizoma, which has been found to exhibit significant anticancer effects on a wide spectrum of carcinomas including osteosarcoma. However, the mechanisms underlying the anticancer effects of berberine in osteosarcoma remain poorly understood and their elucidation is critical for developing improved therapies. In the present study, we investigated the potential mechanism underlying the anticancer effect of berberine in osteosarcoma. We found that the expression of caspase-1 and its downstream target IL-1β were higher in osteosarcoma cells compared with normal cells both in vitro and in vivo. Furthermore, administration of berberine is capable of reducing the expression of caspase-1 and IL-1β in osteosarcoma cells and inhibiting the growth of tumor cells. Based on the above, for the first time, we propose the hyposis that berberine could gengerate an anti-osteosarcoma property through downregulating caspase-1/IL-1β inflammatory signaling axis.
Collapse
Affiliation(s)
- Hao Jin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Jin
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Boran Cao
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wenbo Wang
- Department of Orthopaedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
96
|
Silveira TN, Gomes MTR, Oliveira LS, Campos PC, Machado GG, Oliveira SC. NLRP12 negatively regulates proinflammatory cytokine production and host defense against Brucella abortus. Eur J Immunol 2016; 47:51-59. [PMID: 27800616 DOI: 10.1002/eji.201646502] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/06/2016] [Accepted: 10/28/2016] [Indexed: 02/05/2023]
Abstract
Brucella abortus is the causative agent of brucellosis, which causes abortion in domestic animals and undulant fever in humans. This bacterium infects and proliferates mainly in macrophages and dendritic cells, where it is recognized by pattern recognition receptors (PRRs) including Nod-like receptors (NLRs). Our group recently demonstrated the role of AIM2 and NLRP3 in Brucella recognition. Here, we investigated the participation of NLRP12 in innate immune response to B. abortus. We show that NLRP12 inhibits the early production of IL-12 by bone marrow-derived macrophages upon B. abortus infection. We also observed that NLRP12 suppresses in vitro NF-κB and MAPK signaling in response to Brucella. Moreover, we show that NLRP12 modulates caspase-1 activation and IL-1β secretion in B. abortus infected-macrophages. Furthermore, we show that mice lacking NLRP12 are more resistant in the early stages of B. abortus infection: NLRP12-/- infected-mice have reduced bacterial burdens in the spleens and increased production of IFN-γ and IL-1β compared with wild-type controls. In addition, NLRP12 deficiency leads to reduction in granuloma number and size in mouse livers. Altogether, our findings suggest that NLRP12 plays an important role in negatively regulating the early inflammatory responses against B. abortus.
Collapse
Affiliation(s)
- Tatiana N Silveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marco Túlio R Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Priscila C Campos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriela G Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
97
|
Cytokine signatures in hereditary fever syndromes (HFS). Cytokine Growth Factor Rev 2016; 33:19-34. [PMID: 27916611 DOI: 10.1016/j.cytogfr.2016.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 02/03/2023]
Abstract
Hereditary fever syndromes (HFS) include a group of disorders characterized by recurrent self-limited episodes of fever accompanied by inflammatory manifestations occurring in the absence of infection or autoimmune reaction. Advances in the genetics of HFS have led to the identification of new gene families and pathways involved in the regulation of inflammation and innate immunity. The key role of several cytokine networks in the pathogenesis of HFS has been underlined by several groups, and supported by the rapid response of patients to targeted cytokine blocking therapies. This can be due to the direct effect of cytokine overproduction or to an absence of receptor antagonist resulting in dysbalance of downstream pro- and anti-inflammatory cytokine networks. The aim of this study was to present an overview and to discuss the major concepts regarding the cellular and molecular immunology of HFS, with a particular focus on their specific cytokine signatures and physiopathological implications. Based on their molecular and cellular mechanisms, HFS have been classified into intrinsic and extrinsic IL-1β activation disorders or inflammasomopathies, and protein misfolding disorders. This review integrates all recent data in an updated classification of HFS.
Collapse
|
98
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
99
|
Hirako IC, Ataide MA, Faustino L, Assis PA, Sorensen EW, Ueta H, Araújo NM, Menezes GB, Luster AD, Gazzinelli RT. Splenic differentiation and emergence of CCR5 +CXCL9 +CXCL10 + monocyte-derived dendritic cells in the brain during cerebral malaria. Nat Commun 2016; 7:13277. [PMID: 27808089 PMCID: PMC5097164 DOI: 10.1038/ncomms13277] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells have an important role in immune surveillance. After being exposed to microbial components, they migrate to secondary lymphoid organs and activate T lymphocytes. Here we show that during mouse malaria, splenic inflammatory monocytes differentiate into monocyte-derived dendritic cells (MO-DCs), which are CD11b+F4/80+CD11c+MHCIIhighDC-SIGNhighLy6c+ and express high levels of CCR5, CXCL9 and CXCL10 (CCR5+CXCL9/10+ MO-DCs). We propose that malaria-induced splenic MO-DCs take a reverse migratory route. After differentiation in the spleen, CCR5+CXCL9/10+ MO-DCs traffic to the brain in a CCR2-independent, CCR5-dependent manner, where they amplify the influx of CD8+ T lymphocytes, leading to a lethal neuropathological syndrome. Cerebral malaria is an often fatal complication of Plasmodium infection involving accumulation of inflammatory leukocytes in the central nervous system. Here the authors map the development and trafficking of CCR5+ monocyte-derived dendritic cells from the spleen to the brains of Plasmodium berghei ANKA infected mice.
Collapse
Affiliation(s)
- Isabella C Hirako
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Marco A Ataide
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Lucas Faustino
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Patricia A Assis
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil
| | - Elizabeth W Sorensen
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Hisashi Ueta
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Natalia M Araújo
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Gustavo B Menezes
- Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, USA
| | - Ricardo T Gazzinelli
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, Barro Preto, Belo Horizonte MG 30190-002, Brazil.,Departamento de Bioquímica e Imunologia and Centro de Biologia Gastrointestinal, Departamento de Morfologia, Universidade Federal of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte MG 31270-901, Brazil.,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01655, USA
| |
Collapse
|
100
|
Deviant Behavior: Tick-Borne Pathogens and Inflammasome Signaling. Vet Sci 2016; 3:vetsci3040027. [PMID: 29056735 PMCID: PMC5606592 DOI: 10.3390/vetsci3040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
In the face of an assault, host cells mount an immediate response orchestrated by innate immunity. Two of the best described innate immune signaling networks are the Toll- and the Nod-like receptor pathways. Extensive work has been done characterizing both signaling cascades with several recent advances on the forefront of inflammasome biology. In this review, we will discuss how more commonly-studied pathogens differ from tick-transmitted microbes in the context of Nod-like receptor signaling and inflammasome formation. Because pathogens transmitted by ticks have unique characteristics, we offer the opinion that these microbes can be used to uncover novel principles of Nod-like receptor biology.
Collapse
|