51
|
Salvarrey S, Antúnez K, Arredondo D, Plischuk S, Revainera P, Maggi M, Invernizzi C. Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS One 2021; 16:e0249842. [PMID: 33901226 PMCID: PMC8075198 DOI: 10.1371/journal.pone.0249842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Bumble bees (Bombus spp.) are important pollinators insects involved in the maintenance of natural ecosystems and food production. Bombus pauloensis is a widely distributed species in South America, that recently began to be managed and commercialized in this region. The movement of colonies within or between countries may favor the dissemination of parasites and pathogens, putting into risk while populations of B. pauloensis and other native species. In this study, wild B. pauloensis queens and workers, and laboratory reared workers were screened for the presence of phoretic mites, internal parasites (microsporidia, protists, nematodes and parasitoids) and RNA viruses (Black queen cell virus (BQCV), Deformed wing virus (DWV), Acute paralysis virus (ABCV) and Sacbrood virus (SBV)). Bumble bee queens showed the highest number of mite species, and it was the only group where Conopidae and S. bombi were detected. In the case of microsporidia, a higher prevalence of N. ceranae was detected in field workers. Finally, the bumble bees presented the four RNA viruses studied for A. mellifera, in proportions similar to those previously reported in this species. Those results highlight the risks of spillover among the different species of pollinators.
Collapse
Affiliation(s)
| | - Karina Antúnez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Arredondo
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Santiago Plischuk
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET- UNLP), La Plata, Argentina
| | - Pablo Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, Mar del Plata, Argentina
| | | |
Collapse
|
52
|
Chen G, Wang S, Jia S, Feng Y, Hu F, Chen Y, Zheng H. A New Strain of Virus Discovered in China Specific to the Parasitic Mite Varroa destructor Poses a Potential Threat to Honey Bees. Viruses 2021; 13:679. [PMID: 33920919 PMCID: PMC8071286 DOI: 10.3390/v13040679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
The ectoparasitic mite, Varroa destructor, feeds directly on honey bees and serves as a vector for transmitting viruses among them. The Varroa mite causes relatively little damage to its natural host, the Eastern honey bee (Apis cerana) but it is the most devastating pest for the Western honey bee (Apis mellifera). Using Illumina HiSeq sequencing technology, we conducted a metatranscriptome analysis of the microbial community associated with Varroa mites. This study led to the identification of a new Chinese strain of Varroa destructor virus-2 (VDV-2), which is a member of the Iflaviridae family and was previously reported to be specific to Varroa mites. A subsequent epidemiological investigation of Chinese strain of VDV-2 (VDV-2-China) showed that the virus was highly prevalent among Varroa populations and was not identified in any of the adult workers from both A. mellifera and A.cerana colonies distributed in six provinces in China, clearly indicating that VDV-2-China is predominantly a Varroa-adapted virus. While A. mellifera worker pupae exposed to less than two Varroa mites tested negative for VDV-2-China, VDV-2-China was detected in 12.5% of the A. mellifera worker pupae that were parasitized by more than 10 Varroa mites, bringing into play the possibility of a new scenario where VDV-2 could be transmitted to the honey bees during heavy Varroa infestations. Bioassay for the VDV-2-China infectivity showed that A. cerana was not a permissive host for VDV-2-China, yet A. mellifera could be a biological host that supports VDV-2-China's replication. The different replication dynamics of the virus between the two host species reflect their variation in terms of susceptibility to the virus infection, posing a potential threat to the health of the Western honey bee. The information gained from this study contributes to the knowledge concerning genetic variabilities and evolutionary dynamics of Varroa-borne viruses, thereby enhancing our understanding of underlying molecular mechanisms governing honey bee Varroosis.
Collapse
Affiliation(s)
- Gongwen Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Shuai Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Shuo Jia
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Ye Feng
- Insitutute for Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (G.C.); (S.W.); (S.J.); (F.H.)
| |
Collapse
|
53
|
Huang S, Li J, Zhang Y, Li Z, Evans JD, Rose R, Gilligan TM, LeBrun A, He N, Zheng T, Zhang T, Hamilton M, Chen YP. A novel method for the detection and diagnosis of virus infections in honey bees. J Virol Methods 2021; 293:114163. [PMID: 33864854 DOI: 10.1016/j.jviromet.2021.114163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 11/15/2022]
Abstract
In terms of infectious diseases caused by a variety of microorganisms, the ability to promptly and accurately identify the causative agents is the first step on the path to all types of effective management of such infections. Among the various factors that are affecting global bee health, viruses have often been linked to honey bee colony losses and they pose a serious threat to the fraction of agriculture that depends on the service of pollinators. Over the past few decades, PCR-based molecular methods have provided powerful tools for rapid, specific, and sensitive detection and the quantification of difficult-to-grow pathogenic microorganisms such as viruses in honey bees. However, PCR-based methods require nucleic acid extraction and purification, which can be quite laborious and time-consuming and they involve the use of organic solvents and chaotropic agents like phenol and chloroform which are volatile and highly toxic. In response, we developed a novel and non-sacrificial method for detecting viral infections in honey bees. As little as 1 μl of hemolymph was collected from adult workers, larvae, and queens of bee colonies by puncturing the soft inter-tergal integument between the second and third dorsal tergum with a fine glass capillary. The hemolymph was then diluted and subjected to RT-PCR analysis directly. The puncture wound caused by the glass capillary was found to heal automatically and rapidly without any trouble and the lifespan of the experimental workers remained unaffected. Using this method, we detected multiple viruses including Deformed wing virus (DWV), Black queen cell virus (BQCV), and Sacbrood virus (SBV) in infected bees. Furthermore, expressed transcripts that indicate the induction of innate immune response to the virus infections were also detected in the hemolymph of infected bees. The simplicity and cost-effectiveness of this innovative approach will allow it to be a valuable, time-saving, safer, and more environmentally friendly contribution to bee disease management programs.
Collapse
Affiliation(s)
- Shaokang Huang
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Jianghong Li
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Yi Zhang
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guanzhou, 510260.
| | - Zhiguo Li
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Jay D Evans
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Robyn Rose
- Farm Production and Conservation, 1400 Independence Ave SW, Washington, DC 20250.
| | - Todd M Gilligan
- U.S. Department of Agriculture - Animal and Plant Health Inspection Service (USDA-APHIS), National Program Manager for Honey Bee Health, Riverdale, MD 20737, USA.
| | - Anne LeBrun
- U.S. Department of Agriculture - Animal and Plant Health Inspection Service (USDA-APHIS), National Program Manager for Honey Bee Health, Riverdale, MD 20737, USA.
| | - Nan He
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.
| | - Teng Zheng
- Technical Center of Fuzhou Customs, Fuzhou, Fujian 350000, PR China.
| | - Tiyin Zhang
- Technical Center of Fuzhou Customs, Fuzhou, Fujian 350000, PR China.
| | - Michele Hamilton
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| | - Yan Ping Chen
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
54
|
Laomettachit T, Liangruksa M, Termsaithong T, Tangthanawatsakul A, Duangphakdee O. A model of infection in honeybee colonies with social immunity. PLoS One 2021; 16:e0247294. [PMID: 33617598 PMCID: PMC7899363 DOI: 10.1371/journal.pone.0247294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023] Open
Abstract
Honeybees (Apis mellifera) play a significant role in the pollination of various food crops and plants. In the past decades, honeybee management has been challenged with increased pathogen and environmental pressure associating with increased beekeeping costs, having a marked economic impact on the beekeeping industry. Pathogens have been identified as a contributing cause of colony losses. Evidence suggested a possible route of pathogen transmission among bees via oral-oral contacts through trophallaxis. Here we propose a model that describes the transmission of an infection within a colony when bee members engage in the trophallactic activity to distribute nectar. In addition, we examine two important features of social immunity, defined as collective disease defenses organized by honeybee society. First, our model considers the social segregation of worker bees. The segregation limits foragers, which are highly exposed to pathogens during foraging outside the nest, from interacting with bees residing in the inner parts of the nest. Second, our model includes a hygienic response, by which healthy nurse bees exterminate infected bees to mitigate horizontal transmission of the infection to other bee members. We propose that the social segregation forms the first line of defense in reducing the uptake of pathogens into the colony. If the first line of defense fails, the hygienic behavior provides a second mechanism in preventing disease spread. Our study identifies the rate of egg-laying as a critical factor in maintaining the colony's health against an infection. We propose that winter conditions which cease or reduce the egg-laying activity combined with an infection in early spring can compromise the social immunity defenses and potentially cause colony losses.
Collapse
Affiliation(s)
- Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Theoretical and Computational Physics (TCP) Group, Center of Excellence in Theoretical and Computational Science Center (TaCS-CoE), King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Monrudee Liangruksa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Teerasit Termsaithong
- Theoretical and Computational Physics (TCP) Group, Center of Excellence in Theoretical and Computational Science Center (TaCS-CoE), King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Anuwat Tangthanawatsakul
- Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Orawan Duangphakdee
- King Mongkut’s University of Technology Thonburi, Ratchaburi Campus, Ratchaburi, Thailand
| |
Collapse
|
55
|
Daughenbaugh KF, Kahnonitch I, Carey CC, McMenamin AJ, Wiegand T, Erez T, Arkin N, Ross B, Wiedenheft B, Sadeh A, Chejanovsky N, Mandelik Y, Flenniken ML. Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1. Viruses 2021; 13:291. [PMID: 33673324 PMCID: PMC7917660 DOI: 10.3390/v13020291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Bees are important plant pollinators in agricultural and natural ecosystems. High average annual losses of honey bee (Apis mellifera) colonies in some parts of the world, and regional population declines of some mining bee species (Andrena spp.), are attributed to multiple factors including habitat loss, lack of quality forage, insecticide exposure, and pathogens, including viruses. While research has primarily focused on viruses in honey bees, many of these viruses have a broad host range. It is therefore important to apply a community level approach in studying the epidemiology of bee viruses. We utilized high-throughput sequencing to evaluate viral diversity and viral sharing in sympatric, co-foraging bees in the context of habitat type. Variants of four common viruses (i.e., black queen cell virus, deformed wing virus, Lake Sinai virus 2, and Lake Sinai virus NE) were identified in honey bee and mining bee samples, and the high degree of nucleotide identity in the virus consensus sequences obtained from both taxa indicates virus sharing. We discovered a unique bipartite + ssRNA Tombo-like virus, Andrena-associated bee virus-1 (AnBV-1). AnBV-1 infects mining bees, honey bees, and primary honey bee pupal cells maintained in culture. AnBV-1 prevalence and abundance was greater in mining bees than in honey bees. Statistical modeling that examined the roles of ecological factors, including floral diversity and abundance, indicated that AnBV-1 infection prevalence in honey bees was greater in habitats with low floral diversity and abundance, and that interspecific virus transmission is strongly modulated by the floral community in the habitat. These results suggest that land management strategies that aim to enhance floral diversity and abundance may reduce AnBV-1 spread between co-foraging bees.
Collapse
Affiliation(s)
- Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Idan Kahnonitch
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Charles C. Carey
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Alexander J. McMenamin
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Tanner Wiegand
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Tal Erez
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Naama Arkin
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
- The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Brian Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
| | - Blake Wiedenheft
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Asaf Sadeh
- Agroecology Lab, Newe Ya’ar Research Center, ARO, Ramat Yishay 30095, Israel; (N.A.); (A.S.)
| | - Nor Chejanovsky
- Entomology Department, ARO, The Volcani Center, Rishon Lezion 7528809, Israel; (T.E.); (N.C.)
| | - Yael Mandelik
- The Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 5290002, Israel; (I.K.); (Y.M.)
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (K.F.D.); (B.R.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA; (C.C.C.); (A.J.M.); (T.W.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
56
|
Bhatia S, Baral SS, Vega Melendez C, Amiri E, Rueppell O. Comparing Survival of Israeli Acute Paralysis Virus Infection among Stocks of U.S. Honey Bees. INSECTS 2021; 12:60. [PMID: 33445412 PMCID: PMC7827508 DOI: 10.3390/insects12010060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.
Collapse
Affiliation(s)
- Shilpi Bhatia
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Applied Science & Technology, North Carolina Agricultural & Technical University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Saman S. Baral
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Carlos Vega Melendez
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- US Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI 53706, USA
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
57
|
Ullah A, Tlak Gajger I, Majoros A, Dar SA, Khan S, Kalimullah, Haleem Shah A, Nasir Khabir M, Hussain R, Khan HU, Hameed M, Anjum SI. Viral impacts on honey bee populations: A review. Saudi J Biol Sci 2021; 28:523-530. [PMID: 33424335 PMCID: PMC7783639 DOI: 10.1016/j.sjbs.2020.10.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee's pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.
Collapse
Affiliation(s)
- Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| | | | - Showket Ahmad Dar
- Division of Agricultural Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kalimullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Haleem Shah
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Riaz Hussain
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Hikmat Ullah Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
58
|
Deng Y, Zhao H, Shen S, Yang S, Yang D, Deng S, Hou C. Identification of Immune Response to Sacbrood Virus Infection in Apis cerana Under Natural Condition. Front Genet 2020; 11:587509. [PMID: 33193724 PMCID: PMC7649357 DOI: 10.3389/fgene.2020.587509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/05/2020] [Indexed: 12/03/2022] Open
Abstract
Chinese sacbrood virus (CSBV) is a serious threat to eastern honeybees (Apis cerana), especially larvae. However, the pathological mechanism of this deadly disease remains unclear. Here, we employed mRNA and small RNA (sRNA) transcriptome approach to investigate the microRNAs (miRNAs) and small interfering RNAs (siRNAs) expression changes of A. cerana larvae infected with CSBV under natural condition. We found that serine proteases involved in immune response were down-regulated, while the expression of siRNAs targeted to serine proteases were up-regulated. In addition, CSBV infection also affected the expression of larvae cuticle proteins such as larval cuticle proteins A1A and A3A, resulting in increased susceptibility to CSBV infection. Together, our results provide insights into sRNAs that they are likely to be involved in regulating honeybee immune response.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Sciences (Academy of Agriculture and Forestry Sciences), Qinghai University, Xining, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Pollinating Insect Biology, Ministry of Agricultural and Rural Affairs, Beijing, China
| |
Collapse
|
59
|
Dittes J, Aupperle-Lellbach H, Schäfer MO, Mülling CKW, Emmerich IU. Veterinary Diagnostic Approach of Common Virus Diseases in Adult Honeybees. Vet Sci 2020; 7:vetsci7040159. [PMID: 33096775 PMCID: PMC7711501 DOI: 10.3390/vetsci7040159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Veterinarians are educated in prevention, diagnosis and treatment of diseases in various vertebrate species. As they are familiar with multifactorial health problems in single animals as well as in herd health management, their knowledge and skills can be beneficial for the beekeepers and honeybee health. However, in education and in practice, honeybees are not a common species for most veterinarians and the typical veterinary diagnostic methods such as blood sampling or auscultation are not applicable to the superorganism honeybee. Honeybee colonies may be affected by various biotic and abiotic factors. Among the infectious agents, RNA-viruses build the largest group, causing covert and overt infections in honeybee colonies which may lead to colony losses. Veterinarians could and should play a more substantial role in managing honeybee health—not limited to cases of notifiable diseases and official hygiene controls. This review discusses the veterinary diagnostic approach to adult bee examination with a special focus on diagnosis and differential diagnosis of the common virus diseases Acute Bee Paralysis Virus (ABPV)-Kashmir Bee Virus (KBV)-Israeli Acute Paralysis Virus (IAPV)-Complex, Chronic Bee Paralysis Virus (CBPV) and Deformed Wing Virus (DWV), as well as coinfections like Varroa spp. and Nosema spp.
Collapse
Affiliation(s)
- Julia Dittes
- Centre for Applied Training and Learning, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 19, 04103 Leipzig, Germany
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-973-8247
| | - Heike Aupperle-Lellbach
- LABOKLIN GmbH & CO.KG, Labor für klinische Diagnostik, Steubenstraße 4, 97688 Bad Kissingen, Germany;
| | - Marc O. Schäfer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald, Insel Riems, Germany;
| | - Christoph K. W. Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany;
| | - Ilka U. Emmerich
- VETIDATA, Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 39, 04103 Leipzig, Germany;
| |
Collapse
|
60
|
Hsieh EM, Berenbaum MR, Dolezal AG. Ameliorative Effects of Phytochemical Ingestion on Viral Infection in Honey Bees. INSECTS 2020; 11:insects11100698. [PMID: 33066263 PMCID: PMC7602108 DOI: 10.3390/insects11100698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Simple Summary Virus infection is among the many stressors honey bees are experiencing in the modern agricultural landscape. Although some promising treatments are currently under development, no reliable cure currently exists. Here, we investigated the effects of various phytochemicals (plant-produced chemical compounds) on the survivorship of virus infected honey bees. Our results showed that, when consumed at natural concentrations like those found in flowers, caffeine is capable of significantly reducing the mortality of infected bees. It is important to note that caffeine did not clear the infected bees of all viruses and should, therefore, not be considered a virus cure. Rather, caffeine represents a potential antiviral therapeutic agent that should be studied further to improve understanding of virus-phytochemical interactions. Abstract Honey bee viruses are capable of causing a wide variety of devastating effects, but effective treatments have yet to be discovered. Phytochemicals represent a broad range of substances that honey bees frequently encounter and consume, many of which have been shown to improve honey bee health. However, their effect on bee viruses is largely unknown. Here, we tested the therapeutic effectiveness of carvacrol, thymol, p-coumaric acid, quercetin, and caffeine on viral infection by measuring their ability to improve survivorship in honey bees inoculated with Israeli acute paralysis virus (IAPV) using high-throughput cage bioassays. Among these candidates, caffeine was the only phytochemical capable of significantly improving survivorship, with initial screening showing that naturally occurring concentrations of caffeine (25 ppm) were sufficient to produce an ameliorative effect on IAPV infection. Consequently, we measured the scope of caffeine effectiveness in bees inoculated and uninoculated with IAPV by performing the same type of high-throughput bioassay across a wider range of caffeine concentrations. Our results indicate that caffeine may provide benefits that scale with concentration, though the exact mechanism by which caffeine ingestion improves survivorship remains uncertain. Caffeine therefore has the potential to act as an accessible and inexpensive method of treating viral infections, while also serving as a tool to further understanding of honey bee–virus interactions at a physiological and molecular level.
Collapse
|
61
|
Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020; 11:566320. [PMID: 33101388 PMCID: PMC7546774 DOI: 10.3389/fgene.2020.566320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Humberto Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Gary Howell
- High Performance Cluster, Office of Information Technology, North Carolina State University, Raleigh, NC, United States
| | - Jake Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay Clark
- High Performance Computing in Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Micheline K. Strand
- Army Research Office, Army Research Laboratory, Research Triangle Park, NC, United States
| | - David Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
62
|
Amiri E, Herman JJ, Strand MK, Tarpy DR, Rueppell O. Egg transcriptome profile responds to maternal virus infection in honey bees, Apis mellifera. INFECTION GENETICS AND EVOLUTION 2020; 85:104558. [PMID: 32947033 DOI: 10.1016/j.meegid.2020.104558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Trans-generational disease effects include vertical pathogen transmission but also immune priming to enhance offspring immunity. Accordingly, the survival consequences of maternal virus infection can vary and its molecular consequences during early development are poorly understood. The honey bee queen is long-lived and represents the central hub for vertical virus transmission as the sole reproductive individual in her colony. Even though virus symptoms in queens are mild, viral infection may have severe consequences for the offspring. Thus, transcriptome patterns during early developmental are predicted to respond to maternal virus infection. To test this hypothesis, gene expression patterns were compared among pooled honey bee eggs laid by queens that were either infected with Deformed wing virus (DWV1), Sacbrood virus (SBV2), both viruses (DWV and SBV), or no virus. Whole transcriptome analyses revealed significant expression differences of a few genes, some of which have hitherto no known function. Despite the paucity of single gene effects, functional enrichment analyses revealed numerous biological processes in the embryos to be affected by virus infection. Effects on several regulatory pathways were consistent with maternal responses to virus infection and correlated with responses to DWV and SBV in honey bee larvae and pupae. Overall, effects on egg transcriptome patterns were specific to each virus and the results of dual-infection samples suggested synergistic effects of DWV and SBV. We interpret our results as consequences of maternal infections. Thus, this first study to document and characterize virus-associated changes in the transcriptome of honey bee eggs represents an important contribution to understanding trans-generational virus effects, although more in-depth studies are needed to understand the detailed mechanisms of how viruses affect honey bee embryos.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Jacob J Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Micheline K Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, Durham, NC 27709, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
63
|
Longitudinal monitoring of honey bee colonies reveals dynamic nature of virus abundance and indicates a negative impact of Lake Sinai virus 2 on colony health. PLoS One 2020; 15:e0237544. [PMID: 32898160 PMCID: PMC7478651 DOI: 10.1371/journal.pone.0237544] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/28/2020] [Indexed: 01/09/2023] Open
Abstract
Honey bees (Apis mellifera) are important pollinators of plants, including those that produce nut, fruit, and vegetable crops. Therefore, high annual losses of managed honey bee colonies in the United States and many other countries threaten global agriculture. Honey bee colony deaths have been associated with multiple abiotic and biotic factors, including pathogens, but the impact of virus infections on honey bee colony population size and survival are not well understood. To further investigate seasonal patterns of pathogen presence and abundance and the impact of viruses on honey bee colony health, commercially managed colonies involved in the 2016 California almond pollination event were monitored for one year. At each sample date, colony health and pathogen burden were assessed. Data from this 50-colony cohort study illustrate the dynamic nature of honey bee colony health and the temporal patterns of virus infection. Black queen cell virus, deformed wing virus, sacbrood virus, and the Lake Sinai viruses were the most readily detected viruses in honey bee samples obtained throughout the year. Analyses of virus prevalence and abundance revealed pathogen-specific trends including the overall increase in deformed wing virus abundance from summer to fall, while the levels of Lake Sinai virus 2 (LSV2) decreased over the same time period. Though virus prevalence and abundance varied in individual colonies, analyses of the overall trends reveal correlation with sample date. Total virus abundance increased from November 2015 (post-honey harvest) to the end of the almond pollination event in March 2016, which coincides with spring increase in colony population size. Peak total virus abundance occurred in late fall (August and October 2016), which correlated with the time period when the majority of colonies died. Honey bee colonies with larger populations harbored less LSV2 than weaker colonies with smaller populations, suggesting an inverse relationship between colony health and LSV2 abundance. Together, data from this and other longitudinal studies at the colony level are forming a better understanding of the impact of viruses on honey bee colony losses.
Collapse
|
64
|
Heritability estimates of the novel trait 'suppressed in ovo virus infection' in honey bees (Apis mellifera). Sci Rep 2020; 10:14310. [PMID: 32868870 PMCID: PMC7459113 DOI: 10.1038/s41598-020-71388-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023] Open
Abstract
Honey bees are under pressure due to abnormal high colony death rates, especially during the winter. The infestation by the Varroa destructor mite and the viruses that this ectoparasite transmits are generally considered as the bees’ most important biological threats. Almost all efforts to remedy this dual infection have so far focused on the control of the Varroa mite alone and not on the viruses it transmits. In the present study, the sanitary control of breeding queens was conducted on eggs taken from drone brood for 4 consecutive years (2015–2018). The screening was performed on the sideline of an ongoing breeding program, which allowed us to estimate the heritabilities of the virus status of the eggs. We used the term ‘suppressed in ovo virus infection’ (SOV) for this novel trait and found moderate heritabilities for the presence of several viruses simultaneously and for the presence of single viral species. Colonies that expressed the SOV trait seemed to be more resilient to virus infections as a whole with fewer and less severe Deformed wing virus infections in most developmental stages, especially in the male caste. The implementation of this novel trait into breeding programs is recommended.
Collapse
|
65
|
Deng Y, Zhao H, Yang S, Zhang L, Zhang L, Hou C. Screening and Validation of Reference Genes for RT-qPCR Under Different Honey Bee Viral Infections and dsRNA Treatment. Front Microbiol 2020; 11:1715. [PMID: 32849362 PMCID: PMC7406718 DOI: 10.3389/fmicb.2020.01715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 06/30/2020] [Indexed: 01/22/2023] Open
Abstract
Honey bee viruses are one of the most important pathogens that have contributed to the decrease in honey bee colony health. To analyze the infection dynamics of honey bee viruses, quantification of viral gene expression by RT-qPCR is necessary. However, suitable reference genes have not been reported from viral and RNAi studies of honey bee. Here, we evaluated the expression of 11 common reference genes (ache2, rps18, β-actin, tbp, tif, rpl32, gadph, ubc, α-tubulin, rpl14, and rpsa) from Apis mellifera (Am) and Apis cerana (Ac) under Israeli acute paralysis virus (IAPV), chronic bee paralysis virus (CBPV), and Chinese sacbrood virus (CSBV) infection as well as dsRNA-PGRP-SA treatment, and we confirmed their validation by evaluating the levels of the defensin 1 and prophenoloxidase (ppo) genes during viral infection. Our results showed that the expression of selected genes varied under different viral infections. ache2, rps18, β-actin, tbp, and tif can be used to normalize expression levels in Apis mellifera under IAPV infection, while the combination of actin and tif is suitable for CBPV-infected experiments. The combination of rpl14, tif, rpsa, ubc, and ache2 as well as more reference genes is suitable for CSBV treatment in Apis cerana. Rpl14, tif, rps18, ubc, and α-tubulin were the most stable reference genes under dsRNA treatment in Apis mellifera. Furthermore, the geNorm and NormFinder algorithms showed that tif was the best suitable reference gene for these four treatments. This study screened and validated suitable reference genes for the quantification of viral levels in honey bee, as well as for RNAi experiments.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangdong Academy of Science, Guangzhou, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Li Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lina Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Key laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
66
|
Erez T, Chejanovsky N. Infection of a Lepidopteran Cell Line with Deformed Wing Virus. Viruses 2020; 12:E739. [PMID: 32659903 PMCID: PMC7412015 DOI: 10.3390/v12070739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Many attempts to develop a reliable cell cultured-based system to study honey bee virus infections have encountered substantial difficulties. We investigated the ability of a cell line from a heterologous insect to sustain infection by a honey bee virus. For this purpose, we infected the Lepidopteran hemocytic cell line (P1) with Deformed wing virus (DWV). The genomic copies of DWV increased upon infection, as monitored by quantitative RT-PCR. Moreover, a tagged-primer-based RT-PCR analysis showed the presence of DWV negative-sense RNA in the cells, indicating virus replication. However, the DWV from infected cells was mildly infectious to P1 cells. Similar results were obtained when the virus was injected into Apis mellifera pupae. Thus, though the virus yields from the infected cells appeared to be very low, we show for the first time that DWV can replicate in a heterologous cell line. Given the availability of many other insect cell lines, our study paves the way for future exploration in this direction. In the absence of adequate A. mellifera cell lines, exploring the ability of alternative cell lines to enable honey bee virus infections could provide the means to study and understand the viral infectious cycle at the cellular level and facilitate obtaining purified isolates of these viruses.
Collapse
Affiliation(s)
| | - Nor Chejanovsky
- Department of Entomology Institute of Plant Protection, Agricultural Research Organization, Rishon Lezion 7528809, Israel;
| |
Collapse
|
67
|
Isolation and characterization of a novel cripavirus, the first Dicistroviridae family member infecting the cotton mealybug Phenacoccus solenopsis. Arch Virol 2020; 165:1987-1994. [PMID: 32588240 DOI: 10.1007/s00705-020-04702-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
A new virus belonging to the family Dicistroviridae was identified in the hibiscus-infesting cotton mealybug Phenacoccus solenopsis. Using high-throughput sequencing (HTS) on an Illumina HiSeq platform, a single contig of the complete genome sequence was assembled. The authenticity of the sequence obtained by HTS was validated by RT-PCR and Sanger sequencing of the amplicons, which was also employed for the 3' untranslated region (UTR). The 5' UTR was sequenced using a rapid amplification of cDNA ends kit. A large segment encompassing the whole genome was amplified by RT-PCR using viral RNA extracted from mealybugs. A whole-genome nucleotide sequence comparison showed 89% sequence identity to aphid lethal paralysis virus (ALPV), covering a short segment of 44 bp. Pairwise amino acid sequence comparisons of the protein encoded by open reading frame (ORF) 2 with its counterparts in the GenBank database, showed less than 40% identity to several members of the genus Cripavirus, including ALPV. Phylogenetic analysis based on the deduced amino acid sequence of the ORF 2 protein showed that the new virus grouped with members of the genus Cripavirus. The intergenic region (IGR) internal ribosome entry site (IRES) showed the conserved nucleotides of a type I IGR IRES and had two bulge sites, three pseudoknots, and two stem-loops. Virus morphology visualized by transmission electron microscopy demonstrated spherical particles with a diameter of ~30 nm. This virus was the only arthropod virus identified in the sampled mealybugs, and the purified virus was able to infect cotton mealybugs. To the best of our knowledge, this is the first report of a Dicistroviridae family member infecting P. solenopsis, and we have tentatively named this virus Phenacoccus solenopsis virus (PhSoV).
Collapse
|
68
|
Shigetou S, Shimada S, Makoto I, Matsuda K. Modulation by neonicotinoids of honeybee α1/chicken β2 hybrid nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104545. [PMID: 32448414 DOI: 10.1016/j.pestbp.2020.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids targeting insect nicotinic acetylcholine (ACh) receptors (insect nAChRs) are used for crop protection, but there is a concern about adverse effects on pollinators such as honeybees (Apis mellifera). Thus, we investigated the agonist actions of neonicotinoids (imidacloprid, thiacloprid and clothianidin) on A. mellifera α1 (Amα1)/chicken β2 hybrid nAChRs in Xenopus laevis oocytes according to the subunit stoichiometry of (Amα1)3(β2)2 and (Amα1)2(β2)3 using voltage-clamp electrophysiology. ACh activated (Amα1)3(β2)2 and (Amα1)2(β2)3 nAChRs with similar current amplitude. We investigated the agonist activity of imidacloprid, thiacloprid and clothianidin for the two hybrid nAChRs and found that: 1) imidacloprid showed higher affinity than clothianidin, whereas clothianidin showed higher efficacy than imidacloprid for the nAChRs; 2) Thiacloprid showed the highest agonist affinity and the lowest efficacy for the nAChRs. The Amα1/β2 subunit ratio influenced the efficacy of imidacloprid and thiacloprid, but hardly affected that of clothianidin. Hydrogen bond formation by the NH group in clothianidin with the main chain carbonyl of the loop B may account, at least in part, for the unique agonist actions of clothianidin on the hybrid nAChRs tested.
Collapse
Affiliation(s)
- Sho Shigetou
- Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Shota Shimada
- Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Ihara Makoto
- Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
69
|
Yañez O, Piot N, Dalmon A, de Miranda JR, Chantawannakul P, Panziera D, Amiri E, Smagghe G, Schroeder D, Chejanovsky N. Bee Viruses: Routes of Infection in Hymenoptera. Front Microbiol 2020; 11:943. [PMID: 32547504 PMCID: PMC7270585 DOI: 10.3389/fmicb.2020.00943] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have recently reported on the discovery of bee viruses in different arthropod species and their possible transmission routes, vastly increasing our understanding of these viruses and their distribution. Here, we review the current literature on the recent advances in understanding the transmission of viruses, both on the presence of bee viruses in Apis and non-Apis bee species and on the discovery of previously unknown bee viruses. The natural transmission of bee viruses will be discussed among different bee species and other insects. Finally, the research potential of in vivo (host organisms) and in vitro (cell lines) serial passages of bee viruses is discussed, from the perspective of the host-virus landscape changes and potential transmission routes for emerging bee virus infections.
Collapse
Affiliation(s)
- Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Dalmon
- INRAE, Unité de Recherche Abeilles et Environnement, Avignon, France
| | | | - Panuwan Chantawannakul
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Delphine Panziera
- General Zoology, Institute for Biology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Halle-Jena-Leipzig, German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Declan Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Nor Chejanovsky
- Entomology Department, Institute of Plant Protection, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
70
|
Harwood GP, Dolezal AG. Pesticide-Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020; 12:E566. [PMID: 32455815 PMCID: PMC7291294 DOI: 10.3390/v12050566] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bees are key agricultural pollinators, but beekeepers continually suffer high annual colony losses owing to a number of environmental stressors, including inadequate nutrition, pressures from parasites and pathogens, and exposure to a wide variety of pesticides. In this review, we examine how two such stressors, pesticides and viruses, may interact in additive or synergistic ways to affect honey bee health. Despite what appears to be a straightforward comparison, there is a dearth of studies examining this issue likely owing to the complexity of such interactions. Such complexities include the wide array of pesticide chemical classes with different modes of actions, the coupling of many bee viruses with ectoparasitic Varroa mites, and the intricate social structure of honey bee colonies. Together, these issues pose a challenge to researchers examining the effects pesticide-virus interactions at both the individual and colony level.
Collapse
Affiliation(s)
- Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | | |
Collapse
|
71
|
Honey bee virus causes context-dependent changes in host social behavior. Proc Natl Acad Sci U S A 2020; 117:10406-10413. [PMID: 32341145 DOI: 10.1073/pnas.2002268117] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic changes create evolutionarily novel environments that present opportunities for emerging diseases, potentially changing the balance between host and pathogen. Honey bees provide essential pollination services, but intensification and globalization of honey bee management has coincided with increased pathogen pressure, primarily due to a parasitic mite/virus complex. Here, we investigated how honey bee individual and group phenotypes are altered by a virus of concern, Israeli acute paralysis virus (IAPV). Using automated and manual behavioral monitoring of IAPV-inoculated individuals, we find evidence for pathogen manipulation of worker behavior by IAPV, and reveal that this effect depends on social context; that is, within versus between colony interactions. Experimental inoculation reduced social contacts between honey bee colony members, suggesting an adaptive host social immune response to diminish transmission. Parallel analyses with double-stranded RNA (dsRNA)-immunostimulated bees revealed these behaviors are part of a generalized social immune defensive response. Conversely, inoculated bees presented to groups of bees from other colonies experienced reduced aggression compared with dsRNA-immunostimulated bees, facilitating entry into susceptible colonies. This reduction was associated with a shift in cuticular hydrocarbons, the chemical signatures used by bees to discriminate colony members from intruders. These responses were specific to IAPV infection, suggestive of pathogen manipulation of the host. Emerging bee pathogens may thus shape host phenotypes to increase transmission, a strategy especially well-suited to the unnaturally high colony densities of modern apiculture. These findings demonstrate how anthropogenic changes could affect arms races between human-managed hosts and their pathogens to potentially affect global food security.
Collapse
|
72
|
Amiri E, Strand MK, Tarpy DR, Rueppell O. Honey Bee Queens and Virus Infections. Viruses 2020; 12:E322. [PMID: 32192060 PMCID: PMC7150968 DOI: 10.3390/v12030322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023] Open
Abstract
The honey bee queen is the central hub of a colony to produce eggs and release pheromones to maintain social cohesion. Among many environmental stresses, viruses are a major concern to compromise the queen's health and reproductive vigor. Viruses have evolved numerous strategies to infect queens either via vertical transmission from the queens' parents or horizontally through the worker and drones with which she is in contact during development, while mating, and in the reproductive period in the colony. Over 30 viruses have been discovered from honey bees but only few studies exist on the pathogenicity and direct impact of viruses on the queen's phenotype. An apparent lack of virus symptoms and practical problems are partly to blame for the lack of studies, and we hope to stimulate new research and methodological approaches. To illustrate the problems, we describe a study on sublethal effects of Israeli Acute Paralysis Virus (IAPV) that led to inconclusive results. We conclude by discussing the most crucial methodological considerations and novel approaches for studying the interactions between honey bee viruses and their interactions with queen health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, CCDC-ARL, Research Triangle Park, NC 27709-2211, USA;
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA;
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA;
| |
Collapse
|
73
|
McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses 2020; 12:E245. [PMID: 32098425 PMCID: PMC7077298 DOI: 10.3390/v12020245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Honey bees (Apismellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus-host interactions are involved in triggering antiviral stress response pathways.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
74
|
Robertson AJ, Scruten E, Mostajeran M, Robertson T, Denomy C, Hogan D, Roesler A, Rutherford C, Kusalik A, Griebel P, Napper S. Kinome Analysis of Honeybee (Apis mellifera L.) Dark-Eyed Pupae Identifies Biomarkers and Mechanisms of Tolerance to Varroa Mite Infestation. Sci Rep 2020; 10:2117. [PMID: 32034205 PMCID: PMC7005721 DOI: 10.1038/s41598-020-58927-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/17/2020] [Indexed: 02/01/2023] Open
Abstract
The mite Varroa destructor is a serious threat to honeybee populations. Selective breeding for Varroa mite tolerance could be accelerated by biomarkers within individual bees that could be applied to evaluate a colony phenotype. Previously, we demonstrated differences in kinase-mediated signaling between bees from colonies of extreme phenotypes of mite susceptibility. We expand these findings by defining a panel of 19 phosphorylation events that differ significantly between individual pupae from multiple colonies with distinct Varroa mite tolerant phenotypes. The predictive capacity of these biomarkers was evaluated by analyzing uninfested pupae from eight colonies representing a spectrum of mite tolerance. The pool of biomarkers effectively discriminated individual pupae on the basis of colony susceptibility to mite infestation. Kinome analysis of uninfested pupae from mite tolerant colonies highlighted an increased innate immune response capacity. The implication that differences in innate immunity contribute to mite susceptibility is supported by the observation that induction of innate immune signaling responses to infestation is compromised in pupae of the susceptible colonies. Collectively, biomarkers within individual pupae that are predictive of the susceptibility of colonies to mite infestation could provide a molecular tool for selective breeding of tolerant colonies.
Collapse
Affiliation(s)
| | - Erin Scruten
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Tom Robertson
- Meadow Ridge Enterprises Ltd., Saskatoon, SK, Canada
| | - Connor Denomy
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel Hogan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anna Roesler
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
75
|
Acosta-Reyes F, Neupane R, Frank J, Fernández IS. The Israeli acute paralysis virus IRES captures host ribosomes by mimicking a ribosomal state with hybrid tRNAs. EMBO J 2019; 38:e102226. [PMID: 31609474 PMCID: PMC6826211 DOI: 10.15252/embj.2019102226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Colony collapse disorder (CCD) is a multi-faceted syndrome decimating bee populations worldwide, and a group of viruses of the widely distributed Dicistroviridae family have been identified as a causing agent of CCD. This family of viruses employs non-coding RNA sequences, called internal ribosomal entry sites (IRESs), to precisely exploit the host machinery for viral protein production. Using single-particle cryo-electron microscopy (cryo-EM), we have characterized how the IRES of Israeli acute paralysis virus (IAPV) intergenic region captures and redirects translating ribosomes toward viral RNA messages. We reconstituted two in vitro reactions targeting a pre-translocation and a post-translocation state of the IAPV-IRES in the ribosome, allowing us to identify six structures using image processing classification methods. From these, we reconstructed the trajectory of IAPV-IRES from the early small subunit recruitment to the final post-translocated state in the ribosome. An early commitment of IRES/ribosome complexes for global pre-translocation mimicry explains the high efficiency observed for this IRES. Efforts directed toward fighting CCD by targeting the IAPV-IRES using RNA-interference technology are underway, and the structural framework presented here may assist in further refining these approaches.
Collapse
Affiliation(s)
- Francisco Acosta-Reyes
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Ritam Neupane
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.,Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Israel S Fernández
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
76
|
Quigley TP, Amdam GV, Harwood GH. Honey bees as bioindicators of changing global agricultural landscapes. CURRENT OPINION IN INSECT SCIENCE 2019; 35:132-137. [PMID: 31541967 DOI: 10.1016/j.cois.2019.08.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 05/08/2023]
Abstract
There is a growing need to understand relationships between agricultural intensification and global change. Monitoring solutions, however, often do not include pollinator communities that are of importance to ecosystem integrity. Here, we put forth the honey bee as an economical and broadly available bioindicator that can be used to assess and track changes in the quality of agricultural ecosystems. We detail a variety of simple, low-cost procedures that can be deployed within honey bee hives to gain generalizable information about ecosystem quality at multiple scales, and discuss the potential of the honey bee system in both environmental and ecological bioindication.
Collapse
Affiliation(s)
- Tyler P Quigley
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| | - Gro V Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ, United States; Norwegian University of Life Sciences, Aas, Norway
| | - Gyan H Harwood
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
77
|
Erban T, Sopko B, Kadlikova K, Talacko P, Harant K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci Rep 2019; 9:9400. [PMID: 31253851 PMCID: PMC6599063 DOI: 10.1038/s41598-019-45764-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-β-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa–honeybee–DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Klara Kadlikova
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.,Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6-Suchdol, CZ-165 00, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| |
Collapse
|
78
|
Rutter L, Carrillo-Tripp J, Bonning BC, Cook D, Toth AL, Dolezal AG. Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics 2019; 20:412. [PMID: 31117959 PMCID: PMC6532243 DOI: 10.1186/s12864-019-5767-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Parts of Europe and the United States have witnessed dramatic losses in commercially managed honey bees over the past decade to what is considered an unsustainable extent. The large-scale loss of bees has considerable implications for the agricultural economy because bees are one of the leading pollinators of numerous crops. Bee declines have been associated with several interactive factors. Recent studies suggest nutritional and pathogen stress can interactively contribute to bee physiological declines, but the molecular mechanisms underlying interactive effects remain unknown. In this study, we provide insight into this question by using RNA-sequencing to examine how monofloral diets and Israeli acute paralysis virus inoculation influence gene expression patterns in bees. RESULTS We found a considerable nutritional response, with almost 2000 transcripts changing with diet quality. The majority of these genes were over-represented for nutrient signaling (insulin resistance) and immune response (Notch signaling and JaK-STAT pathways). In our experimental conditions, the transcriptomic response to viral infection was fairly limited. We only found 43 transcripts to be differentially expressed, some with known immune functions (argonaute-2), transcriptional regulation, and muscle contraction. We created contrasts to explore whether protective mechanisms of good diet were due to direct effects on immune function (resistance) or indirect effects on energy availability (tolerance). A similar number of resistance and tolerance candidate differentially expressed genes were found, suggesting both processes may play significant roles in dietary buffering from pathogen infection. CONCLUSIONS Through transcriptional contrasts and functional enrichment analysis, we contribute to our understanding of the mechanisms underlying feedbacks between nutrition and disease in bees. We also show that comparing results derived from combined analyses across multiple RNA-seq studies may allow researchers to identify transcriptomic patterns in bees that are concurrently less artificial and less noisy. This work underlines the merits of using data visualization techniques and multiple datasets to interpret RNA-sequencing studies.
Collapse
Affiliation(s)
- Lindsay Rutter
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, 50011 IA USA
| | - Jimena Carrillo-Tripp
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, Ensenada, 22860 Baja California Mexico
| | - Bryony C. Bonning
- Department of Entomology and Nematology, University of Florida, Gainesville, 32611 FL USA
| | - Dianne Cook
- Econometrics and Business Statistics, Monash University, Clayton, 3800 VIC Australia
| | - Amy L. Toth
- Department of Entomology, Iowa State University, Ames, 50011 IA USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50011 IA USA
| | - Adam G. Dolezal
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, 61801 IL USA
| |
Collapse
|
79
|
Jiang J, Zhang Z, Lin J, Liu F, Mu W. The minimally effective dosages of nitenpyram and thiamethoxam seed treatments against aphids (Aphis gossypii Glover) and their potential exposure risks to honeybees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:68-78. [PMID: 30798245 DOI: 10.1016/j.scitotenv.2019.02.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Neonicotinoid seed coatings have been used as a major method to control seedling pests, especially the cotton aphid (Aphis gossypii Glover), around the world. However, their negative influence on natural enemies and pollinators has been criticized for decades. The present study was designed to compare the efficacy of nitenpyram and thiamethoxam for A. gossypii control, impacts on natural enemies and their potential risks to honeybees. Investigations in two locations in China revealed that the seed treatment with nitenpyram at a dosage of 3 g a.i. kg-1 seed could effectively control A. gossypii throughout the seedling stage. In addition, Nitenpyram at the dosage of 2 g a.i. kg-1 seed did not significantly change present number of the 7-spot ladybeetles in fields, compared with thiamethoxam treatments and blank control. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) was utilized to identify and quantify the residue dynamics and transformation of parental and metabolite products in pollen and leaves. On the basis of residue data, the first-tier risk assessment disclosed that nitenpyram applied at doses of 2, 3 and 4 g a.i. kg-1 seed might result in relative lower potential exposure risks to honeybees when compared with thiamethoxam. These results enable us to better understand the performance of nitenpyram seed treatments against A. gossypii during the seedling stage, indicating that nitenpyram may be safer than thiamethoxam for natural enemies and honeybees.
Collapse
Affiliation(s)
- Jiangong Jiang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, China
| | - Jin Lin
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Feng Liu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
80
|
Maori E, Garbian Y, Kunik V, Mozes-Koch R, Malka O, Kalev H, Sabath N, Sela I, Shafir S. A Transmissible RNA Pathway in Honey Bees. Cell Rep 2019; 27:1949-1959.e6. [PMID: 31056439 DOI: 10.1016/j.celrep.2019.04.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/17/2018] [Accepted: 04/16/2019] [Indexed: 01/06/2023] Open
Abstract
Systemic RNAi, initiated by double-stranded RNA (dsRNA) ingestion, has been reported in diverse invertebrates, including honey bees, demonstrating environmental RNA uptake that undermines homologous gene expression. However, the question why any organism would take up RNA from the environment has remained largely unanswered. Here, we report on horizontal RNA flow among honey bees mediated by secretion and ingestion of worker and royal jelly diets. We demonstrate that transmission of jelly-secreted dsRNA to larvae is biologically active and triggers gene knockdown that lasts into adulthood. Worker and royal jellies harbor differential naturally occurring RNA populations. Jelly RNAs corresponded to honey bee protein-coding genes, transposable elements, and non-coding RNA, as well as bacteria, fungi, and viruses. These results reveal an inherent property of honey bees to share RNA among individuals and generations. Our findings suggest a transmissible RNA pathway, playing a role in social immunity and signaling between members of the hive.
Collapse
Affiliation(s)
- Eyal Maori
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Yael Garbian
- The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 7610001, Israel
| | - Vered Kunik
- Bioinformatics Consulting, 12 Hailanot Street, Gat-Rimon 4992000, Israel
| | - Rita Mozes-Koch
- The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 7610001, Israel
| | - Osnat Malka
- The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 7610001, Israel
| | - Haim Kalev
- The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 7610001, Israel
| | - Niv Sabath
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ilan Sela
- The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 7610001, Israel
| | - Sharoni Shafir
- The Hebrew University of Jerusalem, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 7610001, Israel
| |
Collapse
|
81
|
Multiple Virus Infections in Western Honeybee ( Apis mellifera L.) Ejaculate Used for Instrumental Insemination. Viruses 2019; 11:v11040306. [PMID: 30934858 PMCID: PMC6521257 DOI: 10.3390/v11040306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/18/2023] Open
Abstract
Instrumental insemination of Apis mellifera L. queens is a widely employed technique used in honeybee breeding that enables the effective control of mating. However, drone semen represents a potential source of honeybee viruses. In this study, 43 semen doses collected from apparently healthy drones, and consequently used in instrumental insemination, were analysed using PCR or RT-PCR to detect the presence of viral genome of 11 honeybee viruses. In 91% of samples, viral infection was detected. The survey revealed genomes of five viruses, namely Deformed wing virus (DWV), Acute bee paralysis virus (ABPV), Black queen cell virus (BQCV), Sacbrood virus (SBV), and A. mellifera filamentous virus (AmFV) in 84%, 19%, 14%, 2%, and 67% of samples, respectively. Single infection (30% of samples) as well as multiple infection (61% of samples) of two, three or four pathogens were also evaluated. To the best of our knowledge, this is the first study describing the presence of the BQCV and SBV genome sequence in drone ejaculate. Phylogenetic analysis of BQCV partial helicase gene sequence revealed the high similarity of nucleotide sequence of described Czech strains, which varied from 91.4% to 99.6%. The findings of our study indicate the possibility of venereal transmission of BQCV and SBV.
Collapse
|
82
|
Burnham AJ. Scientific Advances in Controlling Nosema ceranae ( Microsporidia) Infections in Honey Bees ( Apis mellifera). Front Vet Sci 2019; 6:79. [PMID: 30931319 PMCID: PMC6428737 DOI: 10.3389/fvets.2019.00079] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/25/2019] [Indexed: 12/31/2022] Open
Abstract
Honey bees (Apis mellifera) are agriculturally important pollinators that have been recently at risk to severe colony losses. A variety of parasites and pathogens have been linked to colony decline, including the microsporidian parasite Nosema ceranae. While fumagillin has been used to control nosemosis in managed honey bee colonies for decades, research shows that this antibiotic poses a toxic threat and that its efficacy against N. ceranae is uncertain. There is certainly a demand for a new veterinary medication to treat honey bee colonies infected with N. ceranae. In this review, recent scientific advances in controlling N. ceranae infections in honey bees are summarized.
Collapse
|
83
|
Vogel E, Santos D, Mingels L, Verdonckt TW, Broeck JV. RNA Interference in Insects: Protecting Beneficials and Controlling Pests. Front Physiol 2019; 9:1912. [PMID: 30687124 PMCID: PMC6336832 DOI: 10.3389/fphys.2018.01912] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Insects constitute the largest and most diverse group of animals on Earth with an equally diverse virome. The main antiviral immune system of these animals is the post-transcriptional gene-silencing mechanism known as RNA(i) interference. Furthermore, this process can be artificially triggered via delivery of gene-specific double-stranded RNA molecules, leading to specific endogenous gene silencing. This is called RNAi technology and has important applications in several fields. In this paper, we review RNAi mechanisms in insects as well as the potential of RNAi technology to contribute to species-specific insecticidal strategies. Regarding this aspect, we cover the range of strategies considered and investigated so far, as well as their limitations and the most promising approaches to overcome them. Additionally, we discuss patterns of viral infection, specifically persistent and acute insect viral infections. In the latter case, we focus on infections affecting economically relevant species. Within this scope, we review the use of insect-specific viruses as bio-insecticides. Last, we discuss RNAi-based strategies to protect beneficial insects from harmful viral infections and their potential practical application. As a whole, this manuscript stresses the impact of insect viruses and RNAi technology in human life, highlighting clear lines of investigation within an exciting and promising field of research.
Collapse
|
84
|
Amiri E, Seddon G, Zuluaga Smith W, Strand MK, Tarpy DR, Rueppell O. Israeli Acute Paralysis Virus: Honey Bee Queen⁻Worker Interaction and Potential Virus Transmission Pathways. INSECTS 2019; 10:E9. [PMID: 30626038 PMCID: PMC6359674 DOI: 10.3390/insects10010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Queen loss or failure is an important cause of honey bee colony loss. A functional queen is essential to a colony, and the queen is predicted to be well protected by worker bees and other mechanisms of social immunity. Nevertheless, several honey bee pathogens (including viruses) can infect queens. Here, we report a series of experiments to test how virus infection influences queen⁻worker interactions and the consequences for virus transmission. We used Israeli acute paralysis virus (IAPV) as an experimental pathogen because it is relevant to bee health but is not omnipresent. Queens were observed spending 50% of their time with healthy workers, 32% with infected workers, and 18% without interaction. However, the overall bias toward healthy workers was not statistically significant, and there was considerable individual to individual variability. We found that physical contact between infected workers and queens leads to high queen infection in some cases, suggesting that IAPV infections also spread through close bodily contact. Across experiments, queens exhibited lower IAPV titers than surrounding workers. Thus, our results indicate that honey bee queens are better protected by individual and social immunity, but this protection is insufficient to prevent IAPV infections completely.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Gregory Seddon
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Wendy Zuluaga Smith
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709-2211, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| |
Collapse
|
85
|
Abstract
Bees-including solitary, social, wild, and managed species-are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes-including intergenus transmission-and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.
Collapse
Affiliation(s)
- Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Infectious Disease Dynamics, and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology and Pollinator Health Center, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
86
|
Rodríguez-García C, Evans JD, Li W, Branchiccela B, Li JH, Heerman MC, Banmeke O, Zhao Y, Hamilton M, Higes M, Martín-Hernández R, Chen YP. Nosemosis control in European honey bees, Apis mellifera, by silencing the gene encoding Nosema ceranae polar tube protein 3. ACTA ACUST UNITED AC 2018; 221:jeb.184606. [PMID: 30135088 DOI: 10.1242/jeb.184606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/10/2018] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism triggered by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene and is conserved in a wide range of eukaryotic organisms. The RNAi mechanism has provided unique opportunities for combating honey bee diseases caused by various parasites and pathogens. Nosema ceranae is a microsporidian parasite of European honey bees, Apis mellifera, and has been associated with honey bee colony losses in some regions of the world. Here we explored the possibility of silencing the expression of a N. ceranae putative virulence factor encoding polar tube protein 3 (ptp3) which is involved in host cell invasion as a therapeutic strategy for controlling Nosema parasites in honey bees. Our studies showed that the oral ingestion of a dsRNA corresponding to the sequences of N. ceranae ptp3 could effectively suppress the expression of the ptp3 gene in N. ceranae-infected bees and reduce Nosema load. In addition to the knockdown of ptp3 gene expression, ingestion of ptp3-dsRNA also led to improved innate immunity in bees infected with N. ceranae along with an improvement in physiological performance and lifespan compared with untreated control bees. These results strongly suggest that RNAi-based therapeutics hold real promise for the effective treatment of honey bee diseases in the future, and warrant further investigation.
Collapse
Affiliation(s)
- Cristina Rodríguez-García
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA.,Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Wenfeng Li
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Belén Branchiccela
- Instituto de Investigaciones Biológicas Clemente Estable, Department of Microbiology, Avda Italia 3318, 11600 Montevideo, Uruguay
| | - Jiang Hong Li
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Matthew C Heerman
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Olubukola Banmeke
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Yazhou Zhao
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain.,Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, 02006 Albacete, Spain
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
87
|
Yang D, Xu X, Zhao H, Yang S, Wang X, Zhao D, Diao Q, Hou C. Diverse Factors Affecting Efficiency of RNAi in Honey Bee Viruses. Front Genet 2018; 9:384. [PMID: 30254665 PMCID: PMC6141667 DOI: 10.3389/fgene.2018.00384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/27/2018] [Indexed: 12/15/2022] Open
Abstract
Infection and transmission of honey bee viruses pose a serious threat to the pollination services of crops and wild plants, which plays a vital role in agricultural economy and ecology. RNA interference (RNAi) is an effective defense mechanism against commonly occurring viral infections of animals and plants. However, recent studies indicate that the effects of RNAi on the honey bee can induce additional impacts and might not always be effective in suppressing the virus. Moreover, the RNAi responses differed in relation to the developmental stage of the insect and the target tissue used, even though the same method of delivery was used. These results indicate that further analysis and field experiments should be performed to characterize the varying effectiveness of RNAi-based methods for treating honey bee viral infections. In this review, we provide an overview of the current knowledge and the recent progress in RNAi-based anti-viral treatments for honey bees, focusing in particular highlight the role of the dsRNA-delivery method used and its effect on RNAi efficiency and demonstrate the potential practical value of this tool for controlling the virus. We conclude studying the gene function and disease control of honey bee by RNAi technology requires a complex consideration from physiology, genetics to environment.
Collapse
Affiliation(s)
- Dahe Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiang Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Xinling Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Di Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing, China
| |
Collapse
|
88
|
McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML. Honey Bee and Bumble Bee Antiviral Defense. Viruses 2018; 10:E395. [PMID: 30060518 PMCID: PMC6115922 DOI: 10.3390/v10080395] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Marie C Pizzorno
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA.
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
89
|
Jiang J, Ma D, Zou N, Yu X, Zhang Z, Liu F, Mu W. Concentrations of imidacloprid and thiamethoxam in pollen, nectar and leaves from seed-dressed cotton crops and their potential risk to honeybees (Apis mellifera L.). CHEMOSPHERE 2018; 201:159-167. [PMID: 29524816 DOI: 10.1016/j.chemosphere.2018.02.168] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 05/25/2023]
Abstract
Neonicotinoid insecticides (NIs) have recently been recognized as co-factors in the decline of honeybee colonies because most neonicotinoids are systemic and can transfer into the pollen and nectar of many pollinated crops. In this study, we collected pollen, nectar and leaves from a cotton crop treated with imidacloprid and thiamethoxam to measure the residue levels of these two NIs at different application doses during the flowering period. Then, the residual data were used to assess the risk posed by the systemic insecticides to honeybees following mandated methods published by the European Food Safety Authority (EFSA), and a highly toxic risk to honeybees was highlighted. Imidacloprid was found in both pollen and nectar samples, whereas thiamethoxam was found in 90% of pollen samples and over 60% of nectar samples. Analysis of the pollen and nectar revealed residual amounts of imidacloprid ranging from 1.61 to 64.58 ng g-1 in the pollen and from not detected (ND) to 1.769 ng g-1 in the nectar. By comparison, the thiamethoxam concentrations in pollen and nectar ranged from ND to 14.521 ng g-1 and from ND to 4.285 ng g-1, respectively. The results of this study provide information on the transfer of two NIs from seed treatment to areas of the plant and provides an understanding of the potential exposure of the bee and other pollinators to systemic insecticides.
Collapse
Affiliation(s)
- Jiangong Jiang
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, PR China
| | - Dicheng Ma
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, PR China
| | - Nan Zou
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, PR China
| | - Xin Yu
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, 271018 Shandong, PR China
| | - Zhengqun Zhang
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, PR China
| | - Feng Liu
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, PR China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
90
|
Abstract
Since pollination by insects is vitally important for much of global crop production, and to provide pollination services more widely throughout the planetary ecosystems, the prospect of an imminent 'pollination crisis', due to a die-off of flying insects, is most disquieting, to say the least. Indeed, the term 'ecological Armageddon' has been used in the media. However, to know whether or not a wholesale decline in flying pollinators (including non-bee species) is occurring across the world is very difficult, due to an insufficiency of geographically widespread and long-term data. Bees, as the best documented species, can be seen to be suffering from chronic exposure to a range of stressors, which include: a loss of abundance and diversity of flowers, and a decline in suitable habitat for them to build nests; long-term exposure to agrochemicals, including pesticides such as neonicotinoids; and infection by parasites and pathogens, many inadvertently spread by the actions of humans. It is likely that climate change may impact further on particular pollinators, for example bumble bees, which are cool-climate specialists. Moreover, the co-operative element of various different stress factors should be noted; thus, for example, exposure to pesticides is known to diminish detoxification mechanisms and also immune responses, hence lowering the resistance of bees to parasitic infections. It is further conspicuous that for those wild non-bee insects - principally moths and butterflies - where data are available, the picture is also one of significant population losses. Alarmingly, a recent study in Germany indicated that a decline in the biomass of flying insects had occurred by 76% in less than three decades, as sampled in nature reserves across the country. Accordingly, to fully answer the question posed in the title of this article 'pollinator decline - an ecological calamity in the making?' will require many more detailed, more geographically encompassing, more species-inclusive, and longer-term studies, but the available evidence points to a clear 'probably', and the precautionary principle would suggest this is not a prospect we can afford to ignore.
Collapse
|
91
|
Amiri E, Kryger P, Meixner MD, Strand MK, Tarpy DR, Rueppell O. Quantitative patterns of vertical transmission of deformed wing virus in honey bees. PLoS One 2018; 13:e0195283. [PMID: 29596509 PMCID: PMC5875871 DOI: 10.1371/journal.pone.0195283] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/19/2018] [Indexed: 12/24/2022] Open
Abstract
Deformed wing virus (DWV) is an important pathogen in a broad range of insects, including honey bees. Concordant with the spread of Varroa, DWV is present in the majority of honey bee colonies and can result in either low-level infections with asymptomatic bees that nonetheless exhibit increased colony loss under stress, or high-level infections with acute effects on bee health and viability. DWV can be transmitted vertically or horizontally and evidence suggests that horizontal transmission via Varroa is associated with acute symptomatic infections. Vertical transmission also occurs and is presumably important for the maintenance of DWV in honey bee populations. To further our understanding the vertical transmission of DWV through queens, we performed three experiments: we studied the quantitative effectiveness of vertical transmission, surveyed the prevalence of successful egg infection under commercial conditions, and distinguished among three possible mechanisms of transmission. We find that queen-infection level predicts the DWV titers in their eggs, although the transmission is not very efficient. Our quantitative assessment of DWV demonstrates that eggs in 1/3 of the colonies are infected with DWV and highly infected eggs are rare in newly-installed spring colonies. Additionally, our results indicate that DWV transmission occurs predominantly by virus adhering to the surface of eggs (transovum) rather than intracellularly. Our combined results suggest that the queens' DWV vectoring capacity in practice is not as high as its theoretical potential. Thus, DWV transmission by honey bee queens is part of the DWV epidemic with relevant practical implications, which should be further studied.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States of America
- Department of Agroecology, Aarhus University, Slagelse, Denmark
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Per Kryger
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Marina D. Meixner
- Bieneninstitut Kirchhain, Landesbetrieb Landwirtschaft Hessen, Kirchhain, Germany
| | - Micheline K. Strand
- Life Sciences Division, U.S. Army Research Office, Research Triangle Park, NC, United States of America
| | - David R. Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States of America
| |
Collapse
|
92
|
Codling G, Naggar YA, Giesy JP, Robertson AJ. Neonicotinoid insecticides in pollen, honey and adult bees in colonies of the European honey bee (Apis mellifera L.) in Egypt. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:122-131. [PMID: 29143171 DOI: 10.1007/s10646-017-1876-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 05/21/2023]
Abstract
Honeybee losses have been attributed to multiple stressors and factors including the neonicotinoid insecticides (NIs). Much of the study of hive contamination has been focused upon temperate regions such as Europe, Canada and the United States. This study looks for the first time at honey, pollen and bees collected from across the Nile Delta in Egypt in both the spring and summer planting season of 2013. There is limited information upon the frequency of use of NIs in Egypt but the ratio of positive identification and concentrations of NIs are comparable to other regions. Metabolites of NIs were also monitored but given the low detection frequency, no link between matrices was possible in the study. Using a simple hazard assessment based upon published LD50 values for individual neonicotinoids upon the foraging and brood workers it was found that there was a potential risk to brood workers if the lowest reported LD50 was compared to the sum of the maximum NI concentrations. For non-lethal exposure there was significant risk at the worst case to brood bees but actual exposure effects are dependant upon the genetics and conditions of the Egyptian honeybee subspecies that remain to be determined.
Collapse
Affiliation(s)
- Garry Codling
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
- Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| | - Yahya Al Naggar
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
- Department of Zoology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
- Department of Zoology, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Zoology, and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | | |
Collapse
|
93
|
Wang H, Meeus I, Piot N, Smagghe G. Systemic Israeli acute paralysis virus (IAPV) infection in bumblebees (Bombus terrestris) through feeding and injection. J Invertebr Pathol 2017; 151:158-164. [PMID: 29203138 DOI: 10.1016/j.jip.2017.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
Abstract
Israeli acute paralysis virus (IAPV) can cause a systemic infection, resulting in mortality in both Apis and Bombus spp. bees. However, little is known about the virus infection dynamics within bee tissues. Here, we established systemic IAPV infections in reared bumblebee Bombus terrestris workers through feeding and injection and investigated the mortality, tissue tropism and viral localization. Injection of approximately 500 IAPV (IAPVinj stock) particles resulted in acute infection, viral loads within tissues that were relatively stable from bee to bee, and a distinctive tissue tropism, making this method suitable for studying systemic IAPV infection in bumblebees. Feeding with approximately 1 × 106 particles of the same virus stock did not result in systemic infection. A high-concentration stock of IAPV (IAPVfed stock) allowed us to feed bumblebees with approximately 1 × 109 viral particles, which induced both chronic and acute infection. We also observed a higher variability in viral titers within tissues and less clear tissue tropism during systemic infection, making feeding with IAPVfed stock less optimal for studying IAPV systemic infection. Strikingly, both infection methods and stocks with different viral loads gave a similar viral localization pattern in the brain and midgut of bumblebees with an acute infection. The implications of these findings in the study of the local immunity in bees and barriers to oral transmission are discussed. Our data provide useful information on the establishment of a systemic viral infection in bees.
Collapse
Affiliation(s)
- Haidong Wang
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Ivan Meeus
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Niels Piot
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
94
|
Bigot D, Dalmon A, Roy B, Hou C, Germain M, Romary M, Deng S, Diao Q, Weinert LA, Cook JM, Herniou EA, Gayral P. The discovery of Halictivirus resolves the Sinaivirus phylogeny. J Gen Virol 2017; 98:2864-2875. [DOI: 10.1099/jgv.0.000957] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Diane Bigot
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Anne Dalmon
- INRA UR 406 Abeilles et environnement, Centre de recherche Provence-Alpes-Côte d'Azur, Site Agroparc, Domaine St Paul 228, Route de l'aérodrome CS40509 84914 Avignon, France
| | - Bronwen Roy
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Michèle Germain
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Manon Romary
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Shuai Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Beijing 100093, PR China
| | - Lucy A. Weinert
- Institut des Sciences de l'Evolution UMR5554, Université Montpellier–CNRS–IRD–EPHE, Montpellier, France
- Present address: Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - James M. Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| | - Philippe Gayral
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, 37200 Tours, France
| |
Collapse
|
95
|
Kevill JL, Highfield A, Mordecai GJ, Martin SJ, Schroeder DC. ABC Assay: Method Development and Application to Quantify the Role of Three DWV Master Variants in Overwinter Colony Losses of European Honey Bees. Viruses 2017; 9:v9110314. [PMID: 29077069 PMCID: PMC5707521 DOI: 10.3390/v9110314] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
Abstract
Deformed wing virus (DWV) is one of the most prevalent honey bee viral pathogens in the world. Typical of many RNA viruses, DWV is a quasi-species, which is comprised of a large number of different variants, currently consisting of three master variants: Type A, B, and C. Little is known about the impact of each variant or combinations of variants upon the biology of individual hosts. Therefore, we have developed a new set of master variant-specific DWV primers and a set of standards that allow for the quantification of each of the master variants. Competitive reverse transcriptase polymerase chain reaction (RT-PCR) experimental design confirms that each new DWV primer set is specific to the retrospective master variant. The sensitivity of the ABC assay is dependent on whether DNA or RNA is used as the template and whether other master variants are present in the sample. Comparison of the overall proportions of each master variant within a sample of known diversity, as confirmed by next-generation sequence (NGS) data, validates the efficiency of the ABC assay. The ABC assay was used on archived material from a Devon overwintering colony loss (OCL) 2006-2007 study; further implicating DWV type A and, for the first time, possibly C in the untimely collapse of honey bee colonies. Moreover, in this study DWV type B was not associated with OCL. The use of the ABC assay will allow researchers to quickly and cost effectively pre-screen for the presence of DWV master variants in honey bees.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environment and Life Sciences, The University of Salford, Manchester M5 4WT, UK.
| | - Andrea Highfield
- Viral Ecology, Marine Biological Association, Plymouth PL1 2PB, UK.
| | - Gideon J Mordecai
- Viral Ecology, Marine Biological Association, Plymouth PL1 2PB, UK.
- Department of Earth, Ocean and Atmospheric Sciences and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Stephen J Martin
- School of Environment and Life Sciences, The University of Salford, Manchester M5 4WT, UK.
| | - Declan C Schroeder
- Viral Ecology, Marine Biological Association, Plymouth PL1 2PB, UK.
- School of Biological Sciences, University of Reading, Reading RG6 6LA, UK.
- Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA.
| |
Collapse
|
96
|
Glenny W, Cavigli I, Daughenbaugh KF, Radford R, Kegley SE, Flenniken ML. Honey bee (Apis mellifera) colony health and pathogen composition in migratory beekeeping operations involved in California almond pollination. PLoS One 2017; 12:e0182814. [PMID: 28817641 PMCID: PMC5560708 DOI: 10.1371/journal.pone.0182814] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023] Open
Abstract
Honey bees are important pollinators of agricultural crops. Pathogens and other factors have been implicated in high annual losses of honey bee colonies in North America and some European countries. To further investigate the relationship between multiple factors, including pathogen prevalence and abundance and colony health, we monitored commercially managed migratory honey bee colonies involved in California almond pollination in 2014. At each sampling event, honey bee colony health was assessed, using colony population size as a proxy for health, and the prevalence and abundance of seven honey bee pathogens was evaluated using PCR and quantitative PCR, respectively. In this sample cohort, pathogen prevalence and abundance did not correlate with colony health, but did correlate with the date of sampling. In general, pathogen prevalence (i.e., the number of specific pathogens harbored within a colony) was lower early in the year (January-March) and was greater in the summer, with peak prevalence occurring in June. Pathogen abundance in individual honey bee colonies varied throughout the year and was strongly associated with the sampling date, and was influenced by beekeeping operation, colony health, and mite infestation level. Together, data from this and other observational cohort studies that monitor individual honey bee colonies and precisely account for sampling date (i.e., day of year) will lead to a better understanding of the influence of pathogens on colony mortality and the effects of other factors on these associations.
Collapse
Affiliation(s)
- William Glenny
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
- Pollinator Health Center, Montana State University, Bozeman, Montana, United States of America
| | - Ian Cavigli
- Department of Ecology, Montana State University, Bozeman, Montana, United States of America
| | - Katie F. Daughenbaugh
- Pollinator Health Center, Montana State University, Bozeman, Montana, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Rosemarie Radford
- Pesticide Research Institute, Berkeley, California, United States of America
| | - Susan E. Kegley
- Pesticide Research Institute, Berkeley, California, United States of America
| | - Michelle L. Flenniken
- Pollinator Health Center, Montana State University, Bozeman, Montana, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
97
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep 2017; 7:6448. [PMID: 28743868 PMCID: PMC5526946 DOI: 10.1038/s41598-017-06623-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
98
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
99
|
Amiri E, Strand MK, Rueppell O, Tarpy DR. Queen Quality and the Impact of Honey Bee Diseases on Queen Health: Potential for Interactions between Two Major Threats to Colony Health. INSECTS 2017; 8:E48. [PMID: 28481294 PMCID: PMC5492062 DOI: 10.3390/insects8020048] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/15/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Abstract
Western honey bees, Apis mellifera, live in highly eusocial colonies that are each typically headed by a single queen. The queen is the sole reproductive female in a healthy colony, and because long-term colony survival depends on her ability to produce a large number of offspring, queen health is essential for colony success. Honey bees have recently been experiencing considerable declines in colony health. Among a number of biotic and abiotic factors known to impact colony health, disease and queen failure are repeatedly reported as important factors underlying colony losses. Surprisingly, there are relatively few studies on the relationship and interaction between honey bee diseases and queen quality. It is critical to understand the negative impacts of pests and pathogens on queen health, how queen problems might enable disease, and how both factors influence colony health. Here, we review the current literature on queen reproductive potential and the impacts of honey bee parasites and pathogens on queens. We conclude by highlighting gaps in our knowledge on the combination of disease and queen failure to provide a perspective and prioritize further research to mitigate disease, improve queen quality, and ensure colony health.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
100
|
Yang X, Xu P, Graham RI, Yuan H, Wu K. Protocols for Investigating the Host-tissue Distribution, Transmission-mode, and Effect on the Host Fitness of a Densovirus in the Cotton Bollworm. J Vis Exp 2017:55534. [PMID: 28448051 PMCID: PMC5564690 DOI: 10.3791/55534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Many novel viruses have been discovered in animal hosts using next-generation sequencing technologies. Previously, we reported a mutualistic virus, Helicoverpa armigera densovirus (HaDV2), in a lepidopteran species, the cotton bollworm, Helicoverpa armigera (Hubner). Here, we describe the protocols that are currently used to study the effect of HaDV2 on its host. First, we establish a HaDV2-free cotton bollworm colony from a single breeding pair. Then, we orally inoculate some neonate larval offspring with HaDV2-containing filtered liquid to produce two colonies with the same genetic background: one HaDV2-infected, the other uninfected. A protocol to compare life table parameters (e.g., larval, pupal, and adult periods and fecundity) between the HaDV2-infected and -uninfected individuals is also presented, as are the protocols for determining the host-tissue distribution and transmission efficiency of HaDV2. These protocols would also be suitable for investigating the effects of other orally transmitted viruses on their insect hosts, lepidopteran hosts in particular.
Collapse
Affiliation(s)
- Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences
| | - Pengjun Xu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences
| | | | - He Yuan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences;
| |
Collapse
|