51
|
Baselet B, Rombouts C, Benotmane AM, Baatout S, Aerts A. Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review). Int J Mol Med 2016; 38:1623-1641. [PMID: 27748824 PMCID: PMC5117755 DOI: 10.3892/ijmm.2016.2777] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022] Open
Abstract
Traditionally, non-cancer diseases are not considered as health risks following exposure to low doses of ionizing radiation. Indeed, non-cancer diseases are classified as deterministic tissue reactions, which are characterized by a threshold dose. It is judged that below an absorbed dose of 100 mGy, no clinically relevant tissue damage occurs, forming the basis for the current radiation protection system concerning non-cancer effects. Recent epidemiological findings point, however, to an excess risk of non-cancer diseases following exposure to lower doses of ionizing radiation than was previously thought. The evidence is the most sound for cardiovascular disease (CVD) and cataract. Due to limited statistical power, the dose-risk relationship is undetermined below 0.5 Gy; however, if this relationship proves to be without a threshold, it may have considerable impact on current low-dose health risk estimates. In this review, we describe the CVD risk related to low doses of ionizing radiation, the clinical manifestation and the pathology of radiation-induced CVD, as well as the importance of the endothelium models in CVD research as a way forward to complement the epidemiological data with the underlying biological and molecular mechanisms.
Collapse
Affiliation(s)
- Bjorn Baselet
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Charlotte Rombouts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Abderrafi Mohammed Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium
| |
Collapse
|
52
|
Little MP. Radiation and circulatory disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 770:299-318. [PMID: 27919337 PMCID: PMC5315567 DOI: 10.1016/j.mrrev.2016.07.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/15/2022]
Abstract
Exposure to therapeutic doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be quantified while also adjusting for concomitant chemotherapy, and medical and lifestyle risk factors. At lower levels of exposure the evidence is less clear. In this article I review radiation-associated risks of circulatory disease in groups treated with radiotherapy for malignant and non-malignant disease, and in occupationally- or environmentally-exposed groups receiving rather lower levels of radiation dose, also for medical diagnostic purposes. Results of a meta-analysis suggest that excess relative risks per unit dose for various types of heart disease do not exhibit statistically significant (p>0.2) heterogeneity between studies. Although there are no marked discrepancies between risks derived from the high-dose therapeutic and medical diagnostic studies and from the moderate/low dose occupational and environmental studies, at least for ischemic heart disease and stroke there are indications of larger risks per unit dose for lower dose rate and fractionated exposures. Risks for stroke and other types of circulatory disease are significantly more variable (p<0.0001), possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Adjustment for any of mean dose, dose fractionation or age at exposure results in the residual heterogeneity for cerebrovascular disease becoming non-significant. The review provides strong evidence in support of a causal association between both low and high dose radiation exposure and most types of circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA.
| |
Collapse
|
53
|
Dobrzyński L, Fornalski KW, Socol Y, Reszczyńska JM. Modeling of Irradiated Cell Transformation: Dose- and Time-Dependent Effects. Radiat Res 2016; 186:396-406. [DOI: 10.1667/rr14302.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
54
|
Sykes PJ. The ups and downs of low dose ionising radiobiology research. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2016; 39:807-811. [PMID: 27658668 DOI: 10.1007/s13246-016-0486-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pamela J Sykes
- Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
55
|
Tapio S. Pathology and biology of radiation-induced cardiac disease. JOURNAL OF RADIATION RESEARCH 2016; 57:439-448. [PMID: 27422929 PMCID: PMC5045085 DOI: 10.1093/jrr/rrw064] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/09/2016] [Indexed: 05/08/2023]
Abstract
Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation.
Collapse
Affiliation(s)
- Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
56
|
Acceleration of atherogenesis in ApoE-/- mice exposed to acute or low-dose-rate ionizing radiation. Oncotarget 2016; 6:31263-71. [PMID: 26359350 PMCID: PMC4741603 DOI: 10.18632/oncotarget.5075] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/10/2015] [Indexed: 11/25/2022] Open
Abstract
There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis. Female ApoE-/- mice (60 days) were chronically irradiated for 300 days with gamma rays at two different dose rates (1 mGy/day; 20 mGy/day), with total accumulated doses of 0.3 or 6 Gy. For comparison, age-matched ApoE-/- females were acutely exposed to the same doses and sacrificed 300 days post-irradiation. Mice acutely exposed to 0.3 or 6 Gy showed increased atherogenesis compared to age-matched controls, and this effect was persistent. When the same doses were delivered at low dose rate over 300 days, we again observed a significant impact on global development of atherosclerosis, although at 0.3 Gy effects were limited to the descending thoracic aorta. Our data suggest that a moderate dose of 0.3 Gy can have persistent detrimental effects on the cardiovascular system, and that a high dose of 6 Gy poses high risks at both high and low dose rates. Our results were clearly nonlinear with dose, suggesting that lower doses may be more damaging than predicted by a linear dose response.
Collapse
|
57
|
Kamkar M, Wei L, Gaudet C, Bugden M, Petryk J, Duan Y, Wyatt HM, Wells RG, Marcel YL, Priest ND, Mitchel REJ, Ruddy TD. Evaluation of Apoptosis with 99mTc-rhAnnexin V-128 and Inflammation with 18F-FDG in a Low-Dose Irradiation Model of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Nucl Med 2016; 57:1784-1791. [PMID: 27307347 DOI: 10.2967/jnumed.116.172346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Low-dose radiation in apolipoprotein E-deficient (ApoE-/-) mice has a protective effect with less subsequent atherosclerosis. Inflammation and apoptosis play major roles in the development of atherosclerosis. We evaluated the temporal pattern of the development of histologic atherosclerosis, inflammation with 18F-FDG, and apoptosis with 99mTc-rhAnnexin V-128 at 3 time points. METHODS ApoE-/- mice were fed a high-fat diet, exposed to low-dose 60Co γ-radiation of 25 mGy at 2 mo of age, and evaluated within 1 wk (2-mo group), 1 mo (3-mo group), and 2 mo (4-mo group) from the time of radiation. Mice were divided into 3 subgroups and each received 18F-FDG, 99mTc-rhAnnexin V-128, or no radiotracer for autoradiography. Mice underwent euthanasia and aortic root dissection. The extent of atherosclerosis was determined by en face and Oil red O imaging. Aortic arch inflammation (18F-FDG) and apoptosis (99mTc-rhAnnexin V-128) were determined with digital autoradiography. Aortic sinus sections were stained with Sudan IV for assessment of lesion area and stage, antiCD68 antibody for inflammation and anti-cleaved-caspase 3 antibody for apoptosis. RESULTS The extent of aortic atherosclerosis increased from 2 to 3 mo and from 3 to 4 mo. Inflammation (CD68) decreased and apoptosis (anti-cleaved-caspase 3 antibody) increased in aortic sinus slices measured as percentage of lesion by 4 mo. With increasing lesion stage, lesion inflammation decreased and lesion apoptosis increased. Aortic arch inflammation (18F-FDG uptake) did not differ over time and did not correlate with average lesion stage. However, aortic arch apoptosis (99mTc-rhAnnexin V-128) increased significantly by 4 mo and correlated with average lesion stage. There were no differences between the treatment subgroups (18F-FDG, 99mTc-rhAnnexin V-128, or no radiotracer). CONCLUSION The temporal pattern of development of inflammation and apoptosis differ during the development of atherosclerosis in ApoE-/- mice treated with low-dose radiation. Advanced lesions are characterized by increased apoptosis and either less or similar amounts of inflammation, shown on immunohistochemistry and autoradiography. Treatment with radiotracers had no significant effects on extent of atherosclerosis, inflammation, or apoptosis.
Collapse
Affiliation(s)
- Maryam Kamkar
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | | | - Chantal Gaudet
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Michelle Bugden
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Julia Petryk
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Yin Duan
- Nordion, Inc., Kanata, Canada; and
| | - Heather M Wyatt
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - R Glenn Wells
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Yves L Marcel
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Nicholas D Priest
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Ronald E J Mitchel
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
58
|
Bhattacharya S, Asaithamby A. Ionizing radiation and heart risks. Semin Cell Dev Biol 2016; 58:14-25. [PMID: 26849909 DOI: 10.1016/j.semcdb.2016.01.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/29/2016] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality worldwide. As advancements in radiation therapy (RT) have significantly increased the number of cancer survivors, the risk of radiation-induced cardiovascular disease (RICD) in this group is a growing concern. Recent epidemiological data suggest that accidental or occupational exposure to low dose radiation, in addition to therapeutic ionizing radiation, can result in cardiovascular complications. The progression of radiation-induced cardiotoxicity often takes years to manifest but is also multifaceted, as the heart may be affected by a variety of pathologies. The risk of cardiovascular disease development in RT cancer survivors has been known for 40 years and several risk factors have been identified in the last two decades. However, most of the early work focused on clinical symptoms and manifestations, rather than understanding cellular processes regulating homeostatic processes of the cardiovascular system in response to radiation. Recent studies have suggested that a different approach may be needed to refute the risk of cardiovascular disease following radiation exposure. In this review, we will focus on how different radiation types and doses may induce cardiovascular complications, highlighting clinical manifestations and the mechanisms involved in the pathophysiology of radiation-induced cardiotoxicity. We will finally discuss how current and future research on heart development and homeostasis can help reduce the incidence of RICD.
Collapse
Affiliation(s)
- Souparno Bhattacharya
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
59
|
Little MP, Lipshultz SE. Low dose radiation and circulatory diseases: a brief narrative review. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2015; 1:4. [PMID: 33530149 PMCID: PMC7837141 DOI: 10.1186/s40959-015-0007-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022]
Abstract
Exposure to high doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be estimated while adjusting for concomitant chemotherapy. An association between lower dose exposures and late-occurring circulatory disease has only recently been suspected in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are variable, possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Here, we summarize the evidence for a causal association between moderate- and low-level radiation exposure (whether at high or low dose rates) and circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.
- National Cancer Institute, Room 7E546, 9609 Medical Center Drive, MSC 9778, Rockville, MD, 20892-9778, USA.
| | - Steven E Lipshultz
- Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, MI, 48201-2196, USA
| |
Collapse
|
60
|
Circulatory disease mortality in the Massachusetts tuberculosis fluoroscopy cohort study. Eur J Epidemiol 2015; 31:287-309. [DOI: 10.1007/s10654-015-0075-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 07/21/2015] [Indexed: 02/07/2023]
|
61
|
Le Gallic C, Phalente Y, Manens L, Dublineau I, Benderitter M, Gueguen Y, Lehoux S, Ebrahimian TG. Chronic Internal Exposure to Low Dose 137Cs Induces Positive Impact on the Stability of Atherosclerotic Plaques by Reducing Inflammation in ApoE-/- Mice. PLoS One 2015; 10:e0128539. [PMID: 26046630 PMCID: PMC4457796 DOI: 10.1371/journal.pone.0128539] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 04/28/2015] [Indexed: 01/08/2023] Open
Abstract
After Chernobyl and Fukushima Daï Chi, two major nuclear accidents, large amounts of radionuclides were released in the environment, mostly caesium 137 (137Cs). Populations living in contaminated territories are chronically exposed to radionuclides by ingestion of contaminated food. However, questions still remain regarding the effects of low dose ionizing radiation exposure on the development and progression of cardiovascular diseases. We therefore investigated the effects of a chronic internal exposure to 137Cs on atherosclerosis in predisposed ApoE-/- mice. Mice were exposed daily to 0, 4, 20 or 100 kBq/l 137Cs in drinking water, corresponding to range of concentrations found in contaminated territories, for 6 or 9 months. We evaluated plaque size and phenotype, inflammatory profile, and oxidative stress status in different experimental groups. Results did not show any differences in atherosclerosis progression between mice exposed to 137Cs and unexposed controls. However, 137Cs exposed mice developed more stable plaques with decreased macrophage content, associated with reduced aortic expression of pro-inflammatory factors (CRP, TNFα, MCP-1, IFNγ) and adhesion molecules (ICAM-1, VCAM-1 and E-selectin). Lesions of mice exposed to 137Cs were also characterized by enhanced collagen and smooth muscle cell content, concurrent with reduced matrix metalloproteinase MMP8 and MMP13 expression. These results suggest that low dose chronic exposure of 137Cs in ApoE-/- mice enhances atherosclerotic lesion stability by inhibiting pro-inflammatory cytokine and MMP production, resulting in collagen-rich plaques with greater smooth muscle cell and less macrophage content.
Collapse
Affiliation(s)
- Clélia Le Gallic
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | - Yohann Phalente
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | - Line Manens
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | - Isabelle Dublineau
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | - Marc Benderitter
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | - Yann Gueguen
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | | | - Teni G. Ebrahimian
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| |
Collapse
|
62
|
Abstract
Tissue reactions (deterministic effects) become manifest either early or late after doses above a threshold dose, which is the basis for recommended dose limits for avoiding such effects. Threshold doses have been defined for comparative purposes at 1% incidence of an effect, although the choice of incidence level may be scenario-dependent in practice. Latency time before manifestation is related to cell turnover rates and tissue complexity. In general, threshold doses become lower for longer follow-up times because of the slow progression of injury before manifestation, particularly after lower doses. Radiosensitive individuals may contribute to low threshold doses, which would provide a safety margin for the majority of a population. A threshold dose of 0.5 Gy was proposed for radiation-induced circulatory disease, after acute or chronic exposures, in the International Commission on Radiological Protection Publication 118. However, more recent meta-analyses of low-dose population studies suggest that, if a linear dose-incidence is assumed, the risk of some types of circulatory disease after doses <0.5 Gy or <10 mGy day(-1) may be positive and similar to that for induced cancer. Animal studies show that doses >2 Gy induce the expression of inflammatory and thrombotic molecules in endothelial cells. This causes progressive loss of capillaries in the heart and leads to reduced perfusion, myocardial cell death, and fibrosis. However, doses <1 Gy inhibit both inflammatory cell adhesion to endothelial cells and the development of atherosclerosis in mice. Different mechanisms of injury at low and high doses preclude the simple extrapolation of risk on a linear-quadratic basis from acute to chronic exposures.
Collapse
Affiliation(s)
- J H Hendry
- Christie Medical Physics and Engineering, Christie Hospital, Manchester M20 4BX, UK
| |
Collapse
|
63
|
Mitchel REJ. Adaption By Low Dose Radiation Exposure: A Look at Scope and Limitations for Radioprotection. Dose Response 2015; 13:10.2203_dose-response.14-025.Mitchel. [PMID: 26672725 PMCID: PMC4674178 DOI: 10.2203/dose-response.14-025.mitchel] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The procedures and dose limitations used for radiation protection in the nuclear industry are founded on the assumption that risk is directly proportional to dose, without a threshold. Based on this idea that any dose, no matter how small, will increase risk, radiation protection regulations generally attempt to reduce any exposure to “as low as reasonably achievable” (ALARA). We know however, that these regulatory assumptions are inconsistent with the known biological effects of low doses. Low doses induce protective effects, and these adaptive responses are part of a general response to low stress. Adaptive responses have been tightly conserved during evolution, from single celled organisms up to humans, indicating their importance. Here we examine cellular and animal studies that show the influence of radiation induced protective effects on diverse diseases, and examine the radiation dose range that is effective for different tissues in the same animal. The concept of a dose window, with upper and lower effective doses, as well as the effect of multiple stressors and the influence of genetics will also be examined. The effect of the biological variables on low dose responses will be considered from the point of view of the limitations they may impose on any revised radiation protection regulations.
Collapse
Affiliation(s)
- Ron E J Mitchel
- Radiological Protection Research and Instrumentation, Atomic Energy of Canada Ltd. Chalk River Nuclear Laboratories, Chalk River, ON, Canada, K0J1J0
| |
Collapse
|
64
|
Cerebrovascular Diseases in Workers at Mayak PA: The Difference in Radiation Risk between Incidence and Mortality. PLoS One 2015; 10:e0125904. [PMID: 25933038 PMCID: PMC4416824 DOI: 10.1371/journal.pone.0125904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/21/2015] [Indexed: 01/24/2023] Open
Abstract
A detailed analysis of cerebrovascular diseases (CeVD) for the cohort of workers at Mayak Production Association (PA) is presented. This cohort is especially suitable for the analysis of radiation induced circulatory diseases, due to the detailed medical surveillance and information on several risk factors. The risk after external, typically protracted, gamma exposure is analysed, accounting for potential additional internal alpha exposure. Three different endpoints have been investigated: incidence and mortality from all cerebrovascular diseases and incidence of stroke. Particular emphasis was given to the form of the dose-response relationship and the time dependence of the radiation induced risk. Young attained age was observed to be an important, aggravating modifier of radiation risk for incidence of CeVD and stroke. For incidence of CeVD, our analysis supports a dose response sub-linear for low doses. Finally, the excess relative risk per dose was confirmed to be significantly higher for incidence of CeVD compared to CeVD mortality and incidence of stroke. Arguments are presented for this difference to be based on a true biological effect.
Collapse
|
65
|
Ebrahimian T, Le Gallic C, Stefani J, Dublineau I, Yentrapalli R, Harms-Ringdahl M, Haghdoost S. Chronic Gamma-Irradiation Induces a Dose-Rate-Dependent Pro-inflammatory Response and Associated Loss of Function in Human Umbilical Vein Endothelial Cells. Radiat Res 2015; 183:447-54. [PMID: 25807321 DOI: 10.1667/rr13732.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A central question in radiation protection research is dose and dose-rate relationship for radiation-induced cardiovascular diseases. The response of endothelial cells to different low dose rates may contribute to help estimate risks for cardiovascular diseases by providing mechanistic understanding. In this study we investigated whether chronic low-dose-rate radiation exposure had an effect on the inflammatory response of endothelial cells and their function. Human umbilical vein endothelial cells (HUVECs) were chronically exposed to radiation at a dose of 1.4 mGy/h or 4.1 mGy/h for 1, 3, 6 or 10 weeks. We determined the pro-inflammatory profile of HUVECs before and during radiation exposure, and investigated the functional consequences of this radiation exposure by measuring their capacity to form vascular networks in matrigel. Expression levels of adhesion molecules such as E-selectin, ICAM-1 and VCAM-1, and the release of pro-inflammatory cytokines such as MCP-1, IL-6 and TNF-α were analyzed. When a total dose of 2 Gy was given at a rate of 4.1 mGy/h, we observed an increase in IL-6 and MCP-1 release into the cell culture media, but this was not observed at 1.4 mGy/h. The increase in the inflammatory profile induced at the dose rate of 4.1 mGy/h was also correlated with a decrease in the capacity of the HUVECs to form a vascular network in matrigel. Our results suggest that dose rate is an important parameter in the alteration of HUVEC inflammatory profile and function.
Collapse
Affiliation(s)
- T Ebrahimian
- a IRSN: Institut de Radioprotection et de Sureté Nucléaire, Service de Radiobiologie et d'Épidémiologie, Laboratoire de RadioToxicologie Experimentale, 92262, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
66
|
Mathias D, Mitchel REJ, Barclay M, Wyatt H, Bugden M, Priest ND, Whitman SC, Scholz M, Hildebrandt G, Kamprad M, Glasow A. Low-dose irradiation affects expression of inflammatory markers in the heart of ApoE -/- mice. PLoS One 2015; 10:e0119661. [PMID: 25799423 PMCID: PMC4370602 DOI: 10.1371/journal.pone.0119661] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/21/2015] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies indicate long-term risks of ionizing radiation on the heart, even at moderate doses. In this study, we investigated the inflammatory, thrombotic and fibrotic late responses of the heart after low-dose irradiation (IR) with specific emphasize on the dose rate. Hypercholesterolemic ApoE-deficient mice were sacrificed 3 and 6 months after total body irradiation (TBI) with 0.025, 0.05, 0.1, 0.5 or 2 Gy at low (1 mGy/min) or high dose rate (150 mGy/min). The expression of inflammatory and thrombotic markers was quantified in frozen heart sections (CD31, E-selectin, thrombomodulin, ICAM-1, VCAM-1, collagen IV, Thy-1, and CD45) and in plasma samples (IL6, KC, MCP-1, TNFα, INFγ, IL-1β, TGFβ, INFγ, IL-10, sICAM-1, sE-selectin, sVCAM-1 and fibrinogen) by fluorescence analysis and ELISA. We found that even very low irradiation doses induced adaptive late responses, such as increases of capillary density and changes in collagen IV and Thy-1 levels indicating compensatory regulation. Slight decreases of ICAM-1 levels and reduction of Thy 1 expression at 0.025–0.5 Gy indicate anti-inflammatory effects, whereas at the highest dose (2 Gy) increased VCAM-1 levels on the endocardium may represent a switch to a pro-inflammatory response. Plasma samples partially confirmed this pattern, showing a decrease of proinflammatory markers (sVCAM, sICAM) at 0.025–2.0 Gy. In contrast, an enhancement of MCP-1, TNFα and fibrinogen at 0.05–2.0 Gy indicated a proinflammatory and prothrombotic systemic response. Multivariate analysis also revealed significant age-dependent increases (KC, MCP-1, fibrinogen) and decreases (sICAM, sVCAM, sE-selectin) of plasma markers. This paper represents local and systemic effects of low-dose irradiation, including also age- and dose rate-dependent responses in the ApoE-/- mouse model. These insights in the multiple inflammatory/thrombotic effects caused by low-dose irradiation might facilitate an individual evaluation and intervention of radiation related, long-term side effects but also give important implications for low dose anti-inflammatory radiotherapy.
Collapse
Affiliation(s)
- Daniel Mathias
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
| | - Ronald E. J. Mitchel
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Mirela Barclay
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Heather Wyatt
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Michelle Bugden
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Nicholas D. Priest
- Radiological Protection Research and Instrumentation Branch, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Stewart C. Whitman
- Departments of Pathology and Laboratory Medicine and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Rostock, Germany
| | - Manja Kamprad
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Leipzig, Germany
| | - Annegret Glasow
- Department of Radiation Therapy, University of Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
67
|
Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol 2015; 5:39. [PMID: 25741474 PMCID: PMC4332338 DOI: 10.3389/fonc.2015.00039] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 02/04/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a common diagnosis in women. Breast radiation has become critical in managing patients who receive breast conserving surgery, or have certain high-risk features after mastectomy. Most patients have an excellent prognosis, therefore understanding the late effects of radiation to the chest is important. Radiation-induced heart disease (RIHD) comprises a spectrum of cardiac pathology including myocardial fibrosis and cardiomyopathy, coronary artery disease, valvular disease, pericardial disease, and arrhythmias. Tissue fibrosis is a common mediator in RIHD. Multiple pathways converge with both acute and chronic cellular, molecular, and genetic changes to result in fibrosis. In this article, we review the pathophysiology of cardiac disease related to radiation therapy to the chest. Our understanding of these mechanisms has improved substantially, but much work remains to further refine radiation delivery techniques and develop therapeutics to battle late effects of radiation.
Collapse
Affiliation(s)
- Neil K Taunk
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center , New York, NY , USA
| | - Bruce G Haffty
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, NJ , USA
| | - John B Kostis
- Department of Medicine, The Cardiovascular Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, NJ , USA
| | - Sharad Goyal
- Department of Radiation Oncology, The Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University , New Brunswick, NJ , USA
| |
Collapse
|
68
|
Simonetto C, Azizova TV, Grigoryeva ES, Kaiser JC, Schöllnberger H, Eidemüller M. Ischemic heart disease in workers at Mayak PA: latency of incidence risk after radiation exposure. PLoS One 2014; 9:e96309. [PMID: 24828606 PMCID: PMC4020749 DOI: 10.1371/journal.pone.0096309] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/06/2014] [Indexed: 12/31/2022] Open
Abstract
We present an updated analysis of incidence and mortality from atherosclerotic induced ischemic heart diseases in the cohort of workers at the Mayak Production Association (PA). This cohort constitutes one of the most important sources for the assessment of radiation risk. It is exceptional because it comprises information on several other risk factors. While most of the workers have been exposed to external gamma radiation, a large proportion has additionally been exposed to internal radiation from inhaled plutonium. Compared to a previous study by Azizova et al. 2012, the updated dosimetry system MWDS-2008 has been applied and methods of analysis have been revised. We extend the analysis of the significant incidence risk and observe that main detrimental effects of external radiation exposure occur after more than about 30 years. For mortality, significant risk was found in males with an excess relative risk per dose of 0.09 (95% CI: 0.02; 0.16) [Formula: see text] while risk was insignificant for females. With respect to internal radiation exposure no association to risk could be established.
Collapse
Affiliation(s)
- Cristoforo Simonetto
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
- * E-mail:
| | - Tamara V. Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, Russia
| | | | - Jan C. Kaiser
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Helmut Schöllnberger
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| | - Markus Eidemüller
- Helmholtz Zentrum München, Department of Radiation Sciences, Neuherberg, Germany
| |
Collapse
|
69
|
Irradiation of existing atherosclerotic lesions increased inflammation by favoring pro-inflammatory macrophages. Radiother Oncol 2014; 110:455-60. [DOI: 10.1016/j.radonc.2014.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 01/26/2023]
|
70
|
Zablotska LB, Little MP, Cornett RJ. Potential increased risk of ischemic heart disease mortality with significant dose fractionation in the Canadian Fluoroscopy Cohort Study. Am J Epidemiol 2014; 179:120-31. [PMID: 24145888 DOI: 10.1093/aje/kwt244] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Risks of noncancer causes of death, particularly cardiovascular disease, associated with exposures to high-dose ionizing radiation, are well known. Recent studies have reported excess risk in workers who are occupationally exposed to low doses at a low dose rate, but the risks of moderately fractionated exposures, such as occur during diagnostic radiation procedures, remain unclear. The Canadian Fluoroscopy Cohort Study includes 63,707 tuberculosis patients exposed to multiple fluoroscopic procedures in 1930-1952 and followed-up for death from noncancer causes in 1950-1987. We used a Poisson regression to estimate excess relative risk (ERR) per Gy of cumulative radiation dose to the lung (mean dose = 0.79 Gy; range, 0-11.60). The risk of death from noncancer causes was significantly lower in these subjects compared with the Canadian general population (P < 0.001). We estimated small, nonsignificant increases in the risk of death from noncancer causes with dose. We estimated an ERR/Gy of 0.176 (95% confidence interval: 0.011, 0.393) (n = 5,818 deaths) for ischemic heart disease (IHD) after adjustment for dose fractionation. A significant (P = 0.022) inverse dose fractionation effect in dose trends of IHD was observed, with the highest estimate of ERR/Gy for those with the fewest fluoroscopic procedures per year. Radiation-related risks of IHD decreased significantly with increasing time since first exposure and age at first exposure (both P < 0.05). This is the largest study of patients exposed to moderately fractionated low-to-moderate doses of radiation, and it provides additional evidence of increased radiation-associated risks of death from IHD, in particular, significantly increased radiation risks from doses similar to those from diagnostic radiation procedures. The novel finding of a significant inverse dose-fractionation association in IHD mortality requires further investigation.
Collapse
|
71
|
Takahashi I, Ohishi W, Mettler FA, Ozasa K, Jacob P, Ban N, Lipshultz SE, Stewart FA, Nabika T, Niwa Y, Takahashi N, Akahoshi M, Kodama K, Shore R. A report from the 2013 international workshop: radiation and cardiovascular disease, Hiroshima, Japan. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2013; 33:869-880. [PMID: 24190873 DOI: 10.1088/0952-4746/33/4/869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two longitudinal cohort studies of Japanese atomic bomb survivors-the life span study (LSS) and the adult health study (AHS)-from the Radiation Effects Research Foundation (RERF) indicate that total body irradiation doses less than 1 Gy are associated with an increased risk of cardiovascular disease (CVD), but several questions about this association remain.In particular, the diversity of heart disease subtypes and the high prevalence of other risk factors complicate the estimates of radiation effects. Subtype-specific analyses with more reliable diagnostic criteria and measurement techniques are needed. The radiation effects on CVD risk are probably tissue-reaction (deterministic) effects, so the dose-response relationships for various subtypes of CVD may be nonlinear and therefore should be explored with several types of statistical models.Subpopulations at high risk need to be identified because effects at lower radiation doses may occur primarily in these susceptible subpopulations. Whether other CVD risk factors modify radiation effects also needs to be determined. Finally, background rates for various subtypes of CVD have historically differed substantially between Japanese and Western populations, so the generalisability to other populations needs to be examined.Cardiovascular disease mechanisms and manifestations may differ between high-dose local irradiation and low-dose total body irradiation (TBI)-microvascular damage and altered metabolism from low-dose TBI, but coronary artery atherosclerosis and thrombotic myocardial infarcts at high localised doses. For TBI, doses to organs other than the heart may be important in pathogenesis of CVD, so data on renal and liver disorders, plaque instability, microvascular damage, metabolic disorders, hypertension and various CVD biomarkers and risk factors are needed. Epidemiological, clinical and experimental studies at doses of less than 1 Gy are necessary to clarify the effects of radiation on CVD risk.
Collapse
Affiliation(s)
- Ikuno Takahashi
- Department of Clinical Studies, Radiation Effects Research Foundation (RERF), Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Little MP. A review of non-cancer effects, especially circulatory and ocular diseases. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:435-449. [PMID: 23903347 PMCID: PMC4074546 DOI: 10.1007/s00411-013-0484-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/14/2013] [Indexed: 05/30/2023]
Abstract
There is a well-established association between high doses (>5 Gy) of ionizing radiation exposure and damage to the heart and coronary arteries, although only recently have studies with high-quality individual dosimetry been conducted that would enable quantification of this risk adjusting for concomitant chemotherapy. The association between lower dose exposures and late occurring circulatory disease has only recently begun to emerge in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are somewhat variable, possibly a result of confounding and effect modification by well-known (but unobserved) risk factors. Radiation doses of 1 Gy or more are associated with increased risk of posterior subcapsular cataract. Accumulating evidence from the Japanese atomic bomb survivors, Chernobyl liquidators, US astronauts, and various other exposed groups suggests that cortical cataracts may also be associated with ionizing radiation, although there is little evidence that nuclear cataracts are radiogenic. The dose-response appears to be linear, although modest thresholds (of no more than about 0.6 Gy) cannot be ruled out. A variety of other non-malignant effects have been observed after moderate/low-dose exposure in various groups, in particular respiratory and digestive disease and central nervous system (and in particular neuro-cognitive) damage. However, because these are generally only observed in isolated groups, or because the evidence is excessively heterogeneous, these associations must be treated with caution.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, 9609 Medical Center Drive MSC 9778, Bethesda, MD, 20892-9778, USA,
| |
Collapse
|
73
|
Wondergem J, Boerma M, Kodama K, Stewart FA, Trott KR. Cardiovascular effects after low-dose exposure and radiotherapy: what research is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:425-434. [PMID: 23999657 DOI: 10.1007/s00411-013-0489-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/19/2013] [Indexed: 06/02/2023]
Abstract
The authors of this report met at the Head Quarter of the International Atomic Energy Agency (IAEA) in Vienna, Austria, on 2-4 July 2012, for intensive discussions of an abundance of original publications on new epidemiological studies on cardiovascular effects after low-dose exposure and radiotherapy and radiobiological experiments as well as several comprehensive reviews that were published since the previous meeting by experts sponsored by the IAEA in June 2006. The data necessitated a re-evaluation of the situation with special emphasis on the consequences current experimental and clinical data may have for clinical oncology/radiotherapy and radiobiological research. The authors jointly arrived at the conclusions and recommendations presented here.
Collapse
Affiliation(s)
- Jan Wondergem
- Applied Radiation Biology and Radiotherapy Section, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Wagrammer Strasse 5, PO box 100, 1400, Vienna, Austria,
| | | | | | | | | |
Collapse
|
74
|
Borghini A, Luca Gianicolo EA, Picano E, Andreassi MG. Ionizing radiation and atherosclerosis: Current knowledge and future challenges. Atherosclerosis 2013; 230:40-7. [DOI: 10.1016/j.atherosclerosis.2013.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/16/2022]
|
75
|
Yentrapalli R, Azimzadeh O, Sriharshan A, Malinowsky K, Merl J, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Becker KF, Haghdoost S, Tapio S. The PI3K/Akt/mTOR pathway is implicated in the premature senescence of primary human endothelial cells exposed to chronic radiation. PLoS One 2013; 8:e70024. [PMID: 23936371 PMCID: PMC3731291 DOI: 10.1371/journal.pone.0070024] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022] Open
Abstract
The etiology of radiation-induced cardiovascular disease (CVD) after chronic exposure to low doses of ionizing radiation is only marginally understood. We have previously shown that a chronic low-dose rate exposure (4.1 mGy/h) causes human umbilical vein endothelial cells (HUVECs) to prematurely senesce. We now show that a dose rate of 2.4 mGy/h is also able to trigger premature senescence in HUVECs, primarily indicated by a loss of growth potential and the appearance of the senescence-associated markers ß-galactosidase (SA-ß-gal) and p21. In contrast, a lower dose rate of 1.4 mGy/h was not sufficient to inhibit cellular growth or increase SA-ß-gal-staining despite an increased expression of p21. We used reverse phase protein arrays and triplex Isotope Coded Protein Labeling with LC-ESI-MS/MS to study the proteomic changes associated with chronic radiation-induced senescence. Both technologies identified inactivation of the PI3K/Akt/mTOR pathway accompanying premature senescence. In addition, expression of proteins involved in cytoskeletal structure and EIF2 signaling was reduced. Age-related diseases such as CVD have been previously associated with increased endothelial cell senescence. We postulate that a similar endothelial aging may contribute to the increased rate of CVD seen in populations chronically exposed to low-dose-rate radiation.
Collapse
Affiliation(s)
- Ramesh Yentrapalli
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Arundhathi Sriharshan
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | | | - Juliane Merl
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michael J. Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
76
|
la Cour JL, Hedemann-Jensen P, Søgaard-Hansen J, Nygaard B, Jensen LT. Modeling the absorbed dose to the common carotid arteries following radioiodine treatment of benign thyroid disease. Ann Nucl Med 2013; 27:862-6. [DOI: 10.1007/s12149-013-0756-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
77
|
Stewart FA, Seemann I, Hoving S, Russell NS. Understanding radiation-induced cardiovascular damage and strategies for intervention. Clin Oncol (R Coll Radiol) 2013; 25:617-24. [PMID: 23876528 DOI: 10.1016/j.clon.2013.06.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/26/2013] [Accepted: 06/30/2013] [Indexed: 12/22/2022]
Abstract
There is a clear association between therapeutic doses of thoracic irradiation and an increased risk of cardiovascular disease (CVD) in cancer survivors, although these effects may take decades to become symptomatic. Long-term survivors of Hodgkin's lymphoma and childhood cancers have two-fold to more than seven-fold increased risks for late cardiac deaths after total tumour doses of 30-40 Gy, given in 2 Gy fractions, where large volumes of heart were included in the field. Increased cardiac mortality is also seen in women irradiated for breast cancer. Breast doses are generally 40-50 Gy in 2 Gy fractions, but only a small part of the heart is included in the treatment fields and mean heart doses rarely exceeded 10-15 Gy, even with older techniques. The relative risks of cardiac mortality (1.1-1.4) are consequently lower than for Hodgkin's lymphoma survivors. Some epidemiological studies show increased risks of cardiac death after accidental or environmental total body exposures to much lower radiation doses. The mechanisms whereby these cardiac effects occur are not fully understood and different mechanisms are probably involved after high therapeutic doses to the heart, or part of the heart, than after low total body exposures. These various mechanisms probably result in different cardiac pathologies, e.g. coronary artery atherosclerosis leading to myocardial infarct, versus microvascular damage and fibrosis leading to congestive heart failure. Experimental studies can help to unravel some of these mechanisms and may identify suitable strategies for managing or inhibiting CVD. In this overview, the main epidemiological and clinical evidence for radiation-induced CVD is summarised. Experimental data shedding light on some of the underlying pathologies and possible targets for intervention are also discussed.
Collapse
Affiliation(s)
- F A Stewart
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
78
|
Kumarathasan P, Vincent R, Blais E, Saravanamuthu A, Gupta P, Wyatt H, Mitchel R, Hannan M, Trivedi A, Whitman S. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ) radiation. PLoS One 2013; 8:e65486. [PMID: 23840332 PMCID: PMC3688723 DOI: 10.1371/journal.pone.0065486] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 04/26/2013] [Indexed: 12/02/2022] Open
Abstract
Background There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. Methods and Results B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body) to Co60 (γ) (single dose 0, 0.5, and 2 Gy) at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy) at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3–6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05) in a dose-dependent manner 3–6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05) after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008) relative to controls. Percent lesion area increased (p = 0.005) with age of animal, but not with radiation treatment. Conclusions Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE−/− mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
- Prem Kumarathasan
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Yentrapalli R, Azimzadeh O, Barjaktarovic Z, Sarioglu H, Wojcik A, Harms-Ringdahl M, Atkinson MJ, Haghdoost S, Tapio S. Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics 2013; 13:1096-107. [DOI: 10.1002/pmic.201200463] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/13/2012] [Accepted: 01/11/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Ramesh Yentrapalli
- Helmholtz Zentrum München; German Research Center for Environmental Health; Institute of Radiation Biology; Neuherberg Germany
- Centre for Radiation Protection Research; Department of Genetics; Microbiology and Toxicology; Stockholm University; Stockholm Sweden
| | - Omid Azimzadeh
- Helmholtz Zentrum München; German Research Center for Environmental Health; Institute of Radiation Biology; Neuherberg Germany
| | - Zarko Barjaktarovic
- Helmholtz Zentrum München; German Research Center for Environmental Health; Institute of Radiation Biology; Neuherberg Germany
| | - Hakan Sarioglu
- Helmholtz Zentrum München; German Research Center for Environmental Health; Department of Protein Science; Proteomics Core Facility; Neuherberg Germany
| | - Andrzej Wojcik
- Centre for Radiation Protection Research; Department of Genetics; Microbiology and Toxicology; Stockholm University; Stockholm Sweden
| | - Mats Harms-Ringdahl
- Centre for Radiation Protection Research; Department of Genetics; Microbiology and Toxicology; Stockholm University; Stockholm Sweden
| | - Michael J. Atkinson
- Helmholtz Zentrum München; German Research Center for Environmental Health; Institute of Radiation Biology; Neuherberg Germany
- Department of Radiation Oncology; Klinikum Rechts der Isar; Technische Universität München; Munich Germany
| | - Siamak Haghdoost
- Centre for Radiation Protection Research; Department of Genetics; Microbiology and Toxicology; Stockholm University; Stockholm Sweden
| | - Soile Tapio
- Helmholtz Zentrum München; German Research Center for Environmental Health; Institute of Radiation Biology; Neuherberg Germany
| |
Collapse
|
80
|
Schöllnberger H, Kaiser JC, Walsh L, Jacob P. Reply to Little et al.: dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:161-3. [PMID: 23315228 DOI: 10.1007/s00411-012-0454-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 05/05/2023]
|
81
|
Monceau V, Meziani L, Strup-Perrot C, Morel E, Schmidt M, Haagen J, Escoubet B, Dörr W, Vozenin MC. Enhanced sensitivity to low dose irradiation of ApoE-/- mice mediated by early pro-inflammatory profile and delayed activation of the TGFβ1 cascade involved in fibrogenesis. PLoS One 2013; 8:e57052. [PMID: 23451141 PMCID: PMC3579799 DOI: 10.1371/journal.pone.0057052] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/17/2013] [Indexed: 12/15/2022] Open
Abstract
Aim Investigating long-term cardiac effects of low doses of ionizing radiation is highly relevant in the context of interventional cardiology and radiotherapy. Epidemiological data report that low doses of irradiation to the heart can result in significant increase in the cardiovascular mortality by yet unknown mechanisms. In addition co-morbidity factor such as hypertension or/and atherosclerosis can enhance cardiac complications. Therefore, we explored the mechanisms that lead to long-term cardiac remodelling and investigated the interaction of radiation-induced damage to heart and cardiovascular systems with atherosclerosis, using wild-type and ApoE-deficient mice. Methods and Results ApoE−/− and wild-type mice were locally irradiated to the heart at 0, 0.2 and 2 Gy (RX). Twenty, 40 and 60 weeks post-irradiation, echocardiography were performed and hearts were collected for cardiomyocyte isolation, histopathological analysis, study of inflammatory infiltration and fibrosis deposition. Common and strain-specific pathogenic pathways were found. Significant alteration of left ventricular function (eccentric hypertrophy) occurred in both strains of mice. Low dose irradiation (0.2 Gy) induced premature death in ApoE−/− mice (47% died at 20 weeks). Acute inflammatory infiltrate was observed in scarring areas with accumulation of M1-macrophages and secretion of IL-6. Increased expression of the fibrogenic factors (TGF-β1 and PAI-1) was measured earlier in cardiomyocytes isolated from ApoE−/− than in wt animals. Conclusion The present study shows that cardiac exposure to low dose of ionizing radiation induce significant physiological, histopathological, cellular and molecular alterations in irradiated heart with mild functional impairment. Atherosclerotic predisposition precipitated cardiac damage induced by low doses with an early pro-inflammatory polarization of macrophages.
Collapse
|
82
|
Mitchel REJ, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen YX, Priest ND, Whitman SC. Low-dose radiation exposure and protection against atherosclerosis in ApoE(-/-) mice: the influence of P53 heterozygosity. Radiat Res 2013; 179:190-9. [PMID: 23289388 DOI: 10.1667/rr3140.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We recently described the effects of low-dose γ-radiation exposures on atherosclerosis in genetically susceptible (ApoE(-/-)) mice with normal p53 function. Doses as low as 25 mGy, given at either early or late stage disease, generally protected against atherosclerosis in a manner distinctly nonlinear with dose. We now report the influence of low doses (25-500 mGy) on atherosclerosis in ApoE(-/-) mice with reduced p53 function (Trp53(+/-)). Single exposures were given at either low or high dose rate (1 or 150 mGy/min) to female C57BL/6J ApoE(-/-) Trp53(+/-) mice. Mice were exposed at either early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (7 months of age) and examined 2 or 4 months later. In unirradiated mice, reduced p53 functionality elevated serum cholesterol and accelerated both aortic root lesion growth and severity in young mice. Radiation exposure to doses as low as 25 mGy at early stage disease, at either the high or the low dose rate, inhibited lesion growth, decreased lesion frequency and slowed the progression of lesion severity in the aortic root. In contrast, exposure at late stage disease produced generally detrimental effects. Both low-and high-dose-rate exposures accelerated lesion growth and high dose rate exposures also increased serum cholesterol levels. These results show that at early stage disease, reduced p53 function does not influence the protective effects against atherosclerosis of low doses given at low dose rate. In contrast, when exposed to the same doses at late stage disease, reduced p53 function produced detrimental effects, rather than the protective effects seen in Trp53 normal mice. As in the Trp53 normal mice, all effects were highly nonlinear with dose. These results indicate that variations in p53 functionality can dramatically alter the outcome of a low-dose exposure, and that the assumption of a linear response with dose for human populations is probably unwarranted.
Collapse
Affiliation(s)
- R E J Mitchel
- Radiological Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Schöllnberger H, Kaiser JC. Estimating risk of circulatory disease from exposure to low-level ionizing radiation. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A452-3; author reply A453. [PMID: 23211511 PMCID: PMC3548296 DOI: 10.1289/ehp.1206046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
84
|
Estimating Risk of Circulatory Disease: Little et al. Respond. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120. [PMCID: PMC3548303 DOI: 10.1289/ehp.1206046r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
85
|
Little MP, Azizova TV, Bazyka D, Bouffler SD, Cardis E, Chekin S, Chumak VV, Cucinotta FA, de Vathaire F, Hall P, Harrison JD, Hildebrandt G, Ivanov V, Kashcheev VV, Klymenko SV, Kreuzer M, Laurent O, Ozasa K, Schneider T, Tapio S, Taylor AM, Tzoulaki I, Vandoolaeghe WL, Wakeford R, Zablotska LB, Zhang W, Lipshultz SE. Systematic review and meta-analysis of circulatory disease from exposure to low-level ionizing radiation and estimates of potential population mortality risks. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1503-11. [PMID: 22728254 PMCID: PMC3556625 DOI: 10.1289/ehp.1204982] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/22/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Although high doses of ionizing radiation have long been linked to circulatory disease, evidence for an association at lower exposures remains controversial. However, recent analyses suggest excess relative risks at occupational exposure levels. OBJECTIVES We performed a systematic review and meta-analysis to summarize information on circulatory disease risks associated with moderate- and low-level whole-body ionizing radiation exposures. METHODS We conducted PubMed/ISI Thomson searches of peer-reviewed papers published since 1990 using the terms "radiation" AND "heart" AND "disease," OR "radiation" AND "stroke," OR "radiation" AND "circulatory" AND "disease." Radiation exposures had to be whole-body, with a cumulative mean dose of < 0.5 Sv, or at a low dose rate (< 10 mSv/day). We estimated population risks of circulatory disease from low-level radiation exposure using excess relative risk estimates from this meta-analysis and current mortality rates for nine major developed countries. RESULTS Estimated excess population risks for all circulatory diseases combined ranged from 2.5%/Sv [95% confidence interval (CI): 0.8, 4.2] for France to 8.5%/Sv (95% CI: 4.0, 13.0) for Russia. CONCLUSIONS Our review supports an association between circulatory disease mortality and low and moderate doses of ionizing radiation. Our analysis was limited by heterogeneity among studies (particularly for noncardiac end points), the possibility of uncontrolled confounding in some occupational groups by lifestyle factors, and higher dose groups (> 0.5 Sv) generally driving the observed trends. If confirmed, our findings suggest that overall radiation-related mortality is about twice that currently estimated based on estimates for cancer end points alone (which range from 4.2% to 5.6%/Sv for these populations).
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland 20852-7238, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Epidemiological studies have shown a clear association between therapeutic doses of thoracic irradiation and increased risk of cardiovascular disease in long-term cancer survivors. Survivors of Hodgkin's lymphoma and childhood cancers, for example, show 2- to >7-fold increases in risk of cardiac death after total tumour doses of 30-40 Gy, given in 2-Gy fractions. The risk of cardiac mortality increases linearly with dose, although there are large uncertainties for mean cardiac doses <5 Gy. Experimental studies show that doses of ≥ 2 Gy induce the expression of inflammatory and thrombotic molecules in endothelial cells. In the heart, this causes progressive loss of capillaries and eventually leads to reduced perfusion, myocardial cell death, and fibrosis. In large arteries, doses of ≥ 8 Gy, combined with elevated cholesterol, initiates atherosclerosis and predisposes to the formation of inflammatory, unstable lesions, which are prone to rupture and may cause a fatal heart attack or stroke. In contrast, doses <1 Gy inhibit inflammatory cell adhesion to endothelial cells and inhibit the development of atherosclerosis in mice. It seems likely that mechanisms other than accelerated atherosclerosis are responsible for cardiovascular effects after low total-body exposures of radiation (e.g. impaired T-cell immunity or persistent increase in systemic cytokines).
Collapse
Affiliation(s)
- F A Stewart
- Experimental Therapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
87
|
Schöllnberger H, Kaiser JC, Jacob P, Walsh L. Dose-responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:165-78. [PMID: 22437350 PMCID: PMC3332375 DOI: 10.1007/s00411-012-0410-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/21/2012] [Indexed: 05/05/2023]
Abstract
The non-cancer mortality data for cerebrovascular disease (CVD) and cardiovascular diseases from Report 13 on the atomic bomb survivors published by the Radiation Effects Research Foundation were analysed to investigate the dose-response for the influence of radiation on these detrimental health effects. Various parametric and categorical models (such as linear-no-threshold (LNT) and a number of threshold and step models) were analysed with a statistical selection protocol that rated the model description of the data. Instead of applying the usual approach of identifying one preferred model for each data set, a set of plausible models was applied, and a sub-set of non-nested models was identified that all fitted the data about equally well. Subsequently, this sub-set of non-nested models was used to perform multi-model inference (MMI), an innovative method of mathematically combining different models to allow risk estimates to be based on several plausible dose-response models rather than just relying on a single model of choice. This procedure thereby produces more reliable risk estimates based on a more comprehensive appraisal of model uncertainties. For CVD, MMI yielded a weak dose-response (with a risk estimate of about one-third of the LNT model) below a step at 0.6 Gy and a stronger dose-response at higher doses. The calculated risk estimates are consistent with zero risk below this threshold-dose. For mortalities related to cardiovascular diseases, an LNT-type dose-response was found with risk estimates consistent with zero risk below 2.2 Gy based on 90% confidence intervals. The MMI approach described here resolves a dilemma in practical radiation protection when one is forced to select between models with profoundly different dose-responses for risk estimates.
Collapse
Affiliation(s)
- H Schöllnberger
- Helmholtz Zentrum München, Department of Radiation Sciences, Institute of Radiation Protection, Neuherberg, Germany.
| | | | | | | |
Collapse
|
88
|
Abstract
The current radiation safety paradigm using the linear no-threshold (LNT) model is based on the premise that even the smallest amount of radiation may cause mutations increasing the risk of cancer. Autopsy studies have shown that the presence of cancer cells is not a decisive factor in the occurrence of clinical cancer. On the other hand, suppression of immune system more than doubles the cancer risk in organ transplant patients, indicating its key role in keeping occult cancers in check. Low dose radiation (LDR) elevates immune response, and so it may reduce rather than increase the risk of cancer. LNT model pays exclusive attention to DNA damage, which is not a decisive factor, and completely ignores immune system response, which is an important factor, and so is not scientifically justifiable. By not recognizing the importance of the immune system in cancer, and not exploring exercise intervention, the current paradigm may have missed an opportunity to reduce cancer deaths among atomic bomb survivors. Increased antioxidants from LDR may reduce aging-related non-cancer diseases since oxidative damage is implicated in these. A paradigm shift is warranted to reduce further casualties, reduce fear of LDR, and enable investigation of potential beneficial applications of LDR.
Collapse
|
89
|
Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, Macvittie TJ, Aleman BM, Edgar AB, Mabuchi K, Muirhead CR, Shore RE, Wallace WH. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs--threshold doses for tissue reactions in a radiation protection context. Ann ICRP 2012; 41:1-322. [PMID: 22925378 DOI: 10.1016/j.icrp.2012.02.001] [Citation(s) in RCA: 857] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This report provides a review of early and late effects of radiation in normal tissues and organs with respect to radiation protection. It was instigated following a recommendation in Publication 103 (ICRP, 2007), and it provides updated estimates of 'practical' threshold doses for tissue injury defined at the level of 1% incidence. Estimates are given for morbidity and mortality endpoints in all organ systems following acute, fractionated, or chronic exposure. The organ systems comprise the haematopoietic, immune, reproductive, circulatory, respiratory, musculoskeletal, endocrine, and nervous systems; the digestive and urinary tracts; the skin; and the eye. Particular attention is paid to circulatory disease and cataracts because of recent evidence of higher incidences of injury than expected after lower doses; hence, threshold doses appear to be lower than previously considered. This is largely because of the increasing incidences with increasing times after exposure. In the context of protection, it is the threshold doses for very long follow-up times that are the most relevant for workers and the public; for example, the atomic bomb survivors with 40-50years of follow-up. Radiotherapy data generally apply for shorter follow-up times because of competing causes of death in cancer patients, and hence the risks of radiation-induced circulatory disease at those earlier times are lower. A variety of biological response modifiers have been used to help reduce late reactions in many tissues. These include antioxidants, radical scavengers, inhibitors of apoptosis, anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, growth factors, and cytokines. In many cases, these give dose modification factors of 1.1-1.2, and in a few cases 1.5-2, indicating the potential for increasing threshold doses in known exposure cases. In contrast, there are agents that enhance radiation responses, notably other cytotoxic agents such as antimetabolites, alkylating agents, anti-angiogenic drugs, and antibiotics, as well as genetic and comorbidity factors. Most tissues show a sparing effect of dose fractionation, so that total doses for a given endpoint are higher if the dose is fractionated rather than when given as a single dose. However, for reactions manifesting very late after low total doses, particularly for cataracts and circulatory disease, it appears that the rate of dose delivery does not modify the low incidence. This implies that the injury in these cases and at these low dose levels is caused by single-hit irreparable-type events. For these two tissues, a threshold dose of 0.5Gy is proposed herein for practical purposes, irrespective of the rate of dose delivery, and future studies may elucidate this judgement further.
Collapse
|
90
|
Hasu M, Thabet M, Tam N, Whitman SC. Specific loss of Toll-like receptor 2 on bone marrow derived cells decreases atherosclerosis in LDL receptor null mice*The senior author, Stewart C. Whitman, passed away on 19 February 2010. The manuscript has been communicated by Ross W. Milne (e-mail: rmilne@ottawaheart.ca) and Yves L. Marcel (e-mail: ylmarcel@ottawaheart.ca), University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada. Can J Physiol Pharmacol 2011; 89:737-42. [DOI: 10.1139/y11-071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Innate immunity and, notably, Toll-like receptors (TLR), have an important role in atherogenesis. We have tested the hypothesis that the selective loss of TLR-2 by cells of bone marrow (BM) origin will protect low-density receptor-deficient (Ldlr −/−) mice from both early- and late-stage atherosclerosis. BM cells from Tlr2+/+ and Tlr2−/− littermates were used to reconstitute lethally irradiated Ldlr−/− mice. Following a recovery period, mice were placed either on a diet containing 21% saturated fat – 0.15% cholesterol for 8 weeks to study early-stage atherosclerosis, or on a diet richer in cholesterol (1.5%) for 16 weeks to study late-stage atherosclerosis. Donor cell Tlr2 genotype did not alter serum cholesterol levels or lipoprotein profiles in recipient animals. After 8 weeks on the 0.15% cholesterol diet, deficiency of TLR-2 expression on cells of BM origin reduced atherosclerosis in the aortic root and the aortic arch in both genders of mice. In contrast, the BM recipients who received the 1.5% cholesterol diet for 16 weeks showed much larger lesions in the aortic root, and TLR-2 deficiency in BM cells failed to provide protection. Thus, TLR-2 expression in BM-derived cells contributes primarily to early stage atherosclerosis.
Collapse
Affiliation(s)
- Mirela Hasu
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Mohamed Thabet
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Nancy Tam
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Stewart C. Whitman
- Vascular Biology Group, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|