51
|
Basu A, Bhowmick S, Mukherjee A. Flavonolignan silibinin abrogates SDS induced fibrillation of human serum albumin. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
52
|
Casati G, Giunti L, Iorio AL, Marturano A, Galli L, Sardi I. Hippo Pathway in Regulating Drug Resistance of Glioblastoma. Int J Mol Sci 2021; 22:ijms222413431. [PMID: 34948224 PMCID: PMC8705144 DOI: 10.3390/ijms222413431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and malignant tumor of the Central Nervous System (CNS), affecting both children and adults. GBM is one of the deadliest tumor types and it shows a strong multidrug resistance (MDR) and an immunosuppressive microenvironment which remain a great challenge to therapy. Due to the high recurrence of GBM after treatment, the understanding of the chemoresistance phenomenon and how to stimulate the antitumor immune response in this pathology is crucial. The deregulation of the Hippo pathway is involved in tumor genesis, chemoresistance and immunosuppressive nature of GBM. This pathway is an evolutionarily conserved signaling pathway with a kinase cascade core, which controls the translocation of YAP (Yes-Associated Protein)/TAZ (Transcriptional Co-activator with PDZ-binding Motif) into the nucleus, leading to regulation of organ size and growth. With this review, we want to highlight how chemoresistance and tumor immunosuppression work in GBM and how the Hippo pathway has a key role in them. We linger on the role of the Hippo pathway evaluating the effect of its de-regulation among different human cancers. Moreover, we consider how different pathways are cross-linked with the Hippo signaling in GBM genesis and the hypothetical mechanisms responsible for the Hippo pathway activation in GBM. Furthermore, we describe various drugs targeting the Hippo pathway. In conclusion, all the evidence described largely support a strong involvement of the Hippo pathway in gliomas progression, in the activation of chemoresistance mechanisms and in the development of an immunosuppressive microenvironment. Therefore, this pathway is a promising target for the treatment of high grade gliomas and in particular of GBM.
Collapse
Affiliation(s)
- Giacomo Casati
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
- Correspondence:
| | - Laura Giunti
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Anna Lisa Iorio
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Arianna Marturano
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| | - Luisa Galli
- Infectious Disease Unit, Department of Health Sciences, University of Florence, 50139 Florence, Italy;
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children’s Hospital, 50139 Florence, Italy; (L.G.); (A.L.I.); (A.M.); (I.S.)
| |
Collapse
|
53
|
Budurova D, Momekova D, Momekov G, Shestakova P, Penchev H, Rangelov S. PEG-Modified tert-Octylcalix[8]arenes as Drug Delivery Nanocarriers of Silibinin. Pharmaceutics 2021; 13:2025. [PMID: 34959307 PMCID: PMC8709077 DOI: 10.3390/pharmaceutics13122025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The hepatoprotective properties of silibinin, as well its therapeutic potential as an anticancer and chemo-preventive agent, have failed to progress towards clinical development and commercialization due to this material's unfavorable pharmacokinetics and physicochemical properties, low aqueous solubility, and chemical instability. The present contribution is focused on the feasibility of using PEGylated calixarene, in particular polyoxyethylene-derivatized tert-octylcalix[8]arene, to prepare various platforms for the delivery of silibinin, such as inclusion complexes and supramolecular aggregates thereof. The inclusion complex is characterized by various instrumental methods. At concentrations exceeding the critical micellization concentration of PEGylated calixarene, the tremendous solubility increment of silibinin is attributed to the additional solubilization and hydrophobic non-covalent interactions of the drug with supramolecular aggregates. PEG-modified tert-octylcalix[8]arenes, used as drug delivery carriers for silibinin, were additionally investigated for cytotoxicity against human tumor cell lines.
Collapse
Affiliation(s)
- Desislava Budurova
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Georgi Momekov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University—Sofia, 2 Dunav St., 1000 Sofia, Bulgaria;
| | - Pavletta Shestakova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St. Bldg 9, 1113 Sofia, Bulgaria;
| | - Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, 103 Acad. Georgi Bonchev St., 1113 Sofia, Bulgaria;
| |
Collapse
|
54
|
Hung WL, Hsiao YT, Chiou YS, Nagabhushanam K, Ho CT, Pan MH. Hepatoprotective effect of piceatannol against carbon tetrachloride-induced liver fibrosis in mice. Food Funct 2021; 12:11229-11240. [PMID: 34676843 DOI: 10.1039/d1fo02545g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Piceatannol (3,5,3',4'-trans-tetrahydroxystilbene) is a natural analog and a metabolite of resveratrol present in grapes and red wine. Previous studies have reported that piceatannol exerts a broad spectrum of health benefits including antioxidant, anti-inflammatory, chemopreventive, and neuroprotective effects. However, little is known about the hepatoprotective effect of piceatannol against toxin-induced liver fibrosis. Therefore, the objective of this study is to evaluate the protective effect of piceatannol in a mouse model of CCl4-induced hepatic fibrosis. Oral administration of piceatannol significantly improved the hepatic functions of CCl4-treated mice in both therapeutic and preventive models. Additionally, the immunohistochemical staining results revealed that collagen deposition in CCl4-injected mice was significantly reduced by treatment with piceatannol. Moreover, piceatannol remarkably suppressed the expressions of collagen I, α-smooth muscle protein (α-SMA), and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) induced by CCl4. The anti-fibrotic mechanism of piceatannol was associated with the regulation of the transforming growth factor-β (TGF-β)/Smad signaling pathway. Finally, piceatannol also profoundly alleviated CCl4-induced hepatic oxidative damage by elevating the level of glutathione and catalase activity. Altogether, our current findings suggest that piceatannol may serve as a bioactive agent that inhibits or alleviates toxic-induced fibroproliferative diseases, especially in the prevention of liver fibrosis.
Collapse
Affiliation(s)
- Wei-Lun Hung
- School of Food Safety, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Ting Hsiao
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Shiou Chiou
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | | | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
55
|
Safarzadeh S, Shirban F, Bagherniya M, Sathyapalan T, Sahebkar A. The effects of herbal medicines on cancer therapy-induced oral mucositis: A literature review. Phytother Res 2021; 36:243-265. [PMID: 34709682 DOI: 10.1002/ptr.7308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022]
Abstract
Cancer therapy-induced oral mucositis (OM) is one of the most troublesome morbidities after radio-chemotherapy. Age, nutritional status, tumor type, oral hygiene, and treatment method are the determinants for OM incidence. In addition, oxygen-free radicals can act as a trigger for an inflammatory milieu that causes OM. Based on the debilitating nature of OM, finding a safe and inexpensive agent with anti-inflammatory, anti-microbial, and antioxidative properties can be valuable for this situation. Considering the harmful effects of some chemical agents, herbal medicine has been suggested as a potential alternative owing to unique properties such as safety, availability and low cost. Many studies have illustrated several pharmacological properties of herbal medicines in recent years, such as anti-inflammatory, anti-microbial, and antioxidative activities, which are essential factors in the palliation of cancer therapy-induced OM. This review aimed to evaluate herbal medicines' effects on cancer therapy-induced OM. According to this comprehensive review, it is concluded that medicinal plants and phytochemicals can be used as practical agents in the palliation of cancer therapy-induced OM without any serious side effects.
Collapse
Affiliation(s)
- Saba Safarzadeh
- Post Graduate Student, Dental Students' Research Committee, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Department of Orthodontics, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
56
|
Yang J, Li H, Wang X, Zhang C, Feng G, Peng X. Inhibition Mechanism of α-Amylase/α-Glucosidase by Silibinin, Its Synergism with Acarbose, and the Effect of Milk Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10515-10526. [PMID: 34463509 DOI: 10.1021/acs.jafc.1c01765] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a natural flavonolignan, silibinin is reported to possess multiple biological activities, while the inhibitory potential of silibinin on carbohydrate-hydrolyzing enzymes is still unclear. Therefore, in this study, the inhibitory effect and underlying mechanism of silibinin against α-amylase/α-glucosidase were investigated. The results indicated that silibinin showed a strong inhibitory efficiency against α-amylase/α-glucosidase in noncompetitive manners and exhibited synergistic inhibition against α-glucosidase with acarbose. However, interestingly, the inhibitory effect of silibinin was significantly hindered in various milk protein-rich environments, but this phenomenon disappeared after simulated gastrointestinal digestion of milk proteins in vitro. Furthermore, silibinin could combine with the inactive site of α-amylase/α-glucosidase and change the microenvironment and secondary structure of the enzymes, thereby influencing the catalytic efficiency of enzymes. This research suggested that silibinin could be used as a novel carbohydrate-hydrolyzing enzyme inhibitor, and milk beverages rich in silibinin had the potential for further application in antidiabetic dietary or medicine.
Collapse
Affiliation(s)
- Jichen Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huan Li
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoli Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Chuanying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Guo Feng
- School of Life Sciences, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xin Peng
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin University, Tianjin 300072, People's Republic of China
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, Hainan Normal University, Haikou, Hainan 571158, People's Republic of China
| |
Collapse
|
57
|
Chang TK, Yin TC, Su WC, Tsai HL, Huang CW, Chen YC, Li CC, Chen PJ, Ma CJ, Chuang KH, Cheng TL, Wang JY. A Pilot Study of Silymarin as Supplementation to Reduce Toxicities in Metastatic Colorectal Cancer Patients Treated With First-Line FOLFIRI Plus Bevacizumab. Oncol Res 2021; 28:801-809. [PMID: 34030768 PMCID: PMC8420909 DOI: 10.3727/096504021x16218531628569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Irinotecan, a topoisomerase inhibitor, is a common cytotoxic agent prescribed for metastatic colorectal cancer (mCRC) patients. Diarrhea is the most common adverse event (AE). The underlying mechanism of irinotecan-induced diarrhea is intestinal mucosal damage caused by SN-38 (active metabolite of irinotecan) hydrolyzed from SN-38G (inactive metabolite) by bacterial -glucuronidase (G). According to an animal study, silymarin reduces the activity of bacterial G without impairing antitumor efficacy. We conducted a prospective open-label pilot study to evaluate the effect of silymarin as supplementation in reducing toxicities of mCRC patients undergoing irinotecan-based chemotherapy. We enrolled and randomized 70 mCRC patients receiving first-line FOLFIRI (5-fluorouracil/leucovorin/irinotecan) plus bevacizumab. In each treatment cycle, the study group was administered silymarin capsules (150 mg) three times daily for 7 days. The study group experienced less AEs in diarrhea (5.7% vs. 14.6%, p=0.002) and nausea (27.0% vs. 40.2%, p=0.005) in comparison with the control group, but no significant differences in hepatic toxicities were observed. In conclusion, simultaneous administration of silymarin is a potential effective supplementation for reducing toxicities in mCRC patients undergoing first-line FOLFIRI plus bevacizumab, especially in diarrhea and nausea.
Collapse
Affiliation(s)
- Tsung-Kun Chang
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- †Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Chieh Yin
- ‡Department of Surgery, Kaohsiung Municipal Tatung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- §Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Chih Su
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- †Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- ¶Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- ¶Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Cheng Chen
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chun Li
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Jung Chen
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jen Ma
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- §Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kuo-Hsiang Chuang
- #Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Tian-Lu Cheng
- **Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- *Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- †Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- ¶Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- ††Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- ‡‡Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- §§Cohort Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
58
|
Ferraz AC, Almeida LT, da Silva Caetano CC, da Silva Menegatto MB, Souza Lima RL, de Senna JPN, de Oliveira Cardoso JM, Perucci LO, Talvani A, Geraldo de Lima W, de Mello Silva B, Barbosa Reis A, de Magalhães JC, Lopes de Brito Magalhães C. Hepatoprotective, antioxidant, anti-inflammatory, and antiviral activities of silymarin against mayaro virus infection. Antiviral Res 2021; 194:105168. [PMID: 34437912 DOI: 10.1016/j.antiviral.2021.105168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Infection caused by Mayaro virus (MAYV) is responsible for causing acute nonspecific fever, in which the majority of patients develop incapacitating and persistent arthritis/arthralgia. Mayaro fever is a neglected and underreported disease without treatment or vaccine, which has gained attention in recent years after the competence of Aedes aegypti to transmit MAYV was observed in the laboratory, coupled with the fact that cases are being increasingly reported outside of endemic forest areas, calling attention to the potential of an urban cycle arising in the near future. Thus, to mitigate the lack of information about the pathological aspects of MAYV, we previously described the involvement of oxidative stress in MAYV infection in cultured cells and in a non-lethal mouse model. Additionally, we showed that silymarin, a natural compound, attenuated MAYV-induced oxidative stress and inhibited MAYV replication in cells. The antioxidant and anti-MAYV effects prompted us to determine whether silymarin could also reduce oxidative stress and MAYV replication after infection in an immunocompetent animal model. We show that infected mice exhibited reduced weight gain, hepatomegaly, splenomegaly, anaemia, thrombocytopenia, leukopenia, increased liver transaminases, increased pro-inflammatory cytokines and liver inflammation, increased oxidative damage biomarkers, and reduced antioxidant enzyme activity. However, in animals infected and treated with silymarin, all these parameters were reversed or significantly improved, and the detection of viral load in the liver, spleen, brain, thigh muscle, and footpad was significantly reduced. This work reinforces the potent hepatoprotective, antioxidant, anti-inflammatory, and antiviral effects of silymarin against MAYV infection, demonstrating its potential against Mayaro fever disease.
Collapse
Affiliation(s)
- Ariane Coelho Ferraz
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Letícia Trindade Almeida
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Camila Carla da Silva Caetano
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Marília Bueno da Silva Menegatto
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Rafaela Lameira Souza Lima
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Joao Pinto Nelson de Senna
- Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Jamille Mirelle de Oliveira Cardoso
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Biotecnologia, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Breno de Mello Silva
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Biotecnologia, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Programa de Pós Graduação Em Saúde e Nutrição, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alexandre Barbosa Reis
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - José Carlos de Magalhães
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João Del-Rei, Ouro Branco, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Programa de Pós Graduação Em Cie^ncias Biológicas, Núcleo de Pesquisas Em Cie^ncias Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil; Departamento de Cie^ncias Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
59
|
Tuli HS, Mittal S, Aggarwal D, Parashar G, Parashar NC, Upadhyay SK, Barwal TS, Jain A, Kaur G, Savla R, Sak K, Kumar M, Varol M, Iqubal A, Sharma AK. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin Cancer Biol 2021; 73:196-218. [PMID: 33130037 DOI: 10.1016/j.semcancer.2020.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
In the last few decades, targeting cancer by the use of dietary phytochemicals has gained enormous attention. The plausible reason and believe or mind set behind this fact is attributed to either lesser or no side effects of natural compounds as compared to the modern chemotherapeutics, or due to their conventional use as dietary components by mankind for thousands of years. Silibinin is a naturally derived polyphenol (a flavonolignans), possess following biochemical features; molecular formula C25H22O10, Molar mass: 482.44 g/mol, Boiling point 793 °C, with strikingly high antioxidant and anti-tumorigenic properties. The anti-cancer properties of Silibinin are determined by a variety of cellular pathways which include induction of apoptosis, cell cycle arrest, inhibition of angiogenesis and metastasis. In addition, Silibinin controls modulation of the expression of aberrant miRNAs, inflammatory response, and synergism with existing anti-cancer drugs. Therefore, modulation of a vast array of cellular responses and homeostatic aspects makes Silibinin an attractive chemotherapeutic agent. However, like other polyphenols, the major hurdle to declare Silibinin a translational chemotherapeutic agent, is its lesser bioavailability. After summarizing the chemistry and metabolic aspects of Silibinin, this extensive review focuses on functional aspects governed by Silibinin in chemoprevention with an ultimate goal of summarizing the evidence supporting the chemopreventive potential of Silibinin and clinical trials that are currently ongoing, at a single platform.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | | | - Sushil Kumar Upadhyay
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | - Raj Savla
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's, NMIMS, Mumbai, 400 056, Maharastra, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, TR48000, Turkey
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard (Deemed to be University), Delhi, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133 207, Haryana, India.
| |
Collapse
|
60
|
Yan J, Nie Y, Luo M, Chen Z, He B. Natural Compounds: A Potential Treatment for Alcoholic Liver Disease? Front Pharmacol 2021; 12:694475. [PMID: 34290612 PMCID: PMC8287649 DOI: 10.3389/fphar.2021.694475] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol intake is a direct cause of alcoholic liver disease (ALD). ALD usually manifests as fatty liver in the initial stage and then develops into alcoholic hepatitis (ASH), fibrosis and cirrhosis. Severe alcoholism induces extensive hepatocyte death, liver failure, and even hepatocellular carcinoma (HCC). Currently, there are few effective clinical means to treat ALD, except for abstinence. Natural compounds are a class of compounds extracted from herbs with an explicit chemical structure. Several natural compounds, such as silymarin, quercetin, hesperidin, and berberine, have been shown to have curative effects on ALD without side effects. In this review, we pay particular attention to natural compounds and developing clinical drugs based on natural compounds for ALD, with the aim of providing a potential treatment for ALD.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Minmin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
61
|
Tvrdý V, Pourová J, Jirkovský E, Křen V, Valentová K, Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev 2021; 41:2195-2246. [PMID: 33587317 DOI: 10.1002/med.21791] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Silymarin is an extract from the seeds (fruits) of Silybum marianum that contains flavonolignans and flavonoids. Although it is frequently used as a hepatoprotective agent, its application remains somewhat debatable, in particular, due to the low oral bioavailability of flavonolignans. Moreover, there are claims of its potential interactions with concomitantly used drugs. This review aims at a systematic summary and critical assessment of known information on the pharmacokinetics of particular silymarin flavonolignans. There are two known major reasons for poor systemic oral bioavailability of flavonolignans: (1) rapid conjugation in intestinal cells or the liver and (2) efflux of parent flavonolignans or formed conjugates back to the lumen of the gastrointestinal tract by intestinal cells and rapid excretion by the liver into the bile. The metabolism of phase I appears to play a minor role, in contrast to extensive conjugation and indeed the unconjugated flavonolignans reach low plasma levels after common doses. Only about 1%-5% of the administered dose is eliminated by the kidneys. Many in vitro studies tested the inhibitory potential of silymarin and its components toward different enzymes and transporters involved in the absorption, metabolism, and excretion of xenobiotics. In most cases, effective concentrations are too high to be relevant under real biological conditions. Most human studies showed no silymarin-drug interactions explainable by these suggested interferences. More interactions were found in animal studies, likely due to the much higher doses administered.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
62
|
Verdura S, Cuyàs E, Ruiz-Torres V, Micol V, Joven J, Bosch-Barrera J, Menendez JA. Lung Cancer Management with Silibinin: A Historical and Translational Perspective. Pharmaceuticals (Basel) 2021; 14:ph14060559. [PMID: 34208282 PMCID: PMC8230811 DOI: 10.3390/ph14060559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/01/2023] Open
Abstract
The flavonolignan silibinin, the major bioactive component of the silymarin extract of Silybum marianum (milk thistle) seeds, is gaining traction as a novel anti-cancer therapeutic. Here, we review the historical developments that have laid the groundwork for the evaluation of silibinin as a chemopreventive and therapeutic agent in human lung cancer, including translational insights into its mechanism of action to control the aggressive behavior of lung carcinoma subtypes prone to metastasis. First, we summarize the evidence from chemically induced primary lung tumors supporting a role for silibinin in lung cancer prevention. Second, we reassess the preclinical and clinical evidence on the effectiveness of silibinin against drug resistance and brain metastasis traits of lung carcinomas. Third, we revisit the transcription factor STAT3 as a central tumor-cell intrinsic and microenvironmental target of silibinin in primary lung tumors and brain metastasis. Finally, by unraveling the selective vulnerability of silibinin-treated tumor cells to drugs using CRISPR-based chemosensitivity screenings (e.g., the hexosamine biosynthesis pathway inhibitor azaserine), we illustrate how the therapeutic use of silibinin against targetable weaknesses might be capitalized in specific lung cancer subtypes (e.g., KRAS/STK11 co-mutant tumors). Forthcoming studies should take up the challenge of developing silibinin and/or next-generation silibinin derivatives as novel lung cancer-preventive and therapeutic biomolecules.
Collapse
Affiliation(s)
- Sara Verdura
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Elisabet Cuyàs
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
| | - Verónica Ruiz-Torres
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Vicente Micol
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) and Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; (V.R.-T.); (V.M.)
| | - Jorge Joven
- Unitat de Recerca Biomèdica (URB-CRB), Hospital Universitari de Sant Joan, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain;
| | - Joaquim Bosch-Barrera
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Medical Oncology, Catalan Institute of Oncology, Dr. Josep Trueta Hospital of Girona, 17007 Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona (UdG), 17003 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| | - Javier A. Menendez
- Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain; (S.V.); (E.C.)
- Metabolism and Cancer Group, Program against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain
- Correspondence: (J.B.-B.); (J.A.M.)
| |
Collapse
|
63
|
Di Ciaula A, Passarella S, Shanmugam H, Noviello M, Bonfrate L, Wang DQH, Portincasa P. Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? Int J Mol Sci 2021; 22:5375. [PMID: 34065331 PMCID: PMC8160908 DOI: 10.3390/ijms22105375] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and represents the hepatic expression of several metabolic abnormalities of high epidemiologic relevance. Fat accumulation in the hepatocytes results in cellular fragility and risk of progression toward necroinflammation, i.e., nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Several pathways contribute to fat accumulation and damage in the liver and can also involve the mitochondria, whose functional integrity is essential to maintain liver bioenergetics. In NAFLD/NASH, both structural and functional mitochondrial abnormalities occur and can involve mitochondrial electron transport chain, decreased mitochondrial β-oxidation of free fatty acids, excessive generation of reactive oxygen species, and lipid peroxidation. NASH is a major target of therapy, but there is no established single or combined treatment so far. Notably, translational and clinical studies point to mitochondria as future therapeutic targets in NAFLD since the prevention of mitochondrial damage could improve liver bioenergetics.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | | | - Harshitha Shanmugam
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Marica Noviello
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - Leonilde Bonfrate
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Department of Biomedical Sciences & Human Oncology, Clinica Medica “A. Murri”, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (H.S.); (M.N.); (L.B.)
| |
Collapse
|
64
|
Song IS, Nam SJ, Jeon JH, Park SJ, Choi MK. Enhanced Bioavailability and Efficacy of Silymarin Solid Dispersion in Rats with Acetaminophen-Induced Hepatotoxicity. Pharmaceutics 2021; 13:pharmaceutics13050628. [PMID: 33925040 PMCID: PMC8146637 DOI: 10.3390/pharmaceutics13050628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
We evaluated the bioavailability, liver distribution, and efficacy of silymarin-D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) solid dispersion (silymarin-SD) in rats with acetaminophen-induced hepatotoxicity (APAP) compared with silymarin alone. The solubility of silybin, the major and active component of silymarin, in the silymarin-SD group increased 23-fold compared with the silymarin group. The absorptive permeability of silybin increased by 4.6-fold and its efflux ratio decreased from 5.5 to 0.6 in the presence of TPGS. The results suggested that TPGS functioned as a solubilizing agent and permeation enhancer by inhibiting efflux pump. Thus, silybin concentrations in plasma and liver were increased in the silymarin-SD group and liver distribution increased 3.4-fold after repeated oral administration of silymarin-SD (20 mg/kg as silybin) for five consecutive days compared with that of silymarin alone (20 mg/kg as silybin). Based on higher liver silybin concentrations in the silymarin-SD group, the therapeutic effects of silymarin-SD in hepatotoxic rats were evaluated and compared with silymarin administration only. Elevated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase levels were significantly decreased by silymarin-SD, silymarin, and TPGS treatments, but these decreases were much higher in silymarin-SD animals than in those treated with silymarin or TPGS. In conclusion, silymarin-SD (20 mg/kg as silybin, three times per day for 5 days) exhibited hepatoprotective properties toward hepatotoxic rats and these properties were superior to silymarin alone, which may be attributed to increased solubility, enhanced intestinal permeability, and increased liver distribution of the silymarin-SD formulation.
Collapse
Affiliation(s)
- Im-Sook Song
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
- Correspondence: (I.-S.S.); (M.-K.C.); Tel.: +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-950-8557 (I.-S.S.)
| | - So-Jeong Nam
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
| | - Ji-Hyeon Jeon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, Vessel-Organ Interaction Research Center (VOICE), Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea; (S.-J.N.); (J.-H.J.)
| | - Soo-Jin Park
- College of Korean Medicine, Daegu Haany University, Daegu 38610, Korea;
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea
- Correspondence: (I.-S.S.); (M.-K.C.); Tel.: +82-53-950-8575 (I.-S.S.); +82-41-550-1438 (M.-K.C.); Fax: +82-53-950-8557 (I.-S.S.)
| |
Collapse
|
65
|
Aguilar-Lemarroy A, López-Uribe A, Sánchez-Corona J, Jave-Suárez LF. Severe acute respiratory syndrome coronavirus 2 ORF3a induces the expression of ACE2 in oral and pulmonary epithelial cells and the food supplement Vita Deyun ® diminishes this effect. Exp Ther Med 2021; 21:485. [PMID: 33790994 PMCID: PMC8005676 DOI: 10.3892/etm.2021.9916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/22/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has become a serious global health problem and numerous studies are currently being conducted to improve understanding of the components of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, as well as to identify solutions that mitigate the effects of COVID-19 symptoms. The nutritional supplement Vita Deyun® is composed of silymarin, glutathione, vitamin C and selenium. Studies of its individual components have demonstrated their benefits as anti-inflammatory agents, antioxidants and enhancers of the immune response. Therefore, the present study aimed to evaluate the in vitro effects of Vita Deyun on the expression of angiotensin-converting enzyme 2 (ACE2) in diverse cell lines, as well as in the presence or absence of the SARS-CoV-2 open reading frame (ORF)3a protein. Through reverse transcription-quantitative PCR, the use of viral particles containing SARS-CoV-2 ORF3a and bioinformatics analysis via the National Center for Biotechnology Information databases, ACE2 was determined to be highly expressed in oral and skin epithelial cells, with a lower expression observed in lung cells. Notably, the expression of SARS-CoV-2 ORF3a increased the level of ACE2 expression and Vita Deyun treatment diminished this effect. In addition, Vita Deyun treatment markedly decreased interleukin-18 mRNA levels. The combination of phytonutrients in Vita Deyun may help to boost the immune system and could reduce the effects of COVID-19. Ongoing clinical studies are required to provide evidence of the efficacy of Vita Deyun.
Collapse
Affiliation(s)
- Adriana Aguilar-Lemarroy
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Apolinar López-Uribe
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - José Sánchez-Corona
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Western Biomedical Research Center, Mexican Social Security Institute, Guadalajara, Jalisco 44340, Mexico
| |
Collapse
|
66
|
Faisal Z, Mohos V, Fliszár-Nyúl E, Valentová K, Káňová K, Lemli B, Kunsági-Máté S, Poór M. Interaction of silymarin components and their sulfate metabolites with human serum albumin and cytochrome P450 (2C9, 2C19, 2D6, and 3A4) enzymes. Biomed Pharmacother 2021; 138:111459. [PMID: 33706132 DOI: 10.1016/j.biopha.2021.111459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Silymarin is a mixture of flavonolignans isolated from the fruit of milk thistle (Silybum marianum (L.) Gaertner). Milk thistle extract is the active ingredient of several medications and dietary supplements to treat liver injury/diseases. After the oral administration, flavonolignans are extensively biotransformed, resulting in the formation of sulfate and/or glucuronide metabolites. Previous studies demonstrated that silymarin components form stable complexes with serum albumin and can inhibit certain cytochrome P450 (CYP) enzymes. Nevertheless, in most of these investigations, silybin was tested; while no or only limited information is available regarding other silymarin components and metabolites. In this study, the interactions of five silymarin components (silybin A, silybin B, isosilybin A, silychristin, and 2,3-dehydrosilychristin) and their sulfate metabolites were examined with human serum albumin and CYP (2C9, 2C19, 2D6, and 3A4) enzymes. Our results demonstrate that each compound tested forms stable complexes with albumin, and certain silymarin components/metabolites can inhibit CYP enzymes. Most of the sulfate conjugates were less potent inhibitors of CYP enzymes, but 2,3-dehydrosilychristin-19-O-sulfate showed the strongest inhibitory effect on CYP3A4. Based on these observations, the simultaneous administration of high dose silymarin with medications should be carefully considered, because milk thistle flavonolignans and/or their sulfate metabolites may interfere with drug therapy.
Collapse
Affiliation(s)
- Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic.
| | - Kristýna Káňová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Beáta Lemli
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Sándor Kunsági-Máté
- János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary; Institute of Organic and Medicinal Chemistry, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary.
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Szigeti út 12, Pécs H-7624, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary.
| |
Collapse
|
67
|
Asgharpour M, Alirezaei A. Herbal antioxidants in dialysis patients: a review of potential mechanisms and medical implications. Ren Fail 2021; 43:351-361. [PMID: 33593237 PMCID: PMC7894453 DOI: 10.1080/0886022x.2021.1880939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The consumption of exogenous antioxidants isolated from herbal extracts has shown beneficial effects on ameliorating dialysis-related complications through debilitating oxidative stress and inflammatory process. Many clinical studies available in public databases have reported the improved consequences of dialysis in patients supplemented with herbal antioxidants. Exploration of such data offers great possibilities for gaining insights into the potential mechanisms and medical implications of herbal antioxidants. In this work, the mechanisms and implications of some famous bioactive substances including silymarin, curcumin, resveratrol, emodin, and quercetin on the consequences of dialysis in chronic kidney disease (CKD) patients were explored. The protective features of silymarin are due to the flavonoid complex silybin. Curcumin is an active element from the root of curcuma longa with extensive beneficial properties, including antioxidant, anti-inflammatory activity, and inhibitory effects on cell apoptosis. Resveratrol can reduce the oxidative stress by neutralization of free radicals. Emodin is known as a natural anthraquinone derivative isolated from Chinese herbs. Finally, quercetin has been reported to exhibit several properties including antioxidant, anti-diabetic, analgesic, antihistaminic, antiviral, cholesterol reducer, and renal hemodynamic modulator. However, potential mechanisms and medical implications of the aforementioned herbal antioxidants seem to be more complicated, that is, more studies are required in this field.
Collapse
Affiliation(s)
- Masoumeh Asgharpour
- Department of Nephrology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Amirhesam Alirezaei
- Department of Nephrology, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
68
|
Poulos JE, Kalogerinis PT, Milanov V, Kalogerinis CT, Poulos EJ. The Effects of Vitamin E, Silymarin and Carnitine on the Metabolic Abnormalities Associated with Nonalcoholic Liver Disease. J Diet Suppl 2021; 19:287-302. [PMID: 33491528 DOI: 10.1080/19390211.2021.1874587] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The obesity epidemic has resulted in an increase in the incidence of metabolic syndrome, and liver disease. Studies indicate that antioxidant supplementation may improve abnormal liver chemistries, glucose control, and hyperlipidemia, in patients with nonalcoholic fatty liver disease (NAFLD). The primary objective of the study was to determine the normalization of abnormalities in hepatic function testing in patients with NAFLD when treated with vitamin E 200 IU, Silymarin 750 mg, and l-carnitine 1 gram (VSC) for 18 weeks in comparison to a placebo-controlled group. Secondary objectives were to evaluate changes in blood glucose level, insulin, total cholesterol, triglycerides, high-density lipoproteins (HDL), low-density lipoproteins (LDL), C-reactive protein (CRP), hemoglobin A1C (HgA1c), and homeostatic models assessment (HOMA) in patients treated with VSC vs placebo. Findings showed that VSC caused a significant reduction in serum glucose, insulin, and HOMA levels. While there were downtrends in the other measured values these were not statistically significant. In this 18-week study, the ability of this supplement in reducing markers of liver inflammation, glucose, insulin, and triglycerides indicate that this supplement could play an important role in the treatment of nonalcoholic fatty liver disease, diabetes, and the metabolic syndrome.
Collapse
Affiliation(s)
- John E Poulos
- Fayetteville Gastroenterology Associates, Fayetteville, NC, USA.,Cumberland Research Associates, Fayetteville, NC, USA
| | - Peter T Kalogerinis
- Cumberland Research Associates, Fayetteville, NC, USA.,Doctor of Medical Science Program, University of Lynchburg, Lynchburg, VA, USA
| | - Valentin Milanov
- Department of Mathematics, Fayetteville State University, Fayetteville, NC, USA
| | - Constantine T Kalogerinis
- Cumberland Research Associates, Fayetteville, NC, USA.,High Point University School of Pharmacy, High Point, NC, USA
| | - Emanuel J Poulos
- Cumberland Research Associates, Fayetteville, NC, USA.,Samford University, Birmingham, AL, USA
| |
Collapse
|
69
|
Grattagliano I, Di Ciaula A, Baj J, Molina-Molina E, Shanmugam H, Garruti G, Wang DQH, Portincasa P. Protocols for Mitochondria as the Target of Pharmacological Therapy in the Context of Nonalcoholic Fatty Liver Disease (NAFLD). Methods Mol Biol 2021; 2310:201-246. [PMID: 34096005 PMCID: PMC8580566 DOI: 10.1007/978-1-0716-1433-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most frequent metabolic chronic liver diseases in developed countries and puts the populations at risk of progression to liver necro-inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma. Mitochondrial dysfunction is involved in the onset of NAFLD and contributes to the progression from NAFLD to nonalcoholic steatohepatitis (NASH). Thus, liver mitochondria could become the target for treatments for improving liver function in NAFLD patients. This chapter describes the most important steps used for potential therapeutic interventions in NAFLD patients, discusses current options gathered from both experimental and clinical evidence, and presents some novel options for potentially improving mitochondrial function in NAFLD.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
- Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, Lublin, Poland
| | - Emilio Molina-Molina
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - David Q-H Wang
- Division of Gastroenterology and Liver Diseases, Department of Medicine and Genetics, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
70
|
Guo H, Wang Y, Liu D. Silibinin ameliorats H 2O 2-induced cell apoptosis and oxidative stress response by activating Nrf2 signaling in trophoblast cells. Acta Histochem 2020; 122:151620. [PMID: 33068964 DOI: 10.1016/j.acthis.2020.151620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
Preeclampsia is a pregnancy-specific syndrome and is one of the major causes of maternal mortality around the world. Cell apoptosis and oxidative stress are involved in development of preeclampsia. Silibinin has been known with anti-inflammatory, anti-oxidative and anti-tumor roles. In this study, hydrogen peroxide (H2O2) administration induced apoptosis in HTR-8/SVneo trophoblast cells, evidenced by decreased level of Bcl-2 and increased levels of Bax and cleaved caspase-3. Western blot and JC-1 staining revealed that H2O2 led to decline of mitochondrial membrane potential (Δψm) and release of cytochrome C from mitochondria to cytoplasm. H2O2 also resulted in reactive oxygen species production and oxidative stress response, evidenced by elevated levels of malondialdehyde, and reduced activity of superoxide dismutase and glutathione peroxidase. Silibinin suppressed H2O2-induced apoptosis, decrease of Δψm and oxidative stress response. In addition, immunofluorescent staining and electrophoretic mobility shift assay demonstrated that H2O2 enhanced expression and nuclear translocation of nuclear factor-erythroid 2-like 2 (Nrf2), and the expression levels of heme oxygenases-1 and quinone oxidoreductase 1 were increased, suggesting the activation of Nrf2 signaling. The activity of Nrf2 signaling was further promoted by silibinin administration. Interestingly, the effect of silibinin on apoptosis and oxidative stress was abolished by interference RNA of Nrf2. In conclusion, we demonstrated that silibinin ameliorated H2O2-induced apoptosis and oxidative stress response by activating Nrf2 signaling in trophoblast cells. These findings may provide novel insights for treatment of preeclampsia.
Collapse
|
71
|
Ahmed HS, Mohamed WR, Moawad AS, Owis AI, Ahmed RR, AbouZid SF. Cytotoxic, hepatoprotective and antioxidant activities of Silybum marianum variety albiflorum growing in Egypt. Nat Prod Res 2020; 34:3540-3544. [PMID: 30856005 DOI: 10.1080/14786419.2019.1582039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 01/08/2023]
Abstract
Silymarin prepared from the fruits of Silybum marianum (L.) Gaertn. (Asteraceae) has long been used for the treatment of liver disorders. This study was carried out to evaluate the protective effect of the fruit extract of white-flowered S. marianum variety albiflorum Eig. (WSE) against paracetamol-induced liver toxicity in rats. Silyhermin, isosilandrins A/B were identified as the major flavonolignans in WSE. Cytotoxic activities of WSE and isolated flavonolignans compared to silymarin were carried out using sulforhodamine B assay. WSE, silyhermin and isosilandrins had no obvious harmful effect on normal human cell line compared to silymarin with IC50 values 78.95, 84.34, 72.14 and 16.83 µg/ml, respectively. The hepatoprotective activity of WSE at dose 50 mg/kg was comparable to silymarin (100 mg/kg). These data were supplemented with histopathological studies on liver sections. The hepatoprotective effects of WSE on oxidative stress induced by administration of paracetamol are probably associated with its antioxidant properties.
Collapse
Affiliation(s)
- Hayam S Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer S Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Asmaa I Owis
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha R Ahmed
- Cell Biology and Histology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
72
|
Altinok-Yipel F, Tekeli IO, Ozsoy SY, Guvenc M, Sayin S, Yipel M. Investigation of hepatoprotective effect of some algae species on carbon tetrachloride-induced liver injury in rats. Arch Physiol Biochem 2020; 126:463-467. [PMID: 31855071 DOI: 10.1080/13813455.2019.1702062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate hepatoprotective effect of some algae species such as Spirulina platensis, Chlorella vulgaris, Laminaria japonica, Sargassum sp. on experimental acute hepatotoxicity model that induced with carbon tetrachloride (CCl4) in rats. Algaes at a dose of 200 mg/kg and Silymarin at a dose of 25 mg/kg were orally administered for 7 days followed by CCl4 at a single dose (0.5 ml/kg), at the 8th day to cause experimental acute hepatotoxicity. Levels of biochemical (AST, ALT etc.), lipid peroxidation (MDA), antioxidant (GSH, CAT, GPx) parameters and histopathological examination were carried out to investigate the hepatoprotective effects of algae. In Sp group ALT and ALP levels were significantly decreased compared with CCl4 (p < .05). Histological liver structures of Sp group were similar to the control group. MDA, GPx and CAT levels of Sp and La groups were significantly different compared with CCl4 (p < .05). Based on these results, algae species able to minimise the toxic effects of CCl4 and especially S. platensis could be used in the purpose of protection against chemical-induced hepatotoxicity.
Collapse
Affiliation(s)
- F Altinok-Yipel
- Faculty of Veterinary Medicine, Department of Internal Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - I O Tekeli
- Faculty of Veterinary Medicine, Department of Pharmacology-Toxicology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - S Y Ozsoy
- Faculty of Veterinary Medicine, Department of Pathology, Adnan Menderes University, Aydın, Turkey
| | - M Guvenc
- Faculty of Veterinary Medicine, Department of Physiology, Hatay Mustafa Kemal University, Hatay, Turkey
| | - S Sayin
- Faculty of Marine Sciences and Technology, Iskenderun Tech. University, Hatay, Turkey
| | - M Yipel
- Faculty of Veterinary Medicine, Department of Pharmacology-Toxicology, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| |
Collapse
|
73
|
Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153320. [PMID: 32920285 DOI: 10.1016/j.phymed.2020.153320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are primarily characterized by selective neuronal loss in the brain. Alzheimer's disease as the most common NDDs and the most prevalent cause of dementia is characterized by Amyloid-beta deposition, which leads to cognitive and memory impairment. Parkinson's disease is a progressive neurodegenerative disease characterized by the dramatic death of dopaminergic neuronal cells, especially in the SNc and caused alpha-synuclein accumulation in the neurons. Silymarin, an extract from seeds of Silybum marianum, administered mostly for liver disorders and also had anti-oxidant and anti-carcinogenic activities. PURPOSE The present comprehensive review summarizes the beneficial effects of Silymarin in-vivo and in-vitro and even in animal models for these NDDs. METHODS A diagram model for systematic review is utilized for this search. The research is conducted in the following databases: PubMed, Web of Science, Scopus, and Science Direct. RESULTS Based on the inclusion criteria, 83 studies were selected and discussed in this review. CONCLUSION Lastly, we review the latest experimental evidences supporting the potential effects of Silymarin, as a neuroprotective agent in NDDs.
Collapse
Affiliation(s)
- Rasool Haddadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal plant and natural products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran.
| | - Zahra Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahla Eyvari-Brooshghalan
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
74
|
Bambauer TP, Wagmann L, Weber AA, Meyer MR. Analysis of α- and β-amanitin in Human Plasma at Subnanogram per Milliliter Levels by Reversed Phase Ultra-High Performance Liquid Chromatography Coupled to Orbitrap Mass Spectrometry. Toxins (Basel) 2020; 12:toxins12110671. [PMID: 33113909 PMCID: PMC7690657 DOI: 10.3390/toxins12110671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023] Open
Abstract
Amatoxins are known to be one of the main causes of serious to fatal mushroom intoxication. Thorough treatment, analytical confirmation, or exclusion of amatoxin intake is crucial in the case of any suspected mushroom poisoning. Urine is often the preferred matrix due to its higher concentrations compared to other body fluids. If urine is not available, analysis of human blood plasma is a valuable alternative for assessing the severity of intoxications. The aim of this study was to develop and validate a liquid chromatography (LC)-high resolution tandem mass spectrometry (HRMS/MS) method for confirmation and quantitation of α- and β-amanitin in human plasma at subnanogram per milliliter levels. Plasma samples of humans after suspected intake of amatoxin-containing mushrooms should be analyzed and amounts of toxins compared with already published data as well as with matched urine samples. Sample preparation consisted of protein precipitation, aqueous liquid-liquid extraction, and solid-phase extraction. Full chromatographical separation of analytes was achieved using reversed-phase chromatography. Orbitrap-based MS allowed for sufficiently sensitive identification and quantification. Validation was successfully carried out, including analytical selectivity, carry-over, matrix effects, accuracy, precision, and dilution integrity. Limits of identification were 20 pg/mL and calibration ranged from 20 pg/mL to 2000 pg/mL. The method was applied to analyze nine human plasma samples that were submitted along with urine samples tested positive for amatoxins. α-Amanitin could be identified in each plasma sample at a range from 37–2890 pg/mL, and β-amanitin was found in seven plasma samples ranging from <20–7520 pg/mL. A LC-HRMS/MS method for the quantitation of amatoxins in human blood plasma at subnanogram per milliliter levels was developed, validated, and used for the analysis of plasma samples. The method provides a valuable alternative to urine analysis, allowing thorough patient treatment but also further study the toxicokinetics of amatoxins.
Collapse
Affiliation(s)
| | | | | | - Markus R. Meyer
- Correspondence: ; Tel.: +49-6841-16-26430; Fax: +49-6841-16-26431
| |
Collapse
|
75
|
Stastnik O, Pavlata L, Mrkvicova E. The Milk Thistle Seed Cakes and Hempseed Cakes are Potential Feed for Poultry. Animals (Basel) 2020; 10:ani10081384. [PMID: 32785057 PMCID: PMC7459908 DOI: 10.3390/ani10081384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
The aims of this work were to summarize the nutritional value of the milk thistle seed cakes and hempseed cakes and describe the influence on selected performance parameters, metabolism and animal health from inclusion of these non-traditional feeds into diets. It seems more appropriate to apply the extract of the bioactive substances complex to the livestock diets than addition of expellers or other forms of plants processing. The seed expellers, etc. mostly worsened the chickens' performance parameters with higher doses in diets, while most of the work using the extract yields had positive results on animal performance.
Collapse
|
76
|
Antimicrobial activity of three plant species against multi-drug resistant E. coli causing urinary tract infection. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Cho YC, Vuong HL, Ha J, Lee S, Park J, Wibow AE, Cho S. Inhibition of Inflammatory Responses by Centella asiatica via Suppression of IRAK1-TAK1 in Mouse Macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1103-1120. [PMID: 32668965 DOI: 10.1142/s0192415x20500548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Centella asiatica (L.) Urb. (C. asiatica) has been widely treated for inflammation-related diseases in China for thousands of years. While C. asiatica showed relevant effects as traditional medicine, the mechanism of C. asiatica suppressing inflammation has not been thoroughly investigated. Therefore, this study was conducted to reveal the anti-inflammatory mechanism of methanol fraction from C. asiatica (MCA) at the molecular level in murine macrophages. Levels of inflammation-related mediators were observed with treatment of MCA. MCA significantly suppressed nitric oxide production and iNOS expression in RAW 264.7 macrophages. Prostaglandin E2 production was alleviated by MCA via the downregulation of cyclooxygenase-2. MCA treatment also reduced pro-inflammatory tumor necrosis factor-[Formula: see text] and interleukin (IL)-6 levels. LPS/D-GalN-induced acute hepatitis in mouse was alleviated by MCA treatment. In addition, MCA decreased the phosphorylation of inhibitory [Formula: see text]B[Formula: see text] (I[Formula: see text]B[Formula: see text]) at Ser32/36 and thereby blocked I[Formula: see text]B[Formula: see text] degradation. TXY motif phosphorylation in the activation loops of mitogen-activated protein kinases (MAPKs) was also suppressed by MCA treatment. Further investigation revealed that MCA inhibited transforming growth factor-[Formula: see text]-activated kinase 1 (TAK1) phosphorylation and IL-1 receptor-associated kinase (IRAK1) degradation, the upstream kinases activating nuclear factor [Formula: see text]B and MAPKs. Taken together, MCA exhibited anti-inflammatory properties via the downregulation of IRAK1-TAK1 signaling pathways.
Collapse
Affiliation(s)
- Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Huong Lan Vuong
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jain Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sewoong Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Agung Eru Wibow
- Center for Pharmaceutical and Medical Technology, Deputy for Agroindustrial Technology and Biotechnology, The Agency for the Assessment and Application of Technology (BPPT), Jakarta 10340, Indonesia
| | - Sayeon Cho
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
78
|
Gad D, Elhaak M, Pompa A, Mattar M, Zayed M, Fraternale D, Dietz KJ. A New Strategy to Increase Production of Genoprotective Bioactive Molecules from Cotyledon-Derived Silybum marianum L. Callus. Genes (Basel) 2020; 11:E791. [PMID: 32674373 PMCID: PMC7396986 DOI: 10.3390/genes11070791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
There is a need to enhance the production of bioactive secondary metabolites and to establish new production systems, e.g., for liver-protective compounds of Silybum marianum seeds. Quantifying and identifying the produced phytochemicals, and examining their protective effects against genotoxic agents, is of great interest. This study established a protocol for the qualitative and quantitative production of hepatoprotective compounds in cotyledon-derived Silybum marianum callus through optimized supplementation of the MS medium with the growth regulators 2,4-D, benzylaminopurine, myoinositol, and asparagine. High-performance liquid chromatography (HPLC) coupled with electrospray ionisation mass spectrometry (ESI-MS) allowed for identification and quantification of the produced compounds. None of the growth medium combinations supported a detectable production of silymarin. Instead, the generated calli accumulated phenolic acids, in particular chlorogenic acid and dicaffeoylquinic acid, as revealed by HPLC and mass spectrometric analysis. 4-Nitro-o-phenylenediamine (NPD) was employed in the AMES-test with Salmonella typhimurium strain TA98 because it is a potent mutagen for this strain. Results revealed that callus extract had a high anti-genotoxic activity with respect to standard silymarin but more evident with respect seed extract. The callus produced chlorogenic acid and dicaffeoylquinic acid, which revealed higher bioactivity than silymarin. Both compounds were not formed or could not be detected in the seeds of Silybum marianum Egyptian ecotype.
Collapse
Affiliation(s)
- Dina Gad
- Biochemistry and Physiology of Plants, Faculty of Biology W5, Bielefeld University, 33501 Bielefeld, Germany;
- Faculty of Science, Botany Department, Menoufia University, Shebin EL-koum, Egypt; (M.M.); (M.Z.)
| | - Mahmoud Elhaak
- Faculty of Science, Botany Department, Tanta University, Tanta, Egypt;
| | - Andrea Pompa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino (PU), Italy;
| | - Magdy Mattar
- Faculty of Science, Botany Department, Menoufia University, Shebin EL-koum, Egypt; (M.M.); (M.Z.)
| | - Mohamed Zayed
- Faculty of Science, Botany Department, Menoufia University, Shebin EL-koum, Egypt; (M.M.); (M.Z.)
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino (PU), Italy;
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology W5, Bielefeld University, 33501 Bielefeld, Germany;
| |
Collapse
|
79
|
Development and application of a strategy for analyzing eight biomarkers in human urine to verify toxic mushroom or ricinus communis ingestions by means of hydrophilic interaction LC coupled to HRMS/MS. Talanta 2020; 213:120847. [DOI: 10.1016/j.talanta.2020.120847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/19/2022]
|
80
|
Silibinin Upregulates CXCR4 Expression in Cultured Bone Marrow Cells (BMCs) Especially in Pulmonary Arterial Hypertension Rat Model. Cells 2020; 9:cells9051276. [PMID: 32455728 PMCID: PMC7290890 DOI: 10.3390/cells9051276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Previously we reported that silibinin ameliorated pulmonary arterial hypertension (PAH) in rat PAH models, possibly through the suppression of the CXCR4/SDF-1, until the point where PAH became a severe and irreversible condition. To further investigate how silibinin ameliorates PAH, we first attempted to clarify its effect on bone marrow cells (BMCs), since the CXCR4/SDF-1 axis is known to regulate stem cell migration and attachment in BM niches. Rat PAH models were established through a combination of a single subcutaneous injection of monocrotaline (MCT) and chronic hypoxic conditions (10% O2). BMCs were harvested and cultured, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and flow cytometry (FCM) were performed to investigate whether silibinin affected CXCR4 expression. Silibinin upregulated the gene expression of stem cell related markers CXCR4, SDF-1, SCF, and c-Kit, inflammatory markers IL-6 and TNFα, mesenchymal stem cell (MSC)-related markers CD44 and CD29, and the granulocyte/monocyte-macrophage marker CD14 in cultured BM in PAH rats, but not in normal rats, except CXCR4. FCM showed that silibinin increased the CXCR4-positive cell population in a granulocyte fraction of cultured BMCs. However, immunohistochemical (IHC) staining showed no significant change in CXCR4 expression in the BM of the tibias. These results suggest that silibinin increases the expression of CXCR4 in BM, and the increased CXCR4-positive cells could be granulocytes/monocyte-macrophages.
Collapse
|
81
|
Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. Milk thistle ( Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 2020; 43:240-254. [PMID: 30033764 DOI: 10.1080/01480545.2018.1485687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Biological and chemical agents cause dangerous effects on human health via different exposing ways. Recently, herbal medicine is considered as a biological and safe treatment for toxicities. Silybum marianum (milk thistle), belongs to the Asteraceae family, possesses different effects such as hepatoprotective, cardioprotective, neuroprotective, anti-inflammatory and anti-carcinogenic activities. Several studies have demonstrated that this plant has protective properties against toxic agents. Herein, the protective effects of S. marianum and its main component, silymarin, which is the mixture of flavonolignans including silibinin, silydianin and silychristin acts against different biological (mycotoxins, snake venoms, and bacterial toxins) and chemical (metals, fluoride, pesticides, cardiotoxic, neurotoxic, hepatotoxic, and nephrotoxic agents) poisons have been summarized. This review reveals that main protective effects of milk thistle and its components are attributed to radical scavenging, anti-oxidative, chelating, anti-apoptotic properties, and regulating the inflammatory responses.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Department of Pharmacology Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| |
Collapse
|
82
|
Concentration-dependent effect of silymarin on concanavalin A-stimulated mouse spleen cells in vitro. EUROPEAN PHARMACEUTICAL JOURNAL 2020. [DOI: 10.2478/afpuc-2020-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractAims: Silymarin (SIL), a mixture of phenolic compounds, has a pleiotropic mode of action on various cell types, including immune cells. In this study, we investigated the concentration-dependent effect of SIL on proliferation of concanavalin A (CoA)-stimulated mouse spleen T lymphocytes, their viability, and secretion of IFN-g and IL-4 cytokines ex vivo in relation to gene expressions of transcription factors nuclear factor kappa B and Foxp3. In addition, metabolic activity of T cells was determined as changes in the mitochondrial membrane potential and apoptosis.Material/Methods: Isolated splenocytes were stimulated with lectin CoA and treated with SIL atthe concentrations of 5, 10, 20, and 40 μg/ml for 70 h and unstimulated cells served as the control. Cultures of splenocytes were evaluated for proliferation index following BrdU incorporation and viability of cells after trypan blue staining. Gene expressions of transcription factors and cytokines were assessed using real-time PCR, whereas ELISA test was applied to measure cytokine secretion. Mitochondrial membrane potential and apoptosis were determined by flow cytometry.Results: We demonstrated that CoA-activated mouse spleen T lymphocytes show different susceptibilities to low (£10 μg/ml) and higher (20 and 40 μg/ml) SIL concentrations. Low concentrations resulted in increased proliferation, cytokine secretion, and mitochondrial membrane potential and reduced transition of cells to apoptosis. High concentration of SIL had the opposite effect without exerting significant cytotoxicity and upregulated genes for cytokines and transcription factors on mRNA level. It is possible that individual subpopulations of T cells induced by CoA were differentially affected by the various SIL concentrations and the dose of 40 μg/ml had the profound suppressive effect. This correlated with the highest expression of Foxp3 factor, indicating that this dose stimulated preferential differentiation to Tregs lymphocytes.Conclusions: Treatment with suitable doses of SIL can provide potential benefits in the modulation of host immune functions in various diseases.
Collapse
|
83
|
Cytisine-flavonoid conjugates: Synthesis and antitumor structure-activity relationship research. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
84
|
Abstract
Silymarin, an extract from milk thistle seeds, has been used for centuries to treat hepatic conditions. Preclinical data indicate that silymarin can reduce oxidative stress and consequent cytotoxicity, thereby protecting intact liver cells or cells not yet irreversibly damaged. Eurosil 85® is a proprietary formulation developed to maximize the oral bioavailability of silymarin. Most of the clinical research on silymarin has used this formulation. Silymarin acts as a free radical scavenger and modulates enzymes associated with the development of cellular damage, fibrosis and cirrhosis. These hepatoprotective effects were observed in clinical studies in patients with alcoholic or non-alcoholic fatty liver disease, including patients with cirrhosis. In a pooled analysis of trials in patients with cirrhosis, silymarin treatment was associated with a significant reduction in liver-related deaths. Moreover, in patients with diabetes and alcoholic cirrhosis, silymarin was also able to improve glycemic parameters. Patients with drug-induced liver injuries were also successfully treated with silymarin. Silymarin is generally very well tolerated, with a low incidence of adverse events and no treatment-related serious adverse events or deaths reported in clinical trials. For maximum benefit, treatment with silymarin should be initiated as early as possible in patients with fatty liver disease and other distinct liver disease manifestations such as acute liver failure, when the regenerative potential of the liver is still high and when removal of oxidative stress, the cause of cytotoxicity, can achieve the best results.
Collapse
Affiliation(s)
- Anton Gillessen
- Department of Internal Medicine, Sacred Heart Hospital, Muenster, Germany.
| | - Hartmut H-J Schmidt
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
85
|
Camini FC, Costa DC. Silymarin: not just another antioxidant. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.2020.31.issue-4/jbcpp-2019-0206/jbcpp-2019-0206.xml. [PMID: 32134732 DOI: 10.1515/jbcpp-2019-0206] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Silymarin (Silybum marianum; SM), popularly known as milk thistle, is an extract that has been used for many centuries to treat liver diseases. In recent years, several studies have shown that SM is not only just another antioxidant but also a multifunctional compound that exhibits several beneficial properties for use in the treatment and prevention of different types of pathologies and disorders. This review aims at demonstrating the main protective activities of SM in diseases, such as cancer, diabetes, hepatitis, non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis C virus, hepatitis B virus, metabolic syndrome, depression, cardiovascular diseases and thalassemia, in addition to its photoprotective activity in in vitro tests and preclinical studies. Its main functions include antioxidant and anti-inflammatory effects, and it acts as modulator of signaling pathways. It has been suggested that SM presents great multifunctional potential and is capable of achieving promising results in different types of research. However, caution is still needed regarding its indiscriminate use in humans as there are only a few clinical studies relating to the adequate dose and the actual efficacy of this extract in different types of diseases.
Collapse
Affiliation(s)
- Fernanda Caetano Camini
- Laboratory of Metabolic Biochemistry, Post-Graduate Program in Biological Sciences, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Post-Graduate Program in Biological Sciences, Nucleus of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Federal University of Ouro Preto, Morro do Cruzeiro University Campus, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
86
|
Jamalian M, Mahmodiyeh B, Saveiee S, Solhi H. Investigating the impact of silymarin on liver oxidative injury. J Family Med Prim Care 2020; 9:1707-1711. [PMID: 32509676 PMCID: PMC7266247 DOI: 10.4103/jfmpc.jfmpc_929_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Various drugs affect liver problems caused by general hypoxia, including silymarin. Due to the fungal killer toxins, nowadays, silymarin (milk thistle) is used as an effective drug in the prevention and treatment of liver diseases and liver toxicity. In addition, silymarin protects the liver cells from solvents and chemical substances. The aim of this paper is to investigate the impact of silymarin on liver problems induced by general hypoxia. MATERIAL AND METHODS This study was a double-blinded clinical trial on patients with hypoxia who referred to the hospital emergency department. Patients were randomly divided into case and control groups. The case group was treated with silymarin at a dose of 280 mg with orally gavage technique and the control group was treated with a placebo every 8 h for 3 days. To investigate the leukocytosis, liver enzymes levels of alanine transaminase (ALT), aspartate aminotransferase (AST), creatine phosphokinase (CPK), prothrombin time (PT), partial thromboplastin (PTT), international normalized ratio (INR), and white blood cell (WBC) were measured before and after the intervention. SPSS 21 software was used to analyze the data. RESULTS In the silymarin group, liver enzymes were lower than the placebo group on the third day after treatment (P < 0.05). There was no significant difference between the two groups in terms of coagulation factors and WBC count on the third day after treatment (P > 050). On the third day after treatment, the amount of GGT was lower in the silymarin group (P < 0.05). CONCLUSION Silymarin decreased liver enzymes (ALT, AST, and CPK) and the level of GGT. Therefore, it is recommended to be used in patients with hypoxic liver injury.
Collapse
Affiliation(s)
- Mohammad Jamalian
- Department of Forensic Medicine and Poisoning, Arak University of Medical Sciences, Arak, Iran
| | - Behnam Mahmodiyeh
- Department of Anesthesiology and Critical Care, Arak University of Medical Sciences, Arak, Iran
| | - Sahar Saveiee
- Department of Forensic Medicine and Poisoning, Arak University of Medical Sciences, Arak, Iran
| | - Hasan Solhi
- Department of Forensic Medicine and Poisoning, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
87
|
Singh L, Joshi T, Tewari D, Echeverría J, Mocan A, Sah AN, Parvanov E, Tzvetkov NT, Ma ZF, Lee YY, Poznański P, Huminiecki L, Sacharczuk M, Jóźwik A, Horbańczuk JO, Feder-Kubis J, Atanasov AG. Ethnopharmacological Applications Targeting Alcohol Abuse: Overview and Outlook. Front Pharmacol 2020; 10:1593. [PMID: 32116660 PMCID: PMC7034411 DOI: 10.3389/fphar.2019.01593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is the cause of several diseases and thus is of a major concern for society. Worldwide alcohol consumption has increased by many folds over the past decades. This urgently calls for intervention and relapse counteract measures. Modern pharmacological solutions induce complete alcohol self-restraint and prevent relapse, but they have many side effects. Natural products are most promising as they cause fewer adverse effects. Here we discuss in detail the medicinal plants used in various traditional/folklore medicine systems for targeting alcohol abuse. We also comprehensively describe preclinical and clinical studies done on some of these plants along with the possible mechanisms of action.
Collapse
Affiliation(s)
- Laxman Singh
- Centre for Biodiversity Conservation & Management, G.B. Pant National Institute of Himalayan Environment & Sustainable Development, Almora, India
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Javier Echeverría
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University Bhimtal Campus, Nainital, India
| | - Emil Parvanov
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Division BIOCEV, Prague, Czechia
| | - Nikolay T. Tzvetkov
- Institute of Molecular Biology “Roumen Tsanev”, Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department Global R&D, NTZ Lab Ltd., Sofia, Bulgaria
| | - Zheng Feei Ma
- Department of Public Health, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Piotr Poznański
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Mariusz Sacharczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Feder-Kubis
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego, Wrocław, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
88
|
Ferenczi RK, Illyés TZ, Király SB, Hoffka G, Szilágyi L, Mándi A, Antus S, Kurtán T. Evaluation of Different Synthetic Routes to (2R,3R)-3-Hydroxymethyl-2-(4-hydroxy- 3-methoxyphenyl)-1,4-Benzodioxane-6-Carbaldehyde. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191212113407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reported enantioselective synthesis for the preparation of (+)-(2R,3R)-2-(4-
hydroxy-3-methoxyphenyl)-3-hydroxymethyl-1,4-benzodioxane-6-carbaldehyde, precursor
for the stereoselective synthesis of bioactive flavanolignans, could not be reproduced.
Thus, the target molecule was prepared via the synthesis and separation of diastereomeric
O-glucosides. TDDFT-ECD calculations and the 1,4-benzodioxane helicity rule were utilized
to determine the absolute configuration. ECD calculations also confirmed that the 1Lb
Cotton effect is governed by the helicity of the heteroring, while the higher-energy ECD
transitions reflect mainly the orientation of the equatorial C-2 aryl group.
Collapse
Affiliation(s)
- Renáta Kertiné Ferenczi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Tünde-Zita Illyés
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Sándor Balázs Király
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gyula Hoffka
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - László Szilágyi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Sándor Antus
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| |
Collapse
|
89
|
Ciato D, Albani A. Molecular Mechanisms of Glucocorticoid Resistance in Corticotropinomas: New Developments and Drug Targets. Front Endocrinol (Lausanne) 2020; 11:21. [PMID: 32117053 PMCID: PMC7025590 DOI: 10.3389/fendo.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cushing's disease is characterized by excessive adrenocorticotropin hormone (ACTH) secretion caused by a corticotroph tumor of the pituitary gland, leading to hypercortisolism and increased morbidity and mortality. The molecular causes of the disease are not completely understood, therefore more research is needed to discover novel molecular targets and more effective treatments. To date, the SSTR-analog pasireotide is the only approved drug for Cushing's Disease treatment that is directly targeting the source of the disease. Targeting directly the activity of glucocorticoid receptor or the factors modulating it might be a new valid option for the medical management of Cushing's disease. Here, we briefly review the molecular mechanisms involved in the glucocorticoid negative feedback and glucocorticoid resistance and examine novel targets and therapies that might effectively restore glucocorticoid sensitivity.
Collapse
|
90
|
Li S, Li H, Xu X, Saw PE, Zhang L. Nanocarrier-mediated antioxidant delivery for liver diseases. Theranostics 2020; 10:1262-1280. [PMID: 31938064 PMCID: PMC6956819 DOI: 10.7150/thno.38834] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Liver is the principal detoxifying organ and metabolizes various compounds that produce free radicals (FR) constantly. To maintain the oxidative/antioxidative balance in the liver, antioxidants would scavenge FR by preventing tissue damage through FR formation, scavenging, or by enhancing their decomposition. The disruption of this balance therefore leads to oxidative stress and in turn leads to the onset of various diseases. Supplying the liver with exogeneous antioxidants is an effective way to recreate the oxidative/antioxidative balance in the liver homeostasis. Nevertheless, due to the short half-life and instability of antioxidants in circulation, the methodology for delivering antioxidants to the liver needs to be improved. Nanocarrier mediated delivery of antioxidants proved to be an ingenious way to safely and efficiently deliver a high payload of antioxidants into the liver for circumventing liver diseases. The objective of this review is to provide an overview of the role of reactive oxygen species (oxidant) and ROS scavengers (antioxidant) in liver diseases. Subsequently, current nanocarrier mediated antioxidant delivery methods for liver diseases are discussed.
Collapse
Affiliation(s)
- Senlin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Huiru Li
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China
| |
Collapse
|
91
|
ElSayed AI, El-hamahmy MAM, Rafudeen MS, Mohamed AH, Omar AA. The Impact of Drought Stress on Antioxidant Responses and Accumulation of Flavonolignans in Milk Thistle ( Silybum marianum (L.) Gaertn). PLANTS (BASEL, SWITZERLAND) 2019; 8:E611. [PMID: 31888166 PMCID: PMC6963737 DOI: 10.3390/plants8120611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 12/13/2019] [Indexed: 01/24/2023]
Abstract
Biosynthesis and accumulation of flavonolignans in plants are influenced by different environmental conditions. Biosynthesis and accumulation of silymarin in milk thistle (Silybum marianum L.) were studied under drought stress with respect to the antioxidant defense system at the physiological and gene expression level. The results revealed a reduction in leaf chlorophyll, ascorbic acid, and glutathione contents. In contrast, H2O2, proline, and antioxidative enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR), were increased. These results confirmed that milk thistle undergoes oxidative stress under drought stress. Furthermore, transcription levels of APX, SOD, CAT, 1-Cys-Prx, and PrxQ were significantly increased in milk thistle under drought stress. Overall this suggests that protection against reactive oxygen species and peroxidation reactions in milk thistle are provided by enzymatic and non-enzymatic antioxidants. Flavonolignans from milk thistle seeds after different drought treatments were quantified by high-performance liquid chromatography (HPLC) and showed that severe drought stress enhanced the accumulation of silymarin and its components compared with seeds from the control (100% water capacity). Silybin is the major silymarin component and the most bioactive ingredient of the milk thistle extract. Silybin accumulation was the highest among all silymarin components in seeds obtained from drought-stressed plants. The expression of the chalcone synthase (CHS) genes (CHS1, CHS2, and CHS3), which are associated with the silybin biosynthetic pathway, was also increased during drought stress. These results indicated that milk thistle exhibits tolerance to drought stress and that seed derived from severe drought-stressed plants had higher levels of silymarin.
Collapse
Affiliation(s)
- Abdelaleim I. ElSayed
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. M. El-hamahmy
- Department of Agricultural Botany, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed S. Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag, Rondebosch 7701, South Africa;
| | - Azza H. Mohamed
- Agricultural Chemistry Department, Faculty of Agricultural, Mansoura University, Mansoura 35516, Egypt;
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| | - Ahmad A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL 33850, USA
| |
Collapse
|
92
|
Liu X, Wang Y, Wu D, Li S, Wang C, Han Z, Wang J, Wang K, Yang Z, Wei Z. Magnolol Prevents Acute Alcoholic Liver Damage by Activating PI3K/Nrf2/PPARγ and Inhibiting NLRP3 Signaling Pathway. Front Pharmacol 2019; 10:1459. [PMID: 31920652 PMCID: PMC6915046 DOI: 10.3389/fphar.2019.01459] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Alcoholic liver damage (ALD) is a toxic liver damage caused by excessive drinking. Oxidative stress is one of the most crucial pathogenic factors leading to ALD. Magnolol is one of the main active constituents of traditional Chinese medicine Magnolia officinalis, which has been reported to possess many pharmacological effects including anti-inflammatory, anti-oxidant, and anti-tumor. However, the effects of magnolol on ALD remain unclear. In this study, we firstly evaluated the protective effects of magnolol on ALD, and then tried to clarify the mechanism underlying the pharmacological activities. AST, ALT, GSH-Px, and SOD were detected by respective kits. Histopathological changes of liver tissue were analyzed by H&E staining. The activities of PI3K, Nrf2, and NLRP3 signaling pathways activation were detected by western blotting analysis. It was showed that alcohol-induced ALT and AST levels were significantly reduced by magnolol, but the antioxidant enzymes of GSH-Px and SOD levels were significantly increased. Magnolol attenuated alcohol-induced pathologic damage such as decreasing hepatic cord swelling, hepatocyte necrosis, and inflammatory cell infiltration. Furthermore, it was found that magnolol inhibited oxidative stress through up-regulating the activities of HO-1, Nrf2, and PPARγ and the phosphorylation of PI3K and AKT. And magnolol also decreased inflammatory response by inhibiting the activation of NLRP3inflammasome, caspase-1, and caspase-3 signaling pathway. Above results showed that magnolol could prevent alcoholic liver damage, and the underlying mechanism was through activating PI3K/Nrf2/PPARγ signaling pathways as well as inhibiting NLRP3 inflammasome, which also suggested magnolol might be used as a potential drug for ALD.
Collapse
Affiliation(s)
- Xiao Liu
- College of Life Sciences and Engineering, Foshan University, Foshan, China.,College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Di Wu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuangqiu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chaoqun Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen Han
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jingjing Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kai Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zhengkai Wei
- College of Life Sciences and Engineering, Foshan University, Foshan, China
| |
Collapse
|
93
|
Hosseinabadi T, Lorigooini Z, Tabarzad M, Salehi B, Rodrigues CF, Martins N, Sharifi-Rad J. Silymarin antiproliferative and apoptotic effects: Insights into its clinical impact in various types of cancer. Phytother Res 2019; 33:2849-2861. [PMID: 31407422 DOI: 10.1002/ptr.6470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/07/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
Abstract
Silymarin is a complex extract isolated from the plant Silybum marianum, widely known for its prominent antioxidant and hepatoprotective effects, although increasing evidences have reported extraordinary antiproliferative and apoptotic abilities. As a result, several signaling pathways involved in cell cycle control, cell proliferation, and cell death have been deconvoluted as critical mechanisms. In this regard, cyclin and cyclin-dependent pathways have been the most studied ones. Following that, apoptotic pathways, such as p53, Akt, STAT-3, Ras, and caspases pathways, have been extensively studied, although other mechanisms involved in inflammation and angiogenesis have also been highlighted as silymarin-likely targets in cancer therapy. Therefore, the main challenge of this review is to discuss the diverse molecular mechanisms for silymarin antiproliferative and apoptotic effects; most of them largely studied in various types of cancers so far. Clinical trials and combination therapies related to silymarin application in cancer prevention and treatment are presented as well.
Collapse
Affiliation(s)
- Tahereh Hosseinabadi
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Célia F Rodrigues
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
94
|
|
95
|
Navarro VJ, Belle SH, D’Amato M, Adfhal N, Brunt EM, Fried MW, Reddy KR, Wahed AS, Harrison S. Silymarin in non-cirrhotics with non-alcoholic steatohepatitis: A randomized, double-blind, placebo controlled trial. PLoS One 2019; 14:e0221683. [PMID: 31536511 PMCID: PMC6752871 DOI: 10.1371/journal.pone.0221683] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
The botanical product silymarin, an extract of milk thistle, is commonly used by patients to treat chronic liver disease and may be a treatment for NASH due to its antioxidant properties. We aimed to assess the safety and efficacy of higher than customary doses of silymarin in non-cirrhotic patients with NASH. This exploratory randomized double-blind placebo controlled multicenter Phase II trial tested a proprietary standardized silymarin preparation (Legalon®, Rottapharm|Madaus, Mylan) and was conducted at 5 medical centers in the United States. Eligible adult patients had liver biopsy within 12 months showing NASH without cirrhosis with NAFLD Activity Score (NAS) ≥4 per site pathologist’s assessment. Participants were randomized to Legalon® 420 mg, 700 mg, or placebo t.i.d. for 48 weeks. The primary endpoint was histological improvement ≥2 points in NAS. Of 116 patients screened, 78 were randomized. There were no significant differences in adverse events among the treatment groups. After 48–50 weeks, 4/27 (15%) in the 700 mg dose, 5/26 (19%) participants randomized to 420 mg, and 3/25 (12%) of placebo recipients reached the primary endpoint (p = 0.79) among all randomized participants, indicating no benefit from silymarin in the intention to treat analysis Review by a central pathologist demonstrated that a substantial number of participants (49, 63%) did not meet histological entry criteria and that fibrosis stage improved most in the placebo treated group, although not significantly different from other groups. Silymarin (Legalon®) at the higher than customary doses tested in this study is safe and well tolerated. The effect of silymarin in patients with NASH remains inconclusive due to the substantial number of patients who entered the study but did not meet entry histological criteria, the lack of a statistically significant improvement in NAS of silymarin treated patients, and the unanticipated effect of placebo on fibrosis indicate the need for additional clinical trials. Trial Registration: clinicaltrials.gov, Identifier: NCT00680407.
Collapse
Affiliation(s)
- Victor J. Navarro
- Department of Digestive Disease and Transplantation, Einstein Medical Center and Sidney Kimmel Medical College, Philadlephia, Pennsylvania, United States of America
- * E-mail:
| | - Steven H. Belle
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | | | - Nezam Adfhal
- Division of Hepatology, Department of Medicine, Beth-Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Elizabeth M. Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, CB 8118, St. Louis, Missouri, United States of America
| | - Michael W. Fried
- Department of Medicine, Division of Gastroenterology and Hepatology, Liver Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - K. Rajender Reddy
- Department of Medicine, Division of Gastroenterology University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Abdus S. Wahed
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, United States of America
| | - Stephen Harrison
- Department of Medicine, Division of Gastroenterology, Brooke Army Medical Center, Fort Sam Houston, Texas, United States of America
| | | |
Collapse
|
96
|
Taghipour YD, Hajialyani M, Naseri R, Hesari M, Mohammadi P, Stefanucci A, Mollica A, Farzaei MH, Abdollahi M. Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine 2019; 14:5303-5321. [PMID: 31406461 PMCID: PMC6642644 DOI: 10.2147/ijn.s213831] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome is a common metabolic disorder which has become a public health challenge worldwide. There has been growing interest in medications including natural products as complementary or alternative choices for common chemical therapeutics regarding their limited side effects and ease of access. Nanosizing these compounds may help to increase their solubility, bioavailability, and promisingly enhance their efficacy. This study, for the first time, provides a comprehensive overview of the application of natural-products-based nanoformulations in the management of metabolic syndrome. Different phytochemicals including curcumin, berberine, Capsicum oleoresin, naringenin, emodin, gymnemic acid, resveratrol, quercetin, scutellarin, stevioside, silybin, baicalin, and others have been nanosized hitherto, and their nanosizing method and effect in treatment and alleviating metabolic syndrome have been reviewed and discussed in this study. It has been discovered that there are several pathways or molecular targets relevant to metabolic disorders which are affected by these compounds. Various natural-based nanoformulations have shown promising effect in treatment of metabolic syndrome, and therefore can be considered as future candidates instead of or in conjunction with pharmaceutical drugs if they pass clinical trials successfully.
Collapse
Affiliation(s)
- Yasamin Davatgaran Taghipour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Phytopharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rozita Naseri
- Internal Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahvash Hesari
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azzurra Stefanucci
- Department of Pharmacy, G. d’Annunzio University of Chieti-pescara, Chieti66100, Italy
| | - Adriano Mollica
- Department of Pharmacy, G. d’Annunzio University of Chieti-pescara, Chieti66100, Italy
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, the Institute of Pharmaceutical Sciences (TIPS) and Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
97
|
Ahmad MM, Rezk NA, Fawzy A, Sabry M. Protective effects of curcumin and silymarin against paracetamol induced hepatotoxicity in adult male albino rats. Gene 2019; 712:143966. [PMID: 31279711 DOI: 10.1016/j.gene.2019.143966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute paracetamol (PCM) toxicity is a clinical problem; can result in a serious liver injury that finally may progress to acute liver failure. Curcumin (CUR) is a prevalent natural compound that can maintain prooxidant/antioxidant balance and thus can help in liver protection; also, Silymarin (SL) is a traditional antioxidant herb, used to treat liver disorders through scavenging free radicals. This study aimed to illustrate the histological, biochemical and molecular changes induced by acute PCM overdose on rats' liver to elucidate the effectiveness of CUR compared to SL in alleviating such changes. MATERIALS AND METHODS Male Wister Albino rats were divided into 6 groups each comprising 23 rats: control group, curcumin (CUR) treated group received (100 mg CUR/ kg), silymarin treated group received (100 mg SL/kg) for 7 successive days. Paracetamol (PCM) exposed group administered a single dose of PCM (200 mg/kg orally on 8th day). PCM + CUR group and PCM + SL group pretreated with CUR and SL respectively for 7 days then received single PCM dose (200 mg/kg) on the 8th day. Blood and liver tissues were collected for biochemical, histopathological and immunohistochemical analyses using anti-p53 antibody. In addition, real time polymerase chain reaction (RT- PCR) was used to measure Bax, bcl2 and Peroxisome proliferator-activated receptor-gamma (PPAR γ) mRNA expression levels. RESULTS In the paracetamol overdose group, the liver architecture showed necrotic changes, hydropic degeneration, congestion and dilatation of central veins. This hepatocellular damage was confirmed by a significant increase of AST, ALT levels and by an apparent increase in the number of p53 stained cells. PCM toxicity showed significant elevation of total oxidant status (TOS), oxidant status index (OSI) and decreased total antioxidant capacity (TAC) compared to controls (p < 0.001). Gene expression analysis showed that PCM caused an elevation of bcl2 and a reduction of both Bax and PPARγ mRNA expression. The histological alternation in the liver architecture was markedly improved in (PCM + CUR) group compared to (PCM+ SL) group, with an obvious decrease in the number of P53 stained cells. CUR pretreatment inhibited the elevation of TOS and OSI as well as the reduction of TAC caused by PCM toxicity compared to (PCM + SL) group. CONCLUSION Both SL and CUR pretreatment prevented the toxic effects of PCM, but CUR is more effective than SL in ameliorating acute PCM induced hepatotoxicity.
Collapse
Affiliation(s)
- Marwa M Ahmad
- Anatomy Department, Faculty of Medicine, Zagazig University, Egypt
| | - Noha A Rezk
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt.
| | - Amal Fawzy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Egypt
| | - Mohamed Sabry
- Anatomy Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
98
|
Weigand I, Knobloch L, Flitsch J, Saeger W, Monoranu CM, Höfner K, Herterich S, Rotermund R, Ronchi CL, Buchfelder M, Glatzel M, Hagel C, Fassnacht M, Deutschbein T, Sbiera S. Impact of USP8 Gene Mutations on Protein Deregulation in Cushing Disease. J Clin Endocrinol Metab 2019; 104:2535-2546. [PMID: 30844069 DOI: 10.1210/jc.2018-02564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/01/2019] [Indexed: 02/01/2023]
Abstract
CONTEXT Cushing disease (CD) is a rare disorder with severe sequels and incompletely understood pathogenesis. The underlying corticotroph adenomas harbor frequently somatic mutations in the ubiquitin-specific peptidase 8 (USP8) gene. These mutations render USP8 hyperactive and prevent client proteins from degradation. OBJECTIVE To investigate the impact of USP8 mutations on proteins deregulated in CD. DESIGN One hundred eight pituitary adenomas (75 corticotroph [58 USP8 wild type (WT) and 17 USP8 mutated], 14 somatotroph, and 19 nonfunctioning) were investigated by immunohistochemistry. All evaluated proteins [USP8, arginine vasopressin receptor 1b and 2, corticotropin-releasing hormone receptor, cAMP response element-binding protein (CREB), p27/kip1, cyclin E, heat shock protein 90 (HSP90), orphan nuclear receptor 4, epidermal growth factor receptor, histone deacetylase 2, glucocorticoid receptor, cyclin-dependent kinase 5 and Abelson murine leukemia viral oncogene homolog 1 enzyme substrate 1] were known to be deregulated in CD. Furthermore, AtT20 cells were transfected with USP8 to investigate the expression of possible downstream proteins by immunoblot. RESULTS Whereas most of the investigated proteins were not differentially expressed, the cell-cycle inhibitor p27 was significantly reduced in USP8 mutated corticotroph adenoma (H-score 2.0 ± 1.0 vs 1.1 ± 1.1 in WT adenomas; P = 0.004). In contrast, the chaperone HSP90 was expressed higher (0.5 ± 0.4 vs 0.2 ± 0.4; P = 0.29), and the phosphorylation of the transcription factor CREB was increased in USP8 mutated adenomas (1.30.5 ± 0.40.9 vs 0.70.5 ± 0.40.7; P = 0.014). Accordingly, AtT20 cells transfected with the USP8 P720R mutant had higher phosphorylated CREB (pCREB) levels than WT transfected cells (1.3 ± 0.14 vs 1 ± 0.23; P = 0.13). CONCLUSIONS We could demonstrate that USP8 mutations are associated with deregulation of p27/kip1, HSP90, and pCREB. These findings suggest that these proteins are direct or indirect clients of USP8 and could therefore be potential targets for therapeutic approaches in patients with CD.
Collapse
Affiliation(s)
- Isabel Weigand
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Lisanne Knobloch
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Jörg Flitsch
- Department of Neurosurgery, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Saeger
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Wuerzburg, Wuerzburg, Germany
| | - Kerstin Höfner
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Sabine Herterich
- Central Laboratory, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Roman Rotermund
- Department of Neurosurgery, University Hospital of Hamburg-Eppendorf, Hamburg, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, United Kingdom
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nuernberg, Erlangen, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
- Central Laboratory, University Hospital Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Timo Deutschbein
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
99
|
Saleemi MK, Tahir MW, Abbas RZ, Akhtar M, Ali A, Javed MT, Fatima Z, Zubair M, Bhatti SA, Zahoor Ul Hassan. Amelioration of toxicopathological effects of cadmium with silymarin and milk thistle in male Japanese quail (Coturnix japonica). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21371-21380. [PMID: 31124070 DOI: 10.1007/s11356-019-05385-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Cadmium is an important widely distributed heavy metal in the environment due to its several industrial uses, while milk thistle is an important herb and is a source of several antioxidant particularly silymarin which is a pharmacological active substance present in seeds of milk thistle plant (Silybum marianum). The current study investigated pathological effects of cadmium (Cd) and their amelioration with silymarin (SL) and milk thistle (MT) quails. A total of 144 quails were equally divided into 9 groups and given different combinations of cadmium chloride (150 and 300 mg/kg feed), SL (250 mg/kg), and MT (10 g/kg) feed. Parameters studied were clinical signs, mortality, organ weights, testes weight and volume, and gross and microscopic pathology. Results of this study indicated an increased mortality and reduced body weight in cadmium-treated quails. Quails were dull, depressed compared with control. Swollen hemorrhagic liver along with atrophied testes were also observed in these groups. No active spermatozoa were observed in lumen of seminiferous tubules of Cd-treated birds presenting arrest of spermatogenesis. Supplementing MT and SL ameliorated mortality, organ weights, spermatogenesis, and histopathological lesions. It may be concluded that MT and SL proved beneficial in cadmium-induced toxicities in Japanese quails.
Collapse
Affiliation(s)
| | | | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Masood Akhtar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Zahida Fatima
- National Agriculture Research Centre (NARC), Islamabad, Pakistan
| | - Muhammad Zubair
- Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Zahoor Ul Hassan
- Department of Pathology, Chulistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| |
Collapse
|
100
|
Dong Z, Zhang W, Chen S, Liu C. Silibinin A decreases statin‑induced PCSK9 expression in human hepatoblastoma HepG2 cells. Mol Med Rep 2019; 20:1383-1392. [PMID: 31173243 DOI: 10.3892/mmr.2019.10344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 11/06/2022] Open
Abstract
Hypercholesterolemia is one of the major risk factors for the occurrence and development of atherosclerosis. The most common drugs used to treat hypercholesterolemia are 3‑hydroxy‑3‑methyl‑glutaryl‑CoA reductase inhibitors, known as statins. Statins induce a beneficial increase in the levels of the low density lipoprotein receptor (LDLR) and additionally upregulate proprotein convertase subtilisin/kexin type 9 (PCSK9), which leads to LDLR degradation. This process causes a negative feedback response that attenuates the lipid lowering effects of statins. Therefore, the development of PCSK9 inhibitors may increase the lipid‑lowering functions of statins. In the present study, a drug‑screening assay was developed using the human PCSK9 promoter, based on data from a dual‑luciferase reporter assay, and the efficacies of various compounds from Traditional Chinese Medicine were examined. Among the compounds examined, SIL was demonstrated to function by targeting PCSK9. It was identified that SIL treatment decreased the expression levels of PCSK9 in HepG2 cells by decreasing the activity of the PCSK9 promoter in a dose‑and time‑dependent manner. Notably, SIL antagonized the statin‑induced phosphorylation of the p38 MAPK signaling pathway. The present study suggested that SIL may be developed as a novel PCSK9 inhibitor that may increase the efficiency of statin treatment.
Collapse
Affiliation(s)
- Zhewen Dong
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| | - Wenxiang Zhang
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Siyu Chen
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular Medical Biotechnology and School of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|