51
|
Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis 2019; 22:325-339. [PMID: 30607696 DOI: 10.1007/s10456-018-09659-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by obliteration of alveolar architecture, resulting in declining lung function and ultimately death. Pathogenic mechanisms involve a concomitant accumulation of scar tissue together with myofibroblasts activation and a strong abnormal vascular remodeling. Endothelial progenitor cells (ECFC subtype) have been investigated in several human lung diseases as a potential actor in IPF. We previously demonstrated that ECFCs are down-regulated in IPF in contrast to healthy controls. We postulated here that ECFCs might behave as a liquid biopsy in IPF patients and that they exert modified vasculogenic properties. METHODS AND RESULTS ECFCs isolated from controls and IPF patients expressed markers of the endothelial lineage and did not differ concerning adhesion, migration, and differentiation in vitro and in vivo. However, senescent and apoptotic states were increased in ECFCs from IPF patients as shown by galactosidase staining, p16 expression, and annexin-V staining. Furthermore, conditioned medium of IPF-ECFCs had increased level of interleukin-8 that induced migration of neutrophils in vitro and in vivo. In addition, an infiltration by neutrophils was shown in IPF lung biopsies and we found in a prospective clinical study that a high level of neutrophils in peripheral blood of IPF patients was associated to a poor prognosis. CONCLUSION To conclude, our study shows that IPF patients have a senescent ECFC phenotype associated with an increased IL-8 secretion potential that might contribute to lung neutrophils invasion during IPF.
Collapse
|
52
|
The Role of Immunity and Inflammation in IPF Pathogenesis. Respir Med 2019. [PMCID: PMC7120022 DOI: 10.1007/978-3-319-99975-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
IPF is thought to be a consequence of repetitive micro-injury to ageing alveolar epithelium by factors including tobacco smoke, environmental exposures, microbial colonisation/infection, microaspiration, endoplasmic reticulum stress and oxidative stress, with resultant aberrant wound healing. Though partially effective antifibrotic therapies have focused attention away from older inflammation-based hypotheses for IPF pathogenesis, innate and adaptive immune cells and processes may play roles potentially in initiation and/or disease progression in IPF and/or in IPF acute exacerbations, based on multiple lines of evidence. Members of the Toll-like family of innate immune receptors have been implicated in IPF pathogenesis, including a potential modulatory role for the lung microbiome. A variety of chemokines are associated with the presence of IPF, and an imbalance of angiogenic chemokines has been linked to vascular remodelling in the disease. Subsets of circulating monocytes, including fibrocytes and segregated-nucleus-containing atypical monocytes (SatM), have been identified that may facilitate progression of fibrosis, and apoptosis-resistant pulmonary macrophages have been shown to demonstrate pro-fibrotic potential. Inflammatory cells that have been somewhat dismissed as irrelevant to IPF pathogenesis are being re-evaluated in light of new mechanistic data, such as activated neutrophils which release their chromatin in a process termed NETosis, which appears to mediate age-related murine lung fibrosis. A greater understanding is needed of the role of lymphoid aggregates, a histologic feature of IPF lungs found in close proximity to fibroblastic foci and highly suggestive of the presence of chronic immune responses in IPF, as are well-characterised activated circulating T lymphocytes and distinct autoantibodies that have been observed in IPF. There is a pressing need to discern whether or not the indisputably present immune dysregulation of IPF constitutes cause or effect in the ongoing search for more effective therapeutic strategies.
Collapse
|
53
|
Gu Y, Huang B, Yang Y, Qi M, Lu G, Xia D, Li H. Ibrutinib Exacerbates Bleomycin-Induced Pulmonary Fibrosis via Promoting Inflammation. Inflammation 2018. [PMID: 29532266 DOI: 10.1007/s10753-018-0745-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality rate. The etiology is unknown and treatment choices are limited. Thus, there is great interest to investigate novel agents for IPF therapy. Ibrutinib, BTK, and ITK irreversible inhibitor is a FDA-approved small molecule for the clinical therapy of B cell lymphoma. Its role in pulmonary fibrosis remains unknown. In this study, we investigated the anti-fibrotic activity of ibrutinib. Strikingly, ibrutinib did not inhibit but exacerbated bleomycin-induced pulmonary fibrosis by increased epithelial cell apoptosis, and inflammation in the lung. The upregulated TGF-β and EMT transformation also contributes to enhanced myofibroblast differentiation and ECM deposition. Our findings reveal the detrimental effects of ibrutinib against bleomycin-mediated fibrosis and added to the understanding of IPF pathogenesis.
Collapse
Affiliation(s)
- Yangyang Gu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China.,Department of Respiratory Diseases, Jiaxing Second Hospital, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Bo Huang
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Yanfei Yang
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Mengdie Qi
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Guohua Lu
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Dajing Xia
- Department of Toxicology, School of Public Health, Zhejiang University, Hangzhou, 310058, China.,School of Public Health, Zhejiang University, Hangzhou, 310058, China
| | - Hequan Li
- Department of Respiratory Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
54
|
Wang X, Polverino F, Rojas-Quintero J, Zhang D, Sánchez J, Yambayev I, Lindqvist E, Virtala R, Djukanovic R, Davies DE, Wilson S, O'Donnell R, Cunoosamy D, Hazon P, Higham A, Singh D, Olsson H, Owen CA. A Disintegrin and A Metalloproteinase-9 (ADAM9): A Novel Proteinase Culprit with Multifarious Contributions to COPD. Am J Respir Crit Care Med 2018; 198:1500-1518. [PMID: 29864380 PMCID: PMC6298633 DOI: 10.1164/rccm.201711-2300oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Proteinases with a disintegrin and a metalloproteinase domain (ADAMs) have not been well studied in COPD. We investigated whether ADAM9 is linked to COPD in humans and mice. METHODS ADAM9 blood and lung levels were measured in COPD patients versus controls, and air- versus cigarette smoke (CS)-exposed wild-type (WT) mice. WT and Adam9-/- mice were exposed to air or CS for 1-6 months, and COPD-like lung pathologies were measured. RESULTS ADAM9 staining was increased in lung epithelial cells and macrophages in smokers and even more so in COPD patients and correlated directly with pack-year smoking history and inversely with airflow obstruction and/or FEV1 % predicted. Bronchial epithelial cell ADAM9 mRNA levels were higher in COPD patients than controls and correlated directly with pack-year smoking history. Plasma, BALF and sputum ADAM9 levels were similar in COPD patients and controls. CS exposure increased Adam9 levels in WT murine lungs. Adam9-/- mice were protected from emphysema development, small airway fibrosis, and airway mucus metaplasia. CS-exposed Adam9-/- mice had reduced lung macrophage counts, alveolar septal cell apoptosis, lung elastin degradation, and shedding of VEGFR2 and EGFR in BALF samples. Recombinant ADAM9 sheds EGF and VEGF receptors from epithelial cells to reduce activation of the Akt pro-survival pathway and increase cellular apoptosis. CONCLUSIONS ADAM9 levels are increased in COPD lungs and linked to key clinical variables. Adam9 promotes emphysema development, and large and small airway disease in mice. Inhibition of ADAM9 could be a therapeutic approach for multiple COPD phenotypes.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Francesca Polverino
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Joselyn Rojas-Quintero
- Brigham and Women's Hospital, Harvard Medical School, Medicine, Boston, Massachusetts, United States
| | - Duo Zhang
- Boston University, 1846, Boston, Massachusetts, United States
| | - José Sánchez
- AstraZeneca R&D, Quantitative Biology, Discovery Sciences, Gothenburgh, Sweden
| | - Ilyas Yambayev
- Brigham and Women's Hospital, 1861, Boston, Massachusetts, United States
| | - Eva Lindqvist
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Robert Virtala
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Ratko Djukanovic
- Southampton University, Clinical and Experimental Sciences and Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom of Great Britain and Northern Ireland
| | - Donna E Davies
- Brooke Laboratory, Infection, Inflammation & Repair, Southampton, Hampshire, United Kingdom of Great Britain and Northern Ireland
| | - Susan Wilson
- University of Southampton, 7423, Southampton, United Kingdom of Great Britain and Northern Ireland
| | | | - Danen Cunoosamy
- AstraZeneca, Respiratory, Inflammation and Autoimmune iMed, Molndal, Sweden
| | - Petra Hazon
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Andrew Higham
- University of South Manchester NHS Foundation Trust, Medicines Evaluation Unit, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Dave Singh
- North West Lung Research Centre, Manchester, United Kingdom of Great Britain and Northern Ireland
| | - Henric Olsson
- AstraZeneca R&D , Department of Translational Biology, Respiratory, Inflammation & Autoimmunity IMED, Gothenburg, Sweden
| | - Caroline A Owen
- Brigham and Women's Hospital, Boston, Massachusetts, United States ;
| |
Collapse
|
55
|
Lerman I, Hammes SR. Neutrophil elastase in the tumor microenvironment. Steroids 2018; 133:96-101. [PMID: 29155217 PMCID: PMC5870895 DOI: 10.1016/j.steroids.2017.11.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/07/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022]
Abstract
Myeloid cell production within the bone marrow is accelerated in the setting of cancer, and the numbers of circulating and infiltrating neutrophils and granulocytic myeloid derived suppressor cells (MDSCs) correlate with tumor progression and patient survival. Cancer is therefore able to hijack the normally host-protective immune system and use it to further fuel growth and metastasis. Myeloid cells secrete neutrophil elastase and neutrophil extracellular traps (NETs) in response to cues within the tumor microenvironment, thereby leading to enhanced activity in a variety of cancer types. Neutrophil elastase may indeed be a driver of tumorigenesis, since genetic deletion and pharmacological inhibition markedly reduces tumor burden and metastatic potential in numerous preclinical studies. In this review, we examine the current evidence for neutrophil elastase as a stimulatory factor in cancer, focusing on precise mechanisms by which it facilitates primary tumor growth and secondary organ metastasis. We conclude with a brief overview of neutrophil elastase inhibitors and discuss their potential use in cancer therapy.
Collapse
Affiliation(s)
- Irina Lerman
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, United States.
| | - Stephen R Hammes
- Department of Medicine, Division of Endocrinology and Metabolism, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave., Rochester, NY 14642, United States
| |
Collapse
|
56
|
Desai O, Winkler J, Minasyan M, Herzog EL. The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Front Med (Lausanne) 2018; 5:43. [PMID: 29616220 PMCID: PMC5869935 DOI: 10.3389/fmed.2018.00043] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
The contribution of the immune system to idiopathic pulmonary fibrosis (IPF) remains poorly understood. While most sources agree that IPF does not result from a primary immunopathogenic mechanism, evidence gleaned from animal modeling and human studies suggests that innate and adaptive immune processes can orchestrate existing fibrotic responses. This review will synthesize the available data regarding the complex role of professional immune cells in IPF. The role of innate immune populations such as monocytes, macrophages, myeloid suppressor cells, and innate lymphoid cells will be discussed, as will the activation of these cells via pathogen-associated molecular patterns derived from invading or commensural microbes, and danger-associated molecular patterns derived from injured cells and tissues. The contribution of adaptive immune responses driven by T-helper cells and B cells will be reviewed as well. Each form of immune activation will be discussed in the context of its relationship to environmental and genetic factors, disease outcomes, and potential therapies. We conclude with discussion of unanswered questions and opportunities for future study in this area.
Collapse
Affiliation(s)
- Omkar Desai
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Julia Winkler
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Maksym Minasyan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
57
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
58
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
59
|
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by progressive lung disease. Most CF therapies focus on treating secondary pulmonary complications rather than addressing the underlying processes inducing airway remodeling and ineffective response to infection. Transforming growth factor beta (TGFβ) is a cytokine involved in fibrosis, inflammation, and injury response as well as a genetic modifier and biomarker of CF lung disease. Targeting the TGFβ pathway has been pursued in other diseases, but the mechanism of TGFβ effects in CF is less well understood. Areas covered: In this review, we discuss CF lung disease pathogenesis with a focus on potential links to TGFβ. TGFβ signaling in lung health and disease is reviewed. Recent studies investigating TGFβ's impact in CF airway epithelial cells are highlighted. Finally, an overview of potential therapies to target TGFβ signaling relevant to CF are addressed. Expert opinion: The broad impact of TGFβ signaling on numerous cellular processes in homeostasis and disease is both a strength and a challenge to developing TGFβ dependent therapeutics in CF. We discuss the challenges inherent in developing TGFβ-targeted therapy, identifying appropriate patient populations, and questions regarding the timing of treatment. Future directions for research into TGFβ focused therapeutics are discussed.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- a Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - John P Clancy
- a Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
60
|
Uemura Y, Hagiwara K, Kobayashi K. The intratracheal administration of locked nucleic acid containing antisense oligonucleotides induced gene silencing and an immune-stimulatory effect in the murine lung. PLoS One 2017; 12:e0187286. [PMID: 29107995 PMCID: PMC5673232 DOI: 10.1371/journal.pone.0187286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Locked nucleic acid containing antisense oligonucleotides (LNA-ASOs) have the potential to modulate the disease-related gene expression by the RNaseH-dependent degradation of mRNAs. Pulmonary drug delivery has been widely used for the treatment of lung disease. Thus, the inhalation of LNA-ASOs is expected to be an efficient therapy that can be applied to several types of lung disease. Because the lung has a distinct immune system against pathogens, the immune-stimulatory effect of LNA-ASOs should be considered for the development of novel inhaled LNA-ASOs therapies. However, there have been no reports on the relationship between knock-down (KD) and the immune-stimulatory effects of inhaled LNA-ASOs in the lung. In this report, LNA-ASOs targeting Scarb1 (Scarb1-ASOs) or negative control LNA-ASOs targeting ApoB (ApoB-ASOs) were intratracheally administered to mice to investigate the KD of the gene expression and the immune-stimulatory effects in the lung. We confirmed that the intratracheal administration of Scarb1-ASOs exerted a KD effect in the lung without a drug delivery system. On the other hand, both Scarb1-ASOs and ApoB-ASOs induced neutrophilic infiltration in the alveoli and increased the expression levels of G-CSF and CXCL1 in the lung. The dose required for KD was the same as the dose that induced the neutrophilic immune response. In addition, in our in vitro experiments, Scarb1-ASOs did not increase the G-CSF or CXCL1 expression in primary lung cells, even though Scarb1-ASOs exerted a strong KD effect. Hence, we hypothesize that inhaled LNA-ASOs have the potential to exert a KD effect in the lung, but that they may be associated with a risk of immune stimulation. Further studies about the mechanism underlying the immune-stimulatory effect of LNA-ASOs is necessary for the development of novel inhaled LNA-ASO therapies.
Collapse
Affiliation(s)
- Yasunori Uemura
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Shizuoka, Japan
- * E-mail:
| | - Kenji Hagiwara
- Innovative Technology Labs, Research Functions Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Machida, Tokyo, Japan
| | - Katsuya Kobayashi
- Immunology & Allergy R&D Unit, R&D Division, Kyowa Hakko Kirin Co., Ltd., Nagaizumi-cho, Shizuoka, Japan
| |
Collapse
|
61
|
Yamaguchi R, Sakamoto A, Yamamoto T, Ishimaru Y, Narahara S, Sugiuchi H, Yamaguchi Y. Surfactant Protein D Inhibits Interleukin-12p40 Production by Macrophages Through the SIRPα/ROCK/ERK Signaling Pathway. Am J Med Sci 2017. [DOI: 10.1016/j.amjms.2017.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
62
|
Williams GP, Nightingale P, Southworth S, Denniston AKO, Tomlins PJ, Turner S, Hamburger J, Bowman SJ, Curnow SJ, Rauz S. Conjunctival Neutrophils Predict Progressive Scarring in Ocular Mucous Membrane Pemphigoid. Invest Ophthalmol Vis Sci 2017; 57:5457-5469. [PMID: 27760272 PMCID: PMC5072540 DOI: 10.1167/iovs.16-19247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Ocular mucous membrane pemphigoid (OcMMP) is a rare autoimmune disorder resulting in progressive conjunctival fibrosis and ocular surface failure leading to sight loss in up to 50%. This study was designed to optimize an ocular surface sampling technique for identification of novel biomarkers associated with disease activity and/or progressive fibrosis. Methods Fifty-seven patients with OcMMP underwent detailed examination of conjunctival inflammation and fibrosis using fornix depth measurement. Ocular surface impression cytology (OSIC) to sample superior bulbar conjunctiva combined with flow cytometry (OSIC-flow) profiled infiltrating leukocytes. Profiles were compared with healthy controls (HC) and disease controls (primary Sjögren's syndrome, pSS). Thirty-five OcMMP patients were followed every 3 months for 12 months. Results Overall neutrophils were elevated in OcMMP eyes when compared to pSS or HC (109 [18%] neutrophils/impression [NPI]; 2 [0.2%]; 6 [0.8%], respectively [P < 0.0001]) and in OcMMP patients with no visible inflammation when compared with HC (44.3 [7.9%]; 5.8 [0.8%]; P < 0.05). At 12 months follow-up, 53% of OcMMP eyes progressed, and this was associated with baseline conjunctival neutrophilia (P = 0.004). As a potential biomarker, a value of 44 NPI had sensitivity, specificity, and positive predictive values of 75%, 70%, and 73%, respectively. Notably, eyes with no visible inflammation and raised conjunctival neutrophils were more likely to progress and have a greater degree of conjunctival shrinkage compared to those without raised neutrophils. Conclusions These data suggest that OSIC-flow cytometric analyses may facilitate repeated patient sampling. Neutrophils may act as a biomarker for monitoring disease activity, progressive fibrosis, and response to therapy in OcMMP even when the eye appears clinically uninflamed.
Collapse
Affiliation(s)
- Geraint P Williams
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Peter Nightingale
- Wellcome Trust Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Sue Southworth
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Alastair K O Denniston
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Paul J Tomlins
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Stephen Turner
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - John Hamburger
- School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Simon J Bowman
- Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - S John Curnow
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Centre for Translational Inflammation Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom 2Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
63
|
Martinod K, Witsch T, Erpenbeck L, Savchenko A, Hayashi H, Cherpokova D, Gallant M, Mauler M, Cifuni SM, Wagner DD. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J Exp Med 2016; 214:439-458. [PMID: 28031479 PMCID: PMC5294849 DOI: 10.1084/jem.20160530] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Peptidylarginine deiminase 4 (PAD4) citrullinates proteins. In neutrophils, it causes chromatin decondensation and release of NETs, which are injurious. Martinod et al. show in this study that NETs promote fibrosis in a cardiac model and that PAD4-deficient mice have reduced age-related organ fibrosis. Aging promotes inflammation, a process contributing to fibrosis and decline in organ function. The release of neutrophil extracellular traps (NETs [NETosis]), orchestrated by peptidylarginine deiminase 4 (PAD4), damages organs in acute inflammatory models. We determined that NETosis is more prevalent in aged mice and investigated the role of PAD4/NETs in age-related organ fibrosis. Reduction in fibrosis was seen in the hearts and lungs of aged PAD4−/− mice compared with wild-type (WT) mice. An increase in left ventricular interstitial collagen deposition and a decline in systolic and diastolic function were present only in WT mice, and not in PAD4−/− mice. In an experimental model of cardiac fibrosis, cardiac pressure overload induced NETosis and significant platelet recruitment in WT but not PAD4−/− myocardium. DNase 1 was given to assess the effects of extracellular chromatin. PAD4 deficiency or DNase 1 similarly protected hearts from fibrosis. We propose a role for NETs in cardiac fibrosis and conclude that PAD4 regulates age-related organ fibrosis and dysfunction.
Collapse
Affiliation(s)
- Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Thilo Witsch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Luise Erpenbeck
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Alexander Savchenko
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Hideki Hayashi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Maureen Gallant
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Maximilian Mauler
- Faculty of Biology, University of Freiburg, 79106 Freiburg, Germany.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, 79106 Freiburg, Germany
| | - Stephen M Cifuni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115 .,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
64
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
65
|
O'Dwyer DN, Ashley SL, Moore BB. Influences of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 311:L590-601. [PMID: 27474089 DOI: 10.1152/ajplung.00221.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/23/2016] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by accumulation of extracellular matrix (ECM) and impaired gas exchange. The pathobiological mechanisms that account for disease progression are poorly understood but likely involve alterations in innate inflammatory cells, epithelial cells, and fibroblasts. Thus we seek to review the most recent literature highlighting the complex roles of neutrophils and macrophages as both promoters of fibrosis and defenders against infection. With respect to epithelial cells and fibroblasts, we review the data suggesting that defective autophagy promotes the fibrogenic potential of both cell types and discuss new evidence related to matrix metalloproteinases, growth factors, and cellular metabolism in the form of lactic acid generation that may have consequences for promoting fibrogenesis. We discuss potential cross talk between innate and structural cell types and also highlight literature that may help explain the limitations of current IPF therapies.
Collapse
Affiliation(s)
- David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shanna L Ashley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
66
|
Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis. J Transl Med 2016; 96:623-31. [PMID: 26974397 PMCID: PMC4884449 DOI: 10.1038/labinvest.2016.40] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, fatal disease with limited treatment options. Protease-mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi(-/-) mice following injury. Slpi(-/-), and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase (MMP)-2 and MMP-9 were measured. Lung fibrosis was determined by collagen subtype-specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi(-/-) animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post bleomycin. In contrast Slpi(-/-) mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi(-/-) mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1, and Col4α1 gene expression following lung injury. However, these changes do not prevent the development of lung fibrosis. Overall, these data suggest that the absence of Slpi does not markedly modify the development of lung fibrosis following bleomycin-induced lung injury.
Collapse
|
67
|
Taniguchi H, Kondoh Y. Acute and subacute idiopathic interstitial pneumonias. Respirology 2016; 21:810-20. [PMID: 27123874 DOI: 10.1111/resp.12786] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/07/2016] [Accepted: 02/09/2016] [Indexed: 12/12/2022]
Abstract
Idiopathic interstitial pneumonias (IIPs) may have an acute or subacute presentation, or acute exacerbation may occur in a previously subclinical or unrecognized chronic IIP. Acute or subacute IIPs include acute interstitial pneumonia (AIP), cryptogenic organizing pneumonia (COP), nonspecific interstitial pneumonia (NSIP), acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) and AE-NSIP. Interstitial lung diseases (ILDs) including connective tissue disease (CTD) associated ILD, hypersensitivity pneumonitis, acute eosinophilic pneumonia, drug-induced lung disease and diffuse alveolar haemorrhage need to be differentiated from acute and subacute IIPs. Despite the severe lack of randomized controlled trials for the treatment of acute and subacute IIPs, the mainstream treatment remains corticosteroid therapy. Other potential therapies reported in the literature include corticosteroids and immunosuppression, antibiotics, anticoagulants, neutrophil elastase inhibitor, autoantibody-targeted treatment, antifibrotics and hemoperfusion therapy. With regard to mechanical ventilation, patients in recent studies with acute and subacute IIPs have shown better survival than those in previous studies. Therefore, a careful value-laden decision about the indications for endotracheal intubation should be made for each patient. Noninvasive ventilation may be beneficial to reduce ventilator associated pneumonia.
Collapse
Affiliation(s)
- Hiroyuki Taniguchi
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| |
Collapse
|
68
|
Cabrera S, Maciel M, Herrera I, Nava T, Vergara F, Gaxiola M, López-Otín C, Selman M, Pardo A. Essential role for the ATG4B protease and autophagy in bleomycin-induced pulmonary fibrosis. Autophagy 2016; 11:670-84. [PMID: 25906080 DOI: 10.1080/15548627.2015.1034409] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autophagy is a critical cellular homeostatic process that controls the turnover of damaged organelles and proteins. Impaired autophagic activity is involved in a number of diseases, including idiopathic pulmonary fibrosis suggesting that altered autophagy may contribute to fibrogenesis. However, the specific role of autophagy in lung fibrosis is still undefined. In this study, we show for the first time, how autophagy disruption contributes to bleomycin-induced lung fibrosis in vivo using an Atg4b-deficient mouse as a model. Atg4b-deficient mice displayed a significantly higher inflammatory response at 7 d after bleomycin treatment associated with increased neutrophilic infiltration and significant alterations in proinflammatory cytokines. Likewise, we found that Atg4b disruption resulted in augmented apoptosis affecting predominantly alveolar and bronchiolar epithelial cells. At 28 d post-bleomycin instillation Atg4b-deficient mice exhibited more extensive and severe fibrosis with increased collagen accumulation and deregulated extracellular matrix-related gene expression. Together, our findings indicate that the ATG4B protease and autophagy play a crucial role protecting epithelial cells against bleomycin-induced stress and apoptosis, and in the regulation of the inflammatory and fibrotic responses.
Collapse
Key Words
- ACTA2, actin, α 2, smooth muscle, aorta
- ATG3, autophagy-related 3
- ATG4B
- ATG4B, autophagy-related 4B
- ATG5, autophagy-related 5
- ATG7, autophagy-related 7
- ATG9B, autophagy-related 9B
- BAX, BCL2-associated X protein
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- CAV1, caveolin 1, caveolae protein, 22kDa
- CCL3, chemokine (C-C motif) ligand 3
- CXCL1, chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity α)
- CXCR2, chemokine (C-X-C motif) receptor 2
- DRAM2, DNA-damage regulated autophagy modulator 2
- GFP-LC3B, green fluorescent protein-LC3B
- IFNG, interferon, gamma
- IL12B, interleukin 12B
- IL13, interleukin 13
- IPF, idiopathic pulmonary fibrosis
- MAP1LC3B/LC3B, microtubule-associated protein 1 light chain 3 β
- RELA, v-rel reticuloendotheliosis viral oncogene homolog A
- SQSTM1, sequestosome 1
- TGFB1, transforming growth factor, β 1
- TGFBR2, transforming growth factor, β receptor II (70/80kDa)
- TNF, tumor necrosis factor
- TUBB4, tubulin, β 4, class IV
- WT, wild type
- autophagin-1
- autophagy
- cysteine peptidase
- epithelial cell
- idiopathic pulmonary fibrosis
- lung fibrosis
Collapse
Affiliation(s)
- Sandra Cabrera
- a Facultad de Ciencias; Universidad Nacional Autónoma de México ; Mexico DF , Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Checa M, Hagood JS, Velazquez-Cruz R, Ruiz V, García-De-Alba C, Rangel-Escareño C, Urrea F, Becerril C, Montaño M, García-Trejo S, Cisneros Lira J, Aquino-Gálvez A, Pardo A, Selman M. Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells. PLoS One 2016; 11:e0150383. [PMID: 26934369 PMCID: PMC4775036 DOI: 10.1371/journal.pone.0150383] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.
Collapse
Affiliation(s)
- Marco Checa
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - James S. Hagood
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, and Rady Children's Hospital of San Diego, San Diego, California, United States of America
| | | | - Victor Ruiz
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Carolina García-De-Alba
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | | | - Francisco Urrea
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Martha Montaño
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Semiramis García-Trejo
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - José Cisneros Lira
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Arnoldo Aquino-Gálvez
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Moisés Selman
- Instituto Nacional de Enfermedades Respiratorias, Ismael Cosío Villegas, Ciudad de México, México
| |
Collapse
|
70
|
Fan MH, Zhu Q, Li HH, Ra HJ, Majumdar S, Gulick DL, Jerome JA, Madsen DH, Christofidou-Solomidou M, Speicher DW, Bachovchin WW, Feghali-Bostwick C, Puré E. Fibroblast Activation Protein (FAP) Accelerates Collagen Degradation and Clearance from Lungs in Mice. J Biol Chem 2015; 291:8070-89. [PMID: 26663085 DOI: 10.1074/jbc.m115.701433] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a disease characterized by progressive, unrelenting lung scarring, with death from respiratory failure within 2-4 years unless lung transplantation is performed. New effective therapies are clearly needed. Fibroblast activation protein (FAP) is a cell surface-associated serine protease up-regulated in the lungs of patients with idiopathic pulmonary fibrosis as well as in wound healing and cancer. We postulate that FAP is not only a marker of disease but influences the development of pulmonary fibrosis after lung injury. In two different models of pulmonary fibrosis, intratracheal bleomycin instillation and thoracic irradiation, we find increased mortality and increased lung fibrosis in FAP-deficient mice compared with wild-type mice. Lung extracellular matrix analysis reveals accumulation of intermediate-sized collagen fragments in FAP-deficient mouse lungs, consistent within vitrostudies showing that FAP mediates ordered proteolytic processing of matrix metalloproteinase (MMP)-derived collagen cleavage products. FAP-mediated collagen processing leads to increased collagen internalization without altering expression of the endocytic collagen receptor, Endo180. Pharmacologic FAP inhibition decreases collagen internalization as expected. Conversely, restoration of FAP expression in the lungs of FAP-deficient mice decreases lung hydroxyproline content after intratracheal bleomycin to levels comparable with that of wild-type controls. Our findings indicate that FAP participates directly, in concert with MMPs, in collagen catabolism and clearance and is an important factor in resolving scar after injury and restoring lung homeostasis. Our study identifies FAP as a novel endogenous regulator of fibrosis and is the first to show FAP's protective effects in the lung.
Collapse
Affiliation(s)
- Ming-Hui Fan
- From the Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213,
| | - Qiang Zhu
- the Molecular and Cellular Pathology Graduate Program, University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599
| | - Hui-Hua Li
- From the Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | | | | - Dexter L Gulick
- From the Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jacob A Jerome
- From the Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Daniel H Madsen
- the Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, NIDCR, Center for Cancer Immune Therapy, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | - William W Bachovchin
- the Sackler School of Biomedical Graduate Sciences, Tufts University, Boston, Massachusetts 02111, and
| | - Carol Feghali-Bostwick
- the Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ellen Puré
- the Departments of Biomedical Sciences and Medicine, Pulmonary Allergy and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
71
|
Sallenave JM. Editorial: Neutrophil elastase and the lung: is it degradation, repair, emphysema, or fibrosis? What tilts it left or right? J Leukoc Biol 2015; 98:137-9. [PMID: 26232499 DOI: 10.1189/jlb.3ce0215-057r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jean-Michel Sallenave
- Institut National de la Sante et de la Recherche Medicale, U1152, Hôpital Bichat, Paris, France; and Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
72
|
von Nussbaum F, Li VM, Meibom D, Anlauf S, Bechem M, Delbeck M, Gerisch M, Harrenga A, Karthaus D, Lang D, Lustig K, Mittendorf J, Schäfer M, Schäfer S, Schamberger J. Potent and Selective Human Neutrophil Elastase Inhibitors with Novel Equatorial Ring Topology: in vivo Efficacy of the Polar Pyrimidopyridazine BAY-8040 in a Pulmonary Arterial Hypertension Rat Model. ChemMedChem 2015; 11:199-206. [PMID: 26333652 DOI: 10.1002/cmdc.201500269] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Indexed: 12/20/2022]
Abstract
Human neutrophil elastase (HNE) is a key driver of inflammation in many cardiopulmonary and systemic inflammatory and autoimmune conditions. Overshooting high HNE activity is the consequence of a disrupted protease-antiprotease balance. Accordingly, there has been an intensive search for potent and selective HNE inhibitors with suitable pharmacokinetics that would allowing oral administration in patients. Based on the chemical probe BAY-678 and the clinical candidate BAY 85-8501 we explored further ring topologies along the equator of the parent pyrimidinone lead series. Novel ring systems were annulated in the east, yielding imidazolo-, triazolo-, and tetrazolopyrimidines in order to ensure additional inhibitor-HNE contacts beyond the S1 and the S2 pocket of HNE. The western annulation of pyridazines led to the polar pyrimidopyridazine BAY-8040, which combines excellent potency and selectivity with a promising pharmacokinetic profile. In vivo efficacy with regard to decreasing cardiac remodeling and amelioration of cardiac function was shown in a monocrotaline-induced rat model for pulmonary arterial hypertension. This demonstrated in vivo proof of concept in animals.
Collapse
Affiliation(s)
- Franz von Nussbaum
- Medicinal Chemistry Berlin, Bayer HealthCare AG, 13353, Berlin, Germany.
| | - Volkhart M Li
- Lead Discovery Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany.
| | - Daniel Meibom
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany.
| | - Sonja Anlauf
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Martin Bechem
- Department of Cardiology Research Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Martina Delbeck
- Department of Cardiology Research Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Michael Gerisch
- DMPK Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Axel Harrenga
- Lead Discovery, Structural Biology Berlin, Bayer HealthCare AG, 13353, Berlin, Germany
| | - Dagmar Karthaus
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Dieter Lang
- DMPK Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Klemens Lustig
- DMPK Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Joachim Mittendorf
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Martina Schäfer
- Lead Discovery, Structural Biology Berlin, Bayer HealthCare AG, 13353, Berlin, Germany
| | - Stefan Schäfer
- Department of Cardiology Research Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| | - Jens Schamberger
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096, Wuppertal, Germany
| |
Collapse
|
73
|
von Nussbaum F, Li VMJ. Neutrophil elastase inhibitors for the treatment of (cardio)pulmonary diseases: Into clinical testing with pre-adaptive pharmacophores. Bioorg Med Chem Lett 2015; 25:4370-81. [PMID: 26358162 DOI: 10.1016/j.bmcl.2015.08.049] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 02/04/2023]
Abstract
Alpha-1 antitrypsin deficiency is linked with an increased risk of suffering from lung emphysema. This discovery from the 1960s led to the development of the protease-antiprotease (im)balance hypothesis: Overshooting protease concentrations, especially high levels of elastase were deemed to have an destructive effect on lung tissue. Consequently, it was postulated that efficient elastase inhibitors could alleviate the situation in patients. However, despite intensive drug discovery efforts, even five decades later, no neutrophil elastase inhibitors are available for a disease-modifying treatment of (cardio)pulmonary diseases such as chronic obstructive pulmonary disease. Here, we critically review the attempts to develop effective human neutrophil elastase inhibitors while strongly focussing on recent developments. On purpose and with perspective distortion we focus on recent developments. One aim of this review is to classify the known HNE inhibitors into several generations, according to their binding modes. In general, there seem to be three major challenges in the development of suitable elastase inhibitors: (1) assuring sufficient potency, (2) securing selectivity, and (3) achieving metabolic stability especially under pathophysiological conditions. Impressive achievements have been made since 2001 with the identification of potent nonreactive, reversible small molecule inhibitors. The most modern inhibitors bind HNE via an induced fit with a frozen bioactive conformation that leads to a significant boost in potency, selectivity, and stability ('pre-adaptive pharmacophores'). These 5th generation inhibitors might succeed in re-establishing the protease-antiprotease balance in patients for the first time.
Collapse
Affiliation(s)
| | - Volkhart M-J Li
- Bayer HealthCare AG, Lead Discovery Wuppertal, 42096 Wuppertal, Germany.
| |
Collapse
|
74
|
von Nussbaum F, Li VMJ, Allerheiligen S, Anlauf S, Bärfacker L, Bechem M, Delbeck M, Fitzgerald MF, Gerisch M, Gielen-Haertwig H, Haning H, Karthaus D, Lang D, Lustig K, Meibom D, Mittendorf J, Rosentreter U, Schäfer M, Schäfer S, Schamberger J, Telan LA, Tersteegen A. Freezing the Bioactive Conformation to Boost Potency: The Identification of BAY 85-8501, a Selective and Potent Inhibitor of Human Neutrophil Elastase for Pulmonary Diseases. ChemMedChem 2015; 10:1163-73. [PMID: 26083237 PMCID: PMC4515084 DOI: 10.1002/cmdc.201500131] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 12/01/2022]
Abstract
Human neutrophil elastase (HNE) is a key protease for matrix degradation. High HNE activity is observed in inflammatory diseases. Accordingly, HNE is a potential target for the treatment of pulmonary diseases such as chronic obstructive pulmonary disease (COPD), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), bronchiectasis (BE), and pulmonary hypertension (PH). HNE inhibitors should reestablish the protease-anti-protease balance. By means of medicinal chemistry a novel dihydropyrimidinone lead-structure class was identified. Further chemical optimization yielded orally active compounds with favorable pharmacokinetics such as the chemical probe BAY-678. While maintaining outstanding target selectivity, picomolar potency was achieved by locking the bioactive conformation of these inhibitors with a strategically positioned methyl sulfone substituent. An induced-fit binding mode allowed tight interactions with the S2 and S1 pockets of HNE. BAY 85-8501 ((4S)-4-[4-cyano-2-(methylsulfonyl)phenyl]-3,6-dimethyl-2-oxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydropyrimidine-5-carbonitrile) was shown to be efficacious in a rodent animal model related to ALI. BAY 85-8501 is currently being tested in clinical studies for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Franz von Nussbaum
- Medicinal Chemistry Berlin, Bayer HealthCare AG, 13353 Berlin (Germany).
| | - Volkhart M-J Li
- Lead Discovery Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany).
| | - Swen Allerheiligen
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Sonja Anlauf
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Lars Bärfacker
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Martin Bechem
- Department of Cardiology Research Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Martina Delbeck
- Department of Cardiology Research Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | | | - Michael Gerisch
- DMPK Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | | | - Helmut Haning
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Dagmar Karthaus
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Dieter Lang
- DMPK Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Klemens Lustig
- DMPK Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Daniel Meibom
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Joachim Mittendorf
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Ulrich Rosentreter
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Martina Schäfer
- Lead Discovery, Structural Biology Berlin, Bayer HealthCare AG, 13353 Berlin (Germany)
| | - Stefan Schäfer
- Department of Cardiology Research Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Jens Schamberger
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Leila A Telan
- Medicinal Chemistry Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| | - Adrian Tersteegen
- Lead Discovery Wuppertal, Bayer HealthCare AG, 42096 Wuppertal (Germany)
| |
Collapse
|
75
|
Juarez MM, Chan AL, Norris AG, Morrissey BM, Albertson TE. Acute exacerbation of idiopathic pulmonary fibrosis-a review of current and novel pharmacotherapies. J Thorac Dis 2015; 7:499-519. [PMID: 25922733 DOI: 10.3978/j.issn.2072-1439.2015.01.17] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive form of lung disease of unknown etiology for which a paucity of therapies suggest benefit, and for which none have demonstrated improved survival. Acute exacerbation of IPF (AE-IPF) is defined as a sudden acceleration of the disease or an idiopathic acute injury superimposed on diseased lung that leads to a significant decline in lung function. An AE-IPF is associated with a mortality rate as high as 85% with mean survival periods of between 3 to 13 days. Under these circumstances, mechanical ventilation (MV) is controversial, unless used a as a bridge to lung transplantation. Judicious fluid management may be helpful. Pharmaceutical treatment regimens for AE-IPF include the use of high dose corticosteroids with or without immunosuppressive agents such as cyclosporine A (CsA), and broad spectrum antibiotics, despite the lack of convincing evidence demonstrating benefit. Newer research focuses on abnormal wound healing as a cause of fibrosis and preventing fibrosis itself through blocking growth factors and their downstream intra-cellular signaling pathways. Several novel pharmaceutical approaches are discussed.
Collapse
Affiliation(s)
- Maya M Juarez
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Andrew L Chan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Andrew G Norris
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Brian M Morrissey
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| | - Timothy E Albertson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis, School of Medicine and VA Northern California Health Care System, Sacramento, CA 95817, USA
| |
Collapse
|
76
|
Gregory AD, Kliment CR, Metz HE, Kim KH, Kargl J, Agostini BA, Crum LT, Oczypok EA, Oury TA, Houghton AM. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J Leukoc Biol 2015; 98:143-52. [PMID: 25743626 DOI: 10.1189/jlb.3hi1014-493r] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/29/2015] [Indexed: 12/23/2022] Open
Abstract
IPF is a progressive lung disorder characterized by fibroblast proliferation and myofibroblast differentiation. Although neutrophil accumulation within IPF lungs has been negatively correlated with outcomes, the role played by neutrophils in lung fibrosis remains poorly understood. We have demonstrated previously that NE promotes lung cancer cell proliferation and hypothesized that it may have a similar effect on fibroblasts. In the current study, we show that NE(-/-) mice are protected from asbestos-induced lung fibrosis. NE(-/-) mice displayed reduced fibroblast and myofibroblast content when compared with controls. NE directly both lung fibroblast proliferation and myofibroblast differentiation in vitro, as evidenced by proliferation assays, collagen gel contractility assays, and αSMA induction. Furthermore, αSMA induction occurs in a TGF-β-independent fashion. Treatment of asbestos-recipient mice with ONO-5046, a synthetic NE antagonist, reduced hydroxyproline content. Thus, the current study points to a key role for neutrophils and NE in the progression of lung fibrosis. Lastly, the study lends rationale to use of NE-inhibitory approaches as a novel therapeutic strategy for patients with lung fibrosis.
Collapse
Affiliation(s)
- Alyssa D Gregory
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Corrine R Kliment
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Heather E Metz
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Kyoung-Hee Kim
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Julia Kargl
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Brittani A Agostini
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Lauren T Crum
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Elizabeth A Oczypok
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - Tim A Oury
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| | - A McGarry Houghton
- Departments of *Medicine and Pathology, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA; and Division of Pulmonary and Critical Care, University of Washington, Seattle, Washington, USA
| |
Collapse
|
77
|
Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2. Blood Cells Mol Dis 2015; 54:353-9. [PMID: 25633855 DOI: 10.1016/j.bcmd.2015.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/11/2015] [Indexed: 01/12/2023]
Abstract
Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation.
Collapse
|
78
|
Sava P, Cook IO, Mahal RS, Gonzalez AL. Human Microvascular Pericyte Basement Membrane Remodeling Regulates Neutrophil Recruitment. Microcirculation 2015; 22:54-67. [DOI: 10.1111/micc.12173] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Parid Sava
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| | - Ian O. Cook
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| | - Rajwant S. Mahal
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| | - Anjelica L. Gonzalez
- Department of Biomedical Engineering; Yale University; New Haven Connecticut USA
| |
Collapse
|
79
|
Arizmendi N, Puttagunta L, Chung KL, Davidson C, Rey-Parra J, Chao DV, Thebaud B, Lacy P, Vliagoftis H. Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis. Respir Res 2014; 15:71. [PMID: 24970330 PMCID: PMC4082672 DOI: 10.1186/1465-9921-15-71] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/16/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis. METHODS To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2-/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content. RESULTS BLM-treated rac2-/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2-/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2-/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2-/- and WT and mice that survived to day 21. CONCLUSION Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kerri L Chung
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Courtney Davidson
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Juliana Rey-Parra
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Danny V Chao
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thebaud
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Lacy
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
80
|
Novel Pharmacologic Approaches for the Treatment of ARDS. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2014 2014. [PMCID: PMC7176210 DOI: 10.1007/978-3-319-03746-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
81
|
Williams GP, Tomlins PJ, Denniston AK, Southworth HS, Sreekantham S, Curnow SJ, Rauz S. Elevation of conjunctival epithelial CD45INTCD11b⁺CD16⁺CD14⁻ neutrophils in ocular Stevens-Johnson syndrome and toxic epidermal necrolysis. Invest Ophthalmol Vis Sci 2013; 54:4578-85. [PMID: 23737478 DOI: 10.1167/iovs.13-11859] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Ocular complications related to Stevens-Johnson Syndrome (SJS)-Toxic Epidermal Necrolysis (TEN) may persist and progress after resolution of systemic disease. This is thought to be related in part to persistent ocular innate-immune signaling. In this study, our aim was to characterize infiltrative conjunctival cellular profiles during acute (<12 months) and chronic (>12 months) disease. METHODS Consecutive patients presenting with SJS-TEN over a 12-month period were followed for 1 year. Detailed clinical examination and conjunctival impression cell recovery was analyzed by flow cytometry for the presence of intraepithelial leukocytes and compared with healthy controls (n = 21). RESULTS Ten patients were recruited of whom six had acute disease and five were classified as TEN (SCORTEN = 1, n = 4). Conjunctival inflammation was graded as absent/mild in a total of nine patients; but despite this, evidence of fornix shrinkage was observed in nine subjects. This inversely correlated with disease duration (P < 0.05). A reduction in percentage of CD8αβ(+) T cells compared with controls (80% vs. 57%; P < 0.01) was associated with a corresponding increase in the number/percentage of CD45(INT)CD11b(+)CD16(+)CD14(-) neutrophils (186 vs. 3.4, P < 0.01, 31% vs. 0.8%, P < 0.001). Neutrophils inversely correlated with disease duration (r = -0.71, P = 0.03), yet there was no absolute change in the CD8αβ(+) or neutrophil populations during the study period (P = 1.0). CONCLUSIONS These data highlight that a neutrophilic infiltrate is present in mildly inflamed or clinically quiescent conjunctival mucosa in patients with ocular SJS-TEN, where neutrophil numbers inversely correlate with disease duration. Neutrophil persistence endorses the hypothesis of an unresolved innate-inflammatory process that might account for disease progression.
Collapse
Affiliation(s)
- Geraint P Williams
- Academic Unit of Ophthalmology, Birmingham and Midland Eye Centre, City Hospital, Birmingham, School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
82
|
Huebener P, Schwabe RF. Regulation of wound healing and organ fibrosis by toll-like receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1005-17. [PMID: 23220258 PMCID: PMC3848326 DOI: 10.1016/j.bbadis.2012.11.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 02/06/2023]
Abstract
Chronic injury often triggers maladaptive wound healing responses leading to the development of tissue fibrosis and subsequent organ malfunction. Inflammation is a key component of the wound healing process and promotes the development of organ fibrosis. Here, we review the contribution of Toll-like receptors (TLRs) to wound healing with a particular focus on their role in liver, lung, kidney, skin and myocardial fibrosis. We discuss the role of TLRs on distinct cell populations that participate in the repair process following tissue injury, and the contribution of exogenous and endogenous TLR ligands to the wound healing response. Systemic review of the literature shows that TLRs promote tissue repair and fibrosis in many settings, albeit with profound differences between organs. In particular, TLRs exert a pronounced effect on fibrosis in organs with higher exposure to bacterial TLR ligands, such as the liver. Targeting TLR signaling at the ligand or receptor level may represent a novel strategy for the prevention of maladaptive wound healing and fibrosis in chronically injured organs. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Peter Huebener
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Robert F. Schwabe
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
83
|
McKleroy W, Lee TH, Atabai K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am J Physiol Lung Cell Mol Physiol 2013; 304:L709-21. [PMID: 23564511 PMCID: PMC3680761 DOI: 10.1152/ajplung.00418.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/26/2013] [Indexed: 12/23/2022] Open
Abstract
Pulmonary fibrosis is a vexing clinical problem with no proven therapeutic options. In the normal lung there is continuous collagen synthesis and collagen degradation, and these two processes are precisely balanced to maintain normal tissue architecture. With lung injury there is an increase in the rate of both collagen production and collagen degradation. The increase in collagen degradation is critical in preventing the formation of permanent scar tissue each time the lung is exposed to injury. In pulmonary fibrosis, collagen degradation does not keep pace with collagen production, resulting in extracellular accumulation of fibrillar collagen. Collagen degradation occurs through both extracellular and intracellular pathways. The extracellular pathway involves cleavage of collagen fibrils by proteolytic enzyme including the metalloproteinases. The less-well-described intracellular pathway involves binding and uptake of collagen fragments by fibroblasts and macrophages for lysosomal degradation. The relationship between these two pathways and their relevance to the development of fibrosis is complex. Fibrosis in the lung, liver, and skin has been associated with an impaired degradative environment. Much of the current scientific effort in fibrosis is focused on understanding the pathways that regulate increased collagen production. However, recent reports suggest an important role for collagen turnover and degradation in regulating the severity of tissue fibrosis. The objective of this review is to evaluate the roles of the extracellular and intracellular collagen degradation pathways in the development of fibrosis and to examine whether pulmonary fibrosis can be viewed as a disease of impaired matrix degradation rather than a disease of increased matrix production.
Collapse
Affiliation(s)
- William McKleroy
- Cardiovascular Research Institute, Lung Biology Center, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
84
|
Hasan SA, Eksteen B, Reid D, Paine HV, Alansary A, Johannson K, Gwozd C, Goring KAR, Vo T, Proud D, Kelly MM. Role of IL-17A and neutrophils in fibrosis in experimental hypersensitivity pneumonitis. J Allergy Clin Immunol 2013; 131:1663-73. [DOI: 10.1016/j.jaci.2013.01.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 11/15/2012] [Accepted: 01/15/2013] [Indexed: 11/25/2022]
|
85
|
Hartopo AB, Emoto N, Vignon-Zellweger N, Suzuki Y, Yagi K, Nakayama K, Hirata KI. Endothelin-converting enzyme-1 gene ablation attenuates pulmonary fibrosis via CGRP-cAMP/EPAC1 pathway. Am J Respir Cell Mol Biol 2013; 48:465-76. [PMID: 23306833 DOI: 10.1165/rcmb.2012-0354oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelin-1 (ET-1) has been shown to be involved in human pulmonary fibrosis. However, recent clinical trials targeting the ET-1 pathway with ET-1 receptor antagonists failed to achieve beneficial outcomes. Another strategy opposing the actions of ET-1 involves the inhibition of endothelin-converting enzyme-1 (ECE-1). We hypothesize that ECE-1 inhibition exerts beneficial effects on pulmonary fibrosis. Pulmonary fibrosis was induced by instilling bleomycin intratracheally into ECE-1 heterozygous knockout mice (ECE-1(+/-)) and their wild-type control mice (ECE-1(+/+)). Lung inflammation and fibrosis were assessed on Days 7, 14, and 28 after bleomycin instillation. The activity of ECE-1 and the concentrations of its related peptides, ET-1, bradykinin, atrial natriuretic peptide (ANP), and calcitonin gene-related peptide (CGRP), were determined. ECE-1(+/-) mice demonstrated less lung inflammation and limited fibrosis compared with control mice. ECE-1 activity was half-reduced in ECE-1(+/-) mice, and this activity also altered ET-1 and CGRP concentrations, but not concentrations of bradykinin and ANP. ET-1 concentrations were found to be lower in ECE-1(+/-) mice after the development of fibrosis, in contrast to the unaltered concentrations during inflammation. Reduced ECE-1 activity resulted in higher CGRP concentrations, which altered the pathological functionality of the lung, indicating the activation of the CGRP pathway involving cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP and cAMP/protein kinase A in ECE-1(+/-) mice. Bleomycin instillation on Day 14 induced the accumulation of M2 macrophages expressing CGRP receptors in ECE-1(+/-) mice. Our results emphasize that the in vivo ECE-1-mediated degradation of CGRP promotes the transition from lung inflammation to fibrosis. Further, our study identified M2 macrophages as the target cells of CGRP action during this transition.
Collapse
Affiliation(s)
- Anggoro Budi Hartopo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
86
|
Bhandary YP, Shetty SK, Marudamuthu AS, Ji HL, Neuenschwander PF, Boggaram V, Morris GF, Fu J, Idell S, Shetty S. Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:131-43. [PMID: 23665346 DOI: 10.1016/j.ajpath.2013.03.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 02/28/2013] [Accepted: 03/26/2013] [Indexed: 12/29/2022]
Abstract
Alveolar type II epithelial cell (ATII) apoptosis and proliferation of mesenchymal cells are the hallmarks of idiopathic pulmonary fibrosis, a devastating disease of unknown cause characterized by alveolar epithelial injury and progressive fibrosis. We used a mouse model of bleomycin (BLM)-induced lung injury to understand the involvement of p53-mediated changes in urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) levels in the regulation of alveolar epithelial injury. We found marked induction of p53 in ATII cells from mice exposed to BLM. Transgenic mice expressing transcriptionally inactive dominant negative p53 in ATII cells showed augmented apoptosis, whereas those deficient in p53 resisted BLM-induced ATII cell apoptosis. Inhibition of p53 transcription failed to suppress PAI-1 or induce uPA mRNA in BLM-treated ATII cells. ATII cells from mice with BLM injury showed augmented binding of p53 to uPA, uPA receptor (uPAR), and PAI-1 mRNA. p53-binding sequences from uPA, uPAR, and PAI-1 mRNA 3' untranslated regions neither interfered with p53 DNA binding activity nor p53-mediated promoter transactivation. However, increased expression of p53-binding sequences from uPA, uPAR, and PAI-1 mRNA 3' untranslated regions in ATII cells suppressed PAI-1 and induced uPA after BLM treatment, leading to inhibition of ATII cell apoptosis and pulmonary fibrosis. Our findings indicate that disruption of p53-fibrinolytic system cross talk may serve as a novel intervention strategy to prevent lung injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yashodhar P Bhandary
- Texas Lung Injury Institute, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas 75708, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Yee M, Buczynski BW, Lawrence BP, O'Reilly MA. Neonatal hyperoxia increases sensitivity of adult mice to bleomycin-induced lung fibrosis. Am J Respir Cell Mol Biol 2012; 48:258-66. [PMID: 23258231 DOI: 10.1165/rcmb.2012-0238oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental oxygen used to treat infants born prematurely constitutes a major risk factor for long-term deficits in lung function and host defense against respiratory infections. Likewise, neonatal oxygen exposure results in alveolar simplification in adult mice, and enhances leukocyte recruitment and fibrosis when adult mice are infected with a sublethal dose of influenza A virus. Because pulmonary fibrosis was not observed in infected adult mice exposed to room air as neonates, previous neonatal oxygen exposure may have reprogrammed how the adult lung responds to epithelial injury. By administering bleomycin to adult mice exposed to room air or hyperoxia as neonates, we tested the hypothesis that neonatal hyperoxia enhances fibrosis when the epithelium is injured by direct fibrotic stimulus. Increased sensitivity to bleomycin-induced lung fibrosis was observed in adult mice exposed to neonatal hyperoxia, and was associated with increased numbers of leukocytes and an accumulation of active transforming growth factor (TGF)-β1 in the lung. Fate mapping of the respiratory epithelium revealed that the epithelial-mesenchymal transition was not a significant source of fibroblasts in room air-exposed or oxygen-exposed mice treated with bleomycin. Instead, the treatment of mice with anti-Gr-1 antibody that depletes neutrophils and myeloid-derived suppressor cells reduced the early activation of TGF-β1 and attenuated hyperoxia-enhanced fibrosis. Because bleomycin and influenza A virus both cause epithelial injury, understanding how neonatal hyperoxia reprograms the epithelial response to these two different injurious agents could lead to new therapeutic opportunities for treating lung diseases attributed to prematurity.
Collapse
Affiliation(s)
- Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
88
|
McGrath EE, Lawrie A, Marriott HM, Mercer P, Cross SS, Arnold N, Singleton V, Thompson AAR, Walmsley SR, Renshaw SA, Sabroe I, Chambers RC, Dockrell DH, Whyte MKB. Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax 2012; 67:796-803. [PMID: 22496351 PMCID: PMC3426075 DOI: 10.1136/thoraxjnl-2011-200863] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The death receptor ligand tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) shows considerable clinical promise as a therapeutic agent. TRAIL induces leukocyte apoptosis, reducing acute inflammatory responses in the lung. It is not known whether TRAIL modifies chronic lung injury or whether TRAIL has a role in human idiopathic pulmonary fibrosis (IPF). We therefore explored the capacity of TRAIL to modify chronic inflammatory lung injury and studied TRAIL expression in patients with IPF. METHODS TRAIL(-/-) and wild-type mice were instilled with bleomycin and inflammation assessed at various time points by bronchoalveolar lavage and histology. Collagen deposition was measured by tissue hydroxyproline content. TRAIL expression in human IPF lung samples was assessed by immunohistochemistry and peripheral blood TRAIL measured by ELISA. RESULTS TRAIL(-/-) mice had an exaggerated delayed inflammatory response to bleomycin, with increased neutrophil numbers (mean 3.19±0.8 wild type vs 11.5±5.4×10(4) TRAIL(-/-), p<0.0001), reduced neutrophil apoptosis (5.42±1.6% wild type vs 2.47±0.5% TRAIL(-/-), p=0.0003) and increased collagen (3.45±0.2 wild type vs 5.8±1.3 mg TRAIL(-/-), p=0.005). Immunohistochemical analysis showed induction of TRAIL in bleomycin-treated wild-type mice. Patients with IPF demonstrated lower levels of TRAIL expression than in control lung biopsies and their serum levels of TRAIL were significantly lower compared with matched controls (38.1±9.6 controls vs 32.3±7.2 pg/ml patients with IPF, p=0.002). CONCLUSION These data suggest TRAIL may exert beneficial, anti-inflammatory actions in chronic pulmonary inflammation in murine models and that these mechanisms may be compromised in human IPF.
Collapse
Affiliation(s)
- Emmet E McGrath
- Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Amnion epithelial cells as a candidate therapy for acute and chronic lung injury. Stem Cells Int 2012; 2012:709763. [PMID: 22577395 PMCID: PMC3345254 DOI: 10.1155/2012/709763] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 02/07/2023] Open
Abstract
Acute and chronic lung injury represents a major and growing global burden of disease. For many of these lung diseases, the damage is irreparable, exhausting the host's ability to regenerate new lung, and current therapies are simply supportive rather than restorative. Cell-based therapies offer the promise of tissue regeneration for many organs. In this paper, we examine the potential application of amnion epithelial cells, derived from the term placenta, to lung regeneration. We discuss their unique properties of plasticity and immunomodulation, reviewing the experimental evidence that amnion epithelial cells can prevent and repair lung injury, offering the potential to be applied to both neonatal, childhood, and adult lung disease. It is amazing to suggest that the placenta may offer renewed life after birth as well as securing new life before.
Collapse
|
90
|
Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, Okamoto M, Ahlfeld SK, Ohshima K, Kato S, Toda S, Sagara H, Aizawa H, Hoshino T, Conway SJ, Hayashi S, Izuhara K. Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 2012; 46:677-86. [PMID: 22246863 DOI: 10.1165/rcmb.2011-0115oc] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal form of interstitial lung disease (ILD). The precise molecular mechanisms of IPF remain poorly understood. However, analyses of mice receiving bleomycin (BLM) as a model of IPF established the importance of preceding inflammation for the formation of fibrosis. Periostin is a recently characterized matricellular protein involved in modulating cell functions. We recently found that periostin is highly expressed in the lung tissue of patients with IPF, suggesting that it may play a role in the process of pulmonary fibrosis. To explore this possibility, we administered BLM to periostin-deficient mice, and they subsequently showed a reduction of pulmonary fibrosis. We next determined whether this result was caused by a decrease in the preceding recruitment of neutrophils and macrophages in the lungs because of the lower production of chemokines and proinflammatory cytokines. We performed an in vitro analysis of chemokine production in lung fibroblasts, which indicated that periostin-deficient fibroblasts produced few or no chemokines in response to TNF-α compared with control samples, at least partly explaining the lack of inflammatory response and, therefore, fibrosis after BLM administration to periostin-deficient mice. In addition, we confirmed that periostin is highly expressed in the lung tissue of chemotherapeutic-agent-induced ILD as well as of patients with IPF. Taking these results together, we conclude that periostin plays a unique role as an inducer of chemokines to recruit neutrophils and macrophages important in the process of pulmonary fibrosis in BLM-administered model mice. Our results suggest a therapeutic potential for periostin in IPF and drug-induced ILD.
Collapse
Affiliation(s)
- Masaru Uchida
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Liver fibrosis is the result of the entire organism responding to a chronic injury. Every cell type in the liver contributes to the fibrosis. This paper first discusses key intracellular signaling pathways that are induced during liver fibrosis. The paper then examines the effects of these signaling pathways on the major cell types in the liver. This will provide insights into the molecular pathophysiology of liver fibrosis and should identify therapeutic targets.
Collapse
|
92
|
Baron RM, Choi AJS, Owen CA, Choi AMK. Genetically manipulated mouse models of lung disease: potential and pitfalls. Am J Physiol Lung Cell Mol Physiol 2011; 302:L485-97. [PMID: 22198907 DOI: 10.1152/ajplung.00085.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
93
|
Fujino N, Kubo H, Suzuki T, He M, Suzuki T, Yamada M, Takahashi T, Ota C, Yamaya M. Administration of a specific inhibitor of neutrophil elastase attenuates pulmonary fibrosis after acute lung injury in mice. Exp Lung Res 2011; 38:28-36. [PMID: 22148910 DOI: 10.3109/01902148.2011.633306] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Excess production of neutrophil elastase contributes to the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). However, the role of neutrophil elastase in the repair process following ALI/ARDS is not well understood. The objective of this study was to evaluate the effect of neutrophil elastase on the process of tissue repair after acute lung injury in mice. C57BL/6 mice were exposed to sublethal irradiation followed by intranasal instillation of lipopolysaccharide (LPS) to generate a model of impaired lung repair. The authors assessed the histopathology, lung mechanics, and total lung collagen content 7 days after irradiation and/or LPS-induced injury with daily administration of a neutrophil elastase inhibitor. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) was also evaluated. In addition, the concentration of activated transforming growth factor (TGF)-β1 in the BALF and the expression of phospho-SMAD2/3 were investigated. Irradiated and LPS-treated mice developed pulmonary fibrosis after injury. The neutrophil elastase inhibitor significantly decreased the collagen deposition in lung parenchyma and improved the static lung compliance of injured lungs. Administration of the neutrophil elastase inhibitor also decreased the accumulation of neutrophils in the BALF, TGF-β1 activation, and expression of phospho-SMAD2/3. The authors conclude that inhibiting neutrophil elastase protects against the development of lung fibrosis after acute injury. In addition, these data suggest that this neutrophil elastase inhibitor has therapeutic potential for the fibroproliferative phase of ALI/ARDS.
Collapse
Affiliation(s)
- Naoya Fujino
- Department of Advanced Preventive Medicine for Infectious Disease, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Oh K, Park HB, Byoun OJ, Shin DM, Jeong EM, Kim YW, Kim YS, Melino G, Kim IG, Lee DS. Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice. ACTA ACUST UNITED AC 2011; 208:1707-19. [PMID: 21746810 PMCID: PMC3149214 DOI: 10.1084/jem.20101457] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inhibition of transglutaminase 2 reduces bleomycin-induced epithelial cell release of interleukin 6 in vitro and pulmonary inflammation and fibrosis in vivo. Pulmonary fibrosis is a potentially life-threatening disease that may be caused by overt or asymptomatic inflammatory responses. However, the precise mechanisms by which tissue injury is translated into inflammation and consequent fibrosis remain to be established. Here, we show that in a lung injury model, bleomycin induced the secretion of IL-6 by epithelial cells in a transglutaminase 2 (TG2)–dependent manner. This response represents a key step in the differentiation of IL-17–producing T cells and subsequent inflammatory amplification in the lung. The essential role of epithelial cells, but not inflammatory cells, TG2 was confirmed in bone marrow chimeras; chimeras made in TG2-deficient recipients showed reduced inflammation and fibrosis, compared with those in wild-type mice, regardless of the bone marrow cell phenotype. Epithelial TG2 thus appears to be a critical inducer of inflammation after noninfectious pulmonary injury. We further demonstrated that fibroblast-derived TG2, acting downstream of transforming growth factor-β, is also important in the effector phase of fibrogenesis. Therefore, TG2 represents an interesting potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Keunhee Oh
- Laboratory of Immunology, Department of Biomedical Sciences / Transplantation Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
This article reviews the clinical background and significance of selected biomarkers that have been studied in relation to systemic sclerosis, or scleroderma, a devastating connective tissue disease whose morbidity and mortality are often related to pulmonary complications. Interstitial lung disease is the most common pulmonary manifestation in systemic sclerosis, and the search for a noninvasive biomarker to assess and monitor patients and their lung disease is a nascent and expending field of study. In this article, we examine the background and significance of a variety of selected biomarkers and assess their role in relation to systemic sclerosis–related interstitial lung disease.
Collapse
|
96
|
Barnes TC, Cross A, Anderson ME, Edwards SW, Moots RJ. Relative α₁-anti-trypsin deficiency in systemic sclerosis. Rheumatology (Oxford) 2011; 50:1373-8. [PMID: 21454304 PMCID: PMC3133481 DOI: 10.1093/rheumatology/ker123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective. Neutrophil elastase is secreted by neutrophils during activation and circulates in the plasma where it can play a role in inflammation and fibrosis. This study examines the role of neutrophil elastase in SSc, a systemic CTD that is typified by vascular dysfunction, tissue fibrosis and inflammation. Methods. Serum neutrophil elastase and α1-anti-trypsin concentrations were assessed in SSc patients and healthy controls by ELISA. Serum neutrophil elastase activity was assessed by the elastase-dependent conversion of methoxy-succinyl-alanyl-alanyl-prolyl-valyl-p-nitroanilide to p-nitroanilide using a colourimetric assay. Elastase concentration and activity were correlated with clinical disease features. Results. Serum neutrophil elastase concentration and activity were equivalent in patients and controls; however, in SSc serum, there was an increase in elastase activity for each unit of elastase concentration (P = 0.03). This was due to a decrease in serum α1-anti-trypsin concentrations (P = 0.04). Serum elastase concentration (P = 0.03) and activity (P = 0.02) were significantly lower in RNP-positive patients and serum elastase concentrations were lower in ANA-positive patients (P = 0.003). Conclusions. Relative deficiency in serum α1-anti-trypsin concentrations in SSc could have important and pathogenically relevant effects since elastase has pro-inflammatory and pro-fibrotic roles. Elastase inhibitors are available in clinical practice and could represent potential therapeutic options in SSc.
Collapse
Affiliation(s)
- Theresa C. Barnes
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Andy Cross
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Marina E. Anderson
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steven W. Edwards
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robert J. Moots
- Department of Rheumatology, Institute of Chronic Disease and Ageing, Clinical Sciences Centre, Aintree University Hospital and Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
97
|
Coward WR, Saini G, Jenkins G. The pathogenesis of idiopathic pulmonary fibrosis. Ther Adv Respir Dis 2010; 4:367-88. [PMID: 20952439 DOI: 10.1177/1753465810379801] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease with an appalling prognosis. The failure of anti-inflammatory therapies coupled with the observation that deranged epithelium overlies proliferative myofibroblasts to form the fibroblastic focus has lead to the emerging concept that IPF is a disease of deregulated epithelial-mesenchymal crosstalk. IPF is triggered by an as yet unidentified alveolar injury that leads to activation of transforming growth factor-β (TGF-β) and alveolar basement membrane disruption. In the presence of persisting injurious pathways, or disrupted repair pathways, activated TGF-β can lead to enhanced epithelial apoptosis and epithelial-to-mesenchymal transition (EMT) as well as fibroblast, and fibrocyte, transformation into myofibroblasts which are resistant to apoptosis. The resulting deposition of excess disrupted matrix by these myofibroblasts leads to the development of IPF.
Collapse
Affiliation(s)
- William R Coward
- Nottingham Respiratory Biomedical Research Unit, Clinical Sciences Building, Nottingham City Campus, Nottingham, UK
| | | | | |
Collapse
|
98
|
Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol 2010; 42:635-43. [PMID: 20395631 DOI: 10.1165/rcmb.2010-0095rt] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation.
Collapse
|
99
|
Tanaka KI, Ishihara T, Azuma A, Kudoh S, Ebina M, Nukiwa T, Sugiyama Y, Tasaka Y, Namba T, Ishihara T, Sato K, Mizushima Y, Mizushima T. Therapeutic effect of lecithinized superoxide dismutase on bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 298:L348-60. [PMID: 20034962 DOI: 10.1152/ajplung.00289.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to involve inflammatory infiltration of leukocytes, lung injury induced by reactive oxygen species (ROS), in particular superoxide anion, and fibrosis (collagen deposition). No treatment has been shown to improve definitively the prognosis for IPF patients. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide anion to hydrogen peroxide, which is subsequently detoxified by catalase. Lecithinized SOD (PC-SOD) has overcome clinical limitations of SOD, including low tissue affinity and low stability in plasma. In this study, we examined the effect of PC-SOD on bleomycin-induced pulmonary fibrosis. Severity of the bleomycin-induced fibrosis in mice was assessed by various methods, including determination of hydroxyproline levels in lung tissue. Intravenous administration of PC-SOD suppressed the bleomycin-induced increase in the number of leukocytes in bronchoalveolar lavage fluid. Bleomycin-induced collagen deposition and increased hydroxyproline levels in the lung were also suppressed in animals treated with PC-SOD, suggesting that PC-SOD suppresses bleomycin-induced pulmonary fibrosis. The dose-response profile of PC-SOD was bell-shaped, but concurrent administration of catalase restored the ameliorative effect at high doses of PC-SOD. Intratracheal administration or inhalation of PC-SOD also attenuated the bleomycin-induced inflammatory response and fibrosis. The bell-shaped dose-response profile of PC-SOD was not observed for these routes of administration. We consider that, compared with intravenous administration, inhalation of PC-SOD may be a more therapeutically beneficial route of administration due to the higher safety and quality of life of the patient treated with this drug.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Song JS, Kang CM, Rhee CK, Yoon HK, Kim YK, Moon HS, Park SH. EFFECTS OF ELASTASE INHIBITOR ON THE EPITHELIAL CELL APOPTOSIS IN BLEOMYCIN-INDUCED PULMONARY FIBROSIS. Exp Lung Res 2009; 35:817-29. [DOI: 10.3109/01902140902912527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|