51
|
Pławińska-Czarnak J, Wódz K, Strzałkowska Z, Żychska M, Nowak T, Kwieciński A, Kwieciński P, Bielecki W, Rodo A, Rzewuska M, Kłosińska D, Anusz K, Orłowska B. Comparison of automatic methods MALDI-TOF, VITEK2 and manual methods for the identification of intestinal microbial communities on the example of samples from alpacas ( Vicugna pacos). J Vet Res 2023; 67:361-372. [PMID: 37786852 PMCID: PMC10541665 DOI: 10.2478/jvetres-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction Universally, in microbiological diagnostics the detection of live bacteria is essential. Rapid identification of pathogens enables appropriate remedial measures to be taken. The identification of many bacteria simultaneously facilitates the determination of the characteristics of the accompanying microbiota and/or the microbiological complexity of a given environment. Material and Methods The effectiveness of the VITEK2 Compact automated microbial identification system and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), analytical profile index (API) and Remel RapID tests were compared in identification of bacteria isolated from the alpaca gastrointestinal tract. Results Most isolates were Gram-positive, such as Bacillus cereus, Bacillus flexus, Bacillus licheniformis, Bacillus pumilus and Bacillus subtilis; Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae and Enterococcus casseliflavus; Staphylococcus aureus, Staphylococcus equorum, Staphylococcus lentus, Staphylococcus pseudintermedius and Staphylococcus sciuri; Paenibacillus amylolyticus; Cellulosimicrobium cellulans; Leuconostoc mesenteroides; Clostridium perfringens; Corynebacterium stationis, Corynebacterium xerosis, and Corynebacterium diphtheriae (the last only isolated manually by API Coryne and the VITEK2 system and Corynebacteria (CBC) card). Corynebacterium diphtheriae was misidentified by MALDI-TOF MS as Candida lipolytica (currently Yarrowia lipolytica). Gram-positive and Gram-variable Micrococcus luteus were also isolated. Gram-negative Enterobacter cloacae, Enterobacter gergoviae, Enterobacter hormaechei and Enterobacter ludwigii; E. coli; Klebsiella pneumoniae subsp. pneumoniae; Citrobacter braakii and Citrobacter freundii; Serratia liquefaciens, Serratia odorifera and Serratia marcescens; Morganella morganii subsp. morganii; Providencia alcalifaciens; Pseudomonas aeruginosa; Stenotrophomonas maltophilia; Moraxella osloensis; and Ochrobactrum intermedium were also found. The yeasts Candida albicans, Candida haemulonii and Candida ciferrii were also present. Conclusion MALDI-TOF MS enabled the identification of pathogens and opportunistic pathogens from the alpaca gut which may represent a high risk to human and animal health.
Collapse
Affiliation(s)
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | | | - Monika Żychska
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warsaw, Poland
| | - Tomasz Nowak
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Adam Kwieciński
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Piotr Kwieciński
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Anna Rodo
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787Warsaw, Poland
| | - Daria Kłosińska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Warsaw, Poland
| | - Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Warsaw, Poland
| |
Collapse
|
52
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
53
|
Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP, Colella M, Topi S, Godoy FG, D’Addona A. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood) 2023; 248:1288-1301. [PMID: 37688509 PMCID: PMC10625343 DOI: 10.1177/15353702231187645] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
The evolution of medical knowledge about oral microbiota has increased awareness of its important role for the entire human body health. A wide range of microbial species colonizing the oral cavity interact both with each other and with their host through complex pathways. Usually, these interactions lead to a harmonious coexistence (i.e. eubiosis). However, several factors - including diet, poor oral hygiene, tobacco smoking, and certain medications, among others - can disrupt this weak homeostatic balance (i.e. dysbiosis) with potential implications on both oral (i.e. development of caries and periodontal disease) and systemic health. This article is thus aimed at providing an overview on the importance of oral microbiota in mediating several physiological and pathological conditions affecting human health. In this context, strategies based on oral hygiene and diet as well as the role of probiotics supplementation are discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Pier Carmine Passarelli
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Ioannis Alexandros Charitos
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Bari 70124, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia 71122, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Franklin Garcia Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Antonio D’Addona
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
54
|
Taha SFM, Bhassu S, Omar H, Raju CS, Rajamanikam A, Govind SKP, Mohamad SB. Gut microbiota of healthy Asians and their discriminative features revealed by metagenomics approach. 3 Biotech 2023; 13:275. [PMID: 37457869 PMCID: PMC10338424 DOI: 10.1007/s13205-023-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
This study is conducted to identify the microbial architecture and its functional capacity in the Asian population via the whole metagenomics approach. A brief comparison of the Asian countries namely Malaysia, India, China, and Thailand, was conducted, giving a total of 916 taxa under observation. Results show a close representation of the taxonomic diversity in the gut microbiota of Malaysia, India, and China, where Bacteroidetes, Firmicutes, and Actinobacteria were more predominant compared to other phyla. Mainly due to the multi-racial population in Malaysia, which also consists of Malays, Indian, and Chinese, the population tend to share similar dietary preferences, culture, and lifestyle, which are major influences that shapes the structure of the gut microbiota. Moreover, Thailand showed a more distinct diversity in the gut microbiota which was highly dominated by Firmicutes. Meanwhile, functional profiles show 1034 gene families that are common between the four countries. The Malaysia samples are having the most unique gene families with a total of 67,517 gene families, and 51 unique KEGG Orthologs, mainly dominated by the metabolic pathways, followed by microbial metabolism in diverse environments. In conclusion, this study provides some general overview on the structure of the Asian gut microbiota, with some additional highlights on the Malaysian population. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03671-3.
Collapse
Affiliation(s)
- Siti Fatimah Mohd Taha
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hasmahzaiti Omar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Museum of Zoology (Block J14), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chandramati Samudi Raju
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arutchelvan Rajamanikam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suresh Kumar P. Govind
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
55
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
56
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
57
|
Jia S, Li X, Du Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front Cell Infect Microbiol 2023; 13:1209381. [PMID: 37520442 PMCID: PMC10373507 DOI: 10.3389/fcimb.2023.1209381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. P. gingivalis expresses a variety of virulence factors that disrupt innate and adaptive immunity, allowing P. gingivalis to survive and multiply in the host and destroy periodontal tissue. In addition to periodontal disease, P.gingivalis is also associated with systemic diseases, of which insulin resistance is an important pathological basis. P. gingivalis causes a systemic inflammatory response, disrupts insulin signaling pathways, induces pancreatic β-cell hypofunction and reduced numbers, and causes decreased insulin sensitivity leading to insulin resistance (IR). In this paper, we systematically review the studies on the mechanism of insulin resistance induced by P. gingivalis, discuss the association between P. gingivalis and systemic diseases based on insulin resistance, and finally propose relevant therapeutic approaches. Overall, through a systematic review of the mechanisms related to systemic diseases caused by P. gingivalis through insulin resistance, we hope to provide new insights for future basic research and clinical interventions for related systemic diseases.
Collapse
Affiliation(s)
- Shuxian Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
58
|
Smith KB, Murack M, Ismail N. The sex-dependent and enduring impact of pubertal stress on health and disease. Brain Res Bull 2023; 200:110701. [PMID: 37422090 DOI: 10.1016/j.brainresbull.2023.110701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Illness is often predicated long before the manifestation of its symptoms. Exposure to stressful experiences particularly during critical periods of development, such as puberty and adolescence, can induce various physical and mental illnesses. Puberty is a critical period of maturation for neuroendocrine systems, such as the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Exposure to adverse experiences during puberty can impede normal brain reorganizing and remodelling and result in enduring consequences on brain functioning and behaviour. Stress responsivity differs between the sexes during the pubertal period. This sex difference is partly due to differences in circulating sex hormones between males and females, impacting stress and immune responses differently. The effects of stress during puberty on physical and mental health remains under-examined. The purpose of this review is to summarize the most recent findings pertaining to age and sex differences in HPA axis, HPG axis, and immune system development, and describe how disruption in the functioning of these systems can propagate disease. Lastly, we delve into the notable neuroimmune contributions, sex differences, and the mediating role of the gut microbiome on stress and health outcomes. Understanding the enduring consequences of adverse experiences during puberty on physical and mental health will allow a greater proficiency in treating and preventing stress-related diseases early in development.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada; LIFE Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
59
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
60
|
Banzragch M, Sanli K, Stensvold CR, Kurt O, Ari S. Metabarcoding of colonic cleansing fluid reveals unique bacterial members of mucosal microbiota associated with Inflammatory Bowel Disease. Scand J Gastroenterol 2023; 58:1253-1263. [PMID: 37337895 DOI: 10.1080/00365521.2023.2223708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) is a group of chronic idiopathic inflammatory diseases of the gastrointestinal (GI) tract associated with the dysbiosis of gut microbiota. Metabarcoding-based profiling of the gut microbiota of IBD patients is generally based on the stool samples collected from individual patients which rarely represent the mucosa-associated microbiota. The ideal sampling strategy for routine monitoring of the mucosal component of IBD has yet to be determined. METHODS We hereby compare the microbiota composition of the colonic cleansing fluid (CCF) collected during colonoscopy with stool samples from IBD patients. The relationship between IBD and gut microbiota was revealed through the application of the 16S rRNA amplicon sequencing-based metabarcoding approach. CCF and stool samples were collected from IBD patients with Crohn's disease and ulcerative colitis. RESULTS The present study shows significant differences in the microbial composition of CCF samples, presumably indicating changes in the mucosal microbiota of IBD patients as compared to the control group. Short-chain fatty acid-producing bacteria under the family Lachnospiraceae, the actinobacterial genus Bifidobacterium, the proteobacterial Sutterella and Raoultella are found to contribute to the microbial dysbiosis of the mucosal flora in IBD patients. CONCLUSIONS CCF microbiota has the capacity to distinguish IBD patients from healthy controls and, thus, may constitute an alternative analysis strategy for the early diagnosis and disease progression in IBD biomarker research.
Collapse
Affiliation(s)
| | - Kemal Sanli
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Life Sciences, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institute, Copenhagen, Denmark
| | - Ozgur Kurt
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sule Ari
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
61
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
62
|
Flores-Balderas X, Peña-Peña M, Rada KM, Alvarez-Alvarez YQ, Guzmán-Martín CA, Sánchez-Gloria JL, Huang F, Ruiz-Ojeda D, Morán-Ramos S, Springall R, Sánchez-Muñoz F. Beneficial Effects of Plant-Based Diets on Skin Health and Inflammatory Skin Diseases. Nutrients 2023; 15:2842. [PMID: 37447169 DOI: 10.3390/nu15132842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The human skin is a crucial organ that protects the organism from the outer environment. Skin integrity and health depend on both extrinsic and intrinsic factors. Intrinsic factors such as aging and genetic background contribute to weakened skin and disease susceptibility. Meanwhile, extrinsic factors including UV radiation, pollution, smoking, humidity, and poor diet also affect skin health and disease. On the other hand, healthy dietary patterns such as plant-based diets have gained popularity as a complementary therapy for skin health. A plant-based diet is defined as all diets based on plant foods, including an abundance of vegetables, fruits, beans, lentils, legumes, nuts, seeds, fungi, and whole grains, with limited or no animal products or processed foods. However, some authors also exclude or limit processed foods in the definition. Recent research has shown that these diets have beneficial effects on inflammatory skin diseases. This review explored the beneficial effects of plant-based diets on inflammatory skin diseases and plant-based functional foods on healthy skin. In conclusion, plant-based diets and plant-based functional foods may have beneficial effects on skin health through the gut microbiome.
Collapse
Affiliation(s)
- Ximena Flores-Balderas
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Mario Peña-Peña
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karla M Rada
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Yamnia Q Alvarez-Alvarez
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Departamento de Fisiopatología Cardiorrenal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Carlos A Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José L Sánchez-Gloria
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Dayanara Ruiz-Ojeda
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Sofía Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Rashidi Springall
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
63
|
Pecyna P, Gabryel M, Mankowska-Wierzbicka D, Nowak-Malczewska DM, Jaskiewicz K, Jaworska MM, Tomczak H, Rydzanicz M, Ploski R, Grzymislawski M, Dobrowolska A, Gajecka M. Gender Influences Gut Microbiota among Patients with Irritable Bowel Syndrome. Int J Mol Sci 2023; 24:10424. [PMID: 37445604 DOI: 10.3390/ijms241310424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disease that affects approximately 11% of the general population. The gut microbiota, among other known factors, plays a substantial role in its pathogenesis. The study aimed to characterize the gut microbiota differences between patients with IBS and unaffected individuals, taking into account the gender aspect of the patients and the types of IBS determined on the basis of the Rome IV Criteria, the IBS-C, IBS-D, IBS-M, and IBS-U. In total, 121 patients with IBS and 70 unaffected individuals participated in the study; the derived stool samples were subjected to 16S rRNA amplicon sequencing. The gut microbiota of patients with IBS was found to be more diverse in comparison to unaffected individuals, and the differences were observed primarily among Clostridiales, Mogibacteriaceae, Synergistaceae, Coriobacteriaceae, Blautia spp., and Shuttleworthia spp., depending on the study subgroup and patient gender. There was higher differentiation of females' gut microbiota compared to males, regardless of the disease status. No correlation between the composition of the gut microbiota and the type of IBS was found. Patients with IBS were characterized by more diverse gut microbiota compared to unaffected individuals. The gender criterion should be considered in the characterization of the gut microbiota. The type of IBS did not determine the identified differences in gut microbiota.
Collapse
Affiliation(s)
- Paulina Pecyna
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dorota Mankowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dorota M Nowak-Malczewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | - Marcelina M Jaworska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Hanna Tomczak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Central Microbiology Laboratory, H. Swiecicki Clinical Hospital at the Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Malgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Marian Grzymislawski
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| |
Collapse
|
64
|
Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome; general aspects and emerging trends. Food Chem 2023; 411:135478. [PMID: 36696721 DOI: 10.1016/j.foodchem.2023.135478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Potential effects of metabiotics (probiotics effector molecules or signaling factors), pharmabiotics (pro-functional metabolites produced by gut microbiota (GMB)) and postbiotics (multifunctional metabolites and structural compounds of food-grade microorganisms) on GMB have been rarely reviewed. These multifunctional components have several promising capabilities for prevention, alleviation and treatment of some diseases or disorders. Correlations between these essential biotics and GMB are also very interesting and important in human health and nutrition. Furthermore, these natural bioactives are involved in modulation of the immune function, control of metabolic dysbiosis and regulation of the signaling pathways. This review discusses the potential of meta/pharma/post-biotics as new classes of pharmaceutical agents and their effective mechanisms associated with GMB-host cell to cell communications with therapeutic benefits which are important in balance and the integrity of the host microbiome. In addition, cutting-edge findings about bioinformatics /metabolomics analyses related to GMB and these essential biotics are reviewed.
Collapse
|
65
|
Erinle TJ, Boulianne M, Miar Y, Scales R, Adewole D. Red osier dogwood and its use in animal nutrition: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:64-77. [PMID: 37009073 PMCID: PMC10060110 DOI: 10.1016/j.aninu.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
As the human population increases globally, the food animal industry has not been spared from the monumental demand for edible animal products, particularly meat. This has necessitated the simultaneous expansion of the productivity of the animal sector to meet the ever-growing human needs. Although antibiotics have been used in food animal production with commendable positive impacts on their growth performance, their sole contributive factor to the increasing incidence of antimicrobial resistance has ushered the strict restrictions placed on their use in the animal sector. This has handed a setback to both animals and farmers; thus, the intense push for a more sustainable antibiotic alternative for use in animal production. The use of plants with concentrated phytogenic compounds has gained much interest due to their beneficial bioactivities, including antioxidant and selective antimicrobial. While the reported beneficial activities of phytogenic additives on animals vary due to their varying total polyphenol concentrations (TPC), red osier dogwood (ROD) plant materials boast of high TPC with excellent antioxidant prowess and growth improvement capacities compared to some plant extracts commonly used in research. However, its adoption in research and commercial scale is still low. Thus, the present review aims to provide concise information on the dietary potential of ROD plant materials in animal feeding.
Collapse
Affiliation(s)
- Taiwo Joseph Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe QC, J2S 2M2, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Robert Scales
- Red Dog Enterprises Ltd., Swan River MB, R0L 1Z0, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| |
Collapse
|
66
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|
67
|
Kim R. Advanced Organotypic In Vitro Model Systems for Host-Microbial Coculture. BIOCHIP JOURNAL 2023; 17:1-27. [PMID: 37363268 PMCID: PMC10201494 DOI: 10.1007/s13206-023-00103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
68
|
Rohrer SD, Jiménez-Uzcátegui G, Parker PG, Chubiz LM. Composition and function of the Galapagos penguin gut microbiome vary with age, location, and a putative bacterial pathogen. Sci Rep 2023; 13:5358. [PMID: 37005428 PMCID: PMC10067942 DOI: 10.1038/s41598-023-31826-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Microbial colonization plays a direct role in host health. Understanding the ecology of the resident microbial community for a given host species is thus an important step for detecting population vulnerabilities like disease. However, the idea of integrating microbiome research into conservation is still relatively new, and wild birds have received less attention in this field than mammals or domesticated animals. Here we examine the composition and function of the gut microbiome of the endangered Galapagos penguin (Spheniscus mendiculus) with the goals of characterizing the normal microbial community and resistome, identifying likely pathogens, and testing hypotheses of structuring forces for this community based on demographics, location, and infection status. We collected fecal samples from wild penguins in 2018 and performed 16S rRNA gene sequencing and whole genome sequencing (WGS) on extracted DNA. 16S sequencing revealed that the bacterial phyla Fusobacteria, Epsilonbacteraeota, Firmicutes, and Proteobacteria dominate the community. Functional pathways were computed from WGS data, showing genetic functional potential primarily focused on metabolism-amino acid metabolism, carbohydrate metabolism, and energy metabolism are the most well-represented functional groups. WGS samples were each screened for antimicrobial resistance, characterizing a resistome made up of nine antibiotic resistance genes. Samples were screened for potential enteric pathogens using virulence factors as indicators; Clostridium perfringens was revealed as a likely pathogen. Overall, three factors appear to be shaping the alpha and beta diversity of the microbial community: penguin developmental stage, sampling location, and C. perfringens. We found that juvenile penguins have significantly lower alpha diversity than adults based on three metrics, as well as significantly different beta diversity. Location effects are minimal, but one site has significantly lower Shannon diversity than the other primary sites. Finally, when samples were grouped by C. perfringens virulence factors, we found dramatic changes in beta diversity based on operational taxonomic units, protein families, and functional pathways. This study provides a baseline microbiome for an endangered species, implicates both penguin age and the presence of a potential bacterial pathogen as primary factors associated with microbial community variance, and reveals widespread antibiotic resistance genes across the population.
Collapse
Affiliation(s)
- Sage D Rohrer
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA.
| | | | - Patricia G Parker
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA
- WildCare Institute, Saint Louis Zoo, One Government Drive, St. Louis, MO, 63110, USA
| | - Lon M Chubiz
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA
| |
Collapse
|
69
|
Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmun Rev 2023; 22:103313. [PMID: 36918089 DOI: 10.1016/j.autrev.2023.103313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Dysregulated immune system with a failure to recognize self from non-self-antigens is one of the common pathogeneses seen in autoimmune diseases. The complex interplay of genetic and environmental factors is important for the occurrence and development of the disease. Among the environmental factors, disturbed gut microbiota (gut dysbiosis) has recently attracted particular attention, especially with advancement in human microbiome research. Although the alterations in microbiota have been seen in various autoimmune diseases, including those of nervous system, there is paucity of information on neuromuscular system diseases. Myasthenia gravis (MG) is one such rare autoimmune disease of neuromuscular junction, and is caused by generation of pathogenic autoantibodies to components of the postsynaptic muscle endplate. In the recent years, accumulating evidences have endorsed the key role of host microbiota, particularly those of gut, in the pathogenesis of MG. Differential microbiota composition, characterized by increased abundance of Fusobacteria, Bacteroidetes, and Proteobacteria, and decreased abundance of Actinobacteria and Firmicutes, has been seen in MG patients in comparison to healthy subjects. Disturbance of microbiota composition, particularly reduced ratio of Firmicutes/Bacteroidetes, alter the gut permeability, subsequently triggering the immunological response. Resultant reduction in levels of short chain fatty acids (SCFAs) is another factor contributing to the immunological response in MG patients. Modulation of gut microbiota via intervention of probiotics, prebiotics, synbiotics, postbiotics (metabiotics), and fecal microbiota transplantation (FMT) is considered to be the futuristic approach for the management of MG. This review summarizes the role of gut microbiota and their metabolites (postbiotics) in the progression of MG. Also, various bacteriotherapeutic approaches involving gut microbiota are discussed for the prevention of MG progression.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222, Chengdu, Sichuan, China; iGlobal Research and Publishing Foundation, New Delhi, India
| |
Collapse
|
70
|
Ray S, Sil S, Kannan M, Periyasamy P, Buch S. Role of the gut-brain axis in HIV and drug abuse-mediated neuroinflammation. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11092. [PMID: 38389809 PMCID: PMC10880759 DOI: 10.3389/adar.2023.11092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 02/24/2024]
Abstract
Drug abuse and related disorders are a global public health crisis affecting millions, but to date, limited treatment options are available. Abused drugs include but are not limited to opioids, cocaine, nicotine, methamphetamine, and alcohol. Drug abuse and human immunodeficiency virus-1/acquired immune deficiency syndrome (HIV-1/AIDS) are inextricably linked. Extensive research has been done to understand the effect of prolonged drug use on neuronal signaling networks and gut microbiota. Recently, there has been rising interest in exploring the interactions between the central nervous system and the gut microbiome. This review summarizes the existing research that points toward the potential role of the gut microbiome in the pathogenesis of HIV-1-linked drug abuse and subsequent neuroinflammation and neurodegenerative disorders. Preclinical data about gut dysbiosis as a consequence of drug abuse in the context of HIV-1 has been discussed in detail, along with its implications in various neurodegenerative disorders. Understanding this interplay will help elucidate the etiology and progression of drug abuse-induced neurodegenerative disorders. This will consequently be beneficial in developing possible interventions and therapeutic options for these drug abuse-related disorders.
Collapse
Affiliation(s)
- Sudipta Ray
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Muthukumar Kannan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
71
|
Novichkova E, Nayak S, Boussiba S, Gopas J, Zilberg D, Khozin-Goldberg I. Dietary Application of the Microalga Lobosphaera incisa P127 Reduces Severity of Intestinal Inflammation, Modulates Gut-Associated Gene Expression, and Microbiome in the Zebrafish Model of IBD. Mol Nutr Food Res 2023; 67:e2200253. [PMID: 36683256 DOI: 10.1002/mnfr.202200253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 11/30/2022] [Indexed: 01/24/2023]
Abstract
SCOPE Microalgae are an emerging nutritional resource of biomolecules with potential to alleviate gut inflammation. The study explores the anti-inflammatory and immunomodulatory potential of the microalga Lobosphaera incisa P127, which accumulates a rare omega-6 LC-PUFA dihomo-ɣ-linolenic acid (DGLA) under nitrogen starvation. The therapeutic potential of dietary supplementation with P127 is investigated in the zebrafish model of IBD (TNBS-induced colitis). METHODS AND RESULTS Guts are sampled from zebrafish fed experimental diets for 4 weeks, before and 24 h after TNBS challenge. Diets containing 15% non-starved (Ns) and 7.5% and 15% N-starved (St) algal biomass significantly attenuate the severity of gut injury and goblet cell depletion. In contrast, diets containing 7.5% Ns and DGLA ethyl ester have no effect on gut condition. Fish fed 15% St, high-DGLA biomass, have the fewest individuals with pathological alterations in the gut. Dietary inclusion of Ns and St distinctly modulates gut-associated expression of the immune and inflammatory genes. Fish fed 15% Ns biomass display a coordinated boost in immune gene expression and show major changes in the gut microbiome prior challenge. CONCLUSION Dietary inclusion of L. incisa biomass at two physiological states, ameliorates TNBS-induced gut inflammation, suggesting the synergistic beneficial effects of biomass components not limited to DGLA.
Collapse
Affiliation(s)
- Ekaterina Novichkova
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Sagar Nayak
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
- The Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Sammy Boussiba
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Jacob Gopas
- Department of Microbiology and Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8400501, Israel
| | - Dina Zilberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Inna Khozin-Goldberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
72
|
Rymer TL, Pillay N. The effects of antibiotics and illness on gut microbial composition in the fawn-footed mosaic-tailed rat (Melomys cervinipes). PLoS One 2023; 18:e0281533. [PMID: 36827295 PMCID: PMC9956021 DOI: 10.1371/journal.pone.0281533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The gut microbiota are critical for maintaining the health and physiological function of individuals. However, illness and treatment with antibiotics can disrupt bacterial community composition, the consequences of which are largely unknown in wild animals. In this study, we described and quantified the changes in bacterial community composition in response to illness and treatment with antibiotics in a native Australian rodent, the fawn-footed mosaic-tailed rat (Melomys cervinipes). We collected faecal samples during an undiagnosed illness outbreak in a captive colony of animals, and again at least one year later, and quantified the microbiome at each time point using 16s ribosomal rRNA gene sequencing. Gut bacterial composition was quantified at different taxonomic levels, up to family. Gut bacterial composition changed between time periods, indicating that illness, treatment with antibiotics, or a combination affects bacterial communities. While some bacterial groups increased in abundance, others decreased, suggesting differential effects and possible co-adapted and synergistic interactions. Our findings provide a greater understanding of the dynamic nature of the gut microbiome of a native Australian rodent species and provides insights into the management and ethical well-being of animals kept under captive conditions.
Collapse
Affiliation(s)
- Tasmin L. Rymer
- College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Queensland, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
73
|
Marcoux S, Soullane S, Lee GE, Auger N. Association between caesarean birth and childhood cancer: An age-lagged approach. Acta Paediatr 2023; 112:313-320. [PMID: 35298043 DOI: 10.1111/apa.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 01/13/2023]
Abstract
AIM We assessed the association between caesarean birth and age-specific risks of childhood cancer. METHODS We followed a cohort of 1 034 049 children between 2006 and 2020 in Quebec, Canada, from birth until age 14 years. The exposure was caesarean, operative vaginal, or spontaneous vaginal birth. The outcome included haematopoietic or solid tumours. We calculated hazard ratios (HR) and 95% confidence intervals (CI) for the association between mode of delivery and childhood cancer in age-lagged analyses, adjusted for potential confounders. RESULTS A total of 249 415 (24.1%) children were born by caesarean and 97 411 (9.4%) by operative vaginal delivery. Compared with spontaneous vaginal birth, caesarean was associated with 1.16 times the risk of any cancer (95% CI 1.04-1.30), 1.12 times the risk of haematopoietic cancer (95% CI 0.92-1.36) and 1.21 times the risk of solid tumours (95% 1.06-1.39). Associations strengthened at 2 years of age and were greatest for lymphoma and sarcoma. Operative vaginal birth was not significantly associated with the risk of cancer. CONCLUSION Caesarean birth may be associated with selected childhood cancers, including lymphoma and sarcoma early in childhood. The underlying reasons for the associations require further investigation, including whether mucosal dysbiosis or labour hormone exposure explain the excess risk.
Collapse
Affiliation(s)
- Sophie Marcoux
- Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Institut national de santé publique du Québec, Montreal, Quebec, Canada
| | - Safiya Soullane
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Ga Eun Lee
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Institut national de santé publique du Québec, Montreal, Quebec, Canada
| | - Nathalie Auger
- University of Montreal Hospital Research Centre, Montreal, Quebec, Canada.,Institut national de santé publique du Québec, Montreal, Quebec, Canada.,Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
74
|
The Implication of Mechanistic Approaches and the Role of the Microbiome in Polycystic Ovary Syndrome (PCOS): A Review. Metabolites 2023; 13:metabo13010129. [PMID: 36677054 PMCID: PMC9863528 DOI: 10.3390/metabo13010129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
As a complex endocrine and metabolic condition, polycystic ovarian syndrome (PCOS) affects women's reproductive health. These common symptoms include hirsutism, hyperandrogenism, ovulatory dysfunction, irregular menstruation, and infertility. No one knows what causes it or how to stop it yet. Alterations in gut microbiota composition and disruptions in secondary bile acid production appear to play a causative role in developing PCOS. PCOS pathophysiology and phenotypes are tightly related to both enteric and vaginal bacteria. Patients with PCOS exhibit changed microbiome compositions and decreased microbial diversity. Intestinal microorganisms also alter PCOS patient phenotypes by upregulating or downregulating hormone release, gut-brain mediators, and metabolite synthesis. The human body's gut microbiota, also known as the "second genome," can interact with the environment to improve metabolic and immunological function. Inflammation is connected to PCOS and may be caused by dysbiosis in the gut microbiome. This review sheds light on the recently discovered connections between gut microbiota and insulin resistance (IR) and the potential mechanisms of PCOS. This study also describes metabolomic studies to obtain a clear view of PCOS and ways to tackle it.
Collapse
|
75
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
76
|
Hassan D, Hossain A. Gut microbiome and COVID-19. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:263-277. [DOI: 10.1016/b978-0-323-85730-7.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
77
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Lee HN. Changes in Gut Microbiome upon Orchiectomy and Testosterone Administration in AOM/DSS-Induced Colon Cancer Mouse Model. Cancer Res Treat 2023; 55:196-218. [PMID: 35790194 PMCID: PMC9873319 DOI: 10.4143/crt.2022.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Sex hormones are known to affect the gut microbiota. Previously, we reported that endogenous and exogenous testosterone are associated with colorectal cancer (CRC) development and submucosal invasion. In the present study, we investigated whether the gut microbiota is affected by orchiectomy (ORX) and testosterone propionate (TP) administration using an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced CRC mouse model. MATERIALS AND METHODS Gut microbiota was evaluated by means of 16S rRNA gene sequencing of stool DNA extracted from feces that were obtained at 13 weeks after AOM injection (from 22-week-old animals) and stored in a gas-generating pouch. RESULTS The increase in microbial diversity (Chao1 and Phylogenetic Diversity index) and Firmicutes/Bacteroidetes (F/B) ratio upon AOM/DSS treatment in ORX mice was significantly decreased by TP supplementation. The ratio of commensal bacteria to opportunistic pathogens was lower in the TP-administered females and ORX mice than in the AOM/DSS group. Opportunistic pathogens (Mucispirillum schaedleri or Akkermansia muciniphila) were identified only in the TP group. In addition, microbial diversity and F/B ratio were higher in male controls than in female and ORX controls. Flintibacter butyricus, Ruminococcus bromii, and Romboutsia timonensis showed similar changes in the male control group as those in the female and ORX controls. CONCLUSION In conclusion, testosterone determines the dysbiosis of gut microbiota, which suggests that it plays a role in the sex-related differences in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul,
Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
| | - Ha-Na Lee
- Laboratory of Immunology, Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD,
USA
| |
Collapse
|
78
|
Microbiota and environmental health monitoring of mouse colonies by metagenomic shotgun sequencing. World J Microbiol Biotechnol 2023; 39:37. [PMID: 36472670 PMCID: PMC9726812 DOI: 10.1007/s11274-022-03469-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
Metagenomic next-generation sequencing (mNGS) allows the monitoring of microbiota composition of murine colonies employed for scientific purposes in a single test by assessing the composition of gut microbiome and the detection of pathogens from fecal pellets. In this study, we tested the potential use of mNGS for monitoring both microbiota composition and the presence of pathogens through Environmental Health Monitoring, by using exhaust dust collection filters derived from individually ventilated cages (IVC) systems.mNGS analysis was performed on nucleic acids isolated from filters collecting air from the exhaust of: (1) cages with mice housed in a non-pathogen free facility; (2) animal-free cages with clean chow and bedding from the same facility; (3) cages housing mice from a specific-pathogen free (SPF) facility. mNGS results revealed correspondence between microbiome composition from fecal pellets and filter, including pathogenic bacteria (Helicobacter hepaticus, Helicobacter typhlonius, Chlamydia muridarum, Rodentibacter pneumotropicus, Citrobacter rodentium), intestinal protozoa (Tritrichomonas muris, Spironucleus muris) nematoda (Aspiculuris tetraptera) and eukaryotic parasites (Myocoptes musculinus), present in the colony. Entamoeba muris and Syphacia obvelata were detected in fecal pellets but not in filter. The animal free exhaust dust filter, exposed to clean cages (no mice) placed in the IVC after removal of all mice, exhibited the presence of the same pathogens due to contaminated connecting pipes, confirming the sensitivity of the approach. Conversely, the filter from SPF colony revealed the absence of pathogens.The current use of exhaust dust collection filters in health surveillance requires multiple molecular tests to identify specific pathogens and does not provide information on the colony microbiome. This work provides the proof-of-principle that assaying exhaust dust collection filters by mNGS for microbiota monitoring of laboratory mice is feasible. In its daily application, results suggest the usefulness of the test in SPF facilities, where pathogenic micro-organisms are expected to be absent. mNGS analysis of exhaust dust collection filters allows the analysis of multiple cages, reducing the number of tests required for pathogen detection and corresponding costs, and avoiding the use of sentinel mice.
Collapse
|
79
|
Downs BW, Banik SP, Bagchi M, Chakraborty S, Kushner S, Downs JM, Bagchi D. Primary factors that determine the severity of various infections and effective nutraceutical intervention strategies. VIRAL, PARASITIC, BACTERIAL, AND FUNGAL INFECTIONS 2023:63-72. [DOI: 10.1016/b978-0-323-85730-7.00038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
80
|
Immunomodulatory action of Lactococcuslactis. J Biosci Bioeng 2023; 135:1-9. [PMID: 36428209 DOI: 10.1016/j.jbiosc.2022.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Fermented foods are gaining popularity due to health-promoting properties with high levels of nutrients, phytochemicals, bioactive compounds, and probiotic microorganisms. Due to its unique fermentation process, Lactococcus lactis plays a key role in the food business, notably in the manufacturing of dairy products. The superior biological activities of L. lactis in these functional foods include anti-inflammatory and immunomodulatory capabilities. L. lactis boosted growth performance, controlled amino acid profiles, intestinal immunology, and microbiota. Besides that, the administration of L. lactis increased the rate of infection clearance. Innate and acquired immune responses would be upregulated in both local and systemic compartments, resulting in these consequences. L. lactis is often employed in the food sector and is currently being exploited as a delivery vehicle for biological research. These bacteria are being eyed as potential candidates for biotechnological applications. With this in mind, we reviewed the immunomodulatory effects of different L. lactis strains.
Collapse
|
81
|
Poupet C, Rifa É, Theil S, Bonnet M, Veisseire P, Cardin G, Guéret É, Rialle S, Chassard C, Nivoliez A, Bornes S. In vivo investigation of Lcr35 ® anti-candidiasis properties in Caenorhabditis elegans reveals the involvement of highly conserved immune pathways. Front Microbiol 2022; 13:1062113. [PMID: 36620055 PMCID: PMC9816150 DOI: 10.3389/fmicb.2022.1062113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Lactic acid bacteria, including the microorganisms formerly designated as Lactobacillus, are the major representatives of Live Biotherapeutic Microorganisms (LBM) when used for therapeutic purposes. However, in most cases, the mechanisms of action remain unknown. The antifungal potential of LBM has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. Here, Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity, anti-aging and anti-candidiasis effects of the LBM Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) Lcr35®. A high-throughput transcriptomic analysis revealed a specific response of C. elegans depending on whether it is in the presence of the LBM L. rhamnosus Lcr35® (structural response), the yeast Candida albicans (metabolic response) or both (structural and metabolic responses) in a preventive and a curative conditions. Studies on C. elegans mutants demonstrated that the p38 MAPK (sek-1, skn-1) and the insulin-like (daf-2, daf-16) signaling pathways were involved in the extended lifespan provided by L. rhamnosus Lcr35® strain whereas the JNK pathway was not involved (jnk-1). In addition, the anti C. albicans effect of the bacterium requires the daf-16 and sek-1 genes while it is independent of daf-2 and skn-1. Moreover, the anti-aging effect of Lcr35®, linked to the extension of longevity, is not due to protection against oxidative stress (H2O2). Taken together, these results formally show the involvement of the p38 MAP kinase and insulin-like signaling pathways for the longevity extension and anti-Candida albicans properties of Lcr35® with, however, differences in the genes involved. Overall, these findings provide new insight for understanding the mechanisms of action of a probiotic strain with antimicrobial potential.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France,*Correspondence: Cyril Poupet,
| | - Étienne Rifa
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Sébastien Theil
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Philippe Veisseire
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Guillaume Cardin
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| | - Élise Guéret
- MGX, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Aurillac, France
| |
Collapse
|
82
|
Ramos Meyers G, Samouda H, Bohn T. Short Chain Fatty Acid Metabolism in Relation to Gut Microbiota and Genetic Variability. Nutrients 2022; 14:5361. [PMID: 36558520 PMCID: PMC9788597 DOI: 10.3390/nu14245361] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
It is widely accepted that the gut microbiota plays a significant role in modulating inflammatory and immune responses of their host. In recent years, the host-microbiota interface has gained relevance in understanding the development of many non-communicable chronic conditions, including cardiovascular disease, cancer, autoimmunity and neurodegeneration. Importantly, dietary fibre (DF) and associated compounds digested by the microbiota and their resulting metabolites, especially short-chain fatty acids (SCFA), were significantly associated with health beneficial effects, such as via proposed anti-inflammatory mechanisms. However, SCFA metabolic pathways are not fully understood. Major steps include production of SCFA by microbiota, uptake in the colonic epithelium, first-pass effects at the liver, followed by biodistribution and metabolism at the host's cellular level. As dietary patterns do not affect all individuals equally, the host genetic makeup may play a role in the metabolic fate of these metabolites, in addition to other factors that might influence the microbiota, such as age, birth through caesarean, medication intake, alcohol and tobacco consumption, pathogen exposure and physical activity. In this article, we review the metabolic pathways of DF, from intake to the intracellular metabolism of fibre-derived products, and identify possible sources of inter-individual variability related to genetic variation. Such variability may be indicative of the phenotypic flexibility in response to diet, and may be predictive of long-term adaptations to dietary factors, including maladaptation and tissue damage, which may develop into disease in individuals with specific predispositions, thus allowing for a better prediction of potential health effects following personalized intervention with DF.
Collapse
Affiliation(s)
- Guilherme Ramos Meyers
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, 1445 Strassen, Luxembourg
| |
Collapse
|
83
|
Ali Q, Ma S, Farooq U, Niu J, Li F, Li D, Wang Z, Sun H, Cui Y, Shi Y. Pasture intake protects against commercial diet-induced lipopolysaccharide production facilitated by gut microbiota through activating intestinal alkaline phosphatase enzyme in meat geese. Front Immunol 2022; 13:1041070. [PMID: 36569878 PMCID: PMC9774522 DOI: 10.3389/fimmu.2022.1041070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Diet strongly affects gut microbiota composition, and gut bacteria can influence the intestinal barrier functions and systemic inflammation through metabolic endotoxemia. In-house feeding system (IHF, a low dietary fiber source) may cause altered cecal microbiota composition and inflammatory responses in meat geese via increased endotoxemia (lipopolysaccharides) with reduced intestinal alkaline phosphatase (ALP) production. The effects of artificial pasture grazing system (AGF, a high dietary fiber source) on modulating gut microbiota architecture and gut barrier functions have not been investigated in meat geese. Therefore, this study aimed to investigate whether intestinal ALP could play a critical role in attenuating reactive oxygen species (ROS) generation and ROS facilitating NF-κB pathway-induced systemic inflammation in meat geese. Methods The impacts of IHF and AGF systems on gut microbial composition via 16 sRNA sequencing were assessed in meat geese. The host markers analysis through protein expression of serum and cecal tissues, hematoxylin and eosin (H&E) staining, localization of NF-қB and Nrf2 by immunofluorescence analysis, western blotting analysis of ALP, and quantitative PCR of cecal tissues was evaluated. Results and Discussion In the gut microbiota analysis, meat geese supplemented with pasture showed a significant increase in commensal microbial richness and diversity compared to IHF meat geese demonstrating the antimicrobial, antioxidant, and anti-inflammatory ability of the AGF system. A significant increase in intestinal ALP-induced Nrf2 signaling pathway was confirmed representing LPS dephosphorylation mediated TLR4/MyD88 induced ROS reduction mechanisms in AGF meat geese. Further, the correlation analysis of top 44 host markers with gut microbiota showed that artificial pasture intake protected gut barrier functions via reducing ROS-mediated NF-κB pathway-induced gut permeability, systemic inflammation, and aging phenotypes. In conclusion, the intestinal ALP functions to regulate gut microbial homeostasis and barrier function appear to inhibit pro-inflammatory cytokines by reducing LPS-induced ROS production in AGF meat geese. The AGF system may represent a novel therapy to counteract the chronic inflammatory state leading to low dietary fiber-related diseases in animals.
Collapse
Affiliation(s)
- Qasim Ali
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Sen Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Umar Farooq
- Department of Poultry Science, University of Agriculture Faisalabad, Toba Tek Singh, Pakistan
| | - Jiakuan Niu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Fen Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Defeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhichang Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hao Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yalei Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yinghua Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China,Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Henan Agricultural University, Zhengzhou, Henan, China,Henan Herbage Engineering Technology Research Center, Henan Agricultural University, Zhengzhou, Henan, China,*Correspondence: Yinghua Shi,
| |
Collapse
|
84
|
Hino A, Fukushima K, Kusakabe S, Ueda T, Sudo T, Fujita J, Motooka D, Takeda AK, Shinozaki NO, Watanabe S, Yokota T, Shibayama H, Nakamura S, Hosen N. Prolonged gut microbial alterations in post-transplant survivors of allogeneic haematopoietic stem cell transplantation. Br J Haematol 2022; 201:725-737. [PMID: 36468273 DOI: 10.1111/bjh.18574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/04/2022] [Accepted: 11/12/2022] [Indexed: 12/12/2022]
Abstract
Dysbiosis of the gut microbiota has been reported to increase early complications after allogeneic haematopoietic stem cell transplantation (allo-HSCT). However, it remains unclear whether gut microbial alterations persist during late complications, such as chronic graft-versus-host disease (cGVHD) or secondary cancers. Here, we analysed the gut microbiota of 59 patients who survived for 1-21.7 years (median, 6.4 years) after allo-HSCT. Long-term survivors showed lower gut microbial diversity than the age- and sex-matched healthy controls. This decreased diversity was reflected in the reduced abundance of the butyrate-producing bacteria. Patients with a history of grade 3 acute graft-versus-host disease (aGVHD) exhibited higher Veillonella abundance than patients with a history of grade 1-2 or non-aGVHD cases. The abundance of Faecalibacterium showed no decrease only in limited cGVHD cases. Additionally, the microbial structure in the secondary cancer group was significantly different (p < 0.05) from that in the non-secondary cancer group. This study is the first to show that microbial dysbiosis is present over a 10-year lifetime after discharge following allo-HSCT. Our results suggest that these prolonged gut microbial alterations may be associated with the development and exacerbation of late complications in post-transplant survivors.
Collapse
Affiliation(s)
- Akihisa Hino
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Fukushima
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinsuke Kusakabe
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoaki Ueda
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takao Sudo
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Jiro Fujita
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | - Takafumi Yokota
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Hematology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shota Nakamura
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
85
|
Dai CL, Liu F, Iqbal K, Gong CX. Gut Microbiota and Immunotherapy for Alzheimer's Disease. Int J Mol Sci 2022; 23:15230. [PMID: 36499564 PMCID: PMC9741026 DOI: 10.3390/ijms232315230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/08/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Currently, no effective treatment is available that can slow or halt the progression of the disease. The gut microbiota can modulate the host immune system in the peripheral and central nervous system through the microbiota-gut-brain axis. Growing evidence indicates that gut microbiota dysbiosis plays an important role in the pathogenesis of AD, and modulation of the gut microbiota may represent a new avenue for treating AD. Immunotherapy targeting Aβ and tau has emerged as the most promising disease-modifying therapy for the treatment of AD. However, the underlying mechanism of AD immunotherapy is not known. Importantly, preclinical and clinical studies have highlighted that the gut microbiota exerts a major influence on the efficacy of cancer immunotherapy. However, the role of the gut microbiota in AD immunotherapy has not been explored. We found that immunotherapy targeting tau can modulate the gut microbiota in an AD mouse model. In this article, we focused on the crosstalk between the gut microbiota, immunity, and AD immunotherapy. We speculate that modulation of the gut microbiota induced by AD immunotherapy may partially underlie the efficacy of the treatment.
Collapse
Affiliation(s)
| | | | | | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, NY 10314, USA
| |
Collapse
|
86
|
Differential responses on gut microbiota and microbial metabolome of 2′-fucosyllactose and galactooligosaccharide against DSS-induced colitis. Food Res Int 2022; 162:112072. [DOI: 10.1016/j.foodres.2022.112072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
|
87
|
Pezzuto JM, Dave A, Park EJ, Beyoğlu D, Idle JR. Short-Term Grape Consumption Diminishes UV-Induced Skin Erythema. Antioxidants (Basel) 2022; 11:2372. [PMID: 36552580 PMCID: PMC9774720 DOI: 10.3390/antiox11122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Over three million Americans are affected by skin cancer each year, largely as a result of exposure to sunlight. The purpose of this study was to determine the potential of grape consumption to modulate UV-induced skin erythema. With 29 human volunteers, we report that nine demonstrated greater resistance to UV irradiation of the skin after consuming the equivalent of three servings of grapes per day for two weeks. We further explored any potential relationship to the gut-skin axis. Alpha- and beta-diversity of the gut microbiome were not altered, but grape consumption modulated microbiota abundance, enzyme levels, and KEGG pathways. Striking differences in the microbiome and metabolome were discerned when comparing the nine individuals showing greater UV resistance with the 20 non-responders. Notably, three urinary metabolites, 2'-deoxyribonic acid, 3-hydroxyphenyl acetic and scyllo-inositol, were depressed in the UV-resistant group. A ROC curve revealed a 71.8% probability that measurement of urinary 2'-deoxyribonic acid identifies a UV skin non-responder. 2'-Deoxyribonic acid is cleaved from the DNA backbone by reactive oxygen species. Three of the nine subjects acquiring UV resistance following grape consumption showed a durable response, and these three demonstrated unique microbiomic and metabolomic profiles. Variable UV skin sensitivity was likely due to glutathione S-transferase polymorphisms. We conclude that a segment of the population is capable of demonstrating greater resistance to a dermal response elicited by UV irradiation as a result of grape consumption. It is uncertain if modulation of the gut-skin axis leads to enhanced UV resistance, but there is correlation. More broadly, it is reasonable to expect that these mechanisms relate to other health outcomes anticipated to result from grape consumption.
Collapse
Affiliation(s)
- John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Diren Beyoğlu
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Jeffrey R. Idle
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
88
|
Quansah E, Ramoji A, Thieme L, Mirza K, Goering B, Makarewicz O, Heutelbeck A, Meyer-Zedler T, Pletz MW, Schmitt M, Popp J. Label-free multimodal imaging of infected Galleria mellonella larvae. Sci Rep 2022; 12:20416. [PMID: 36437287 PMCID: PMC9701796 DOI: 10.1038/s41598-022-24846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022] Open
Abstract
Non-linear imaging modalities have enabled us to obtain unique morpho-chemical insights into the tissue architecture of various biological model organisms in a label-free manner. However, these imaging techniques have so far not been applied to analyze the Galleria mellonella infection model. This study utilizes for the first time the strength of multimodal imaging techniques to explore infection-related changes in the Galleria mellonella larvae due to massive E. faecalis bacterial infection. Multimodal imaging techniques such as fluorescent lifetime imaging (FLIM), coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) were implemented in conjunction with histological HE images to analyze infection-associated tissue damage. The changes in the larvae in response to the infection, such as melanization, vacuolization, nodule formation, and hemocyte infiltration as a defense mechanism of insects against microbial pathogens, were visualized after Enterococcus faecalis was administered. Furthermore, multimodal imaging served for the analysis of implant-associated biofilm infections by visualizing biofilm adherence on medical stainless steel and ePTFE implants within the larvae. Our results suggest that infection-related changes as well as the integrity of the tissue of G. mellonella larvae can be studied with high morphological and chemical contrast in a label-free manner.
Collapse
Affiliation(s)
- Elsie Quansah
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Anuradha Ramoji
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Lara Thieme
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Kamran Mirza
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Bianca Goering
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Oliwia Makarewicz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Astrid Heutelbeck
- grid.9613.d0000 0001 1939 2794ena University Hospital, Institute for Occupational, Social, and Environmental Medicine, J, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Tobias Meyer-Zedler
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Mathias W. Pletz
- grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Institute of Infectious Diseases and Infection Control, Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Leibniz Center for Photonics in Infection Research, Friedrich Schiller University Jena, 07747 Jena, Germany
| | - Michael Schmitt
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Jürgen Popp
- grid.9613.d0000 0001 1939 2794Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University Jena, Helmholtzweg 4, 07743 Jena, Germany ,grid.418907.30000 0004 0563 7158Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany ,grid.9613.d0000 0001 1939 2794Jena University Hospital, Center for Sepsis Control and Care (CSCC), Friedrich-Schiller-University Jena, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
89
|
Liu S, Li G, Zhu Y, Xu C, Yang Q, Xiong A, Weng J, Yu F, Zeng H. Analysis of gut microbiome composition, function, and phenotype in patients with osteoarthritis. Front Microbiol 2022; 13:980591. [PMID: 36504782 PMCID: PMC9732244 DOI: 10.3389/fmicb.2022.980591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
Gut microbiome (GMB) disturbance can induce chronic low-grade inflammation, which is closely related to the occurrence and development of osteoarthritis (OA). However, the relationship between GMB and OA remains unclear. In this study, we collected stool samples from OA patients and healthy people, and performed Alpha diversity, Beta diversity, MetaStat, and LEfSe analysis by 16S rRNA sequencing to find out the species with significant difference between the two groups. Random forest analysis was performed to find out biomarkers that could distinguish between OA patients and healthy people. PICRUSt and Bugbase analysis were used to compare the difference in functions and phenotypes. Multivariate linear regression analysis (MaAsLin) was used to adjust for gender, age, and body mass index (BMI). The results showed that there was a significant difference in the overall composition of GMB between the two groups (p = 0.005). After adjusting for gender, age, and BMI, we found that p_Bacteroidota (Q = 0.039), c_Bacteroidia (Q = 0.039), and o_Bacteroidales (Q = 0.040) were enriched in the OA group, while s_Prevotella_copri (Q = 0.001) was enriched in the healthy control group. Prevotella could distinguish between OA patients and healthy people with a better diagnostic power (AUC = 77.5%, p < 0.001, 95% CI: 66.9-88.1%). The functions of DNA transcription, amino acid metabolism (including histidine, lysine, and isoleucine), ATP metabolism, and phospholipid metabolism significantly decreased, while glucose metabolism, protein acetylation, and aspartate kinase activity significantly increased in the OA group. In terms of phenotypes, we found that the relative abundance of aerobic (p = 0.003) and Gram-negative (p < 0.001) was higher in the OA group, while contains mobile elements (p = 0.001) and Gram-positive (p < 0.001) were higher in the healthy control group. Our study preliminarily demonstrated that there were differences in the composition, function, and phenotype of GMB in stool samples between OA patients and healthy people, which provided a novel perspective on further study in OA.
Collapse
Affiliation(s)
- Su Liu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuanchao Zhu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chang Xu
- Peking University Shenzhen Hospital Intelligent Hospital Research Academy, Shenzhen, China
| | - Qi Yang
- Department of Ultrasonography, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Jian Weng, ; Fei Yu, ; Hui Zeng,
| | - Fei Yu
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Jian Weng, ; Fei Yu, ; Hui Zeng,
| | - Hui Zeng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Jian Weng, ; Fei Yu, ; Hui Zeng,
| |
Collapse
|
90
|
Mukhopadhyay S, Ray P, Aich P. A comparative analysis of gut microbial dysbiosis by select antibiotics and DSS to understand the effects of perturbation on the host immunity and metabolism. Life Sci 2022; 312:121212. [PMID: 36414091 DOI: 10.1016/j.lfs.2022.121212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
AIMS Balanced gut microbial composition of the host plays a crucial role in maintaining harmony among various physiological processes to maintain physiological homeostasis. Immunity and metabolism are the two physiologies mainly controlled by the gut microbiota. Reports suggested that gut microbial composition and diversity alteration are the leading causes of the host's healthy homeostasis alteration or a diseased state. The extent of gut perturbation depends on the perturbing agents' strength, chemical nature, and mode of action. In the current report, we have studied the effects of different perturbing agents on gut microbial dysbiosis and its impact on host immunity and metabolism. MATERIALS AND METHODS We studied the perturbation of gut microbial composition and diversity using next-generation sequencing and further investigated the changes in host immune and metabolic responses. KEY FINDINGS Enrichment or abolition of a particular phylum or genus depended on the perturbing agents. In the current study, treatment with neomycin yielded an increase in the Bacteroidetes phylum. Vancomycin treatment caused a significant rise in Verrucomicrobia and Proteobacteria phyla. The treatment with AVNM and DSS caused a substantial increase in the Proteobacteria phylum. The gut microbial diversity was also lowest in AVNM treated group. The altered gut microbial composition ultimately altered the immune responses at localized and systemic levels of the host. Gut dysbiosis also changed the systemic level of SCFAs. SIGNIFICANCE This study will help us understand how the enrichment of a particular phylum and genus maintains the host's immune responses and metabolism.
Collapse
Affiliation(s)
- Sohini Mukhopadhyay
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O.-Bhimpur-Padanpur, Jatni-752050 District-Khurdha, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Pratikshya Ray
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O.-Bhimpur-Padanpur, Jatni-752050 District-Khurdha, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O.-Bhimpur-Padanpur, Jatni-752050 District-Khurdha, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
91
|
Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology 2022; 164:6772818. [PMID: 36282876 PMCID: PMC9923803 DOI: 10.1210/endocr/bqac177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/16/2023]
Abstract
Despite advances in treatment strategies, breast cancer (BC) remains one of the most prevalent cancers worldwide. Recent studies implicate the gut microbiome as a potential risk factor for BC development. Alterations in gut microbial diversity resulting in dysbiosis have been linked to breast carcinogenesis by modulating host immune responses and inflammatory pathways, favoring tumorigenesis and progression. Moreover, gut microbiota populations are different between women with BC vs those that are cancer free, further implicating the role of the gut microbiome in cancer development. This alteration in gut microbiota is also associated with changes in estrogen metabolism, which strongly correlates with BC development. Gut microbiota that express the enzyme β-glucuronidase (GUS) may increase estrogen bioavailability by deconjugating estrogen-glucuronide moieties enabling reabsorption into circulation. Increased circulating estrogens may, in turn, drive estrogen receptor-positive BC. GUS-expressing microbiota also affect cancer therapy efficacy and toxicity by modifying glucuronide-conjugated drug metabolites. Therefore, GUS inhibitors have emerged as a potential antitumor treatment. However, the effectiveness of GUS inhibitors is still exploratory. Further studies are needed to determine how oral endocrine-targeting therapies may influence or be influenced by the microbiota and how that may affect carcinogenesis initiation and tumor recurrence.
Collapse
Affiliation(s)
- Alana A Arnone
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | - Katherine L Cook
- Correspondence: Katherine L. Cook, PhD, Wake Forest School of Medicine, 575 N Patterson Ave, Ste 340, Winston-Salem, NC 27157, USA.
| |
Collapse
|
92
|
Sturov NV, Popov SV, Zhukov VA, Lyapunova TV, Rusanova EI, Kobylyanu GN, Kobylyanu GN. Intestinal Microbiota Correction in the Treatment and Prevention of Urinary Tract Infection. Turk J Urol 2022; 48:406-414. [PMID: 36416330 PMCID: PMC9797784 DOI: 10.5152/tud.2022.22119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intestinal microbiota is a topical subject of modern research. The maintenance of a healthy intestinal micro biota is an important component of homeostasis, and violations of its composition and functions, called dysbiosis, are associated with a number of diseases, including urinary tract infections. Antimicrobial therapy leads to significant changes in the intestinal microbiota and causes the possibility of urinary tract infection recurrence. In this regard, it is important to study methods of microbiota correction in order to restore its structural and functional integrity.
Collapse
Affiliation(s)
- Nikolay V. Sturov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Sergey V. Popov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Vladimir A. Zhukov
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation,Corresponding author:Vladimir A. ZhukovE-mail:
| | - Tatiana V. Lyapunova
- Medical Informatics and Telemedicine Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Ekaterina I. Rusanova
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | - Georgy N. Kobylyanu
- General Medical Practice Department, RUDN University (Peoples’ Friendship University of Russia), Moscow, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
93
|
Leung JSM. Interaction between gut microbiota and COVID-19 and its vaccines. World J Gastroenterol 2022; 28:5801-5806. [PMID: 36353201 PMCID: PMC9639653 DOI: 10.3748/wjg.v28.i40.5801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/07/2022] [Accepted: 10/14/2022] [Indexed: 02/06/2023] Open
Abstract
The whole world has been continuously afflicted by the coronavirus disease 2019 (COVID-19) pandemic for the past 3 years. Many countries have tried many methods to control this virus infection with varying successes and failures. The gut microbiota is a biosystem spanning the entire length of the digestive tract and playing important roles in health and disease. It is much affected by COVID-19. In return it also substantially impacts infection. In particular, the gut microbiota has established a bidirectional interaction with the COVID-19 vaccines, enhancing or reducing vaccine efficacy by virtue of its varying components. Conversely, COVID-19 vaccines also make a substantial impact on the gut microbiota, re-ducing its overall population and biodiversity. It is hoped that by exploring and harnessing this bidirectional interaction we may break new ground and develop new methods to prevent and treat this formidable virus infection.
Collapse
Affiliation(s)
- John S M Leung
- Cardiothoracic Unit, St. Paul’s Hospital, Hong Kong, China
| |
Collapse
|
94
|
Armstrong D, Dregan A, Ashworth M, White P. Prior antibiotics and risk of subsequent Herpes zoster: A population-based case control study. PLoS One 2022; 17:e0276807. [PMID: 36301976 PMCID: PMC9612511 DOI: 10.1371/journal.pone.0276807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Background The effect of antibiotics on the human microbiome is now well established, but their indirect effect on the related immune response is less clear. The possible association of Herpes zoster, which involves a reactivation of a previous varicella zoster virus infection, with prior antibiotic exposure might indicate a potential link with the immune response. Methods A case-control study was carried out using a clinical database, the UK’s Clinical Practice Research Datalink. A total of 163,754 patients with varicella zoster virus infection and 331,559 age/sex matched controls were identified and their antibiotic exposure over the previous 10 years, and longer when data permitted, was identified. Conditional logistic regression was used to identify the association between antibiotic exposure and subsequent infection in terms of volume and timing. Results The study found an association of antibiotic prescription and subsequent risk of varicella zoster virus infection (adjusted odds ratio of 1.50; 95%CIs: 1.42–1.58). The strongest association was with a first antibiotic over 10 years ago (aOR: 1.92; 95%CIs: 1.88–1.96) which was particularly pronounced in the younger age group of 18 to 50 (aOR 2.77; 95%CIs: 1.95–3.92). Conclusions By finding an association between prior antibiotics and Herpes zoster this study has shown that antibiotics may be involved in the reactivation of the varicella zoster virus. That effect, moreover, may be relatively long term. This indirect effect of antibiotics on viruses, possibly mediated through their effect on the microbiome and immune system, merits further study.
Collapse
Affiliation(s)
- David Armstrong
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
- * E-mail: (DA); (AD)
| | - Alex Dregan
- Department of Psychological Medicine, Institute of Psychiatry, Psychological and Neurosciences, King’s College London, London, United Kingdom
- * E-mail: (DA); (AD)
| | - Mark Ashworth
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| | - Patrick White
- School of Life Course and Population Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
95
|
Helichrysum italicum (Roth) G. Don and Helichrysum arenarium (L.) Moench Infusion Consumption Affects the Inflammatory Status and the Composition of Human Gut Microbiota in Patients with Traits of Metabolic Syndrome: A Randomized Comparative Study. Foods 2022. [PMCID: PMC9601527 DOI: 10.3390/foods11203277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Helichrysum italicum (Roth) G. Don (HI) and Helichrysum arenarium (L.) Moench (HA) are rich in polyphenols and their infusions have beneficial effects for patients with metabolic syndrome. To investigate whether these effects are mediated by the gut microbiota, we analysed the effects of daily consumption of HI or HA infusion on the composition of gut microbiota, inflammatory status, and zonulin, a marker of gut barrier permeability. The study was a randomized, double-blind comparative trial. Thirty participants were randomly assigned to two groups and received either HA or HI tea filter bags, each containing 1 g of dried plant material, for daily consumption lasting 4 weeks. The results show that consumption of both infusions resulted in a reduction of some genera belonging to Firmicutes and in a slight but significant reduction in Shannon diversity index. Consumption of HI infusion significantly reduced serum levels of proinflammatory markers and zonulin alongside with the observed trend of Proteobacteria reduction. It can therefore be concluded that the HI and HA infusions could act as prebiotics and thus improve the intestinal environment. In addition, HI infusion has a positive impact on microbial dysbiosis and gut barrier dysfunction that occur in obesity and metabolic syndrome.
Collapse
|
96
|
Microbiota and Serum Metabolic Profile Changes in Korean Native Hanwoo Steer in Response to Diet Feeding Systems. Int J Mol Sci 2022; 23:ijms232012391. [PMID: 36293247 PMCID: PMC9604148 DOI: 10.3390/ijms232012391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The diversity of bacteria and their function in cattle gastrointestinal tracts can influence animal welfare. Next-generation sequencing (NGS) was used to investigate microbial diversity in the feces of Hanwoo steers reared under natural grazing (GS) and housing (HS) systems. Additionally, serum metabolic parameters, such as liver and kidney markers and mineral and lipid content changes, as well as their correlation with pyrotags, were studied. A total of 6468 ± 87.86 operational taxonomic units (OTUs) were identified in both steer groups, of which 3538 ± 38.17 OTUs were from grazing steer and 2930 ± 94.06 OTUs were from GS. Chao1 index analysis revealed a higher bacterial richness in GS. The dominant bacterial taxa were Bacteroidetes and Firmicutes. GS showed lower Bacteroidetes and higher Firmicutes abundance than HS. The serum of HS showed consistent increases in gamma-glutamyl transpeptidase (γGTP), glucose (GLU), total cholesterol (T-CHO), and triglyceride (TG) levels. The impact of GS on animal health and serum metabolic markers was strongly correlated with microbiota. As shown in this study, grazing has a significant impact on the fecal microbiota at the phylum and family levels, as well as the serum biochemical metabolites of Hanwoo steers.
Collapse
|
97
|
N-glycosylation of cervicovaginal fluid reflects microbial community, immune activity, and pregnancy status. Sci Rep 2022; 12:16948. [PMID: 36216861 PMCID: PMC9551102 DOI: 10.1038/s41598-022-20608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022] Open
Abstract
Human cervicovaginal fluid (CVF) is a complex, functionally important and glycan rich biological fluid, fundamental in mediating physiological events associated with reproductive health. Using a comprehensive glycomic strategy we reveal an extremely rich and complex N-glycome in CVF of pregnant and non-pregnant women, abundant in paucimannose and high mannose glycans, complex glycans with 2-4 N-Acetyllactosamine (LacNAc) antennae, and Poly-LacNAc glycans decorated with fucosylation and sialylation. N-glycosylation profiles were observed to differ in relation to pregnancy status, microbial composition, immune activation, and pregnancy outcome. Compared to CVF from women experiencing term birth, CVF from women who subsequently experienced preterm birth showed lower sialylation, which correlated to the presence of a diverse microbiome, and higher fucosylation, which correlated positively to pro-inflammatory cytokine concentration. This study is the first step towards better understanding the role of cervicovaginal glycans in reproductive health, their contribution to the mechanism of microbial driven preterm birth, and their potential for preventative therapy.
Collapse
|
98
|
Singh S, Singh M, Gaur S. Probiotics as multifaceted oral vaccines against colon cancer: A review. Front Immunol 2022; 13:1002674. [PMID: 36263037 PMCID: PMC9573965 DOI: 10.3389/fimmu.2022.1002674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms that, upon adequate administration, elicit a health beneficial response inside the host. The probiotics are known as immunomodulators and exhibit anti-tumor properties. Advanced research has explored the potential use of probiotics as the oral vaccines without the latent risks of pathogenicity. Probiotic-based oral vaccines are known to induce mucosal immunity that prevents the host from several enteric infections. Probiotic bacteria have the ability to produce metabolites in the form of anti-inflammatory cytokines, which play an important role in the prevention of carcinogenesis and in the activation of the phagocytes that eliminate the preliminary stage cancer cells. This review discusses the advantages and disadvantages of using the oral probiotic vaccines as well as the mechanism of action of probiotics in colon cancer therapy. This review also employs the use of “PROBIO” database for selecting certain probiotics with immunomodulatory properties. Furthermore, the use of several probiotic bacteria as anti-colon cancer adjuvants has also been discussed in detail. Because the current studies and trials are more focused on using the attenuated pathogens instead of using the probiotic-based vaccines, future studies must involve the advanced research in exploiting the potential of several probiotic strains as adjuvants in cancer therapies.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- *Correspondence: Smriti Gaur,
| |
Collapse
|
99
|
Hirata M, Matsuoka M, Hashimoto T, Oura T, Ohnuki Y, Yoshida C, Minemura A, Miura D, Oka K, Takahashi M, Morimatsu F. Supplemental Clostridium butyricum MIYAIRI 588 Affects Intestinal Bacterial Composition of Finishing Pigs. Microbes Environ 2022; 37. [PMID: 36155363 PMCID: PMC9530721 DOI: 10.1264/jsme2.me22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas β-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or β-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.
Collapse
Affiliation(s)
- Maki Hirata
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| | - Miki Matsuoka
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Takamichi Oura
- Faculty of Bioscience and Bioindustry, Tokushima University
| | - Yo Ohnuki
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Chika Yoshida
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Daiki Miura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Fumiki Morimatsu
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| |
Collapse
|
100
|
Son YM, Kim J. The Microbiome-Immune Axis Therapeutic Effects in Cancer Treatments. J Microbiol Biotechnol 2022; 32:1086-1097. [PMID: 36116940 PMCID: PMC9628962 DOI: 10.4014/jmb.2208.08002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
During the last decades, research and therapeutic methods in cancer treatment have been evolving. As the results, nowadays, cancer patients are receiving several types of treatments, ranging from chemotherapy and radiation therapy to surgery and immunotherapy. In fact, most cancer patients take a combination of current anti-cancer therapies to improve the efficacy of treatment. However, current strategies still cause some side effects to patients, such as pain and depression. Therefore, there is the need to discover better ways to eradicate cancer whilst minimizing side effects. Recently, immunotherapy, particularly immune checkpoint blockade, is rising as an effective anti-cancer treatment. Unlike chemotherapy or radiation therapy, immunotherapy has few side effects and a higher tumor cell removal efficacy depend on cellular immunological mechanisms. Moreover, recent studies suggest that tissue immune responses are regulated by their microbiome composition. Each tissue has their specific microenvironment, which makes their microbiome composition different, particularly in the context of different types of cancer, such as breast, colorectal, kidney, lung, and skin. Herein, we review the current understanding of the relationship of immune responses and tissue microbiome in cancer in both animal and human studies. Moreover, we discuss the cancermicrobiome-immune axis in the context of cancer development and treatment. Finally, we speculate on strategies to control tissue microbiome alterations that may synergistically affect the immune system and impact cancer treatment outcomes.
Collapse
Affiliation(s)
- Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-4792 E-mail:
| | - Jihwan Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|