51
|
Huang L, Liu J, Jin Y, Qiu Y, Qin X, Wu S, Chen D, Bie C, Kuang W, Liu H. Niujiao Dihuang Jiedu decoction promotes SLC7A11 m5C methylation modification against ferroptosis in acute-on-chronic liver failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155136. [PMID: 38014838 DOI: 10.1016/j.phymed.2023.155136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) constitutes a prevalent manifestation of liver failure within clinical settings. This condition manifests swiftly and is characterized by an exceedingly elevated fatality rate. OBJECTIVE While numerous investigations have delved into the role of RNA methylation in ferroptosis, the impact of such methylation on ACLF-associated ferroptosis remains notably underexplored. This study aimed to elucidate the molecular mechanism underlying the efficacy of Niujiao Dihuang Jiedu decoction (NDD) in mitigating ferroptosis in ACLF, with a specific focus on RNA 5-methylcytosine (m5C) methylation. MATERIALS AND METHODS An ACLF rat model was established alongside an erastin-induced ferroptosis model in LO2 cells. Both in vitro and in vivo experiments were conducted to substantiate NDD's influence on ferroptosis. The modifying influence of methylase NOL1/NOP2/sun domain (NSUN5) upon SLC7A11, a key ferroptosis-associated gene, was probed through dot blot, immunofluorescence co-localization, and RNA binding protein immunoprecipitation (RIP) experiments. RESULTS Serological and hepatic histopathological findings indicated NDD's discernible therapeutic impact on ACLF. Furthermore, ferroptosis phenotype experiments revealed NDD's proficiency in effectively impeding the occurrence and development of ferroptosis. Dot blot assays demonstrated a reduction in the overall RNA m5C levels during cellular ferroptosis. Furthermore, through immunofluorescence co-localization and RIP techniques, we found that the propensity of methylase NSUN5 to associate with SLC7A11 mRNA, thereby enhancing its protein translation and conferring resistance against ferroptosis. CONCLUSION RNA methylation is involved in the process of ACLF-associated ferroptosis, and NDD can inhibit ACLF-associated ferroptosis by fostering SLC7A11 m5C methylation.
Collapse
Affiliation(s)
- Liqiao Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Jie Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Yubo Jin
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yafang Qiu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Xianfeng Qin
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Shenglan Wu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiqun Bie
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China.
| | - Weihong Kuang
- Dongguan Key Laboratory of Chronic Inflammatory Diseases, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523710, China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China; Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, Dongguan 523808, China.
| | - Helu Liu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, 518104, Shenzhen, China.
| |
Collapse
|
52
|
Feng J, Ye S, Hai B, Lou Y, Duan M, Guo P, Lv P, Lu W, Chen Y. RNF115/BCA2 deficiency alleviated acute liver injury in mice by promoting autophagy and inhibiting inflammatory response. Cell Death Dis 2023; 14:855. [PMID: 38129372 PMCID: PMC10739886 DOI: 10.1038/s41419-023-06379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The E3 ubiquitin ligase RING finger protein 115 (RNF115), also known as breast cancer-associated gene 2 (BCA2), has been linked with the growth of some cancers and immune regulation, which is negatively correlated with prognosis. Here, it is demonstrated that the RNF115 deletion can protect mice from acute liver injury (ALI) induced by the treatment of lipopolysaccharide (LPS)/D-galactosamine (D-GalN), as evidenced by decreased levels of alanine aminotransaminase, aspartate transaminase, inflammatory cytokines (e.g., tumor necrosis factor α and interleukin-6), chemokines (e.g., MCP1/CCL2) and inflammatory cell (e.g., monocytes and neutrophils) infiltration. Moreover, it was found that the autophagy activity in Rnf115-/- livers was increased, which resulted in the removal of damaged mitochondria and hepatocyte apoptosis. However, the administration of adeno-associated virus Rnf115 or autophagy inhibitor 3-MA impaired autophagy and aggravated liver injury in Rnf115-/- mice with ALI. Further experiments proved that RNF115 interacts with LC3B, downregulates LC3B protein levels and cell autophagy. Additionally, Rnf115 deletion inhibited M1 type macrophage activation via NF-κB and Jnk signaling pathways. Elimination of macrophages narrowed the difference in liver damage between Rnf115+/+ and Rnf115-/- mice, indicating that macrophages were linked in the ALI induced by LPS/D-GalN. Collectively, for the first time, we have proved that Rnf115 inactivation ameliorated LPS/D-GalN-induced ALI in mice by promoting autophagy and attenuating inflammatory responses. This study provides new evidence for the involvement of autophagy mechanisms in the protection against acute liver injury.
Collapse
Affiliation(s)
- Jinqiu Feng
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Shufang Ye
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Bao Hai
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yaxin Lou
- Medical and Healthy Analytical Center, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Mengyuan Duan
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Pengli Guo
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Ping Lv
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Wenping Lu
- Department of Hepatobiliary Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Yingyu Chen
- Department of Immunology, Peking University School of Basic Medical Sciences; NHC Key Laboratory of Medical Immunology, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Center for Human Disease Genomics, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
53
|
Li H, Yu S, Liu H, Chen L, Liu H, Liu X, Shen C. Immunologic barriers in liver transplantation: a single-cell analysis of the role of mesenchymal stem cells. Front Immunol 2023; 14:1274982. [PMID: 38143768 PMCID: PMC10748593 DOI: 10.3389/fimmu.2023.1274982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background This study aimed to analyze the biomarkers that may reliably indicate rejection or tolerance and the mechanism that underlie the induction and maintenance of liver transplantation (LT) tolerance related to immunosuppressant or mesenchymal stem cells (MSCs). Methods LT models of Lewis-Lewis and F344-Lewis rats were established. Lewis-Lewis rats model served as a control (Syn). F344-Lewis rats were treated with immunosuppressant alone (Allo+IS) or in combination with MSCs (Allo+IS+MSCs). Intrahepatic cell composition particularly immune cells was compared between the groups by single-cell sequencing. Analysis of subclusters, KEGG pathway analysis, and pseudotime trajectory analysis were performed to explore the potential immunoregulatory mechanisms of immunosuppressant alone or combined with MSCs. Results Immunosuppressants alone or combined with MSCs increases the liver tolerance, to a certain extent. Single-cell sequencing identified intrahepatic cell composition signature, including cell subpopulations of B cells, cholangiocytes, endothelial cells, erythrocytes, hepatic stellate cells, hepatocytes, mononuclear phagocytes, neutrophils, T cells, and plasmacytoid dendritic cells. Immunosuppressant particularly its combination with MSCs altered the landscape of intrahepatic cells in transplanted livers, as well as gene expression patterns in immune cells. MSCs may be included in the differentiation of T cells, classical monocytes, and non-classical monocytes. Conclusion These findings provided novel insights for better understanding the heterogeneity and biological functions of intrahepatic immune cells after LT treated by IS alone or in combination with MSCs. The identified markers of immune cells may serve as the immunotherapeutic targets for MSC treatment of liver transplant rejection.
Collapse
Affiliation(s)
- Haitao Li
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Saihua Yu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Haiyan Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Lihong Chen
- Department of Pathology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongzhi Liu
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xingwen Liu
- Department of Nursing, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Conglong Shen
- Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
54
|
Liu L, Chen P, Xiao N, Liu Q, Zhu X. Interleukin-8 predicts short-term mortality in acute-on-chronic liver failure patients with hepatitis B-related-related cirrhosis background. Ann Med 2023; 55:2287708. [PMID: 38052052 PMCID: PMC10836280 DOI: 10.1080/07853890.2023.2287708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a distinctive and severe syndrome, marked by an excessive systemic inflammatory response. In vivo, interleukin 8 (IL-8) is an essential pro-inflammatory cytokine. We aimed to investigate the value of serum IL-8 levels in predicting mortality in ACLF patients in the background of hepatitis B virus-related cirrhosis. METHODS In this study, we conducted a retrospective analysis of the clinical baseline characteristics of 276 patients with ACLF in the context of HBV-related cirrhosis. Logistic regression analysis was employed to identify independent risk factors for short-, intermediate-, and long-term mortality. Using these independent risk factors, we developed a nomogram model, which was subsequently validated. To assess the clinical usefulness of the nomogram model, we performed decision curve analysis (DCA). RESULTS Out of the 276 patients with ACLF, 98 (35.5%), 113 (40.9%), and 128 (46.4%) died within 28, 90, and 180 days, respectively. Serum IL-8 levels were only an independent predictor of 28-day mortality and could simply classify ACLF patients. Conversely, mean arterial pressure (MAP), HBV-DNA, and COSHACLF IIs were independent predictors of mortality across all three observation periods. We constructed a nomogram based on IL-8 that was able to visualise and predict 28-day mortality with a C-index of 0.901 (95% CI: 0.862-0.940). Our calibration curves, Predicted Probability of Death & Actual Survival Status plot, and Confusion Matrix demonstrated the nomogram model's strong predictive power. DCA indicated the nomogram's promising clinical utility in predicting 28-day mortality in ACLF patients. CONCLUSION Serum IL-8 levels predict short-term mortality in ACLF patients in the background of HBV-associated cirrhosis, and the developed Nomogram model has strong predictive power and good clinical utility.
Collapse
Affiliation(s)
- Linxiang Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Peng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Nanxi Xiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Qi Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| | - Xuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China
| |
Collapse
|
55
|
Cuesta ÁM, Palao N, Bragado P, Gutierrez-Uzquiza A, Herrera B, Sánchez A, Porras A. New and Old Key Players in Liver Cancer. Int J Mol Sci 2023; 24:17152. [PMID: 38138981 PMCID: PMC10742790 DOI: 10.3390/ijms242417152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
Collapse
Affiliation(s)
- Ángel M. Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Blanca Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
56
|
Ju T, Jiang D, Zhong C, Zhang H, Huang Y, Zhu C, Yang S, Yan D. Characteristics of circulating immune cells in HBV-related acute-on-chronic liver failure following artificial liver treatment. BMC Immunol 2023; 24:47. [PMID: 38007423 PMCID: PMC10676598 DOI: 10.1186/s12865-023-00579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND AND AIM Liver failure, which is predominantly caused by hepatitis B (HBV) can be improved by an artificial liver support system (ALSS). This study investigated the phenotypic heterogeneity of immunocytes in patients with HBV-related acute-on-chronic liver failure (HBV-ACLF) before and after ALSS therapy. METHODS A total of 22 patients with HBV-ACLF who received ALSS therapy were included in the study. Patients with Grade I according to the ACLF Research Consortium score were considered to have improved. Demographic and laboratory data were collected and analyzed during hospitalization. Immunological features of peripheral blood in the patients before and after ALSS were detected by mass cytometry analyses. RESULTS In total, 12 patients improved and 10 patients did not. According to the immunological features data after ALSS, the proportion of circulating monocytes was significantly higher in non-improved patients, but there were fewer γδT cells compared with those in improved patients. Characterization of 37 cell clusters revealed that the frequency of effector CD8+ T (P = 0.003), CD4+ TCM (P = 0.033), CD4+ TEM (P = 0.039), and inhibitory natural killer (NK) cells (P = 0.029) decreased in HBV-ACLF patients after ALSS therapy. Sub group analyses after treatment showed that the improved patients had higher proportions of CD4+ TCM (P = 0.010), CD4+ TEM (P = 0.021), and γδT cells (P = 0.003) and a lower proportion of monocytes (P = 0.012) compared with the non-improved patients. CONCLUSIONS Changes in effector CD8+ T cells, effector and memory CD4+ T cells, and inhibitory NK cells are associated with ALSS treatment of HBV-ACLF. Moreover, monocytes and γδT cells exhibited the main differences when patients obtained different prognoses. The phenotypic heterogeneity of lymphocytes and monocytes may contribute to the prognosis of ALSS and future immunotherapy strategies.
Collapse
Affiliation(s)
- Tao Ju
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Chengli Zhong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Huafen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yandi Huang
- Department of Laboratory Medicine, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Chunxia Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
57
|
Zhang W, Liu K, Ren GM, Wang Y, Wang T, Liu X, Li DX, Xiao Y, Chen X, Li YT, Zhan YQ, Xiang SS, Chen H, Gao HY, Zhao K, Yu M, Ge CH, Li CY, Ge ZQ, Yang XM, Yin RH. BRISC is required for optimal activation of NF-κB in Kupffer cells induced by LPS and contributes to acute liver injury. Cell Death Dis 2023; 14:743. [PMID: 37968261 PMCID: PMC10651896 DOI: 10.1038/s41419-023-06268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023]
Abstract
BRISC (BRCC3 isopeptidase complex) is a deubiquitinating enzyme that has been linked with inflammatory processes, but its role in liver diseases and the underlying mechanism are unknown. Here, we investigated the pathophysiological role of BRISC in acute liver failure using a mice model induced by D-galactosamine (D-GalN) plus lipopolysaccharide (LPS). We found that the expression of BRISC components was dramatically increased in kupffer cells (KCs) upon LPS treatment in vitro or by the injection of LPS in D-GalN-sensitized mice. D-GalN plus LPS-induced liver damage and mortality in global BRISC-null mice were markedly attenuated, which was accompanied by impaired hepatocyte death and hepatic inflammation response. Constantly, treatment with thiolutin, a potent BRISC inhibitor, remarkably alleviated D-GalN/LPS-induced liver injury in mice. By using bone marrow-reconstituted chimeric mice and cell-specific BRISC-deficient mice, we demonstrated that KCs are the key effector cells responsible for protection against D-GalN/LPS-induced liver injury in BRISC-deficient mice. Mechanistically, we found that hepatic and circulating levels of TNF-α, IL-6, MCP-1, and IL-1β, as well as TNF-α- and MCP-1-producing KCs, in BRISC-deleted mice were dramatically decreased as early as 1 h after D-GalN/LPS challenge, which occurred prior to the elevation of the liver injury markers. Moreover, LPS-induced proinflammatory cytokines production in KCs was significantly diminished by BRISC deficiency in vitro, which was accompanied by potently attenuated NF-κB activation. Restoration of NF-κB activation by two small molecular activators of NF-κB p65 effectively reversed the suppression of cytokines production in ABRO1-deficient KCs by LPS. In conclusion, BRISC is required for optimal activation of NF-κB-mediated proinflammatory cytokines production in LPS-treated KCs and contributes to acute liver injury. This study opens the possibility to develop new strategies for the inhibition of KCs-driven inflammation in liver diseases.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Kai Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yu Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Ting Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Dong-Xu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yang Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xu Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ya-Ting Li
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Shen-Si Xiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Qiang Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
58
|
Mohammed OS, Attia HG, Mohamed BMSA, Elbaset MA, Fayed HM. Current investigations for liver fibrosis treatment: between repurposing the FDA-approved drugs and the other emerging approaches. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11808. [PMID: 38022905 PMCID: PMC10662312 DOI: 10.3389/jpps.2023.11808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Long-term liver injuries lead to hepatic fibrosis, often progressing into cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. There is currently no effective therapy available for liver fibrosis. Thus, continuous investigations for anti-fibrotic therapy are ongoing. The main theme of anti-fibrotic investigation during recent years is the rationale-based selection of treatment molecules according to the current understanding of the pathology of the disease. The research efforts are mainly toward repurposing current FDA-approved drugs targeting etiological molecular factors involved in developing liver fibrosis. In parallel, investigations also focus on experimental small molecules with evidence to hinder or reverse the fibrosis. Natural compounds, immunological, and genetic approaches have shown significant encouraging effects. This review summarizes the efficacy and safety of current under-investigation antifibrosis medications targeting various molecular targets, as well as the properties of antifibrosis medications, mainly in phase II and III clinical trials.
Collapse
Affiliation(s)
- Omima S. Mohammed
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
59
|
Fu S, Ni T, Zhang M, Ren D, Feng Y, Yao N, Zhang X, Wang R, Xu W, Yang N, Yang Y, He Y, Zhao Y, Liu J. Cholinergic Anti-inflammatory Pathway Attenuates Acute Liver Failure Through Inhibiting MAdCAM1/α4β7-mediated Gut-derived Proinflammatory Lymphocytes Accumulation. Cell Mol Gastroenterol Hepatol 2023; 17:199-217. [PMID: 37926366 PMCID: PMC10758884 DOI: 10.1016/j.jcmgh.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND & AIMS The function of cholinergic anti-inflammatory pathway (CAP) in acute liver failure (ALF) with inflammatory storm remains indefinite. The liver-gut axis has been proved to be crucial for liver homeostasis. Investigation about CAP regulation on liver-gut axis would enrich our understanding over cholinergic anti-inflammatory mechanism. METHODS Co-injection of lipopolysaccharide and D-galactosamine was used to establish the model of ALF. PNU-282987 was used to activate the CAP. Histological staining, real-time polymerase chain reaction, Western blotting, RNA sequencing, and flow cytometry were conducted. Liver biopsy specimens and patients' serum from patients with liver failure were also analyzed. RESULTS We confirmed that activating the CAP alleviated hepatocyte destruction, accompanied by a significant decrease in hepatocyte apoptosis, pro-inflammatory cytokines, and NLRP3 inflammasome activation. Moreover, hepatic MAdCAM1 and serum MAdCAM1 levels were induced in ALF, and MAdCAM1 levels were positively correlated with the extent of liver damage and the expression of pro-inflammatory markers. Furthermore, activating the CAP mainly downregulated ectopic expression of MAdCAM1 on endothelial cells, and inhibition of NF-κB p65 nuclear translocation was partly attributed to the decreased MAdCAM1. Notably, in ALF, the aberrant hepatic expression of MAdCAM1 subsequently recruited gut-derived α4β7+ CD4+T cells to the liver, which exhibited an augmented IFN-γ-secreting and IL-17-producing phenotype. Finally, we revealed that the levels of serum and hepatic MAdCAM1 were elevated in patients with liver failure and closely correlated with clinical course. Increasing hepatic infiltration of β7+ cells were also confirmed in patients. CONCLUSIONS Activating the CAP attenuated liver injury by inhibiting MAdCAM1/α4β7 -mediated gut-derived proinflammatory lymphocytes infiltration, which provides a potential therapeutic target for ALF.
Collapse
Affiliation(s)
- Shan Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - TianZhi Ni
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - MengMeng Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi Province, China
| | - DanFeng Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi Province, China
| | - YaLi Feng
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - NaiJuan Yao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaoli Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - RuoJing Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - WeiCheng Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi Province, China
| | - Yuan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi Province, China
| | - Yingli He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi Province, China
| | - YingRen Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi Province, China.
| | - JinFeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Shaanxi Clinical Medical Research Center of Infectious Diseases, Xi'an, Shaanxi Province, China.
| |
Collapse
|
60
|
Korkaya AK, Fischer J, Peppers A, Crosson SM, Rayamajhi M, Miao EA, Baldwin AS, Bradford JW. Production of a p65 fl/fl/LysMCre mouse model with dysfunctional NF-κB signaling in bone marrow-derived macrophages. Innate Immun 2023; 29:171-185. [PMID: 37828842 PMCID: PMC10621469 DOI: 10.1177/17534259231205993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Here, we describe the production and characterization of a novel p65fl/fl/LysMCre mouse model, which lacks canonical nuclear factor-kappaB member RelA/p65 (indicated as p65 hereafter) in bone marrow-derived macrophages. Cultured bone marrow-derived macrophages that lack p65 protein reveal NF-κB signaling deficiencies, a reduction in phagocytic ability, and reduced ability to produce nitrites. Despite abnormal bone marrow-derived macrophage function, p65fl/fl/LysMCre mice do not exhibit differences in naïve systemic immune profiles or colony forming units and time to death following Salmonella infection as compared to controls. Additionally, p65fl/fl/LysMCre mice, especially females, display splenomegaly, but no other obvious physical or behavioral differences as compared to control animals. As bone marrow-derived macrophages from this transgenic model are almost completely devoid of canonical nuclear factor-kappaB pathway member p65, this model has the potential for being very useful in investigating bone marrow-derived macrophage NF-kappaB signaling in diverse biological and biomedical studies.
Collapse
Affiliation(s)
- Ahmet K. Korkaya
- Department of Biological Sciences, Augusta University, Augusta, Georgia, USA
| | - Jeffrey Fischer
- Department of Biological Sciences, Augusta University, Augusta, Georgia, USA
| | - Anthony Peppers
- Department of Biological Sciences, Augusta University, Augusta, Georgia, USA
| | - Sean M. Crosson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Manira Rayamajhi
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
| | - Albert S. Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
61
|
Xie D, Ouyang S. The role and mechanisms of macrophage polarization and hepatocyte pyroptosis in acute liver failure. Front Immunol 2023; 14:1279264. [PMID: 37954583 PMCID: PMC10639160 DOI: 10.3389/fimmu.2023.1279264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Acute liver failure (ALF) is a severe liver disease caused by disruptions in the body's immune microenvironment. In the early stages of ALF, Kupffer cells (KCs) become depleted and recruit monocytes derived from the bone marrow or abdomen to replace the depleted macrophages entering the liver. These monocytes differentiate into mature macrophages, which are activated in the immune microenvironment of the liver and polarized to perform various functions. Macrophage polarization can occur in two directions: pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages. Controlling the ratio and direction of M1 and M2 in ALF can help reduce liver injury. However, the liver damage caused by pyroptosis should not be underestimated, as it is a caspase-dependent form of cell death. Inhibiting pyroptosis has been shown to effectively reduce liver damage induced by ALF. Furthermore, macrophage polarization and pyroptosis share common binding sites, signaling pathways, and outcomes. In the review, we describe the role of macrophage polarization and pyroptosis in the pathogenesis of ALF. Additionally, we preliminarily explore the relationship between macrophage polarization and pyroptosis, as well as their effects on ALF.
Collapse
Affiliation(s)
| | - Shi Ouyang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Department of Infectious Diseases, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
62
|
Kumagai K, Kanmura S, Mawatari S, Nakamura Y, Eguchi H, Taniyama O, Toyodome A, Ijuin S, Sakae H, Tabu K, Oda K, Shimata K, Hibi T, Ido A. Glycoprotein non-metastatic melanoma protein B expression correlates with the prognosis of acute liver injury/failure. Front Cell Dev Biol 2023; 11:1242152. [PMID: 37941897 PMCID: PMC10627855 DOI: 10.3389/fcell.2023.1242152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Background: Glycoprotein non-metastatic melanoma protein B (GPNMB) is expressed in macrophages during recovery from acute liver injury (ALI) in carbon tetrachloride (CCl4)-induced liver injury model mice. In this retrospective study, we assessed whether GPNMB levels in the serum and injured liver correlate with liver injury severity and prognosis in patients with ALI or acute liver failure (ALF). Methods: The study involved 56 patients with ALI or ALF who visited the Kagoshima University Hospital. Serum GPNMB level was measured over time, and the localization, proportion, origin, and phenotype of GPNMB-expressing cells in the injured liver were assessed. Finally, the phenotypes of human monocyte-derived macrophages and peripheral blood mononuclear cells (PBMCs) of patients with ALI and ALF were analyzed. Results: Peak GPNMB levels were significantly higher in patients with ALF and hepatic encephalopathy (HE), as well as in those who underwent liver transplantation or died, than in others. The peak GPNMB level correlated with prothrombin activity, prothrombin time-international normalized ratio, Model for End-stage Liver Disease score, and serum hepatocyte growth factor level. GPNMB was expressed in CD68-positive macrophages, and its level increased with the severity of liver injury. The macrophages showed the same polarization as M2c macrophages induced with interleukin-10 from human monocytes. Moreover, PBMCs from patients with ALF exhibited an immunosuppressive phenotype. Conclusion: We found that GPNMB levels in the serum and injured liver, which increased in patients with ALF, especially in those with HE, correlated with the severity of liver injury and prognosis of ALI and ALF. Moreover, GPNMB-positive macrophages exhibited the M2c phenotype. Our results indicate that persistently high GPNMB levels may be a prognostic marker in patients with ALI and ALF.
Collapse
Affiliation(s)
- Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuko Nakamura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiromi Eguchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Oki Taniyama
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ai Toyodome
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Sho Ijuin
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Haruka Sakae
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kohei Oda
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keita Shimata
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Taizo Hibi
- Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
63
|
Sun R, Lu W, Ren W, Zhang S, Yao D, Zhang N, Zhong K, Zhao W, Tang X, Han M, Li T. A novel laboratory-based nomogram for assessing infection presence risk in acute-on-chronic liver failure patients. Sci Rep 2023; 13:16970. [PMID: 37806983 PMCID: PMC10560663 DOI: 10.1038/s41598-023-44006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Accurate assessment of infection presence risk level, timely diagnosis, and effective control are critical for decreasing mortality of Acute‑on‑chronic liver failure (ACLF). We aimed to develop and validate a novel diagnostic model to accurately assess infection presence risk level in ACLF patients. 185 ACLF patients with/without infection were enrolled, and their demographic, physical findings, immune-inflammatory, hepatic function, metabolism, and coagulation-fibrinolysis indicators were analyzed. Regression analysis was performed to identify the independent diagnostic parameters, which were further used to establish diagnostic models with a nomogram for visual. An area under receiver operating characteristic curve (AUROC), calibration plots, clinical impact curves, decision curve analysis, and net reclassification index were used to evaluate and identify the best model. An external validating cohort was introduced to verify the diagnostic accuracy. We screened out white blood cell (WBC) count, LYM%, blood urea nitrogen (BUN), and D-dimer for assessing infection presence risk levels in ACLF patients. WBD (WBC + BUN + D-dimer) was established and proposed as a novel diagnostic model for infection presence risk levels assessment in ACLF patients with an AUROC of 0.803 (95%CI 0.723-0.883), 0.885 (95%CI 0.786-0.984) in training and external cohorts, respectively. In stratification analysis by ACLF etiology and stages, WBD achieved an AUROC of 0.791 (95%CI 0.691-0.891) and 0.873 (95%CI 0.78-0.966) in HBV-related and early-stage patients, respectively. Whereas a higher AUROC of 0.905 (95%CI 0.807-1.00) in the early-stage of HBV-related ACLF patients indicated its optimum application scope. WBD, a novel laboratory-based nomogram, can serve as a decision-making support tool for clinicians to assess infection presence risk levels in ACLF patients.
Collapse
Affiliation(s)
- Rui Sun
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Wenli Lu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Wanhua Ren
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Shuhong Zhang
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dongxue Yao
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nannan Zhang
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Keqing Zhong
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Wenrui Zhao
- Department of Infectious Diseases, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaolin Tang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Meihong Han
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China
| | - Tao Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324#, Jing 5 Road, Jinan, China.
| |
Collapse
|
64
|
Tu H, Liu R, Zhang A, Yang S, Liu C. Risk factors for the mortality of hepatitis B virus-associated acute-on-chronic liver failure: a systematic review and meta-analysis. BMC Gastroenterol 2023; 23:342. [PMID: 37789279 PMCID: PMC10548554 DOI: 10.1186/s12876-023-02980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Hepatitis B virus-associated acute-on-chronic liver failure (HBV-ACLF) has been confirmed as a prevalent form of end-stage liver disease in people subjected to chronic HBV infection. However, there has been rare in-depth research on the risk factors for the mortality of HBV-ACLF. This study aimed at determining the risk factors for the mortality of HBV-ACLF. METHODS The relevant research was selected from four electronic databases that have been published as of August 2023. The existing research was reviewed in accordance with the inclusion and exclusion criteria. The level of quality of previous research was evaluated using the Newcastle-Ottawa scale. Moreover, a pooled estimate of the odds ratios (ORs) with their associated 95% confidence intervals (CIs) was provided through a meta-analysis. The data were combined, and the risk variables that at least two studies had considered were analyzed. The publication bias was examined through Egger's test and Begg's test. RESULTS Twenty two studies that conformed to the inclusion criteria were selected from 560 trials. Eight risk variables in terms of HBV-ACLF mortality were determined, which covered INR (OR = 1.923, 95% CI = 1.664-2.221, P < 0.001), Monocytes (OR = 1.201, 95% CI = 1.113-1.296, P < 0.001), Cirrhosis (OR = 1.432, 95% CI = 1.210-1.696, P < 0.001), HE (OR = 2.553, 95% CI = 1.968-3.312, P < 0.001), HE grade (OR = 2.059, 95% CI = 1.561-2.717, P < 0.001), SBP (OR = 1.383, 95% CI = 1.080-1.769, P = 0.010), Hyponatremia (OR = 1.941, 95% CI = 1.614-2.334, P < 0.001), as well as HRS (OR = 2.610, 95% CI = 1.669-4.080, P < 0.001). CONCLUSION The most significant risk factors for HBV-ACLF mortality comprise HRS, HE, and HE grade, followed by INR and hyponatremia. The Monocytes, cirrhosis, and SBP have been confirmed as the additional key risk factors for HBV-ACLF mortality.
Collapse
Affiliation(s)
- Hanyun Tu
- School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Rong Liu
- Sichuan Institute of Product Quality Supervision and Inspection, Chengdu, 610100, China
| | - Anni Zhang
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Sufei Yang
- Department of Cardiology, Daping Hospital, Army Medical University), Third Military Medical University, Chongqing, 400042, China
| | - Chengjiang Liu
- Department of General Medicine, Affiliated Anqing First People's Hospital of Anhui Medical University, Anqing, 246004, China
| |
Collapse
|
65
|
Stravitz RT, Fontana RJ, Karvellas C, Durkalski V, McGuire B, Rule JA, Tujios S, Lee WM. Future directions in acute liver failure. Hepatology 2023; 78:1266-1289. [PMID: 37183883 PMCID: PMC10521792 DOI: 10.1097/hep.0000000000000458] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023]
Abstract
Acute liver failure (ALF) describes a clinical syndrome of rapid hepatocyte injury leading to liver failure manifested by coagulopathy and encephalopathy in the absence of pre-existing cirrhosis. The hallmark diagnostic features are a prolonged prothrombin time (ie, an international normalized ratio of prothrombin time of ≥1.5) and any degree of mental status alteration (HE). As a rare, orphan disease, it seemed an obvious target for a multicenter network. The Acute Liver Failure Study Group (ALFSG) began in 1997 to more thoroughly study and understand the causes, natural history, and management of ALF. Over the course of 22 years, 3364 adult patients were enrolled in the study registry (2614 ALF and 857 acute liver injury-international normalized ratio 2.0 but no encephalopathy-ALI) and >150,000 biosamples collected, including serum, plasma, urine, DNA, and liver tissue. Within the Registry study sites, 4 prospective substudies were conducted and published, 2 interventional ( N -acetylcysteine and ornithine phenylacetate), 1 prognostic [ 13 C-methacetin breath test (MBT)], and 1 mechanistic (rotational thromboelastometry). To review ALFSG's accomplishments and consider next steps, a 2-day in-person conference was held at UT Southwestern Medical Center, Dallas, TX, entitled "Acute Liver Failure: Science and Practice," in May 2022. To summarize the important findings in the field, this review highlights the current state of understanding of ALF and, more importantly, asks what further studies are needed to improve our understanding of the pathogenesis, natural history, and management of this unique and dramatic condition.
Collapse
Affiliation(s)
| | | | | | - Valerie Durkalski
- Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Jody A. Rule
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Shannan Tujios
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - William M. Lee
- University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
66
|
Ait Ahmed Y, Lafdil F, Tacke F. Ambiguous Pathogenic Roles of Macrophages in Alcohol-Associated Liver Diseases. Hepat Med 2023; 15:113-127. [PMID: 37753346 PMCID: PMC10519224 DOI: 10.2147/hmer.s326468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Alcohol-associated liver disease (ALD) represents a major public health issue worldwide and is a leading etiology of liver cirrhosis. Alcohol-related liver injuries include a range of manifestations including alcoholic hepatitis (AH), simple steatosis, steatohepatitis, hepatic fibrosis, cirrhosis and liver cancer. Liver disease occurs from several pathological disturbances such as the metabolism of ethanol, which generates reactive oxygen species (ROS) in hepatocytes, alterations in the gut microbiota, and the immune response to these changes. A common hallmark of these liver affections is the establishment of an inflammatory environment, and some (broad) anti-inflammatory approaches are used to treat AH (eg, corticosteroids). Macrophages, which represent the main innate immune cells in the liver, respond to a wide variety of (pathogenic) stimuli and adopt a large spectrum of phenotypes. This translates to a diversity of functions including pathogen and debris clearance, recruitment of other immune cells, activation of fibroblasts, or tissue repair. Thus, macrophage populations play a crucial role in the course of ALD, but the underlying mechanisms driving macrophage polarization and their functionality in ALD are complex. In this review, we explore the various populations of hepatic macrophages in alcohol-associated liver disease and the underlying mechanisms driving their polarization. Additionally, we summarize the crosstalk between hepatic macrophages and other hepatic cell types in ALD, in order to support the exploration of targeted therapeutics by modulating macrophage polarization.
Collapse
Affiliation(s)
- Yeni Ait Ahmed
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Fouad Lafdil
- Université Paris-Est, UMR-S955, UPEC, Créteil, France
- Institut National de la Sante et de la Recherche Medicale (INSERM), U955, Créteil, France
- Institut Universitaire de France (IUF), Paris, France
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| |
Collapse
|
67
|
Hassan GS, Flores Molina M, Shoukry NH. The multifaceted role of macrophages during acute liver injury. Front Immunol 2023; 14:1237042. [PMID: 37736102 PMCID: PMC10510203 DOI: 10.3389/fimmu.2023.1237042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
The liver is situated at the interface of the gut and circulation where it acts as a filter for blood-borne and gut-derived microbes and biological molecules, promoting tolerance of non-invasive antigens while driving immune responses against pathogenic ones. Liver resident immune cells such as Kupffer cells (KCs), a subset of macrophages, maintain homeostasis under physiological conditions. However, upon liver injury, these cells and others recruited from circulation participate in the response to injury and the repair of tissue damage. Such response is thus spatially and temporally regulated and implicates interconnected cells of immune and non-immune nature. This review will describe the hepatic immune environment during acute liver injury and the subsequent wound healing process. In its early stages, the wound healing immune response involves a necroinflammatory process characterized by partial depletion of resident KCs and lymphocytes and a significant infiltration of myeloid cells including monocyte-derived macrophages (MoMFs) complemented by a wave of pro-inflammatory mediators. The subsequent repair stage includes restoring KCs, initiating angiogenesis, renewing extracellular matrix and enhancing proliferation/activation of resident parenchymal and mesenchymal cells. This review will focus on the multifaceted role of hepatic macrophages, including KCs and MoMFs, and their spatial distribution and roles during acute liver injury.
Collapse
Affiliation(s)
- Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
68
|
Zheng L, Ling W, Zhu D, Li Z, Li Y, Zhou H, Kong L. Roquin-1 resolves sepsis-associated acute liver injury by regulating inflammatory profiles via miRNA cargo in extracellular vesicles. iScience 2023; 26:107295. [PMID: 37554446 PMCID: PMC10405074 DOI: 10.1016/j.isci.2023.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/05/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Sepsis-associated acute liver injury (SALI) is an independent risk for sepsis-induced death orchestrated by innate and adaptive immune responses. Here, we found that Roquin-1 was decreased during SALI and expressed mainly in monocyte-derived macrophages. Meanwhile, Roquin-1 was correlated with the inflammatory profiles in humans and mice. Mechanically, Roquin-1 in macrophages promoted Ago2-K258-ubiquitination and inhibited Ago2-S387/S828-phosphorylation. Ago2-S387-phosphorylation inhibited Ago2-miRNA's complex location in multivesicular bodies and sorting in macrophages-derived extracellular vesicles (MDEVs), while Ago2-S828-phosphorylation modulated the binding between Ago2 and miRNAs by special miRNAs-motifs. Then, the anti-inflammatory miRNAs in MDEVs decreased TSC22D2 expression directly, upregulated Tregs-differentiation via TSC22D2-STAT3 signaling, and inhibited M1-macrophage-polarization by TSC22D2-AMPKα-mTOR pathway. Furthermore, WT MDEVs in mice alleviated SALI by increasing Tregs ratio and decreasing M1-macrophage frequency synchronously. Our study showed that Roquin-1 in macrophages increased Tregs-differentiation and decreased M1-macrophage-polarization simultaneously via miRNA in MDEVs, suggesting Roquin-1 can be used as a potential tool for SALI treatment and MDEVs engineering.
Collapse
Affiliation(s)
- Lei Zheng
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao-tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Wei Ling
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Deming Zhu
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Zhi Li
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao-tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, P.R. China
| | - Haoming Zhou
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| | - Lianbao Kong
- Hepatobiliary Center/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, P.R. China
| |
Collapse
|
69
|
Zhang Y, Zhang X, Han J, Guo Y, Yang F, Li F, Zhu H, Shen Z, Huang Y, Mao R, Zhang J. Downregulated VISTA enhances Th17 differentiation and aggravates inflammation in patients with acute-on-chronic liver failure. Hepatol Int 2023; 17:1000-1015. [PMID: 36944807 DOI: 10.1007/s12072-023-10505-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND AND AIMS Persistent inflammatory response and immune activation are the core mechanisms underlying acute-on-chronic liver failure (ACLF). Previous studies have shown that deficiency of V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) exacerbates the progression of inflammatory diseases. We aimed to clarify the role of VISTA in the pathogenesis of ACLF. METHODS Blood and liver samples were collected from healthy subjects, stable cirrhosis, and ACLF patients to characterize VISTA expression and function. An ACLF mouse model was used to ascertain potential benefits of anti-VISTA monoclonal antibody (mAb) treatment. RESULTS VISTA expression was significantly reduced in the naïve and central memory CD4+ T cells from patients with ACLF. The expression of VISTA on CD4+ T cells was associated with disease severity and prognosis. VISTA downregulation contributed to the activation and proliferation of CD4+ T cells and enhanced the differentiation of T helper 17 cells (Th17) and secretion of inflammatory cytokines through the activated Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Moreover, agonistic anti-VISTA mAb treatment inhibited the activation and cytokine production of CD4+ T cells and reduced mortality and liver inflammation of the ACLF mice. CONCLUSIONS The decreased expression of VISTA may facilitate development of Th17 cells and promote the progression of inflammation in ACLF patients. These findings are helpful for elucidating the pathogenesis of ACLF and for the identification of new drug targets.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Yifei Guo
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Feifei Yang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Fahong Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Department of Hepatitis Disease, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Room 510, Building 5, 12 Middle Wulumuqi Road, Shanghai, China.
- Key Laboratory of Medical Molecular Virology, MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
70
|
Cai SL, Fan XG, Wu J, Wang Y, Hu XW, Pei SY, Zheng YX, Chen J, Huang Y, Li N, Huang ZB. CB2R agonist GW405833 alleviates acute liver failure in mice via inhibiting HIF-1α-mediated reprogramming of glycometabolism and macrophage proliferation. Acta Pharmacol Sin 2023; 44:1391-1403. [PMID: 36697976 PMCID: PMC10310807 DOI: 10.1038/s41401-022-01037-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/29/2022] [Indexed: 01/26/2023]
Abstract
The inflammatory responses involving infiltration and activation of liver macrophages play a vital role in acute liver failure (ALF). In the liver of ALF mice, cannabinoid receptor 2 (CB2R) is significantly upregulated on macrophages, while CB2R agonist GW405833 (GW) could protect against cell death in acute liver damage. In this study, we investigated the molecular mechanisms underlying the protective effects of GW against ALF in vivo and in vitro from a perspective of macrophage glycometabolism. Mice were pretreated with GW (10 mg/kg, i.p.), then were injected with D-GalN (750 mg/kg, i.p.) and LPS (10 mg/kg, i.p.) to induce ALF. We verified the protective effects of GW pretreatment in ALF mice. Furthermore, GW pretreatment significantly reduced liver macrophage infiltration and M1 polarization, and inhibited the release of inflammatory factors TNF-α and IL-1β in ALF mice. These protective effects were eliminated by CB2R antagonist SR144528 or in CB2R-/- ALF mice. We used LPS-stimulated RAW264.7 cells as an in vitro M1 macrophage-centered model of inflammatory response, and demonstrated that pretreatment with GW (10 μM) significantly reduced glucose metabolism by inhibiting glycolysis, which inhibited LPS-induced macrophage proliferation and inflammatory cytokines release. We verified these results in a stable CB2R-/- RAW264.7 cell line. Moreover, we found that GW significantly inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Using a stable HIF-1α-/- RAW264.7 cell line, we confirmed that GW reduced the release of inflammatory cytokines from macrophages and inhibited glycolysis by downregulating HIF-1α expression. In conclusion, activation of CB2Rs inhibits the proliferation of hepatic macrophages and release of inflammatory factors in ALF mice through downregulating HIF-1α to inhibit glycolysis.
Collapse
Affiliation(s)
- Sheng-Lan Cai
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yang Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Xing-Wang Hu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yi-Xiang Zheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ning Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
71
|
Al-Harbi NO, Imam F, Al-Harbi MM, Qamar W, Aljerian K, Khalid Anwer M, Alharbi M, Almudimeegh S, Alhamed AS, Alshamrani AA. Effect of Apremilast on LPS-induced immunomodulation and inflammation via activation of Nrf2/HO-1 pathways in rat lungs. Saudi Pharm J 2023; 31:1327-1338. [PMID: 37323920 PMCID: PMC10267521 DOI: 10.1016/j.jsps.2023.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
Lipopolysaccharides (LPS), the lipid component of gram-negative bacterial cell wall, is recognized as the key factor in acute lung inflammation and is found to exhibit severe immunologic reactions. Phosphodiesterase-4 (PDE-4) inhibitor: "apremilast (AP)" is an immune suppressant and anti-inflammatory drug which introduced to treat psoriatic arthritis. The contemporary experiment designed to study the protective influences of AP against LPS induced lung injury in rodents. Twenty-four (24) male experimental Wistar rats selected, acclimatized, and administered with normal saline, LPS, or AP + LPS respectively from 1 to 4 groups. The lung tissues were evaluated for biochemical parameters (MPO), Enzyme Linked Immunosorbent Assay (ELISA), flowcytometry assay, gene expressions, proteins expression and histopathological examination. AP ameliorates the lung injuries by attenuating immunomodulation and inflammation. LPS exposure upregulated IL-6, TNF-α, and MPO while downregulating IL-4 which were restored in AP pretreated rats. The changes in immunomodulation markers by LPS were reduced by AP treatment. Furthermore, results from the qPCR analysis represented an upregulation in IL-1β, MPO, TNF-α, and p38 whereas downregulated in IL-10 and p53 gene expressions in disease control animals while AP pretreated rats exhibited significant reversal in these expressions. Western blot analysis suggested an upregulation of MCP-1, and NOS-2, whereas HO-1, and Nrf-2 expression were suppressed in LPS exposed animals, while pretreatment with AP showed down regulation in the expression MCP-1, NOS-2, and upregulation of HO-1, and Nrf-2 expression of the mentioned intracellular proteins. Histological studies further affirmed the toxic influences of LPS on the pulmonary tissues. It is concluded that, LPS exposure causes pulmonary toxicities via up regulation of oxidative stress, inflammatory cytokines and stimulation of IL-1β, MPO, TNF-α, p38, MCP-1, and NOS-2 while downregulation of IL-4, IL-10, p53, HO-1, and Nrf-2 at different expression level. Pretreatment with AP controlled the toxic influences of LPS by modulating these signaling pathways.
Collapse
Affiliation(s)
- Naif O. Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Matar Al-Harbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Khaldoon Aljerian
- Department of Pathology, College of Medicine, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alharbi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
72
|
Varjavand P, Hesampour A. The Role of Mesenchymal Stem Cells and Imatinib in the Process of Liver Fibrosis Healing Through CCL2-CCR2 and CX3CL1-CX3CR1 Axes. Rep Biochem Mol Biol 2023; 12:350-358. [PMID: 38317807 PMCID: PMC10838597 DOI: 10.61186/rbmb.12.2.350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/09/2023] [Indexed: 02/07/2024]
Abstract
Background Persistent liver damage contributes to the development of liver fibrosis, marked by an accumulation of extracellular matrix. Macrophages play a pivotal role in this process, with the CCL2-CCR2 and CX3CR1-CX3CL1 axes serving as key regulators of macrophage recruitment, liver infiltration, and differentiation. In this study, utilizing a rat model of carbon tetrachloride (CCL4)-induced liver fibrosis, we aimed to investigate the impact of imatinib and bone marrow-derived mesenchymal stem cells (BM-MSCs) on the expression of these axis. Methods Sixteen Sprague-Dawley rats were divided into four groups: healthy, liver fibrosis, imatinib-recipient, and BM-MSC-recipient. Treatment effects were evaluated using histopathology and Sirus-red staining. Quantitative real-time PCR was employed to analyze changes in the expression of the genes CCL2, CCR2, CX3CL1, and CX3CR1. Results Histopathological assessments revealed the efficacy of imatinib and BM-MSCs in mitigating liver fibrosis. Our findings demonstrated a significant reduction in CCL2 and CCR2 expression in both imatinib and BM-MSCs treatment groups compared to the liver fibrosis group. Conversely, the gene expression of CX3CL1 and CX3CR1 increased in both therapeutic groups compared to the liver fibrosis groups. Conclusions The notable decrease in CCL2-CCR2 genes in both therapeutic groups suggests that BM-MSCs and imatinib may contribute to a decline in inflammatory macrophages within the liver. The lower CCL2-CCR2 expression in imatinib-recipient rats indicates better efficacy in modulating the recruitment of inflammatory macrophages. The elevated expression of CX3CL1 in BM-MSC-recipient rats suggests a greater impact on the polarization of LY6Chigh (inflammatory) to LY6Clow (anti-inflammatory) macrophages, warranting further investigation.
Collapse
Affiliation(s)
- Parisa Varjavand
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran.
| | - Ardeshir Hesampour
- Department of Biology, Islamic Azad University Central Tehran Branch, Tehran, Iran.
| |
Collapse
|
73
|
Duan M, Liu X, Yang Y, Zhang Y, Wu R, Lv Y, Lei H. Orchestrated regulation of immune inflammation with cell therapy in pediatric acute liver injury. Front Immunol 2023; 14:1194588. [PMID: 37426664 PMCID: PMC10323196 DOI: 10.3389/fimmu.2023.1194588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/26/2023] [Indexed: 07/11/2023] Open
Abstract
Acute liver injury (ALI) in children, which commonly leads to acute liver failure (ALF) with the need for liver transplantation, is a devastating life-threatening condition. As the orchestrated regulation of immune hemostasis in the liver is essential for resolving excess inflammation and promoting liver repair in a timely manner, in this study we focused on the immune inflammation and regulation with the functional involvement of both innate and adaptive immune cells in acute liver injury progression. In the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic, it was also important to incorporate insights from the immunological perspective for the hepatic involvement with SARS-CoV-2 infection, as well as the acute severe hepatitis of unknown origin in children since it was first reported in March 2022. Furthermore, molecular crosstalk between immune cells concerning the roles of damage-associated molecular patterns (DAMPs) in triggering immune responses through different signaling pathways plays an essential role in the process of liver injury. In addition, we also focused on DAMPs such as high mobility group box 1 (HMGB1) and cold-inducible RNA-binding protein (CIRP), as well as on macrophage mitochondrial DNA-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway in liver injury. Our review also highlighted novel therapeutic approaches targeting molecular and cellular crosstalk and cell-based therapy, providing a future outlook for the treatment of acute liver injury.
Collapse
Affiliation(s)
- Mingyue Duan
- Department of Clinical Laboratory, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoguai Liu
- Department of Infectious Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ying Yang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yanmin Zhang
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hong Lei
- Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Shaanxi Institute for Pediatric Diseases, The Affiliated Children’s Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
74
|
Vanderborght B, De Muynck K, Gijbels E, Lefere S, Scott CL, Guilliams M, Beschin A, Vinken M, Verhelst X, Geerts A, Van Vlierberghe H, Devisscher L. Transient Kupffer cell depletion and subsequent replacement by infiltrating monocyte-derived cells does not alter the induction or progression of hepatocellular carcinoma. Int J Cancer 2023; 152:2615-2628. [PMID: 36912275 DOI: 10.1002/ijc.34505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/17/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023]
Abstract
Due to a combination of rapid disease progression and the lack of curative treatment options, hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Infiltrated, monocyte-derived, tumor-associated macrophages are known to play a role in HCC pathogenesis, but the involvement of Kupffer cells (KCs) remains elusive. Here, we used the Clec4F-diphteria toxin receptor transgenic mouse model to specifically investigate the effect of KC depletion on HCC initiation, progression and neoplastic growth following liver resection. For this purpose, several HCC mouse models with varying underlying etiologies were used and partial hepatectomy was performed. Our results show that in HCC, developed on a fibrotic or non-alcoholic steatohepatitis background, depletion of embryonic KCs at the onset of HCC induction and the subsequent replacement by monocyte-derived KCs does not affect the tumor burden, tumor microenvironment or the phenotype of isolated KCs at end-stage disease. In non-chronic liver disease-associated diethylnitrosamine-induced HCC, ablation of Clec4F+ KCs did not alter tumor progression or neoplastic growth following liver resection. Our results show that temporal ablation of resident KCs does not impact HCC pathogenesis, neither in the induction phase nor in advanced disease, and indicate that bone marrow-derived KCs are able to swiftly repopulate the available KC niche and adopt their phenotype.
Collapse
Affiliation(s)
- Bart Vanderborght
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kevin De Muynck
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Eva Gijbels
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Sander Lefere
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, 9000, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, 9000, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, 9000, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, 9000, Belgium
| | - Alain Beschin
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, 1090, Belgium
- Myeloid Cell Immunology Laboratory, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Xavier Verhelst
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, 9000, Belgium
| | - Anja Geerts
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, 9000, Belgium
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, 9000, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
75
|
Yao J, Liu T, Zhao Q, Ji Y, Bai J, Wang H, Yao R, Zhou X, Chen Y, Xu J. Genetic landscape and immune mechanism of monocytes associated with the progression of acute-on-chronic liver failure. Hepatol Int 2023; 17:676-688. [PMID: 36626090 PMCID: PMC10224851 DOI: 10.1007/s12072-022-10472-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/18/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Acute-on-chronic liver failure (ACLF) has a high prevalence and short-term mortality. Monocytes play an important role in the development of ACLF. However, the monocyte subpopulations with unique features and functions in ACLF and associated with disease progression remain poorly understood. We investigated the specific monocyte subpopulations associated with ACLF progression and their roles in inflammatory responses using the single-cell RNA sequencing (scRNA-seq). METHODS We performed scRNA-seq on 17,310 circulating monocytes from healthy controls and ACLF patients and genetically defined their subpopulations to characterize specific monocyte subpopulations associated with ACLF progression. RESULTS Five monocyte subpopulations were obtained, including pro-inflammatory monocytes, CD16 monocytes, HLA monocytes, megakaryocyte-like monocytes, and NK-like monocytes. Comparisons of the monocytes between ACLF patients and healthy controls showed that the pro-inflammatory monocytes had the most significant gene changes, among which the expressions of genes related to inflammatory responses and cell metabolism were significantly increased while the genes related to cell cycle progression were significantly decreased. Furthermore, compared with the ACLF survival group, the ACLF death group had significantly higher expressions of pro-inflammatory cytokines (e.g., IL-6) and their receptors, chemokines (e.g., CCL4 and CCL5), and inflammation-inducing factors (e.g., HES4). Additionally, validation using scRNA-seq and flow cytometry revealed the presence of a cell type-specific transcriptional signature of pro-inflammatory monocytes THBS1, whose production might reflect the disease progression and poor prognosis. CONCLUSIONS We present the accurate classification, molecular markers, and signaling pathways of monocytes associated with ACLF progression. Therapies targeting pro-inflammatory monocytes may be a promising approach for blocking ACLF progression.
Collapse
Affiliation(s)
- Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Tian Liu
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qiang Zhao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yaqiu Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, China
| | - Jinjia Bai
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Han Wang
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ruoyu Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xiaoshuang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Yu Chen
- Fourth Department of Liver Disease (Difficult and Complicated Liver Diseases and Artificial Liver Center), Beijing You'an Hospital Affiliated to Capital Medical University, Beijing, 100069, China.
| | - Jun Xu
- The First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Yingze District, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
76
|
Chen L, Yuan L, Yang J, Pan Y, Wang H. Identification of key immune-related genes associated with LPS/D-GalN-induced acute liver failure in mice based on transcriptome sequencing. PeerJ 2023; 11:e15241. [PMID: 37168540 PMCID: PMC10166078 DOI: 10.7717/peerj.15241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/28/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The aim of this study was to identify key immune-related genes in acute liver failure (ALF) by constructing an ALF mouse model for transcriptome sequencing. METHODS The C57BL/6 mouse with ALF model was induced by lipopolysaccharide (LPS)/ D-galactosamine (D-GalN). After successful modelling, the liver tissues of all mice were obtained for transcriptome sequencing. The key immune-related genes in mice with ALF were identified by differential expression analysis, immune infiltration analysis, weighted gene co-expression network analysis (WGCNA), enrichment analysis, and protein-protein interaction (PPI) analysis. RESULTS An LPS/D-GalN-induced ALF mouse model was successfully constructed, and transcriptome sequencing was performed. Significant differences in the proportions of monocytes, macrophages M0, macrophages M1 and neutrophils were shown by immune infiltration analysis, and 5255 genes highly associated with these four immune cells were identified by WGCNA. These immune genes were found to be significantly enriched in the TNF signalling pathway by enrichment analysis. Finally, PPI analysis was performed on genes enriched in this pathway and three key genes (CXCL1, CXCL10 and IL1B) were screened out and revealed to be significantly upregulated in ALF. CONCLUSIONS Key immune-related genes in ALF were identified in this study, which may provide not only potential therapeutic targets for treating ALF and improving its prognosis, but also a reliable scientific basis for the immunotherapy of the disease.
Collapse
Affiliation(s)
- Ling Chen
- Department of Infectious Disease, Zhejiang Hospital, Hangzhou, China
| | - Li Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jingle Yang
- Department of Infectious Disease, Zhejiang Hospital, Hangzhou, China
| | - Yizhi Pan
- Department of Infectious Disease, Zhejiang Hospital, Hangzhou, China
| | - Hong Wang
- Department of Infectious Disease, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
77
|
Uhlig M, Hein M, Habigt MA, Tolba RH, Braunschweig T, Helmedag MJ, Arici M, Theißen A, Klinkenberg A, Klinge U, Mechelinck M. Cirrhotic Cardiomyopathy Following Bile Duct Ligation in Rats-A Matter of Time? Int J Mol Sci 2023; 24:8147. [PMID: 37175858 PMCID: PMC10249007 DOI: 10.3390/ijms24098147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Cirrhotic patients often suffer from cirrhotic cardiomyopathy (CCM). Previous animal models of CCM were inconsistent concerning the time and mechanism of injury; thus, the temporal dynamics and cardiac vulnerability were studied in more detail. Rats underwent bile duct ligation (BDL) and a second surgery 28 days later. Cardiac function was assessed by conductance catheter and echocardiography. Histology, gene expression, and serum parameters were analyzed. A chronotropic incompetence (Pd31 < 0.001) and impaired contractility at rest and a reduced contractile reserve (Pd31 = 0.03, Pdob-d31 < 0.001) were seen 31 days after BDL with increased creatine (Pd35, Pd42, and Pd56 < 0.05) and transaminases (Pd31 < 0.001). A total of 56 days after BDL, myocardial fibrosis was seen (Pd56 < 0.001) accompanied by macrophage infiltration (CD68: Pgroup < 0.001) and systemic inflammation (TNFα: Pgroup < 0.001, white blood cell count: Pgroup < 0.001). Myocardial expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) was increased after 31 (Pd31 < 0.001) and decreased after 42 (Pd42 < 0.001) and 56 days (Pd56 < 0.001). Caspase-3 expression was increased 31 and 56 days after BDL (Pd31 = 0.005; Pd56 = 0.005). Structural changes in the myocardium were seen after 8 weeks. After the second surgery (second hit), transient myocardial insufficiency with secondary organ dysfunction was seen, characterized by reduced contractility and contractile reserve.
Collapse
Affiliation(s)
- Moritz Uhlig
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (M.A.H.); (A.T.); (M.M.)
| | - Marc Hein
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (M.A.H.); (A.T.); (M.M.)
| | - Moriz A. Habigt
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (M.A.H.); (A.T.); (M.M.)
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Till Braunschweig
- Department of Pathology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | - Marius J. Helmedag
- Department of General, Visceral and Transplantation Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.J.H.); (U.K.)
| | - Melissa Arici
- Luisenhospital, 52064 Aachen, Germany; (M.A.); (A.K.)
| | - Alexander Theißen
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (M.A.H.); (A.T.); (M.M.)
| | | | - Uwe Klinge
- Department of General, Visceral and Transplantation Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.J.H.); (U.K.)
| | - Mare Mechelinck
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; (M.H.); (M.A.H.); (A.T.); (M.M.)
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
78
|
Hardesty JE, Warner JB, Song YL, Floyd A, McClain CJ, Warner DR, Kirpich IA. Fpr2-/- Mice Developed Exacerbated Alcohol-Associated Liver Disease. BIOLOGY 2023; 12:639. [PMID: 37237453 PMCID: PMC10215685 DOI: 10.3390/biology12050639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Alcohol-associated liver disease (ALD) is the most common chronic liver disease and carries a significant healthcare burden. ALD has no long-term treatment options aside from abstinence, and the mechanisms that contribute to its pathogenesis are not fully understood. This study aimed to investigate the role of formyl peptide receptor 2 (FPR2), a receptor for immunomodulatory signals, in the pathogenesis of ALD. WT and Fpr2-/- mice were exposed to chronic-binge ethanol administration and subsequently assessed for liver injury, inflammation, and markers of regeneration. The differentiation capacity of liver macrophages and the oxidative burst activity of neutrophils were also examined. Compared to WT, Fpr2-/- mice developed more severe liver injury and inflammation and had compromised liver regeneration in response to ethanol administration. Fpr2-/- mice had fewer hepatic monocyte-derived restorative macrophages, and neutrophils isolated from Fpr2-/- mice had diminished oxidative burst capacity. Fpr2-/- MoMF differentiation was restored when co-cultured with WT neutrophils. Loss of FPR2 led to exacerbated liver damage via multiple mechanisms, including abnormal immune responses, indicating the crucial role of FPR2 in ALD pathogenesis.
Collapse
Affiliation(s)
- Josiah E. Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jeffrey B. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Ying L. Song
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Alison Floyd
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- Robley Rex Veterans Medical Center, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
| | - Dennis R. Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Alcohol Center, University of Louisville, Louisville, KY 40202, USA
- University of Louisville Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
79
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|
80
|
Lee DS, Kim CW, Kim HY, Ku YM, Won YD, Lee SL, Sun DS. Association between Posttreatment Serum Platelet-to-Lymphocyte Ratio and Distant Metastases in Patients with Hepatocellular Carcinoma Receiving Curative Radiation Therapy. Cancers (Basel) 2023; 15:cancers15071978. [PMID: 37046639 PMCID: PMC10092989 DOI: 10.3390/cancers15071978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Background: We sought to investigate whether serum immune and inflammatory parameters can help to predict distant metastasis (DM) in patients with unresectable hepatocellular carcinoma (HCC) undergoing curative radiation therapy (RT). Methods: A total of 76 RT courses were analyzed. The following variables were included in the analysis: systemic inflammation index, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio (PLR), prognostic nutritional index (PNI), absolute lymphocyte count, lymphocyte-to-monocyte ratio, albumin, albumin-to-alkaline phosphatase ratio, RT-related parameters, and levels of total protein, hemoglobin, α-fetoprotein, and PIVKA-II. Distant control (DC) and overall survival (OS) rates were calculated and compared. Results: The mean age was 61.4 years, and most patients were men (n = 62, 81.6%). The median RT fraction number and fractional doses were 12 (range, 4–30) and 5 (range, 2–12) Gy, respectively. With a median follow-up of 12 (range, 3.1–56.7) months, the 1-year DC and OS rates were 64.4% and 55.2%, respectively. The development of DM significantly deteriorated OS (p = 0.013). In the multivariate analysis, significant independent prognostic indicators for DC and OS rates were the highest posttreatment PLR (≤235.7 vs. >235.7, p = 0.006) and the lowest posttreatment PNI (≤25.4 vs. >25.4, p < 0.001), respectively. Conclusions: Posttreatment serum PLR might be helpfully used as a predictive biomarker of DM in unresectable HCC patients undergoing RT. Future research is necessary to confirm our findings.
Collapse
Affiliation(s)
- Dong Soo Lee
- Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Correspondence:
| | - Chang Wook Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (C.W.K.); (H.Y.K.)
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (C.W.K.); (H.Y.K.)
| | - Young-Mi Ku
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.-M.K.); (Y.D.W.); (S.-L.L.)
| | - Yoo Dong Won
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.-M.K.); (Y.D.W.); (S.-L.L.)
| | - Su-Lim Lee
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (Y.-M.K.); (Y.D.W.); (S.-L.L.)
| | - Der Sheng Sun
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
81
|
Sabikunnahar B, Caldwell S, Varnum S, Hogan T, Cooper A, Lahue KG, Bivona JJ, Cousens PM, Symeonides M, Ballif BA, Poynter ME, Krementsov DN. Long Noncoding RNA U90926 Is Induced in Activated Macrophages, Is Protective in Endotoxic Shock, and Encodes a Novel Secreted Protein. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:807-819. [PMID: 36705532 PMCID: PMC9998366 DOI: 10.4049/jimmunol.2200215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023]
Abstract
Thousands of long noncoding RNAs are encoded in mammalian genomes, yet most remain uncharacterized. In this study, we functionally characterized a mouse long noncoding RNA named U90926. Analysis of U90926 RNA levels revealed minimal expression across multiple tissues at steady state. However, the expression of this gene was highly induced in macrophages and dendritic cells by TLR activation, in a p38 MAPK- and MyD88-dependent manner. To study the function of U90926, we generated U90926-deficient (U9-KO) mice. Surprisingly, we found minimal effects of U90926 deficiency in cultured macrophages. Given the lack of macrophage-intrinsic effect, we investigated the subcellular localization of U90926 transcript and its protein-coding potential. We found that U90926 RNA localizes to the cytosol, associates with ribosomes, and contains an open reading frame that encodes a novel glycosylated protein (termed U9-ORF), which is secreted from the cell. An in vivo model of endotoxic shock revealed that, in comparison with wild type mice, U9-KO mice exhibited increased sickness responses and mortality. Mechanistically, serum levels of IL-6 were elevated in U9-KO mice, and IL-6 neutralization improved endotoxemia outcomes in U9-KO mice. Taken together, these results suggest that U90926 expression is protective during endotoxic shock, potentially mediated by the paracrine and/or endocrine actions of the novel U9-ORF protein secreted by activated myeloid cells.
Collapse
Affiliation(s)
- Bristy Sabikunnahar
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT
| | - Sydney Caldwell
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Stella Varnum
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Tyler Hogan
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Alexei Cooper
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Karolyn G Lahue
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| | - Joseph J Bivona
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT
- Department of Medicine, University of Vermont, Burlington, VT
| | | | - Menelaos Symeonides
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT
| | | | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT
| |
Collapse
|
82
|
Dunster JL, Gibbins JM, Nelson MR. Exploring the constituent mechanisms of hepatitis: a dynamical systems approach. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:24-48. [PMID: 36197900 PMCID: PMC10009886 DOI: 10.1093/imammb/dqac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
Hepatitis is the term used to describe inflammation in the liver. It is associated with a high rate of mortality, but the underlying disease mechanisms are not completely understood and treatment options are limited. We present a mathematical model of hepatitis that captures the complex interactions between hepatocytes (liver cells), hepatic stellate cells (cells in the liver that produce hepatitis-associated fibrosis) and the immune components that mediate inflammation. The model is in the form of a system of ordinary differential equations. We use numerical techniques and bifurcation analysis to characterize and elucidate the physiological mechanisms that dominate liver injury and its outcome to a healthy or unhealthy, chronic state. This study reveals the complex interactions between the multiple cell types and mediators involved in this complex disease and highlights potential problems in targeting inflammation in the liver therapeutically.
Collapse
Affiliation(s)
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6AS, UK
| | - Martin R Nelson
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
83
|
Kuwano A, Okui T, Kohjima M, Kurokawa M, Goya T, Tanaka M, Aoyagi T, Takahashi M, Imoto K, Tashiro S, Suzuki H, Fujita N, Ushijima Y, Ishigami K, Tokunaga S, Kato M, Ogawa Y. Transcatheter arterial steroid injection therapy improves the prognosis of patients with acute liver failure. Medicine (Baltimore) 2023; 102:e33090. [PMID: 36897684 PMCID: PMC9997803 DOI: 10.1097/md.0000000000033090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Acute liver failure (ALF) is a disorder defined by coagulopathy and encephalopathy with a poor prognosis. No effective therapies have been established except for liver transplantation. We previously reported a subgroup of patients with acute liver injury who developed microcirculatory disturbance. We also established and reported transcatheter arterial steroid injection therapy (TASIT) as a new treatment of ALF. Here, we analyze the effectiveness of TASIT in a larger cohort and evaluate the impact on ALF patients with or without microcirculatory disturbance. We conducted a single-center retrospective study to evaluate the effectiveness of TASIT in patients with ALF admitted at Kyushu University Hospital between January 2005 and March 2018. TASIT is performed by injecting methylprednisolone via the proper hepatic artery for 3 days. One hundred ninety-4 patients with ALF were enrolled and analyzed in this study. Of the 87 patients given TASIT, 71 (81.6%) recovered without any complications and 16 (18.4%) died or underwent liver transplantation. Of the 107 patients not administered TASIT, 77 (72.0%) recovered and 30 (28.0%) progressed to irreversible liver failure. In the high-lactate dehydrogenase subgroup, 52 (86.7%) of the 60 patients with TASIT recovered, and the survival rate was significantly higher than that in patients who did not receive TASIT. Multivariate regression analysis revealed that the TASIT procedure was one of the significant prognostic factors in the high-lactate dehydrogenase subgroup and was significantly associated with prothrombin activity percentage improvement. TASIT is an effective treatment for patients with ALF, especially in those with microcirculatory disturbance.
Collapse
Affiliation(s)
- Akifumi Kuwano
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tasuku Okui
- Medical Information Center, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Motoyuki Kohjima
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Miho Kurokawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Takeshi Goya
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Masatake Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tomomi Aoyagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Motoi Takahashi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Koji Imoto
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shigeki Tashiro
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Hideo Suzuki
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shoji Tokunaga
- Medical Information Center, Kyushu University Hospital, Higashi-ku, Fukuoka, Japan
| | - Masaki Kato
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
- Graduate School of Nutritional Sciences, Nakamura Gakuen University, Jounan-ku, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
84
|
Trovato FM, Zia R, Artru F, Mujib S, Jerome E, Cavazza A, Coen M, Wilson I, Holmes E, Morgan P, Singanayagam A, Bernsmeier C, Napoli S, Bernal W, Wendon J, Miquel R, Menon K, Patel VC, Smith J, Atkinson SR, Triantafyllou E, McPhail MJW. Lysophosphatidylcholines modulate immunoregulatory checkpoints in peripheral monocytes and are associated with mortality in people with acute liver failure. J Hepatol 2023; 78:558-573. [PMID: 36370949 DOI: 10.1016/j.jhep.2022.10.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND & AIMS Acute liver failure (ALF) is a life-threatening disease characterised by high-grade inflammation and immunoparesis, which is associated with a high incidence of death from sepsis. Herein, we aimed to describe the metabolic dysregulation in ALF and determine whether systemic immune responses are modulated via the lysophosphatidylcholine (LPC)-autotaxin (ATX)-lysophosphatidylcholinic acid (LPA) pathway. METHODS Ninety-six individuals with ALF, 104 with cirrhosis, 31 with sepsis and 71 healthy controls (HCs) were recruited. Pathways of interest were identified by multivariate statistical analysis of proton nuclear magnetic resonance spectroscopy and untargeted ultraperformance liquid chromatography-mass spectrometry-based lipidomics. A targeted metabolomics panel was used for validation. Peripheral blood mononuclear cells were cultured with LPA 16:0, 18:0, 18:1, and their immune checkpoint surface expression was assessed by flow cytometry. Transcript-level expression of the LPA receptor (LPAR) in monocytes was investigated and the effect of LPAR antagonism was also examined in vitro. RESULTS LPC 16:0 was highly discriminant between ALF and HC. There was an increase in ATX and LPA in individuals with ALF compared to HCs and those with sepsis. LPCs 16:0, 18:0 and 18:1 were reduced in individuals with ALF and were associated with a poor prognosis. Treatment of monocytes with LPA 16:0 increased their PD-L1 expression and reduced CD155, CD163, MerTK levels, without affecting immune checkpoints on T and NK/CD56+T cells. LPAR1 and 3 antagonism in culture reversed the effect of LPA on monocyte expression of MerTK and CD163. MerTK and CD163, but not LPAR genes, were differentially expressed and upregulated in monocytes from individuals with ALF compared to controls. CONCLUSION Reduced LPC levels are biomarkers of poor prognosis in individuals with ALF. The LPC-ATX-LPA axis appears to modulate innate immune response in ALF via LPAR1 and LPAR3. Further investigations are required to identify novel therapeutic agents targeting these receptors. IMPACT AND IMPLICATIONS We identified a metabolic signature of acute liver failure (ALF) and investigated the immunometabolic role of the lysophosphatidylcholine-autotaxin-lysophosphatidylcholinic acid pathway, with the aim of finding a mechanistic explanation for monocyte behaviour and identifying possible therapeutic targets (to modulate the systemic immune response in ALF). At present, no selective immune-based therapies exist. We were able to modulate the phenotype of monocytes in vitro and aim to extend these findings to murine models of ALF as a next step. Future therapies may be based on metabolic modulation; thus, the role of specific lipids in this pathway require elucidation and the relative merits of autotaxin inhibition, lysophosphatidylcholinic acid receptor blockade or lipid-based therapies need to be determined. Our findings begin to bridge this knowledge gap and the methods used herein could be useful in identifying therapeutic targets as part of an experimental medicine approach.
Collapse
Affiliation(s)
- Francesca M Trovato
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Kings College London, UK; Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK.
| | - Rabiya Zia
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Florent Artru
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Kings College London, UK; Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Salma Mujib
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Ellen Jerome
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Kings College London, UK; Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Anna Cavazza
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Kings College London, UK; Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Muireann Coen
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK; Oncology Safety, Clinical Pharmacology & Safety Sciences, R&D, Astra Zeneca, Cambridge, UK
| | - Ian Wilson
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Elaine Holmes
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Phillip Morgan
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Arjuna Singanayagam
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK; Infection Clinical Academic Group, St.George's University of London, UK
| | - Christine Bernsmeier
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK; Department of Biomedicine, University of Basel and University Centre for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Salvatore Napoli
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - William Bernal
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Julia Wendon
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Rosa Miquel
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Krishna Menon
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| | - Vishal C Patel
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Kings College London, UK; Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK; The Roger Williams Institute of Hepatology London, Foundation for Liver Research, London, UK
| | - John Smith
- Anaesthetics, Critical Care, Emergency and Trauma Research Delivery Unit, Kings College Hospital, London, UK
| | - Stephen R Atkinson
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Evangelos Triantafyllou
- Section of Hepatology and Gastroenterology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College, London, UK
| | - Mark J W McPhail
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, Kings College London, UK; Institute of Liver Studies, Kings College Hospital, Denmark Hill, London, UK
| |
Collapse
|
85
|
Kuo NR, Hou MC, Chu WC, Yang YY, Huang CC, Li TH, Lee TY, Liu CW, Liao TL, Hsieh SL, Lin HC. Low lymphocyte-to-monocyte ratio, calcitriol level, and CD206 level predict the development of acute-on-chronic liver failure in patients cirrhosis with acute decompensation. J Chin Med Assoc 2023; 86:265-273. [PMID: 36727703 DOI: 10.1097/jcma.0000000000000867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cirrhosis-related acute-on-chronic liver failure (ACLF) is associated with high morbidity and mortality rates. Prognostic models of ACLF have been developed; however, few studies have focused on the occurrence of ACLF. This study aimed to identify the factors that predict the development of ACLF, hepatic encephalopathy (HE), and infection in patients with cirrhosis. METHODS Patients with cirrhosis were enrolled, and the serum levels of calcitriol, Cluster of Differentiation 26 (CD206), and macrophage-inducible lectin receptor (Mincle) were measured, and lymphocyte-to-monocyte ratio (LMR) and neutrophil-to-lymphocyte ratio were calculated; all the patients were tracked for 6 months. A generalized estimating equation (GEE) was used to assess the factors associated with ACLF development, HE, and infection. The aforementioned model was derived based on immunological markers, and receiver operating characteristic analysis with area under the curve (AUC) was adopted to evaluate accuracy. RESULTS After screening 325 patients with cirrhosis, 65 patients were eligible. In the GEE model, low levels of calcitriol (odds ratio [OR] = 3.259; 95% confidence interval [CI] = 1.118-8.929) and CD206 (OR = 2.666; 95% CI = 1.082-6.567) were associated with the development of ACLF, and the LMR was a protective factor (OR = 0.356; 95% CI = 0.147-0.861). Low calcitriol levels were a risk factor for HE (OR = 3.827) and infection (OR = 2.489). LMR was found to be a protective factor against HE (OR = 0.388). An immunological model for the discrimination of ACLF development within 6 months was proposed, with an AUC of 0.734 (95% CI = 0.598-0.869). CONCLUSION Single and combined immunological markers, including low LMR and low levels of calcitriol and CD206, were promising for early prediction of the development of ACLF, HE, and infection in patients with cirrhosis.
Collapse
Affiliation(s)
- Nai-Rong Kuo
- Department of Medical Education, Medical Innovation and Research Office, Clinical Innovation Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ming-Chih Hou
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Chi Chu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ying-Ying Yang
- Department of Medical Education, Medical Innovation and Research Office, Clinical Innovation Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chia-Chang Huang
- Department of Medical Education, Medical Innovation and Research Office, Clinical Innovation Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tzu-Hao Li
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Linkou Chang Guang Memorial Hospital, Taoyuan, Taiwan, ROC
| | - Chih-Wei Liu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | - Shie-Liang Hsieh
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Han-Chieh Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| |
Collapse
|
86
|
Wang J, Zhang X, Han J, Zhou P, Yu X, Shen Z, Mao R, Lu M, Huang Y, Zhang J. MicroRNA-124 expression in Kupffer cells modulates liver injury by targeting IL-6/STAT3 signaling. Antiviral Res 2023; 211:105510. [PMID: 36581048 DOI: 10.1016/j.antiviral.2022.105510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
MicroRNA-124 (miR-124) is related to liver injury due to chronic hepatitis B (CHB) and hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF). However, the mechanism whereby miR-124 regulates liver inflammation remains unknown. In this study, we show that serum miR-124 serves as a compensatory predictive factor for organ failure and the 28-day prognosis of patients with HBV-ACLF. Moreover, within a mouse model of concanavalin A-induced acute liver injury, miR-124 is highly expressed in Kupffer cells. Overexpression of miR-124 significantly decreases interleukin-6 (IL-6) secretion, and relieves pathological liver necrosis to a great extent. Mechanistically, miR-124 directly targets the 3'-untranslated region of signal transducer and activator of transcription 3 (STAT3) and inhibits IL-6/STAT3 signaling, which reduces pro-inflammatory Kupffer cell polarization. Collectively, our findings suggest that miR-124 can potentially serve as a predictive biomarker for HBV-ACLF prognosis and may represent a promising therapeutic target for relieving severe liver injury resulting from cytokine storms.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajia Han
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Pu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Xueping Yu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Richeng Mao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Germany
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Department of Infectious Diseases, Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, China; Shanghai Institute of Infectious Diseases and Biosecurity, Key Laboratory of Medical Molecular Virology of the Ministry of Education and Ministry of Health (MOH&MOE), Fudan University, Shanghai, China.
| |
Collapse
|
87
|
Fang X, Gao F, Yao Q, Xu H, Yu J, Cao H, Li S. Pooled Analysis of Mesenchymal Stromal Cell-Derived Extracellular Vesicle Therapy for Liver Disease in Preclinical Models. J Pers Med 2023; 13:441. [PMID: 36983624 PMCID: PMC10056150 DOI: 10.3390/jpm13030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Although increasing preclinical studies have emphasized the benefits of exosome-related therapies, the efficacy of mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) for liver injury is unclear. In this work, a pooled analysis was conducted to explore the overall effect of MSC-EV in animal models. METHODS A systematic search of the PubMed, EMBASE, Web of Science, and Cochrane Library databases was performed, from initiation to February 2022, for preclinical studies with liver disease models. The treatment outcomes were evaluated based on liver function, histological analysis, and inflammatory cytokines. RESULTS After screening, 39 studies were included. Pooled analyses demonstrated that MSC-EV therapy significantly improved liver functions (ALB, ALT, AST, ALP, and γ-GT), promoted the repair of injured liver tissue (damaged area, Ishak's score), reduced inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), and increased an anti-inflammatory cytokine (IL-10) compared to the placebo control group. Subgroup analyses indicated that MSC-EV had therapeutic effects on liver fibrosis (n = 16), acute liver injury (n = 11), non-alcoholic fatty liver disease (n = 3), autoimmune hepatitis (n = 4), and hepatic ischemia-reperfusion injury (n = 6). Additionally, the therapeutic effect of EV was comparable to that of MSCs. CONCLUSION MSC-EV have therapeutic potential for acute and chronic liver diseases.
Collapse
Affiliation(s)
- Xinru Fang
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haoying Xu
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou 310003, China
| | - Shibo Li
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
| |
Collapse
|
88
|
Long T, Zhang C, He G, Hu Y, Lin Z, Long L. Bacterial Vaginosis Decreases the Risk of Cervical Cytological Abnormalities. Cancer Prev Res (Phila) 2023; 16:109-117. [PMID: 36280380 PMCID: PMC9900316 DOI: 10.1158/1940-6207.capr-22-0288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
Genital tract infections, including vulvovaginal candidiasis and bacterial vaginosis, have emerged as potential modulators of persistent human papillomavirus (HPV) infections causing cervical cytologic abnormalities and cervical cancer. This study aimed to investigate whether vulvovaginal candidiasis or bacterial vaginosis had an additional effect on HPV infection and thus caused such abnormalities. ThinPrep cytologic tests were used to detect cytologic abnormalities, vulvovaginal candidiasis, and bacterial vaginosis in 14,679 women. Cytologic abnormalities included atypical squamous cells of undetermined significance, low-grade squamous intraepithelial lesions, high-grade squamous intraepithelial lesions, atypical squamous cells-cannot exclude HSIL, and squamous cell carcinoma. Logistic regression Model 1 (univariate regression) and Model 2 (multivariate logistic regression analysis adjusted for age combined with HPV infection) were used to analyze the association between bacterial vaginosis and cytologic abnormalities, or vulvovaginal candidiasis and cytologic abnormalities, alone or in the presence of HPV infection. Bacterial vaginosis infection rates were found to be significantly higher in the cytology-negative group among all participants and those with HPV infection (P = 0.003, P < 0.001, respectively). Analyses using Model 1 and Model 2 both pointed to bacterial vaginosis as a protective factor against cytologic abnormalities for all participants (OR = 0.36, 0.17, respectively, P < 0.05) and for HPV-infected participants (OR = 0.17, 0.16, respectively, P < 0.05). Neither vulvovaginal candidiasis nor vulvovaginal candidiasis + HPV was significantly associated with the incidence of cytologic abnormalities based on Model 1 (OR = 0.94, 0.71, respectively, P > 0.05) and Model 2 (OR = 0.91, 0.74, respectively, P > 0.05). Furthermore, neither vulvovaginal candidiasis nor bacterial vaginosis increased the incidence of cytologic abnormalities regardless of HPV infection status, while bacterial vaginosis might possibly prevent cytologic abnormalities in women coinfected by HPV. PREVENTION RELEVANCE Neither vulvovaginal candidiasis nor bacterial vaginosis was found to increase the incidence of cervical cytologic abnormalities with or without the presence of HPV. On the contrary, bacterial vaginosis may play a role in preventing cytologic abnormalities in women with HPV coinfection.
Collapse
Affiliation(s)
- Tengfei Long
- Department of Obstetrics & Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Chao Zhang
- Department of Obstetrics & Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gui He
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yue Hu
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhongqiu Lin
- Department of Obstetrics & Gynecology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lingli Long
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China.,Corresponding Author: Lingli Long, Sun Yat-sen University, No. 58 Zhongshan Er Road, Guangzhou 510000, P.R. China. Phone: 8613-5600-55597; E-mail:
| |
Collapse
|
89
|
Luo G, Huang L, Zhang Z. The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets. Exp Biol Med (Maywood) 2023; 248:412-424. [PMID: 36670547 DOI: 10.1177/15353702221147563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetaminophen (APAP), a widely used antipyretic and analgesic drug in clinics, is relatively safe at therapeutic doses; however, APAP overdose may lead to fatal acute liver injury. Currently, N-acetylcysteine (NAC) is clinically used as the main antidote for APAP poisoning, but its therapeutic effect remains limited owing to rapid disease progression and the general diagnosis of advanced poisoning. As is well known, APAP-induced hepatotoxicity (AIH) is mainly caused by the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), and the toxic mechanisms of AIH are complicated. Several cellular processes are involved in the pathogenesis of AIH, including liver metabolism, mitochondrial oxidative stress and dysfunction, sterile inflammation, endoplasmic reticulum stress, autophagy, and microcirculation dysfunction. Mitochondrial oxidative stress and dysfunction are the major cellular events associated with APAP-induced liver injury. Many biomolecules involved in these biological processes are potential therapeutic targets for AIH. Therefore, there is an urgent need to comprehensively clarify the molecular mechanisms underlying AIH and to explore novel therapeutic strategies. This review summarizes the various cellular events involved in AIH and discusses their potential therapeutic targets, with the aim of providing new ideas for the treatment of AIH.
Collapse
Affiliation(s)
- Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo 315040, China
| | - Zhaowei Zhang
- Jinhua Municipal Central Hospital, Jinhua 321000, China
| |
Collapse
|
90
|
Kochmar MY, Havrylets MM, Hoblyk KM, Zayachuk IP, Griga VI. HISTOLOGICAL AND MORPHOLOGICAL CHANGES OF THE VASCULAR BED OF THE THYMUS IN WHITE RATS UNDER THE INFLUENCE OF MONOSODIUM GLUTAMATE. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:2491-2496. [PMID: 38112370 DOI: 10.36740/wlek202311124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
OBJECTIVE The aim: To evaluate the effect of 28-day oral administration of MSG at the rate of 30 mg/kg of body weight on histological and morphometric parameters of the vascular bed of the thymus in rats. PATIENTS AND METHODS Materials and methods: The scientific experiment was conducted on 20 white non-linear rats of reproductive age (4-5 months) weighing from 220 to 280 g, which were divided into two groups (10 rats each). Depending on the term of decapitation, the experimental animals were divided into two groups (10 rats in each group). We studied the effect of 14 and 28 days of MSG administration on the body of rats (I and II groups of experimental rats). The experimental animals were daily orally treated with MSG at a dose of 30 mg/kg body weight, which was dissolved in 0.5 ml of dechlorinated tap water at room temperature. Control rats of III and IV groups (5 rats in each of the control groups) were injected with a placebo (0.5 ml of dechlorinated tap water at room temperature) for 14 and 28 days. Intact animals of III and IV groups were also decapitated on the 14th and 28th days of the experiment, respectively. After the end of the experiment, animals were decapitated under light ether anesthesia. After decapitation, the animals were dissected into the chest cavity to remove the thymus. Histological preparations were studied using a MICROmed SEO SСAN light microscope and a Vision CCD Camera. Morphometric studies were carried out using VideoTest-5.0, KAARA Image Base and Microsoft Excel programs on a personal computer. RESULTS Results: During the microscopic examination of histological preparations of the retrosternal gland in experimental animals of the 1st group (daily administration of MSG at the rate of 30 mg/kg of body weight for 14 days), it was established that the lumen of the arteries is moderately filled with blood elements. The veins are dilated with a changed shape and filled with blood. The following ultrastructural changes were detected in the experimental animals of group I: the lumen of arteries, arterioles and venules is slightly expanded, the nuclei of endotheliocytes are enlarged, occupy a significant part of the cytoplasm, the karyolem forms intussusceptions. The plasmolemma of the lumenal surface of endotheliocytes forms numerous microvilli. At the same time, organelles in the cytoplasm of endotheliocytes lose their contours. After 28 days of exposure to MSG at a dose of 30 mg/kg of body weight in rats (II group of experimental animals), structural changes in the vascular bed of the thymus worsened. The wall of arteries and arterioles is more thickened and swollen, collagen fibers are stratified. In their lumen, there are many uniform elements attached to the vascular wall and testify to thrombus formation. Perivascular edema is determined. The diameter of hemocapillaries is increased, their basal membrane is swollen. Veins and venules are also dilated, full blood, interendothelial contacts in the vessel wall are dilated, the basement membrane is damaged. This contributes to the diapedesis of blood plasma through the vessel wall, which leads to perivascular edema. CONCLUSION Conclusions: Administration of MGS to rats at a dose of 30 mg/kg of body weight for 14 days leads to violations of the morphometric indicators of the vascular bed in the thymus, namely, to an increase in the outer and inner diameter of the arteries, an increase in the area of the middle membrane and the lumen of the vessels, which tend to progress with maximum indicators on the 28th day of the experiment. 2. The study of the vascular bed of the thymus against the background of taking MSG in a dose of 30 mg/kg of the weight of rats indicates the most pronounced changes in hemocapillaries, mainly on the 28th day of the experiment, which is manifested by an increase in their outer diameter. In the lumen of the hemocapillaries, deformed erythrocytes are identified, arranged in the type of "coin columns".
Collapse
|
91
|
Crosstalk of TNF-α, IFN-γ, NF-kB, STAT1 and redox signaling in lipopolysaccharide/D-galactosamine/dimethylsulfoxide-induced fulminant hepatic failure in mice. Saudi Pharm J 2023; 31:370-381. [PMID: 37026046 PMCID: PMC10071328 DOI: 10.1016/j.jsps.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Purpose The clinical study of fulminant hepatic failure is challenging due to its high mortality and relative rarity, necessitating reliance on pre-clinical models to gain insight into its pathophysiology and develop potential therapies. Methods and Results In our study, the combination of the commonly used solvent dimethyl sulfoxide to the current-day model of lipopolysaccharide/d-galactosamine-caused fulminant hepatic failure was found to cause significantly greater hepatic damage, as indicated by alanine aminotransferase level. The effect was dose-dependent, with the maximum increase in alanine aminotransferase observed following 200 μl/kg dimethyl sulfoxide co-administration. Co-administration of 200 μl/kg dimethyl sulfoxide also remarkably increased histopathological changes induced by lipopolysaccharide/d-galactosamine. Importantly, alanine aminotransferase levels and survival rate in the 200 μl/kg dimethyl sulfoxide co-administration groups were both greater than those in the classical lipopolysaccharide/d-galactosamine model. We found that dimethyl sulfoxide co-administration aggravated lipopolysaccharide/d-galactosamine-caused liver damage by stimulating inflammatory signaling, as indicated by tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) levels. Further, nuclear factor kappa B (NF-kB) and transcription factor activator 1 (STAT1) were upregulated, as was neutrophil recruitment, indicated by myeloperoxidase activity. Hepatocyte apoptosis was also increased, and greater nitro-oxidative stress was noted, as determined based on nitric oxide, malondialdehyde, and glutathione levels. Conclusion Co-treatment with low doses of dimethyl sulfoxide enhanced the lipopolysaccharide/d-galactosamine-caused hepatic failure in animals, with higher toxicity and greater survival rates. The current findings also highlight the potential danger of using dimethyl sulfoxide as a solvent in experiments involving the hepatic immune system, suggesting that the new lipopolysaccharide/d-galactosamine/dimethyl sulfoxide model described herein could be used for pharmacological screening with the goal to better understand hepatic failure and evaluate treatment approaches.
Collapse
|
92
|
Jafar Sameri M, Belali R, Neisi N, Noei Razliqi R, Mard SA, Savari F, Azandeh SS. Sodium Hydrosulfide Modification of Mesenchymal Stem Cell-Exosomes Improves Liver Function in CCL4-Induced Hepatic Injury in Mice. Rep Biochem Mol Biol 2023; 11:644-655. [PMID: 37131889 PMCID: PMC10149127 DOI: 10.52547/rbmb.11.4.644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/04/2023]
Abstract
Background Liver diseases and injuries are important medical problems worldwide. Acute liver failure (ALF) is a clinical syndrome characterized by severe functional impairment and widespread death of hepatocytes. Liver transplantation is the only treatment available so far. Exosomes are nanovesicles originating from intracellular organelles. They regulate the cellular and molecular mechanisms of their recipient cells and have promising potential for clinical application in acute and chronic liver injuries. This study compares the effect of Sodium hydrosulfide (NaHS) modified exosomes with non-modified exosomes in CCL4-induced acute liver injury to ascertain their role in ameliorating hepatic injury. Methods Human Mesenchymal stem cells (MSCs) were treated with or without NaHS (1 μmol) and exosomes were isolated using an exosome isolation kit. Male mice (8-12 weeks old) were randomly divided into four groups (n=6): 1-control, 2-PBS, 3- MSC-Exo, and 4- H2S-Exo. Animals received 2.8 ml/kg body weight of CCL4 solution intraperitoneally, and 24 h later MSC-Exo (non-modified), H2S-Exo (NaHS-modified), or PBS, was injected in the tail vein. Moreover, 24 h after Exo administration, mice were sacrificed for tissue and blood collection. Results Administration of both MSC-Exo and H2S-Exo reduced inflammatory cytokines (IL-6, TNF-α), total oxidant levels, liver aminotransferases, and cellular apoptosis. Conclusion MSC-Exo and H2S-Exo had hepato-protective effects against CCL4-induced liver injury in mice. Modification of cell culture medium with NaHS as an H2S donor enhances the therapeutic effects of MSC exosomes.
Collapse
Affiliation(s)
- Maryam Jafar Sameri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Physiology department, Abadan University of Medical Sciences, Abadan, Iran.
- Corresponding author: Maryam Jafar Sameri; Tel: +98 9381267697; E-mail: & Reza Noei Razliqi; Tel: +98 9381267697; E-mail:
| | - Rafeie Belali
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Niloofar Neisi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Department of Medical virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Reza Noei Razliqi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Corresponding author: Maryam Jafar Sameri; Tel: +98 9381267697; E-mail: & Reza Noei Razliqi; Tel: +98 9381267697; E-mail:
| | - Seyed Ali Mard
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Feryal Savari
- Department of basic sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Seyyed Saeed Azandeh
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
93
|
Zhang L, Ma T, Yan Y, Chen YY, Zhu XH, Ren HZ. The Diagnostic and Therapeutic Value of NCAPG as a Proposed Biomarker Candidate in Acute Liver Failure. Comb Chem High Throughput Screen 2023; 26:2738-2748. [PMID: 37066775 DOI: 10.2174/1386207326666230416165707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 04/18/2023]
Abstract
BACKGROUND Acute Liver Failure (ALF) is a difficult problem to solve in clinical practice. The presence of non-SMC condensin I complex subunit G (NCAPG) has previously been linked to vascular invasion of digestive system tumors, foreshadowing poor prognosis. Its role in ALF biology, however, remains unknown. This article explores the role of NCAPG as a potential biomarker candidate for the accurate diagnosis and targeted treatment of ALF. METHODS The study included transcription data (GSE14668, GSE38941, GSE62029, GSE96851, and GSE120652) of ALF, normal tissues, and clinical samples, where NCAPG was selected as the differential gene by the "DESeq2" R package to analyze the immune cell functions and signal pathways. Furthermore, RT-qPCR and Western blot analyses were used to confirm the RNA and protein levels of NCAPG in ALF cell models, respectively. RESULTS Bioinformatics analysis revealed that NACPG was up-regulated in ALF tissues, and the functional signaling pathway was primarily associated with immune infiltration. Based on the results of clinical samples, we suggest that NCAPG was overexpressed in ALF tissues. We also found that the expression of NCAPG increased with the degree of liver injury in vitro. Enrichment analysis suggested that NCAPG influenced ALF as a PI3K/AKT pathway activator. CONCLUSION Our study suggests that NCAPG is a preliminary tool for the diagnosis of ALF. It can affect ALF via the PI3K/AKT pathway and is a potential therapeutic target to improve prognosis.
Collapse
Affiliation(s)
- Lu Zhang
- Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Tao Ma
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Yan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yu-Yan Chen
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin-Hua Zhu
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao-Zhen Ren
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
94
|
Chowdhury O, Ghosh S, Das A, Liu H, Shang P, Stepicheva NA, Hose S, Sinha D, Chattopadhyay S. Sustained systemic inflammation increases autophagy and induces EMT/fibrotic changes in mouse liver cells: Protection by melatonin. Cell Signal 2023; 101:110521. [PMID: 36375715 DOI: 10.1016/j.cellsig.2022.110521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The unending lifestyle stressors along with genetic predisposition, environmental factors and infections have pushed the immune system into a state of constant activity, leading to unresolved inflammation and increased vulnerability to chronic diseases. Liver fibrosis, an early-stage liver condition that increases the risk of developing liver diseases like cirrhosis and hepatocellular carcinoma, is among the various diseases linked to inflammation that dominate worldwide morbidity and mortality. We developed a mouse model with low-grade lipopolysaccharide (LPS) exposure that shows hepatic damage and a pro-inflammatory condition in the liver. We show that inflammation and oxidative changes increase autophagy in liver cells, a degradation process critical in maintaining cellular homeostasis. Our findings from in vivo and in vitro studies also show that induction of both inflammation and autophagy trigger epithelial-mesenchymal transition (EMT) and pro-fibrotic changes in hepatocytes. Inhibiting the inflammatory pathways with a naturally occurring NF-κB inhibitor and antioxidant, melatonin, could assuage the changes in autophagy and activation of EMT/fibrotic pathways in hepatocytes. Taken together, this study shows a pathway linking inflammation and autophagy which could be targeted for future drug development to delay the progression of liver fibrosis.
Collapse
Affiliation(s)
- Olivia Chowdhury
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata 700098, India.
| |
Collapse
|
95
|
Wu YL, Ou WJ, Zhong M, Lin S, Zhu YY. Gasdermin D Inhibitor Necrosulfonamide Alleviates Lipopolysaccharide/D-galactosamine-induced Acute Liver Failure in Mice. J Clin Transl Hepatol 2022; 10:1148-1154. [PMID: 36381100 PMCID: PMC9634782 DOI: 10.14218/jcth.2021.00560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Acute liver failure (ALF) is associated with high mortality. Gasdermin D (GSDMD) is the executioner of pyroptosis and is involved in the pathophysiology of immune dysregulation This study investigated the role of the GSDMD inhibitor necrosulfonamide (NSA) in ALF. METHODS An ALF model was established by lipopolysaccharide/D-galactosamine challenge in C57BL/6J mice. Mice were divided into four groups: normal controls (control group), ALF group (ALF group), dimethyl sulfoxide group (DMSO group), and NSA intervention group (NSA group). Survival was monitored, liver damage was determined by hematoxylin and eosin staining, and serum alanine aminotransferase (ALT). Underlying mechanisms were explored by quantitative real-time PCR, western blotting, and enzyme-linked immunosorbent assays. RESULTS Pyroptosis was activated in ALF model mice. Mice treated with GSDMD inhibitor NSA developed less severe liver failure. NSA reduced the expression of GSDMD, NLRP3, cleaved caspase-1, cleaved caspase-11, and secretion of interleukin-1 beta in ALF mice model. CONCLUSIONS Pyroptosis was activated in ALF. NSA alleviated ALF via the pyroptosis pathway.
Collapse
Affiliation(s)
- Yi-Long Wu
- Endoscopy Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Wei-Jie Ou
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Ming Zhong
- Endocrinology Department, Metabolic Diseases Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Diabetes Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Su Lin
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, Fujian, China
| | - Yue-Yong Zhu
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Liver and Intestinal Diseases of Fujian Province, Fuzhou, Fujian, China
| |
Collapse
|
96
|
Cao Y, Fan Y, Li F, Hao Y, Kong Y, Chen C, Hao X, Han D, Li G, Wang Z, Song C, Han J, Zeng H. Phenotypic and functional alterations of monocyte subsets with aging. Immun Ageing 2022; 19:63. [PMID: 36514074 PMCID: PMC9745938 DOI: 10.1186/s12979-022-00321-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND It has been widely accepted that monocytes are one of the central mediators contributing to inflammaging. However, it remains unclear whether aged monocytes, similar to aged T cells, have characteristics of hyperactivation and increased expression of co-inhibitory molecules. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from young (21-40 years old), middle-aged (41-60 years old), and older human subjects (> 60 years old). Flow cytometry was used to monitor changes in the expression of surface molecules of monocyte subsets and cytokine-producing capacity. RESULTS We observed increased tumor necrosis factor-α: TNF-α and decreased interleukin-6 (IL-6) production in monocytes from older adults compared with young and middle-aged adults. Older adults had a greater percentage of intermediate and non-classical monocyte subsets, along with increased levels of the immune activation markers human leukocyte antigen-DR (HLA-DR), and adhesion molecules cluster of differentiation molecule 11b (CD11b) and L-selectin (CD62L). Furthermore, we observed increased C-C motif chemokine receptor 2 (CCR2) expression on classical monocytes and decreased C-X3-C motif chemokine receptor 1 (CX3CR1) expression on non-classical monocytes in older adult subjects. The expression of co-inhibitory receptors was reduced on monocyte subsets in older adults. CONCLUSIONS Circulating monocytes in older adults exhibit increased expression of activation, adhesion, and migration markers, but decreased expression of co-inhibitory molecules.
Collapse
Affiliation(s)
- Yu Cao
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Yang Fan
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Fangyuan Li
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yu Hao
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Yaxian Kong
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Chen Chen
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Xing Hao
- grid.411606.40000 0004 1761 5917Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Dannuo Han
- grid.411606.40000 0004 1761 5917Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029 China
| | - Guoli Li
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Zengtao Wang
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Chuan Song
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China
| | - Junyan Han
- grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| | - Hui Zeng
- grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.508381.70000 0004 0647 272XBeijing Institute of Infectious Diseases, Beijing, 100015 China ,grid.24696.3f0000 0004 0369 153XNational Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015 China ,grid.414367.3Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China ,grid.414367.3Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038 China
| |
Collapse
|
97
|
Zhang X, Zhang Y, Zhou P, Ai J, Liu X, Zhang Q, Wang Z, Wang H, Zhang W, Zhang J, Huang Y. Down-regulated cylindromatosis enhances NF-κB activation and aggravates inflammation in HBV-ACLF patients. Emerg Microbes Infect 2022; 11:1586-1601. [PMID: 35579924 PMCID: PMC9186363 DOI: 10.1080/22221751.2022.2077128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The pathogenesis of liver in patients with hepatitis B virus-associated acute chronic liver failure (HBV-ACLF) remains largely unknown. We aimed to elucidate the molecular mechanism underlying the pathogenesis of liver in HBV-ACLF patients by using multiple approaches including transcriptome analysis. We performed transcriptomic sequencing analysis on the liver of HBV-ACLF patients (n = 6), chronic hepatitis B (n = 6), liver cirrhosis (n = 6) and normal control (n = 5), then explored the potential pathogenesis mechanism in liver specimen from another 48 subjects and further validated the molecular and cellular mechanisms using THP-1 cells. RNA-sequencing data analysis indicated that, among the genes up-regulated in HBV-ACLF, genes related to inflammatory response and chemotaxis accounted for a large proportion of the total DEGs. A number of key chemokines (CCL2, CCL5, CCL20, CXCL5, CXCL6, CXCL8) and NF-ĸB pathway were identified to be robust in the liver samples from HBV-ACLF patients. Interestingly, cylindromatosis (CYLD) was found to be downregulated in the liver of HBV-ACLF patients, in line with the well-established role of CYLD in regulating most of the chemokines and pro-inflammatory cytokines (CCL2, CCL5, CCL20, CXCL5, CXCL6, CXCL8, IL-6, IL-1β) via inhibition of NF-ĸB. Indeed, the knockdown of CYLD resulted in sustained activation of NF-ĸB in macrophages and enhanced chemokines and inflammatory cytokines production, which in turn enhanced chemotactic migration of neutrophil, monocyte, T lymphocytes, and NK cell. In conclusions, down-regulated CYLD aggravated inflammatory cell chemotaxis through enhancing NF-κB activation in HBV-ACLF patients, thereby participating in the pathogenesis of HBV-ACLF injury.
Collapse
Affiliation(s)
- Xueyun Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yao Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Pu Zhou
- Huashan Worldwide Medical Center, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiaoqin Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Quanbao Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyan Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiming Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology (MOE/MOH), Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Infectious Diseases Jing'An Branch of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuxian Huang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Shanghai Institute of Infectious Diseases and Biosecurity, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,Department of Hepatology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
98
|
Kulle A, Thanabalasuriar A, Cohen TS, Szydlowska M. Resident macrophages of the lung and liver: The guardians of our tissues. Front Immunol 2022; 13:1029085. [PMID: 36532044 PMCID: PMC9750759 DOI: 10.3389/fimmu.2022.1029085] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
Resident macrophages play a unique role in the maintenance of tissue function. As phagocytes, they are an essential first line defenders against pathogens and much of the initial characterization of these cells was focused on their interaction with viral and bacterial pathogens. However, these cells are increasingly recognized as contributing to more than just host defense. Through cytokine production, receptor engagement and gap junction communication resident macrophages tune tissue inflammatory tone, influence adaptive immune cell phenotype and regulate tissue structure and function. This review highlights resident macrophages in the liver and lung as they hold unique roles in the maintenance of the interface between the circulatory system and the external environment. As such, we detail the developmental origin of these cells, their contribution to host defense and the array of tools these cells use to regulate tissue homeostasis.
Collapse
Affiliation(s)
- Amelia Kulle
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Taylor S. Cohen
- Late Stage Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Marta Szydlowska
- Bacteriology and Vaccine Discovery, Research and Early Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
99
|
The Mechanisms of Systemic Inflammatory and Immunosuppressive Acute-on-Chronic Liver Failure and Application Prospect of Single-Cell Sequencing. J Immunol Res 2022; 2022:5091275. [PMID: 36387424 PMCID: PMC9646330 DOI: 10.1155/2022/5091275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a complex clinical syndrome, and patients often have high short-term mortality. It occurs with intense systemic inflammation, often accompanied by a proinflammatory event (such as infection or alcoholic hepatitis), and is closely related to single or multiple organ failure. Liver inflammation begins when innate immune cells (such as Kupffer cells (KCs)) are activated by binding of pathogen-associated molecular patterns (PAMPs) from pathogenic microorganisms or damage-associated molecular patterns (DAMPs) of host origin to their pattern recognition receptors (PRRs). Activated KCs can secrete inflammatory factors as well as chemokines and recruit bone marrow-derived cells such as neutrophils and monocytes to the liver to enhance the inflammatory process. Bacterial translocation may contribute to ACLF when there are no obvious precipitating events. Immunometabolism plays an important role in the process (including mitochondrial dysfunction, amino acid metabolism, and lipid metabolism). The late stage of ACLF is mainly characterized by immunosuppression. In this process, the dysfunction of monocyte and macrophage is reflected in the downregulation of HLA-DR and upregulation of MER tyrosine kinase (MERTK), which weakens the antigen presentation function and reduces the secretion of inflammatory cytokines. We also describe the specific function of bacterial translocation and the gut-liver axis in the process of ACLF. Finally, we also describe the transcriptomics in HBV-ACLF and the recent progress of single-cell RNA sequencing as well as its potential application in the study of ACLF in the future, in order to gain a deeper understanding of ACLF in terms of single-cell gene expression.
Collapse
|
100
|
Liu LL, Yan X, Xue KY, Wang XM, Li LY, Chen HY, Li RL, Li H, Lan J, Xin JJ, Li X, Zhuo CL, Wu Z, Zhang D, Huang WJ, Wang YL, Li XY, Jiang W, Zhang HY. Prim-O-glucosycimifugin attenuates liver injury in septic mice by inhibiting NLRP3 inflammasome/caspase-1 signaling cascades in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154427. [PMID: 36088791 DOI: 10.1016/j.phymed.2022.154427] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Liver dysfunction and liver failure are serious complications of sepsis, directly leading to septic progression and death. Now, there is no specific therapeutics available for sepsis-related liver dysfunction. Prim-O-glucosylcimifugin (POG), a chromone richest in the roots of Saposhnikovia divaricata (Turcz.) Schischk, is usually used to treat headache, rheumatoid arthritis and tetanus. While, the underlying mechanisms of POG against sepsis-induced liver damage and dysfunction are still not clear. PURPOSE To study the anti-sepsis effect of POG, and its pharmacological mechanism to protect liver injury by weakening the function of macrophages in septic livers through inhibiting NOD-like receptor protein 3 (NLRP3) inflammasome pathway. METHOD In vivo experiments, septic mouse model was induced by cecal ligation and puncture (CLP), and then the mortality was detected, liver inflammatory damages and plasma biomarkers of liver injury were evaluated by histopathological staining and biochemical assays, respectively. In vitro experiments, mouse primary peritoneal macrophages were treated with lipopolysaccharide (LPS) and ATP, and then the activated-inflammasomes, macrophage migration and polarization were detected by ASC immunofluorescence staining, transwell and flow cytometry assays, respectively. NLRP3 inflammasome components NLRP3, caspase-1, IL-1β and IL-18 protein expressions were detected using western blot assays, and the contents of IL-1β and IL-18 were measured by ELISA assays. RESULTS POG treatment significantly decreased the mortality, liver inflammatory damages, hepatocyte apoptosis and plasma biomarkers of liver injury in CLP-challenged male WT mice, which were comparable to those in ibuprofen (a putative anti-inflammatory drug)-supplemented septic male WT mice and septic NLRP3 deficient-male mice. POG supplementation significantly suppressed NLRP3 inflammasome activation in septic liver tissues and cultured macrophages, by significantly reducing NLRP3, cleaved-caspase-1, IL-1β and IL-18 levels, the activated-inflammasome ASC specks, and macrophage infiltration and migration, as well as M1-like polarization, but significantly increasing M2-like polarization. These findings were similar to the pharmacological effects of ibuprofen, NLRP3 deficiency, and a special NLRP3 inhibitor, MCC950. CONCLUSION POG protected against sepsis by inhibiting NLRP3 inflammasome-mediated macrophage activation in septic liver and attenuating liver inflammatory injury, indicating that it may be a potential anti-sepsis drug candidate.
Collapse
Affiliation(s)
- Lin-Ling Liu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; School of Preclinical and Forensic Medicine, Sichuan University, Chengdu 610041, PR China
| | - Xin Yan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Kun-Yue Xue
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ling-Yu Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hong-Ying Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - He Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jie Lan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Juan-Juan Xin
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Cai-Li Zhuo
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Zhuang Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Die Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen-Jing Huang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ying-Ling Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin-Yue Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Heng-Yu Zhang
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|