51
|
Luo Z, Yao J, Xu J. Reactive oxygen and nitrogen species regulate porcine embryo development during pre-implantation period: A mini-review. ACTA ACUST UNITED AC 2021; 7:823-828. [PMID: 34466686 PMCID: PMC8384778 DOI: 10.1016/j.aninu.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 01/22/2023]
Abstract
Significant porcine embryonic loss occurs during conceptus morphological elongation and attachment from d 10 to 20 of pregnancy, which directly decreases the reproductive efficiency of sows. A successful establishment of pregnancy mainly depends on the endometrium receptivity, embryo quality, and utero-placental microenvironment, which requires complex cross-talk between the conceptus and uterus. The understanding of the molecular mechanism regulating the uterine-conceptus communication during porcine conceptus elongation and attachment has developed in the past decades. Reactive oxygen and nitrogen species, which are intracellular reactive metabolites that regulate cell fate decisions and alter their biological functions, have recently reportedly been involved in porcine conceptus elongation and attachment. This mini-review will mainly focus on the recent researches about the role of reactive oxygen and nitrogen species in regulating porcine embryo development during the pre-implantation period.
Collapse
Affiliation(s)
- Zhen Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Jianxiong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| |
Collapse
|
52
|
Ala M, Mohammad Jafari R, Hajiabbasi A, Dehpour AR. Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J Cell Physiol 2021; 236:6115-6135. [PMID: 33559160 DOI: 10.1002/jcp.30318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Aquaporins (AQPs), as transmembrane proteins, were primarily identified as water channels with the ability of regulating the transmission of water, glycerol, urea, and other small-sized molecules. The classic view of AQPs involvement in therapeutic plan restricted them and their regulators into managing only a narrow spectrum of the diseases such as diabetes insipidus and the syndrome of inappropriate ADH secretion. However, further investigations performed, especially in the third millennium, has found that their cooperation in water transmission control can be manipulated to handle other burden-imposing diseases such as cirrhosis, heart failure, Meniere's disease, cancer, bullous pemphigoid, eczema, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Hajiabbasi
- Guilan Rheumatology Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
53
|
Singh S, Kumar V, Parihar P, Dhanjal DS, Singh R, Ramamurthy PC, Prasad R, Singh J. Differential regulation of drought stress by biological membrane transporters and channels. PLANT CELL REPORTS 2021; 40:1565-1583. [PMID: 34132878 DOI: 10.1007/s00299-021-02730-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Stress arising due to abiotic factors affects the plant's growth and productivity. Among several existing abiotic stressors like cold, drought, heat, salinity, heavy metal, etc., drought condition tends to affect the plant's growth by inducing two-point effect, i.e., it disturbs the water balance as well as induces toxicity by disturbing the ion homeostasis, thus hindering the growth and productivity of plants, and to survive under this condition, plants have evolved several transportation systems that are involved in regulating the drought stress. The role of membrane transporters has gained interest since genetic engineering came into existence, and they were found to be the important modulators for tolerance, avoidance, ion movements, stomatal movements, etc. Here in this comprehensive review, we have discussed the role of transporters (ABA, protein, carbohydrates, etc.) and channels that aids in withstanding the drought stress as well as the regulatory role of transporters involved in osmotic adjustments arising due to drought stress. This review also provides a gist of hydraulic conductivity by roots that are involved in regulating the drought stress.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India
| | - Vijay Kumar
- Department of Chemistry, Regional Ayurveda Research Institute for Drug Development, Gwalior, Madhya Pradesh, 474009, India
| | - Parul Parihar
- Department of Botany, Lovely Professional University, Jalandhar, Punjab, 144111, India
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| | - Rachana Singh
- Department of Botany, University of Allahabad, Prayagraj, 211008, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 56001, India.
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, 845401, India.
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Jalandhar, Punjab, 144111, India
| |
Collapse
|
54
|
Mariajoseph-Antony LF, Kannan A, Panneerselvam A, Loganathan C, Shankar EM, Anbarasu K, Prahalathan C. Role of Aquaporins in Inflammation-a Scientific Curation. Inflammation 2021; 43:1599-1610. [PMID: 32435911 DOI: 10.1007/s10753-020-01247-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation is a universal response mechanism existing as inter-communicator of biological systems. Uncontrolled or dysregulated inflammation addresses chronic low-grade effects eventually resulting in multimorbidity. Active solute transport across the membrane establishes varying osmotic gradients. Aquaporins (AQPs) are a class of critical ubiquitously expressed transmembrane proteins that aid in fluid and small solute transport via facilitated diffusion over established osmotic gradients. Numerous significant data features the biological functions of AQPs rendering them as an appropriate biomarker of health and diseases. Besides their physiological role in well-balanced inflammatory responses, it is worth noting the dysregulation of AQPs during any undesirable inflammatory event. Most literature to date clearly sets out AQPs as potential drug targets instigating AQP-based therapies. In light of this conception, the current review provides a compendious overview on the propitious and portentous out-turns of AQPs under inflammation.
Collapse
Affiliation(s)
- Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Esaki M Shankar
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Kumarasamy Anbarasu
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
55
|
Wang C, Wang X, Tan C, Wang Y, Tang Z, Zhang Z, Liu J, Xiao G. Novel therapeutics for hydrocephalus: Insights from animal models. CNS Neurosci Ther 2021; 27:1012-1022. [PMID: 34151523 PMCID: PMC8339528 DOI: 10.1111/cns.13695] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Hydrocephalus is a cerebrospinal fluid physiological disorder that causes ventricular dilation with normal or high intracranial pressure. The current regular treatment for hydrocephalus is cerebrospinal fluid shunting, which is frequently related to failure and complications. Meanwhile, considering that the current nonsurgical treatments of hydrocephalus can only relieve the symptoms but cannot eliminate this complication caused by primary brain injuries, the exploration of more effective therapies has become the focus for many researchers. In this article, the current research status and progress of nonsurgical treatment in animal models of hydrocephalus are reviewed to provide new orientations for animal research and clinical practice.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaoqiang Wang
- Department of Pediatric NeurosurgeryXinhua HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Changwu Tan
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuchang Wang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhi Tang
- Department of NeurosurgeryHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Zhiping Zhang
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jingping Liu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Gelei Xiao
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
- Diagnosis and Treatment Center for HydrocephalusXiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
56
|
Exploring the role of Aquaporins (AQPs) in LPS induced systemic inflammation and the ameliorative effect of Garcinia in male Wistar rat. Inflammopharmacology 2021; 29:801-823. [PMID: 34106384 DOI: 10.1007/s10787-021-00832-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/29/2021] [Indexed: 12/16/2022]
Abstract
The Aquaporins (AQPs) could prove to be striking targets of inflammation. The aim of this study was to study the involvement of AQPs and explore the anti-inflammatory activity of Garcinia extract in LPS induced acute systemic inflammation in Wistar rats. Adult male Wistar rats (n = 6) were pretreated with Garcinia orally twice for 7 days, followed by a single intraperitoneal dose (5.5 mg/kgbw) of LPS. Serum ALT, AST, ALP, Creatinine, Urea and BUN, nitric oxide, prostaglandin, cytokine and chemokine levels were measured. LC-MS analysis of Garcinia was performed to identify the phytoconstituents present. The iNOS and COX enzyme activity were determined in the target tissues. qPCR analysis of inos, cox-2 and aqps was performed. Relative protein expression of AQPs was studied by Western blot analysis. Molecular docking studies were performed to study the interaction of garcinol and hydroxycitric acid, the two important phytoconstituents of Garcinia with AQP. The qPCR analysis showed tissue-specific up-regulation of aqp1, aqp3, aqp4 and aqp8 in LPS induced rats. Garcinia extract treatment effectively lowered the mRNA expression of these AQPs. Garcinia extract significantly inhibited the LPS-induced NO, prostaglandin, cytokine and chemokine production in serum and also decreased tissue-specific transcript level of inos and cox-2, thus suggesting the anti-inflammatory role of Garcinia. Also, docking studies revealed interactions of garcinol and hydroxycitric acid with AQP1, 3, 4 and 8. Therefore, the present study suggests the possible involvement of AQP1, 3, 4 and 8 in inflammation and the efficacy of Garcinia extract as an anti-inflammatory agent. Therefore, AQPs can act as prognostic markers of inflammation and can be targeted with Garcinia extract.
Collapse
|
57
|
Shen Y, Li H, Zhao J, Tang S, Zhao Y, Gu Y, Chen X. Genomic and expression characterization of aquaporin genes from Siniperca chuatsi. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 38:100819. [PMID: 33652294 DOI: 10.1016/j.cbd.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 02/21/2021] [Indexed: 01/07/2023]
Abstract
Aquaporins (AQPs) are major intrinsic proteins that form pores in the membranes of biological cells. We first cloned the full-length sequences of aqp0, 1, 3, 4, 7, 8, 9, 10, 11, and 12 genes in Siniperca chuatsi. The 10 S. chuatsi aqp (Sc-aqp) genes included complete open reading frames and exhibited different exon-intron organizations. Sc-aqp1, 3, 8, 9, 10, and 11 were mostly expressed in the gallbladder, gills, gastric cecum, liver, ovaries, and spleen, respectively; Sc-aqp0 and 4 were mostly expressed in larvae at 1 day after hatching and in gastrula; Sc-aqp7 and 12 were mostly expressed in 2K-cell embryos. The expression levels of Sc-aqp1, 3, 7, 8, 9, and 10 after 10 part per thousand (ppt) salt treatment had significantly changed compared with those after 0 ppt salt treatment. Real-time quantitative PCR analysis further showed that in the intestines, the mRNA levels of Sc-aqp1 and 10 significantly decreased by approximately 2.07- and 2.85-fold, respectively, whereas those of Sc-aqp8 and 9 significantly increased by approximately 7.08- and 4.14-fold, respectively. Sc-aqp1, 8, 9, and 10 showed no significant differences in the gills. Sc-aqp3 significantly decreased by approximately 1.51- and 1.67-fold in the gills and intestines, respectively. Sc-aqp7 significantly increased by approximately 4.18- and 7.04-fold in the gills and intestines, respectively. This study was the first to investigate the tissue expression profiles and response to salt stress of aqp genes in S. chuatsi. Moreover, altering diet and suffering from immune stress could cause changes in the expression level of aqps. This study provided valuable reference information for AQPs' roles in osmoregulation in freshwater fish.
Collapse
Affiliation(s)
- Yawei Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Huiyang Li
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
| | - Jinliang Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Shoujie Tang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yifeng Gu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xiaowu Chen
- Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
58
|
Oberska P, Jedrzejczak-Silicka M, Michałek K, Grabowska M. Initial assessment of suitability of MCF-7 and HepG2 cancer cell lines for AQP3 research in cancer biology. Acta Histochem 2021; 123:151716. [PMID: 33933702 DOI: 10.1016/j.acthis.2021.151716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022]
Abstract
Cancer cell lines are widely used as in vitro models to elucidate biological processes in cancer, and as a tool to evaluate anticancer agents. In fact, the use of an appropriate cancer cell line in cancer research is crucial for investigating new, potential factors involved in carcinogenesis. One of them is aquaporin-3 (AQP3), which is a small, hydrophobic, integral membrane protein with a predominant role in water and glycerol transport. Recently, altered expression of AQP3 has been reported in many types of cancer. Increasing evidence strongly suggests that AQP3 plays a key role in cancer cell proliferation, migration and invasion. In this study, we performed an insightful characteristic of AQP3 location and its protein expression in MCF-7 human breast adenocarcinoma and HepG2 hepatocellular carcinoma cell lines in the context of cancer biology using immunocytochemistry, immunofluorescence and Western blot analyses. AQP3 was found to be located in the cell membrane and cytoplasm of MCF-7 cells, and in the cytoplasm and nuclear membrane of HepG2 cells. Immunoblotting of proteins derived from both cell lines revealed a clear band with a molecular weight of approx. 30 kDa representing an unglycosylated form of AQP3. However, the expression of this protein was higher in MCF-7 than in HepG2. Concluding, our results clearly indicated variability in both the expression levels and subcellular location of the AQP3 protein in MCF-7 and HepG2 cell lines. This leads to the possibility that the expression patterns and subcellular location of AQP3 in the tested cancer cell lines are tissue-of-origin specific, and may be related to the aggressiveness of cancer cells and their mobility.
Collapse
Affiliation(s)
- Patrycja Oberska
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270, Szczecin, Poland
| | - Magdalena Jedrzejczak-Silicka
- Laboratory of Cytogenetics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270, Szczecin, Poland.
| | - Katarzyna Michałek
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210, Szczecin, Poland
| |
Collapse
|
59
|
From Channels to Canonical Wnt Signaling: A Pathological Perspective. Int J Mol Sci 2021; 22:ijms22094613. [PMID: 33924772 PMCID: PMC8125460 DOI: 10.3390/ijms22094613] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is an important pathway mainly active during embryonic development and controlling cell proliferation. This regulatory pathway is aberrantly activated in several human diseases. Ion channels are known modulators of several important cellular functions ranging from the tuning of the membrane potential to modulation of intracellular pathways, in particular the influence of ion channels in Wnt signaling regulation has been widely investigated. This review will discuss the known links between ion channels and canonical Wnt signaling, focusing on their possible roles in human metabolic diseases, neurological disorders, and cancer.
Collapse
|
60
|
Allnoch L, Beythien G, Leitzen E, Becker K, Kaup FJ, Stanelle-Bertram S, Schaumburg B, Mounogou Kouassi N, Beck S, Zickler M, Herder V, Gabriel G, Baumgärtner W. Vascular Inflammation Is Associated with Loss of Aquaporin 1 Expression on Endothelial Cells and Increased Fluid Leakage in SARS-CoV-2 Infected Golden Syrian Hamsters. Viruses 2021; 13:v13040639. [PMID: 33918079 PMCID: PMC8069375 DOI: 10.3390/v13040639] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular changes represent a characteristic feature of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leading to a breakdown of the vascular barrier and subsequent edema formation. The aim of this study was to provide a detailed characterization of the vascular alterations during SARS-CoV-2 infection and to evaluate the impaired vascular integrity. Groups of ten golden Syrian hamsters were infected intranasally with SARS-CoV-2 or phosphate-buffered saline (mock infection). Necropsies were performed at 1, 3, 6, and 14 days post-infection (dpi). Lung samples were investigated using hematoxylin and eosin, alcian blue, immunohistochemistry targeting aquaporin 1, CD3, CD204, CD31, laminin, myeloperoxidase, SARS-CoV-2 nucleoprotein, and transmission electron microscopy. SARS-CoV-2 infected animals showed endothelial hypertrophy, endothelialitis, and vasculitis. Inflammation mainly consisted of macrophages and lower numbers of T-lymphocytes and neutrophils/heterophils infiltrating the vascular walls as well as the perivascular region at 3 and 6 dpi. Affected vessels showed edema formation in association with loss of aquaporin 1 on endothelial cells. In addition, an ultrastructural investigation revealed disruption of the endothelium. Summarized, the presented findings indicate that loss of aquaporin 1 entails the loss of intercellular junctions resulting in paracellular leakage of edema as a key pathogenic mechanism in SARS-CoV-2 triggered pulmonary lesions.
Collapse
Affiliation(s)
- Lisa Allnoch
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Franz-Josef Kaup
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Stephanie Stanelle-Bertram
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Martin Zickler
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; (S.S.-B.); (B.S.); (N.M.K.); (S.B.); (M.Z.); (G.G.)
- Institute for Virology, University for Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (L.A.); (G.B.); (E.L.); (K.B.); (F.-J.K.); (V.H.)
- Correspondence: ; Tel.: +49-511-953-8620
| |
Collapse
|
61
|
Lv H, Li Y, Xue C, Dong N, Bi C, Shan A. Aquaporin: targets for dietary nutrients to regulate intestinal health. J Anim Physiol Anim Nutr (Berl) 2021; 106:167-180. [PMID: 33811387 DOI: 10.1111/jpn.13539] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/07/2020] [Accepted: 02/07/2021] [Indexed: 12/22/2022]
Abstract
Aquaporins (AQP) are a class of water channel membrane proteins that are widely expressed in the gut. The biological functions of aquaporins, which regulate the absorption and secretion of water molecules and small solutes, maintain the stable state of the intestine, regulate cell proliferation and migration, participate in the process of intestinal inflammation, and mediate tumorigenesis, demonstrate the physiological significance of these channels in intestinal health. The pathology of many intestinal diseases is associated with changes in the location and expression of aquaporins, such as intestinal infection, which can change the expression and distribution of AQPs in intestinal tissues/cells by affecting cytokines and chemokines. This can lead to various intestinal diseases such as diarrhoea, which also suggests the importance of aquaporins in the prevention and treatment of intestinal diseases. This review summarizes the relationship between aquaporins and intestinal physiology and diseases and focuses on drugs (such as plant extracts) or diets that can regulate intestinal health by regulating aquaporins. It provides a basis for establishing aquaporins as biomarkers and therapeutic targets for intestinal health.
Collapse
Affiliation(s)
- Hao Lv
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Ying Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chongpeng Bi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
62
|
Yde J, Keely SJ, Moeller HB. Expression, regulation and function of Aquaporin-3 in colonic epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183619. [PMID: 33811845 DOI: 10.1016/j.bbamem.2021.183619] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The human colon balances water and electrolyte absorption and secretion while also forming a barrier protecting the body from the entry of harmful components. Aquaporin-3 (AQP3) is a water, glycerol and H2O2 transporting channel expressed in colonic epithelia. Although expression of colonic epithelial AQP3 is altered in several intestinal disorders, such as inflammatory bowel disease and irritable bowel syndrome, the regulation and specific roles of AQP3 remain to be fully defined. In this mini-review, we summarize the current understanding of the expression, regulation, and biological functions of AQP3 protein in colonic epithelia concerning intestinal absorption, secretion and barrier function.
Collapse
Affiliation(s)
- Jonathan Yde
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark
| | - Stephen J Keely
- Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Hanne B Moeller
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.
| |
Collapse
|
63
|
Azad AK, Raihan T, Ahmed J, Hakim A, Emon TH, Chowdhury PA. Human Aquaporins: Functional Diversity and Potential Roles in Infectious and Non-infectious Diseases. Front Genet 2021; 12:654865. [PMID: 33796134 PMCID: PMC8007926 DOI: 10.3389/fgene.2021.654865] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins and found in all living organisms from bacteria to human. AQPs mainly involved in the transmembrane diffusion of water as well as various small solutes in a bidirectional manner are widely distributed in various human tissues. Human contains 13 AQPs (AQP0-AQP12) which are divided into three sub-classes namely orthodox aquaporin (AQP0, 1, 2, 4, 5, 6, and 8), aquaglyceroporin (AQP3, 7, 9, and 10) and super or unorthodox aquaporin (AQP11 and 12) based on their pore selectivity. Human AQPs are functionally diverse, which are involved in wide variety of non-infectious diseases including cancer, renal dysfunction, neurological disorder, epilepsy, skin disease, metabolic syndrome, and even cardiac diseases. However, the association of AQPs with infectious diseases has not been fully evaluated. Several studies have unveiled that AQPs can be regulated by microbial and parasitic infections that suggest their involvement in microbial pathogenesis, inflammation-associated responses and AQP-mediated cell water homeostasis. This review mainly aims to shed light on the involvement of AQPs in infectious and non-infectious diseases and potential AQPs-target modulators. Furthermore, AQP structures, tissue-specific distributions and their physiological relevance, functional diversity and regulations have been discussed. Altogether, this review would be useful for further investigation of AQPs as a potential therapeutic target for treatment of infectious as well as non-infectious diseases.
Collapse
Affiliation(s)
- Abul Kalam Azad
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Jahed Ahmed
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Al Hakim
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tanvir Hossain Emon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | | |
Collapse
|
64
|
Portela LM, Santos SA, Constantino FB, Camargo AC, Colombelli KT, Fioretto MN, Barquilha CN, Périco LL, Hiruma-Lima CA, Scarano WR, Zambrano E, Justulin LA. Increased oxidative stress and cancer biomarkers in the ventral prostate of older rats submitted to maternal malnutrition. Mol Cell Endocrinol 2021; 523:111148. [PMID: 33387600 DOI: 10.1016/j.mce.2020.111148] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/05/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
The concept of Developmental Origins of Health and Disease (DOHaD) states that exposure to malnutrition early in life increase the incidence of non-communicable chronic diseases throughout the lifespan. In this study, a reduction in serum testosterone and an increase in estrogen levels were shown in older rats born to protein malnourished dams (6% protein in the diet) during gestation and lactation. Intraprostatic levels of reduced glutathione were decreased, while tissue expression of glutathione S-transferase pi and sulfiredoxin-1 were increased in these animals. Strong immunostaining for alfametilacil CoA racemase (AMACR), vascular endothelial growth factor-A (VEGF-A), and aquaporin-1 (AQP1) was also observed. In silico analysis confirmed commonly deregulated proteins in the ventral prostate of old rats and patients with prostate cancer. In conclusion, the increase in oxidative stress associated with an imbalance of sex hormones may contribute to prostate carcinogenesis in offspring, highlighting early-life malnutrition as a key risk factor for this malignance.
Collapse
Affiliation(s)
- Luiz Mf Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Sérgio Aa Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Flavia B Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ana Cl Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Ketlin T Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Matheus N Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Caroline N Barquilha
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Larissa L Périco
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Clélia A Hiruma-Lima
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson R Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luís A Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
65
|
da Silva IV, Cardoso C, Martínez-Banaclocha H, Casini A, Pelegrín P, Soveral G. Aquaporin-3 is involved in NLRP3-inflammasome activation contributing to the setting of inflammatory response. Cell Mol Life Sci 2021; 78:3073-3085. [PMID: 33231721 PMCID: PMC11073090 DOI: 10.1007/s00018-020-03708-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022]
Abstract
Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1β, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1β release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Carlos Cardoso
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
- Clinical Chemistry Laboratory, Dr. Joaquim Chaves, 1495-148, Algés, Portugal
| | - Helios Martínez-Banaclocha
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de La Arrixaca, Carretera Buenavista, 30120, Murcia, Spain
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching b. München, Germany
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de La Arrixaca, Carretera Buenavista, 30120, Murcia, Spain.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|
66
|
Ablation of Aquaporin-9 Ameliorates the Systemic Inflammatory Response of LPS-Induced Endotoxic Shock in Mouse. Cells 2021; 10:cells10020435. [PMID: 33670755 PMCID: PMC7922179 DOI: 10.3390/cells10020435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Septic shock is the most severe complication of sepsis, being characterized by a systemic inflammatory response following bacterial infection, leading to multiple organ failure and dramatically high mortality. Aquaporin-9 (AQP9), a membrane channel protein mainly expressed in hepatocytes and leukocytes, has been recently associated with inflammatory and infectious responses, thus triggering strong interest as a potential target for reducing septic shock-dependent mortality. Here, we evaluated whether AQP9 contributes to murine systemic inflammation during endotoxic shock. Wild type (Aqp9+/+; WT) and Aqp9 gene knockout (Aqp9−/−; KO) male mice were submitted to endotoxic shock by i.p. injection of lipopolysaccharide (LPS; 40 mg/kg) and the related survival times were followed during 72 h. The electronic paramagnetic resonance and confocal microscopy were employed to analyze the nitric oxide (NO) and superoxide anion (O2−) production, and the expression of inducible NO-synthase (iNOS) and cyclooxigenase-2 (COX-2), respectively, in the liver, kidney, aorta, heart and lung of the mouse specimens. LPS-treated KO mice survived significantly longer than corresponding WT mice, and 25% of the KO mice fully recovered from the endotoxin treatment. The LPS-injected KO mice showed lower inflammatory NO and O2− productions and reduced iNOS and COX-2 levels through impaired NF-κB p65 activation in the liver, kidney, aorta, and heart as compared to the LPS-treated WT mice. Consistent with these results, the treatment of FaO cells, a rodent hepatoma cell line, with the AQP9 blocker HTS13268 prevented the LPS-induced increase of inflammatory NO and O2−. A role for AQP9 is suggested in the early acute phase of LPS-induced endotoxic shock involving NF-κB signaling. The modulation of AQP9 expression/function may reveal to be useful in developing novel endotoxemia therapeutics.
Collapse
|
67
|
Aquaporins in the nervous structures supplying the digestive organs – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Aquaporins (AQPs) are a family of integral membrane proteins which form pores in cell membranes and take part in the transport of water, contributing to the maintenance of water and electrolyte balance and are widely distributed in various tissues and organs. The high expression of AQPs has been described in the digestive system, where large-scale absorption and secretion of fluids occurs. AQPs are also present in the nervous system, but the majority of studies have involved the central nervous system. This paper is a review of the literature concerning relatively little-known issues, i.e. the distribution and functions of AQPs in nervous structures supplying the digestive organs.
Collapse
|
68
|
Silva I, Silva J, Ferreira R, Trigo D. Glymphatic system, AQP4, and their implications in Alzheimer's disease. Neurol Res Pract 2021; 3:5. [PMID: 33499944 PMCID: PMC7816372 DOI: 10.1186/s42466-021-00102-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lacking conventional lymphatic system, the central nervous system requires alternative clearance systems, such as the glymphatic system, which promotes clearance of interstitial solutes. Aquaporin-4 water channels (AQP4) are an integral part of this system and related to neuropathologies, such as Alzheimer's disease (AD). The clearance of Alzheimer's associated proteins amyloid β and tau is diminished by glymphatic system impairment, due to lack of AQP4. Even though AQP4 mislocalisation (which affects its activity) is a phenotype of AD, it remains a controversial topic, as it is still unclear if it is a phenotype-promoting factor or a consequence of this pathology. This review provides important and updated knowledge about glymphatic system, AQP4 itself, and their link with Alzheimer's disease. Finally, AQP4 as a therapeutic target is proposed to ameliorate Alzheimer's Disease and other neuropathologies AQP4-related.
Collapse
Affiliation(s)
- Inês Silva
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jéssica Silva
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rita Ferreira
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Medical Sciences Department, University of Aveiro, 3810-193, Aveiro, Portugal.
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
69
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
70
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
71
|
Mariajoseph-Antony LF, Kannan A, Panneerselvam A, Loganathan C, Anbarasu K, Prahalathan C. Could aquaporin modulators be employed as prospective drugs for COVID-19 related pulmonary comorbidity? Med Hypotheses 2020; 143:110201. [PMID: 33017909 PMCID: PMC7430244 DOI: 10.1016/j.mehy.2020.110201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023]
Abstract
COVID-19 initially an epidemic caused by SARS-CoV-2 has turned out to be a life- threatening global pandemic with increased morbidity and mortality. The presence of cytokine storm has been linked with the pathogenesis of severe lung injury as evinced in COVID-19. Aquaporins (AQPs) are molecular water channels, facilitating water transport across the cell membrane in response to osmotic gradients. Impairment in alveolar fluid clearance due to altered functional expression of respiratory AQPs highlight their pathophysiological significance in pulmonary edema associated respiratory illness. Therefore, we hypothesize that targeted modulation of AQPs in lungs in the intervening period of time, could diminish the dreadful effects of inflammation- induced comorbidity in COVID-19.
Collapse
Affiliation(s)
- Lezy Flora Mariajoseph-Antony
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Arun Kannan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Antojenifer Panneerselvam
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Chithra Loganathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Kumarasamy Anbarasu
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli 620 024, India
| | - Chidambaram Prahalathan
- Molecular Endocrinology Laboratory, Department of Biochemistry, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, India.
| |
Collapse
|
72
|
Walker JM, Garcet S, Aleman JO, Mason CE, Danko D, Butler D, Zuffa S, Swann JR, Krueger J, Breslow JL, Holt PR. Obesity and ethnicity alter gene expression in skin. Sci Rep 2020; 10:14079. [PMID: 32826922 PMCID: PMC7442822 DOI: 10.1038/s41598-020-70244-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/15/2020] [Indexed: 11/21/2022] Open
Abstract
Obesity is accompanied by dysfunction of many organs, but effects on the skin have received little attention. We studied differences in epithelial thickness by histology and gene expression by Affymetrix gene arrays and PCR in the skin of 10 obese (BMI 35-50) and 10 normal weight (BMI 18.5-26.9) postmenopausal women paired by age and ethnicity. Epidermal thickness did not differ with obesity but the expression of genes encoding proteins associated with skin blood supply and wound healing were altered. In the obese, many gene expression pathways were broadly downregulated and subdermal fat showed pronounced inflammation. There were no changes in skin microbiota or metabolites. African American subjects differed from European Americans with a trend to increased epidermal thickening. In obese African Americans, compared to obese European Americans, we observed altered gene expression that may explain known differences in water content and stress response. African Americans showed markedly lower expression of the gene encoding the cystic fibrosis transmembrane regulator characteristic of the disease cystic fibrosis. The results from this preliminary study may explain the functional changes found in the skin of obese subjects and African Americans.
Collapse
Affiliation(s)
- Jeanne M Walker
- The Rockefeller University Hospital, New York, NY, 10065, USA.
| | - Sandra Garcet
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jose O Aleman
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
- Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY, 10016, USA
| | | | - David Danko
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Daniel Butler
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Simone Zuffa
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | - Jonathan R Swann
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - James Krueger
- Laboratory of Investigational Dermatology, The Rockefeller University, New York, NY, 10065, USA
| | - Jan L Breslow
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA
| | - Peter R Holt
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
73
|
da Silva IV, Cardoso C, Méndez-Giménez L, Camoes SP, Frühbeck G, Rodríguez A, Miranda JP, Soveral G. Aquaporin-7 and aquaporin-12 modulate the inflammatory phenotype of endocrine pancreatic beta-cells. Arch Biochem Biophys 2020; 691:108481. [PMID: 32735865 DOI: 10.1016/j.abb.2020.108481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
Aquaporins (AQPs) facilitate water and glycerol movement across membranes. AQP7 is the main aquaglyceroporin in pancreatic β-cells and was proposed to play a role in insulin exocytosis. Although AQP7-null mice display adult-onset obesity, impaired insulin secretion and insulin resistance, AQP7 loss-of-function homozygous mutations in humans do not correlate with obesity nor type-2 diabetes. In addition, AQP12 is upregulated in pancreatitis. However, the implication of this isoform in endocrine pancreas inflammation is still unclear. Here, we investigated AQP7 and AQP12 involvement in cellular and inflammatory processes using RIN-m5F beta cells, a model widely used for their high insulin secretion. AQP7 and AQP12 expression were directly associated with cell proliferation, adhesion and migration. While tumor necrosis factor-alpha (TNFα)-induced inflammation impaired AQP7 expression and drastically reduced insulin secretion, lipopolysaccharides (LPS) prompted AQP7 upregulation, and both TNFα and LPS upregulated AQP12. Importantly, cells overexpressing AQP12 are more resistant to inflammation, revealing lower levels of proinflammatory markers. Altogether, these data document AQP7 involvement in insulin secretion and AQP12 implication in inflammation, highlighting their fundamental role in pancreatic β-cell function.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Carlos Cardoso
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Clinical Chemistry Laboratory, Dr. Joaquim Chaves, 1495-068, Algés, Portugal
| | - Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Sérgio Povoas Camoes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Joana Paiva Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|
74
|
Siriyappagouder P, Galindo-Villegas J, Dhanasiri AKS, Zhang Q, Mulero V, Kiron V, Fernandes JMO. Pseudozyma Priming Influences Expression of Genes Involved in Metabolic Pathways and Immunity in Zebrafish Larvae. Front Immunol 2020; 11:978. [PMID: 32528473 PMCID: PMC7256946 DOI: 10.3389/fimmu.2020.00978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Fungi, particularly yeasts, are known essential components of the host microbiota but their functional relevance in development of immunity and physiological processes of fish remains to be elucidated. In this study, we used a transcriptomic approach and a germ-free (GF) fish model to determine the response of newly hatched zebrafish larvae after 24 h exposure to Pseudozyma sp. when compared to conventionally-raised (CR) larvae. We observed 59 differentially expressed genes in Pseudozyma-exposed GF zebrafish larvae compared to their naïve control siblings. Surprisingly, in CR larvae, there was not a clear transcriptome difference between Pseudozyma-exposed and control larvae. Differentially expressed genes in GF larvae were involved in host metabolic pathways, mainly peroxisome proliferator-activated receptors, steroid hormone biosynthesis, drug metabolism and bile acid biosynthesis. We also observed a significant change in the transcript levels of immune-related genes, namely complement component 3a, galectin 2b, ubiquitin specific peptidase 21, and aquaporins. Nevertheless, we did not observe any significant response at the cellular level, since there were no differences between neutrophil migration or proliferation between control and yeast-exposed GF larvae. Our findings reveal that exposure to Pseudozyma sp. may affect metabolic pathways and immune-related processes in germ-free zebrafish, suggesting that commensal yeast likely play a significant part in the early development of fish larvae.
Collapse
Affiliation(s)
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | | | - Qirui Zhang
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
75
|
Ulkumen B, Artunc Ulkumen B, Batir MB, Cam S, Vatansever S. The Role of TREK-1 and AQP5 in Gonadocorticoid-Related Voice Disorders. J Voice 2020; 36:150-155. [PMID: 32439217 DOI: 10.1016/j.jvoice.2020.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES TWIK-related potassium channel-1 (TREK-1) and Aquaporin 5 (AQP5) are involved in epithelial integrity and fluid transport, respectively. In this study, we aimed to compare physiological and gestational patterns of TREK-1 and AQP5 location and expression in rat larynx. Our secondary objective was to reveal the effect of estradiol (E2) and progesterone (PG) on these two biomolecules. METHODS This study was conducted on 20 Wister albino female rats which were assigned as control (group A) and pregnant group (group B). The rats were sacrificed at 20th day of pregnancy. Blood was obtained directly from the ventricle for detection of serum E2 and PG levels. Larynx was resected for immunohistochemical analyses and real-time polymerase chain reaction testing for detection of TREK-1 and AQP5 staining and expression, respectively. RESULTS Relative TREK-1 (P = 0.035) and AQP5 (P = 0.019) expression was found to be significantly high in group B when compared with group A. We found positive correlation between serum E2 levels and both biomolecules (TREK-1; P = 0.018, AQP5; P = 0.016). We also found positive correlation between serum PG levels and both biomolecules (TREK-1; P = 0.001, AQP5; P = 0.019). TREK-1 immunostaining was found to be higher in surface epithelium and lamina propria of vocal cord mucosa. AQP5 was particularly found to be located in basement membrane and adjacent superficial lamina propria. We revealed the physiological and gestational pattern of laryngeal TREK-1 and AQP5 expression for the first time. Gestational expression of both TREK-1 and AQP5 was found to be increased. Stimulatory effect of E2 and PG on laryngeal TREK-1 and AQP5 expression was also revealed. CONCLUSIONS We revealed upregulatory effect of E2 and PG on laryngeal TREK-1 and AQP5 expression. Based on this finding, it can be suggested that TREK-1 and AQP5 play role in biomolecular processes leading gonadocorticoid-related voice changes.
Collapse
Affiliation(s)
- Burak Ulkumen
- Department of Otorhinolaryngology-Head Neck Surgery, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey.
| | - Burcu Artunc Ulkumen
- Department of Obstetrics and Gynecology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Muhammet Burak Batir
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Sirri Cam
- Department of Medical Genetics, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Seda Vatansever
- Department of Histology-Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey; Experimental Research Center of Health (DESAM), Near East University, Mersin, Turkey
| |
Collapse
|
76
|
Shi Q, Wu YZ, Yang X, Xiao K, Maimaitiming A, Gao LP, Chen C, Gao C, Guo Y, Dong XP. Significant enhanced expressions of aquaporin-1, -4 and -9 in the brains of various prion diseases. Prion 2020; 13:173-184. [PMID: 31814527 PMCID: PMC6746548 DOI: 10.1080/19336896.2019.1660487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aquaporins (AQPs) are widely expressed in various types of tissues, among them AQP1, AQP4 and AQP9 are expressed predominately with relatively special distributing features in various brain regions. The aberrant changes of AQP1 and AQP4 have been observed in the brains of Alzheimer disease (AD). To evaluate the underlying alteration of brain AQPs in prion diseases, scrapie strains of 139A, ME7 and S15 infected mice were tested in this study. Western blots revealed markedly increased levels of AQP1, AQP4 and AQP9 in the brain tissues of all tested scrapie-infected mice collected at terminal stage. Analyses of the AQPs levels in the brain tissues collected at different time-points during incubation period showed time-dependent increased in 139A and ME7-infected mice, especially at the middle-late stage. The AQP1 levels also increased in the cortex regions of some human prion diseases, including the patients with sporadic Creutzfeldt-Jakob disease (CJD), fatal familial insomnia (FFI) and G114V genetic CJD (gCJD). Immunohistochemistry (IHC) assays verified that the AQPs-positive cells were astrocyte-like morphologically; meanwhile, numerous various sizes of AQPs-positive particles and dots were also observable in the brain sections of scrapie-infected mice. Immunofluorescent assays (IFAs) illustrated that the signals of AQPs colocalized with those of the GFAP positive proliferative astrocytes, and more interestingly, appeared to overlap also with the signals of PrP in the brains of scrapie-infected mice. Moreover, IHC assays with a commercial doublestain system revealed that distributing areas of AQPs overlapped not only with that of the activated large astrocytes, but also with that of abundantly deposited PrPSc in the brain tissues of scrapie murine models. Our data here propose the solid evidences that the expressions of brain AQP1, AQP4 and AQP9 are all aberrantly enhanced in various murine models of scrapie infection. The closely anatomical association between the accumulated AQPs and deposited PrPSc in the brain tissues indicates that the abnormally increased water channel proteins participate in the pathogenesis of prion diseases.
Collapse
Affiliation(s)
- Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuehua Yang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Adalaiti Maimaitiming
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanjun Guo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Public Health, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
77
|
Aquaporin 5 -1364A/C Promoter Polymorphism Is Associated with Pulmonary Inflammation and Survival in Acute Respiratory Distress Syndrome. Anesthesiology 2020; 130:404-413. [PMID: 30689610 DOI: 10.1097/aln.0000000000002560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Acute respiratory distress syndrome is defined according to clinical criteria, but lack of precise characterization may contribute to negative trials and impede personalized care. Polymorphisms of aquaporin-5, a key mediator of inflammation, may impact outcome. WHAT THIS ARTICLE TELLS US THAT IS NEW In acute respiratory distress syndrome attributable to bacterial pneumonia, the C-allele of the aquaporin-5 -1364A/C promoter polymorphism is associated with less pulmonary inflammation and greater survival. This may improve characterization of acute respiratory distress syndrome and ultimately facilitate individualized care. BACKGROUND The aquaporin-5 (AQP5) -1364A/C promoter single-nucleotide polymorphism is associated with an altered AQP5 expression and mortality in sepsis. Because AQP5 expression alters neutrophil cell migration, it could affect pulmonary inflammation and survival in bacterially evoked acute respiratory distress syndrome. Accordingly, the authors tested the hypotheses that the AC/CC genotype in patients with bacterially evoked pneumonia resulting in acute respiratory distress syndrome is associated with (1) attenuated pulmonary inflammation and (2) higher 30-day survival. METHODS In this prospective, observational study, bronchoalveolar lavage and blood sampling were performed within 24 h of intensive care unit admission. In 136 Caucasian patients with bacterially evoked acute respiratory distress syndrome, genotype of the AQP5 -1364A/C promoter polymorphism, bronchoalveolar lavage total protein, albumin, white cell concentrations, and lactate dehydrogenase activity were measured to evaluate the relationship between genotypes and survival. RESULTS AC/CC patients as well as survivors showed lower bronchoalveolar lavage protein (0.9 mg/ml vs. 2.3 mg/ml, P < 0.001 and 1.6 mg/ml vs. 2.6 mg/ml, P = 0.035), albumin (0.2 mg/ml vs. 0.6 mg/ml, P = 0.019 and 0.3 mg/ml vs. 0.6 mg/ml, P = 0.028), leukocytes (424 /ml vs. 1,430/ml; P = 0.016 and 768 /ml vs. 1,826/ml; P = 0.025), and lactate dehydrogenase activity (82 U/l vs. 232 U/l; P = 0.006 and 123 U/l vs. 303 U/l; P = 0.020). Thirty-day survival was associated with AQP5 -1364A/C genotypes (P = 0.005), with survival of 62% for AA genotypes (58 of 93) but 86% for C-allele carriers (37 of 43). Furthermore, multiple proportional hazard analysis revealed the AA genotype was at high risk for death within 30 days (hazard ratio, 3.53; 95% CI, 1.38 to 9.07; P = 0.009). CONCLUSIONS In acute respiratory distress syndrome attributable to bacterial pneumonia, the C-allele of the AQP5 -1364A/C promoter polymorphism is associated with an attenuated pulmonary inflammation and higher 30-day survival. Thus, the AQP5 genotype impacts on inflammation and prognosis in acute respiratory distress syndrome.
Collapse
|
78
|
Kannan A, Panneerselvam A, Mariajoseph-Antony LF, Loganathan C, Prahalathan C. Role of Aquaporins in Spermatogenesis and Testicular Steroidogenesis. J Membr Biol 2020; 253:109-114. [DOI: 10.1007/s00232-020-00114-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/14/2020] [Indexed: 01/25/2023]
|
79
|
Bezamat M, Cunha EJ, Modesto AM, Vieira AR, Taboas JM. Aquaporin locus (12q13.12) might contribute to susceptibility of temporomandibular joint disorder associated with periodontitis. PLoS One 2020; 15:e0229245. [PMID: 32130259 PMCID: PMC7055872 DOI: 10.1371/journal.pone.0229245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 02/03/2020] [Indexed: 11/19/2022] Open
Abstract
Aquaporins (AQPs) are membrane channels that provide for transport of water and other small molecules across the lipid bilayer of cells. Their function is essential for physiologic processes such as cell volume regulation, chondrocyte hypertrophy during appendicular skeletal growth, water reabsorption in the kidney tubules, and water excretion by the salivary glands. The ten AQP isoforms show tissue specificity and are involved in different pathologies and inflammatory diseases. This study addresses the hypothesis that arthritis, periodontitis, and temporomandibular joint disorders (TMDs) can be influenced by variation in the AQP genes at 12q13.12 locus. Salivary samples of 688 individuals were obtained from the Dental Registry and DNA Repository project at the University of Pittsburgh. Ten polymorphisms in four AQP genes (AQP1, 2, 5, and 6) were genotyped and correlated to disease status as reported by patients. Associations were found between the single nucleotide polymorphism (SNP) rs467323 in AQP2 and TMD in both genotypic (p = 0.03) and recessive (p = 0.02) models, and between rs1996315 in AQP6 and periodontitis (p = 0.05). Combined analysis of TMD and periodontitis showed an association with rs3741559 in AQP2 (p = 0.02). When conducting haplotype analysis of rs467323 and rs10875989 in AQP2, the haplotype CT showed an association with the TMD phenotype (p = 0.007). Our results suggest that the aquaporin locus at 12q13.12 may contribute to the pathogenesis of inflammatory conditions such as periodontitis and TMD. Thus, oral and skeletal health are correlated and potential susceptibility screening strategies may be developed.
Collapse
Affiliation(s)
- Mariana Bezamat
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Emanuelle J. Cunha
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Graduate Program of Dentistry, Pontífice Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Adriana M. Modesto
- Department of Pediatric Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexandre R. Vieira
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pediatric Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Juan M. Taboas
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
80
|
Ion Channels in The Pathogenesis of Endometriosis: A Cutting-Edge Point of View. Int J Mol Sci 2020; 21:ijms21031114. [PMID: 32046116 PMCID: PMC7037987 DOI: 10.3390/ijms21031114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ion channels play a crucial role in many physiological processes. Several subtypes are expressed in the endometrium. Endometriosis is strictly correlated to estrogens and it is evident that expression and functionality of different ion channels are estrogen-dependent, fluctuating between the menstrual phases. However, their relationship with endometriosis is still unclear. OBJECTIVE To summarize the available literature data about the role of ion channels in the etiopathogenesis of endometriosis. METHODS A search on PubMed and Medline databases was performed from inception to November 2019. RESULTS Cystic fibrosis transmembrane conductance regulator (CFTR), transient receptor potentials (TRPs), aquaporins (AQPs), and chloride channel (ClC)-3 expression and activity were analyzed. CFTR expression changed during the menstrual phases and was enhanced in endometriosis samples; its overexpression promoted endometrial cell proliferation, migration, and invasion throughout nuclear factor kappa-light-chain-enhancer of activated B cells-urokinase plasminogen activator receptor (NFκB-uPAR) signaling pathway. No connection between TRPs and the pathogenesis of endometriosis was found. AQP5 activity was estrogen-increased and, through phosphatidylinositol-3-kinase and protein kinase B (PI3K/AKT), helped in vivo implantation of ectopic endometrium. In vitro, AQP9 participated in extracellular signal-regulated kinases/p38 mitogen-activated protein kinase (ERK/p38 MAPK) pathway and helped migration and invasion stimulating matrix metalloproteinase (MMP)2 and MMP9. ClC-3 was also overexpressed in ectopic endometrium and upregulated MMP9. CONCLUSION Available evidence suggests a pivotal role of CFTR, AQPs, and ClC-3 in endometriosis etiopathogenesis. However, data obtained are not sufficient to establish a direct role of ion channels in the etiology of the disease. Further studies are needed to clarify this relationship.
Collapse
|
81
|
Liao S, Chen H, Liu M, Gan L, Li C, Zhang W, Lv L, Mei Z. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging (Albany NY) 2020; 12:1527-1544. [PMID: 31969493 PMCID: PMC7053619 DOI: 10.18632/aging.102698] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide, and it is the second leading cause of cancer-related mortality. Aquaporin 9 (AQP9) is an essential aquaporin in the liver and located in the basolateral membrane of hepatocytes, but its roles on HCC has not been completely elucidated. This study investigated the regulatory functions of AQP9 in the pathogenesis of HCC. The expression levels of AQP9 were significantly down-regulated in HCC tissues and cells, which was also correlated with tumor size and number, TNM stage, five-year survival rate, lymphatic and distal metastasis within the patients. Furthermore, overexpressed AQP9 suppressed the proliferation, migration and invasion of HCC cells. The levels of PCNA, E-cad, N-cad, α-SMA, DVL2, GSK-3β, cyclinD1 and β-catenin in HCC cells were reduced by overexpressed AQP9, while cell apoptosis was remarkably enhanced. Additionally, following the treatment with Wnt/β-catenin signaling inhibitor (XAV939), the proliferative activity of HCC cells was significantly inhibited; PCNA and EMT-related markers were down-regulated; migration and invasion of cells were notably suppressed; cell apoptotic rate was decreased. Vice versa, after the cells were treated with Wnt/β-catenin inducer (SKL2001), the effects caused by overexpressed AQP9 were abrogated. In vivo studies indicated that tumor volume and weight were remarkably decreased in AQP9 overexpression group, where the levels of Wnt/β-catenin signaling- and EMT-associated molecules were also reduced. Taken together, our results suggested that overexpressed AQP9 could inhibit growth and metastasis of HCC cells via Wnt/β-catenin pathway. AQP9 may be a promising therapeutic target for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Hongyu Chen
- Department of Gastroenterology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Min Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Li Gan
- Teaching and Research Section of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Wenguang Zhang
- Department of Gastroenterology, Banan People's Hospital of Chongqing, Chongqing 401320, P.R. China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
82
|
Liao S, Gan L, Lv L, Mei Z. The regulatory roles of aquaporins in the digestive system. Genes Dis 2020; 8:250-258. [PMID: 33997172 PMCID: PMC8093583 DOI: 10.1016/j.gendis.2019.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Aquaporins (AQPs) are highly conserved small transmembrane proteins, which are responsible for the water transport across the cell membrane. AQPs are abundantly expressed in numerous types of cells such as epithelial and endothelial cells. The expression of AQP-1, -3, -4, -5, -8 and -9 were found in the digestive system, where these six AQP isoforms serve essential roles including mediating the transmembrane water transport and regulating the secretion of gastrointestinal (GI) fluids, consequently facilitating the digestion and absorption of GI contents. In addition, the expression levels of AQPs are controlled by various factors, and AQPs can stimulate numerous signaling pathways; however, aberrant expression of AQPs in the GI tracts are associated with the initiation and development of numerous diseases. Thus, this review provides an overview of the expression and functions of AQPs in the digestive system.
Collapse
Affiliation(s)
- Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Li Gan
- Teaching and Research Section of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| |
Collapse
|
83
|
DNA methylation of a NF-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Sci Rep 2019; 9:18511. [PMID: 31811204 PMCID: PMC6898603 DOI: 10.1038/s41598-019-55051-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023] Open
Abstract
Altered aquaporin 5 (AQP5) expression in immune cells impacts on key mechanisms of inflammation and is associated with sepsis survival. Since epigenetic regulation via DNA methylation might contribute to a differential AQP5 expression in sepsis, we tested the hypotheses that DNA methylation of the AQP5 promotor (1) influences AQP5 expression, (2) is associated with the 30-day survival of septic patients, and (3) alters the nuclear transcription factor NF-κB binding. AQP5 mRNA expression was quantified by real-time PCR in whole blood samples of 135 septic patients. In silico computer analysis of the AQP5 promoter (nt-567 to nt-975) revealed seven putative inflammatory transcription factor binding sites and methylation of these sites was analyzed. Electrophoretic mobility shift assays were performed to assess the binding of nuclear NF-κB to the AQP5 promoter region nt-937. After adjustment for multiple testing, a greater methylation rate was found at cytosine site nt-937 in the AQP5 promoter linked to NF-κB binding in non-survivors compared to survivors (p = 0.002, padj = 0.014). This was associated with greater AQP5 mRNA expression in non-survivors (p = 0.037). Greater (≥16%) promoter methylation at nt-937 was also associated with an independently increased risk of death within 30 days (HR: 3.31; 95% CI: 1.54–6.23; p = 0.002). We detected a functionally important AQP5 promoter cytosine site (nt-937) linked to the binding of the inflammatorily acting nuclear transcription factor NF-κB, with increased methylation in sepsis non-survivors. Thus, nt-937 APQ5 promoter methylation, presumably related to NF-κB binding, is prognostically relevant in sepsis and demonstrates that epigenetic changes impact on sepsis outcome.
Collapse
|
84
|
Rahmel T, Nowak H, Rump K, Koos B, Schenker P, Viebahn R, Adamzik M, Bergmann L. The Aquaporin 5 -1364A/C Promoter Polymorphism Is Associated With Cytomegalovirus Infection Risk in Kidney Transplant Recipients. Front Immunol 2019; 10:2871. [PMID: 31867018 PMCID: PMC6906153 DOI: 10.3389/fimmu.2019.02871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The aquaporin 5 (AQP5) −1364A/C promoter single nucleotide polymorphism affects key mechanisms of inflammation and immune cell migration. Thus, it could be involved in the pathogenesis of cytomegalovirus infection. Accordingly, we tested the hypothesis that the AQP5 promoter −1364A/C polymorphism is associated with the risk of cytomegalovirus infection in kidney transplantation recipients. Methods: We included 259 adult patients who received a kidney transplant from 2007 and 2014 in this observational study. Patients were genotyped for the AQP5 promoter −1364A/C single nucleotide polymorphism and followed up for 12 months after transplantation. Kaplan–Meier plots and multivariable proportional hazard analyses were used to evaluate the relationship between genotypes and the incidence of cytomegalovirus infection. Results: The incidences of cytomegalovirus infection within 12 months after kidney transplantation were 22.9% for the AA genotypes (43/188) and 42.3% for the AC/CC genotypes (30/71; p = 0.002). Furthermore, multivariable COX regression revealed the C-allele of the AQP5 −1364A/C polymorphism to be a strong and independent risk factor for cytomegalovirus infection. In this analysis, AC/CC subjects demonstrated a more than 2-fold increased risk for cytomegalovirus infection within the first year after kidney transplantation (hazard ratio: 2.28; 95% CI: 1.40–3.73; p = 0.001) compared to that in individuals with homozygous AA genotypes. Conclusions: With respect to opportunistic cytomegalovirus infections (attributable to immunosuppression after kidney transplantation), the C-allele of the AQP5 −1364A/C promoter polymorphism is independently associated with an increased 12-months infection risk. These findings emphasize the importance of genetic variations as additional risk factors of cytomegalovirus infection after solid organ transplantations and might also facilitate the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Peter Schenker
- Klinik für Chirurgie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Richard Viebahn
- Klinik für Chirurgie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| |
Collapse
|
85
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
86
|
Aquaporin-1 attenuates macrophage-mediated inflammatory responses by inhibiting p38 mitogen-activated protein kinase activation in lipopolysaccharide-induced acute kidney injury. Inflamm Res 2019; 68:1035-1047. [PMID: 31529146 PMCID: PMC6823654 DOI: 10.1007/s00011-019-01285-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022] Open
Abstract
Objective This study was designed to investigate the role of AQP1 in the development of LPS-induced AKI and its potential regulatory mechanisms in the inflammatory responses of macrophages. Methods Male Wistar rats were injected intraperitoneally with LPS, and biochemical and histological renal damage was assessed. The levels of inflammatory mediators, macrophage markers and AQP1 in blood and kidney tissues were assessed by ELISA. RTPCR was used to assess changes in the relative levels of AQP1 mRNA induced by LPS. Western blot and immunofluorescence analyses were performed to assay the activation of the p38 MAPK and NF-κB pathways, respectively. The same detection methods were used in vitro to determine the regulatory mechanisms underlying AQP1 function. Results AQP1 mRNA levels were dramatically decreased in AKI rats following the increased expression of inflammatory factors. In vitro experiments demonstrated that silencing the AQP1 gene increased inflammatory mediator secretion, altered the classical activation of macrophages, greatly enhanced the phosphorylation of p38 and accelerated the translocation of NF-κB. Furthermore, these results were blocked by doramapimod, a p38 inhibitor. Therefore, these effects were mediated by the increased phosphorylation of p38 MAPK. Conclusion Our results suggest that altered AQP1 expression may be associated with the development of inflammation in AKI. AQP1 plays a protective role in modulating acute renal injury and can attenuate macrophage-mediated inflammatory responses by downregulating p38 MAPK activity in LPS-induced RAW264.7 cells. The pharmacological targeting of AQP1-mediated p38 MAPK signalling may provide a novel treatment approach for AKI.
Collapse
|
87
|
Overbey EG, Paul AM, da Silveira WA, Tahimic CGT, Reinsch SS, Szewczyk N, Stanbouly S, Wang C, Galazka JM, Mao XW. Mice Exposed to Combined Chronic Low-Dose Irradiation and Modeled Microgravity Develop Long-Term Neurological Sequelae. Int J Mol Sci 2019; 20:ijms20174094. [PMID: 31443374 PMCID: PMC6747492 DOI: 10.3390/ijms20174094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023] Open
Abstract
Spaceflight poses many challenges for humans. Ground-based analogs typically focus on single parameters of spaceflight and their associated acute effects. This study assesses the long-term transcriptional effects following single and combination spaceflight analog conditions using the mouse model: simulated microgravity via hindlimb unloading (HLU) and/or low-dose γ-ray irradiation (LDR) for 21 days, followed by 4 months of readaptation. Changes in gene expression and epigenetic modifications in brain samples during readaptation were analyzed by whole transcriptome shotgun sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). The results showed minimal gene expression and cytosine methylation alterations at 4 months readaptation within single treatment conditions of HLU or LDR. In contrast, following combined HLU+LDR, gene expression and promoter methylation analyses showed multiple altered pathways involved in neurogenesis and neuroplasticity, the regulation of neuropeptides, and cellular signaling. In brief, neurological readaptation following combined chronic LDR and HLU is a dynamic process that involves pathways that regulate neuronal function and structure and may lead to late onset neurological sequelae.
Collapse
Affiliation(s)
- Eliah G Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Willian A da Silveira
- Institute for Global Food Security (IGF), School of Biological Sciences, Queen's University, Belfast, Northern Ireland BT7 1NN, UK
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- KBR, Moffett Field, CA 94035, USA
| | - Sigrid S Reinsch
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Nathaniel Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research & National Institute for Health Research Nottingham Biomedical Research Centre, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK
| | - Seta Stanbouly
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
88
|
Liu SC, Huang CM, Chang YL, Bamodu OA, Yeh CT, Wang HW, Lee FP, Lin CS. Ovatodiolide suppresses inflammatory response in BEAS-2B cells by regulating the CREB/AQP5 pathway, and sensitizes nasopharyngeal carcinoma cells to radiation therapy. Eur J Pharmacol 2019; 859:172548. [PMID: 31323224 DOI: 10.1016/j.ejphar.2019.172548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Due to the radiosensitivity of the airway epithelium, radiation-induced sinusitis or bronchitis is not uncommon, and makes mitigation of resulting inflammatory airway diseases a principal goal of many investigations. This study examined whether Ovatodiolide (Ova) sensitizes the human metastatic nasopharyngeal cancer (NPC) cell line, NPC-BM2, to irradiation using viability, clonogenicity and Western blot assays. Concurrently, we used varying concentrations of histamine and/or Ova to determine the anti-inflammatory potential of Ovatodiolide on normal bronchus epithelial BEAS-2B cells, as well as on the subcellular distribution of Aquaporin 5 (AQP5) and expression levels of p-CREB, AQP5, p38 MAPK, NF-κB, PI3K, Akt and ERK proteins. We demonstrated that Ova in synergism with irradiation inhibited NPC-BM2 cell viability and suppressed their clonogenicity. Immunofluorescence analysis revealed low-dose (≤ 2.5 μM) Ova reversed histamine-induced suppression of AQP5 expression, and abrogated histamine-enhanced NF-κB nuclear translocation, indicating Ova modulates the p38 MAPK/NF-κB signaling pathway and elicits p-CREB/AQP5-mediated antihistamine effects. Similarly, Ova deregulates the PI3K/Akt/ERK signaling in BEAS-2B cells, suggesting its cytoprotective potential. In conclusion, this study highlights the radio-sensitizing anticancer efficacy of Ova in human metastatic NPC cells, as well as its putative cytoprotective role in normal bronchial cells, for airway surface liquid maintenance and homeostasis during or after radiotherapy.
Collapse
Affiliation(s)
- Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Chih-Ming Huang
- Department of Otolaryngology, Taitung Mackay Memorial Hospital, Taiwan
| | - Yung-Lung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan
| | - Oluwaseun Adebayo Bamodu
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Chi-Tai Yeh
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Hsing-Won Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan; Department of Otolaryngology-Head and Neck Surgery, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Fei-Peng Lee
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan; Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan.
| |
Collapse
|
89
|
Regulation mechanism of aquaporin 9 gene on inflammatory response and cardiac function in rats with myocardial infarction through extracellular signal-regulated kinase1/2 pathway. Heart Vessels 2019; 34:2041-2051. [DOI: 10.1007/s00380-019-01452-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 06/14/2019] [Indexed: 12/30/2022]
|
90
|
Choi YS, Park JH, Yoon JK, Yoon JS, Kim JS, Lee JH, Yun BH, Park JH, Seo SK, Cho S, Lee BS, Taylor HS. Potential roles of aquaporin 9 in the pathogenesis of endometriosis. ACTA ACUST UNITED AC 2019; 25:373-384. [DOI: 10.1093/molehr/gaz025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/09/2019] [Indexed: 12/14/2022]
Abstract
AbstractAquaporins (AQPs) are involved in cell migration, proliferation and carcinogenesis in tumor development and physiologic inflammatory processes, but their associations with endometriosis have not been fully evaluated. In this study, tissue samples were obtained from women undergoing laparoscopic surgery for endometriosis and other benign conditions. Analysis of expressions of AQP subtypes in eutopic and ectopic endometrium of patients with endometriosis (Eu-EMS and Ect-EMS, respectively) and eutopic endometrium of control patients without endometriosis (Eu-CTL) were performed using the NanoString nCounter System and western blotting. Human endometrial stromal cells (HESCs) were cultured and transfected with the siRNA of the AQP of interest. Among the AQP1–9 subtypes, endometrial expression of AQP2 and AQP8 was significantly increased, whereas AQP9 expression was significantly decreased in the Eu-EMS group compared to the Eu-CTL group. Comparison of expression of AQP2, AQP8 and AQP9 among Eu-EMS, Ect-EMS and Eu-CTL groups revealed significant differences for only AQP9. Expression of AQP9 in the Eu-EMS group was decreased compared with that in Eu-CTL. After transfection of AQP9 siRNA in HESCs, expressions of MMP2 and MMP9 were significantly elevated. Increased expression of phosphorylated ERK 1/2 and phosphorylated p38 MAPK proteins after transfection was also confirmed using western blot analysis. Increased migration and invasion potentials of HESCs after transfection were determined by migration and wound healing assays. These findings suggest that AQP9 may be involved in the pathogenesis of endometriosis and warrant further investigation as a potential therapeutic target for treating endometriosis.
Collapse
Affiliation(s)
- Young Sik Choi
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Park
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Kee Yoon
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Sun Yoon
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Sook Kim
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hoon Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Bo Hyun Yun
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Joo Hyun Park
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Kyo Seo
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - SiHyun Cho
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Seok Lee
- Department of Obstetrics and Gynecology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
91
|
Pelagalli A, Squillacioti C, Ali' S, Liguori G, Mirabella N. Cellular distribution of aquaporins in testes of normal and cryptorchid dogs: A preliminary study on dynamic roles. Anim Reprod Sci 2019; 204:22-30. [PMID: 30862405 DOI: 10.1016/j.anireprosci.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 12/15/2022]
Abstract
Fluid regulation within the male gonad is an important process for promoting sperm differentiation and maturation. Aquaporins (AQPs) are a family of thirteen integral membrane proteins involved in these processes. The expression of several genes of AQPs occurs in the male reproductive tract of humans and other animal species, although there are few studies on domestic animals. In this study, the localization of AQP7, AQP8, and AQP9 as well as the abundances of protein and mRNA transcripts were examined in normal and cryptorchid dog testes. There was immunohistochemical localization of AQP7, AQP8, and AQP9 in both the tubular and interstitial compartments of the normal and retained testes and crytorchid dogs, albeit there was an obvious difference in cellular localization with the testes from the cryptorchid dogs. These results were supported by western blotting and real-time RT-PCR analyses, there was a lesser AQP7 and greater AQP9 abundance of protein and mRNA transcripts in the cryptorchid testis. These findings indicate combined testicular functions of AQPs in cell volume regulation. In addition, with the cryptorchid condition characterized there was a different cellular distribution of AQPs supporting the thought that early detection is important for controlling possible side effects of cyptorchidism, such as pre-neoplastic and carcinogenic outcomes.
Collapse
Affiliation(s)
- A Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy; Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - C Squillacioti
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - S Ali'
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| | - G Liguori
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy.
| | - N Mirabella
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
92
|
Wang L, Tang H, Wang C, Hu Y, Wang S, Shen L. Aquaporin 4 deficiency alleviates experimental colitis in mice. FASEB J 2019; 33:8935-8944. [PMID: 31034776 DOI: 10.1096/fj.201802769rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aquaporin (AQP) 4 is expressed in the basolateral membrane of colonic epithelial cells, and the purpose of this study was to explore the mechanistic role of AQP4 in experimental colitis. Experimental colitis was induced in AQP4 knockout (AQP4-/-) CD-1 mice and AQP4 wild-type (AQP4wt) mice by oral administration of dextran sulfate sodium (DSS). Experimental colitis was clinically established. Compared with AQP4wt mice, AQP4-/- mice showed increased tolerance to DSS-induced experimental colitis, including lesser degree of weight loss, diarrhea and bleeding, lower disease activity index scores, longer colon lengths, and lesser histologic scores. DSS-treated AQP4-/- mice had lower serum levels of IL-6 and TNF, higher IL-10 level, and lesser inflammatory cell infiltration. DSS-treated AQP4-/- mice also had lower immunostaining of NF-κB p65 as well as nuclear levels of p65 and phosphorylated p65. Sequencing of 16S rRNA indicated that DSS-treated AQP4-/- mice maintained intestinal microbial diversity and had higher Firmicutes/Bacteroidetes ratios and greater relative abundance of Erysipelotrichaceae species. These results suggested for the first time that AQP4 deficiency alleviates experimental colitis in mice. Our study helps to understand the pathogenesis of inflammatory bowel diseases, and blocking AQP4 may represent a novel therapeutic approach for ulcerative colitis.-Wang, L., Tang, H., Wang, C., Hu, Y., Wang, S., Shen, L. Aquaporin 4 deficiency alleviates experimental colitis in mice.
Collapse
Affiliation(s)
- Liuhua Wang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical School, Yangzhou University, Yangzhou, China
| | - Hua Tang
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuhuan Hu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shoulin Wang
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lizong Shen
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
93
|
Hu X, Liu S, Zhu J, Ni H. Dachengqi decoction alleviates acute lung injury and inhibits inflammatory cytokines production through TLR4/NF‐κB signaling pathway in vivo and in vitro. J Cell Biochem 2019; 120:8956-8964. [PMID: 30838705 DOI: 10.1002/jcb.27615] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Affiliation(s)
- XingXing Hu
- Department of Emergency, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Shang Liu
- Physical & Environmental Sciences University of Toronto Toronto Canada
| | - Jin Zhu
- Department of Emergency Medicine Nanjing University of Chinese Medicine Nanjing China
| | - HaiBin Ni
- Department of Emergency, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine Nanjing University of Chinese Medicine Nanjing China
| |
Collapse
|
94
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
95
|
Acharya A, Li S, Liu X, Pelekos G, Ziebolz D, Mattheos N. Biological links in periodontitis and rheumatoid arthritis: Discovery via text‐mining PubMed abstracts. J Periodontal Res 2018; 54:318-328. [DOI: 10.1111/jre.12632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/01/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Aneesha Acharya
- Faculty of DentistryThe University of Hong Kong Sai Yin Pun Hong Kong
- Department of PeriodontologyDr. D.Y. Patil Vidyapeeth Pune India
| | - Simin Li
- Department of Cariology, Endodontology, and PeriodontologyUniversity Leipzig Liebigstr Germany
| | - Xiangqiong Liu
- Shanghai Genomap Technologies Shanghai China
- College of Bioinformatics Science and TechnologyHarbin Medical University Harbin China
| | - George Pelekos
- Faculty of DentistryThe University of Hong Kong Sai Yin Pun Hong Kong
| | - Dirk Ziebolz
- Department of Cariology, Endodontology, and PeriodontologyUniversity Leipzig Liebigstr Germany
| | - Nikos Mattheos
- Faculty of DentistryThe University of Hong Kong Sai Yin Pun Hong Kong
| |
Collapse
|
96
|
Genome-Wide Identification and Characterization of Aquaporins and Their Role in the Flower Opening Processes in Carnation ( Dianthus caryophyllus). Molecules 2018; 23:molecules23081895. [PMID: 30060619 PMCID: PMC6222698 DOI: 10.3390/molecules23081895] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs’ roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes’ expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.
Collapse
|
97
|
Abstract
Oncotic cell death or oncosis represents a major mechanism of cell death in ischaemic stroke, occurring in many central nervous system (CNS) cell types including neurons, glia and vascular endothelial cells. In stroke, energy depletion causes ionic pump failure and disrupts ionic homeostasis. Imbalance between the influx of Na+ and Cl- ions and the efflux of K+ ions through various channel proteins and transporters creates a transmembrane osmotic gradient, with ensuing movement of water into the cells, resulting in cell swelling and oncosis. Oncosis is a key mediator of cerebral oedema in ischaemic stroke, contributing directly through cytotoxic oedema, and indirectly through vasogenic oedema by causing vascular endothelial cell death and disruption of the blood-brain barrier (BBB). Hence, inhibition of uncontrolled ionic flux represents a novel and powerful strategy in achieving neuroprotection in stroke. In this review, we provide an overview of oncotic cell death in the pathology of stroke. Importantly, we summarised the therapeutically significant pathways of water, Na+, Cl- and K+ movement across cell membranes in the CNS and their respective roles in the pathobiology of stroke.
Collapse
|